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"AN INVESTIGATION OF THE

NUMERICAL TREATMENT OF CONDENSATION"

by

Joseph Sasson and Andrei L. Schor

ABSTRACT

The simulation of complete condensation continues to challenge the

numerical methods currently used for multi-phase flow modeling;

especially at low pressures, the change of phase process from a

two-phase mixture to liquid leads to severe pressure field perturbations

and often failure of the calculations. During condensation, the local

void fraction and pressure decrease rapidly; at the time of complete

condensation, the strong nonlinearities of the equations at the

phase-change point lead to convergence difficulties and/or unacceptably

large mass or energy errors.

Various ad-hoc "fixes" for this phenomenon - often referred to as

"water packing" - have been proposed and/or implemented over the last

few years. However, they have failed to clarify the core of the problem

and are still unsatisfactory. Indeed these solutions cast doubt on the

numerical predictions and occasionally are unable to prevent the

breakdown of the calculations.

The present investigations have focused on the roots of these

difficulties, particularly on the nonlinear effects involved. A

time-step control strategy was developed which removes or at least,

greatly mitigates the aforementioned computational problems. Numerical



experiments as well as a mathematical analysis have both demonstrated

the existence of a critical time-step size beyond which larger

time-steps shall accommodate the liquid flow field to any perturbations;

smaller time-steps shall cause the pressure to bounce, going out of

range as it is indeed witnessed for condensation simulations where the

time-steps are drastically reduced when the two phases are still

coexisting.

Similar studies have been conduced on variety of numerical methods

yielding some unexpected results in terms of time-step limit.
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A flow area

C specific heat

c sonic velocity
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f friction factor
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NOMENCLATURE (continued)

t time
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NOMENCLATURE (continued)

a superficial tension

T shear stress

W overrelaxation parameter

Subscripts

phase "a"
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liquid
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I. INTRODUCTION

I.1. Motivation

In order to simulate and investigate flows in test sections

of experimental sodium loops and of LMFBR fuel assemblies, a thermal-

hydraulic analysis code THERMIT-4e has been implemented along with

a one-dimensional loop simulation capability. One of the developments

involved in this latter implementation is to present a calculational

methodology for treating natural circulation and particularly its

application to the primary loop of a sodium-cooled reactor.

Natural circulation along the primary circuit is induced

by the differences in both thermal center elevation and the coolant

specific weight between the core -the hot region- and the interme-

diate heat exchangers or condensers -the cold region . Thus there

is a possibility that the decay heat due to the reactor shutdown

(or scram) could be adequately removed by proper design without the

need for forced circulation provided by pumps. While results of

single phase calculations are generally in good agreement with the

experimental data, however the code has not been able to achieve a

stabilized flow configuration when a significant amount of boiling

is taking place in the heated section, apparently because of the

inability of its original numerical scheme to correctly simulate

the extremely violent condensation process occuring in the upper

and lower plena of the coolant loop.



Most computer codes utilized in the industry produce a

pressure "spike" which at best leads to very short time-steps being

needed to ride out the disturbance and at worst causes complete cal-

culation breakdown. This same effect has been and still is encounte-

red in some transients investigated with codes for water systems.

The phenomenon came to be referred to as "water-packing".

Its severity increases drastically at lower pressures, as

the liquid-to-vapor density ratio increases, thus leading to stronger

non-linearities. As expected, for sodium systems, this phenomenon is

extreme, given the enormous difference between liquid and vapor

densities.

1.2. Objectives

The purpose of this research has been to elucidate the

reasons for the breakdown of the numerical schemes used for flow

field modeling when a mesh-volume changes state over a time step, from

a two-phase mixture to single phase liquid.

Then, our objectives have been to propose a simple problem

for which the nonlinear equations involved can be decoupled and solved.

We also sought possibilities to linearize the equations with

acceptable approximations for a more general case.

The final goal has been to implement a simple subroutine

which could be easily incorporated into the THERMIT-4E computer code

and would be activated whenever a condensation process is detected.

1.3. Previous works

The problem has bee examined before and various ad-hoc

"fixes" have been proposed or used in water systems codes. However,



none of them could point to the essence of this peculiar behavior,

but focused rather on eliminating (or reducing) the pressure spike

itself by modifying and/or adding artificial terms in the basic

equations when a water-packing situation is expected or encountered

[1-3]. Moreover, they are not guaranteed to work for whatever tran-

sient is considered and therefore a more theoretical approach was

deemed necessary for further progress.

1.4. Organization of the report

The following chapter presents the code used for this

research -THERMIT-4E-, especially the governing differential equa-

tions and the numerical methods used to solve them.

The purpose of chapter III is to describe some of the nume-

rical experiments of condensation examined as well as the analysis

of the results. We shall emphasize the simplifications that have been

made enabling us to neglect the influence of some parameters which do

not affect the calculations, as a first approach to the problem itself.

Chapter IV presents the mathematical solutions of condensa-

tion for THERMIT-4E, while in chapter V a comparative analysis of

other numerical schemes is carried out.

Next, chapter VI discusses tests of the method implemented.

Finally, the last chapter summarizes our conclusions and offers some

recommendations for future studies on this subject.



II. Mathematical and Physical Models in THERMIT

II.1. The Two-Phase Flow Model

II.1.1. Introduction

Mathematical models for vapor-liquid flows are usually

derived starting from the local instantaneous differential conser-

vation laws of mass, momentum and energy and the interfacial jump

conditions. Models of varying sophistication result from the specific

choices for the averaging procedures and the assumptions made about

the nature of the mechanical and thermal coupling between the vapor

and the liquid phases.

The most general model is the two-fluid, six-equation

model (also referred to as the separated-phase model). It describes

each phase by an average temperature and velocity. It could in

theory provide the maximum in capability and physical consistency

among the two-phase flow models. Various two-phase mixture models

also exist. These mixture models use less than six equations and

consequently require additional assumptions about the thermal and

mechanical coupling between the phases.

11.1.2. The Six-Equation Model

The detailed derivation of the volume-averaged two-

phase equations is given in [5]. The working form of these

conservation equations is written in one dimension since the

proposed method can easily be generalized to two or three

dimensions.



Vapor mass equation

a a
aT (pv) + ax (czp UvUv)

Liquid mass equation

= r

(1-)] + (1-a)p ] =

Vapor momentum equation

auv
olv a + ap Uv at v v

v aP- + aax ax

Liquid momentum equation

Sau-a
(l-c)p + (-)p U axR at + 11"PQU ax

+ ap
+ (1-a) -ax

-F w- Fiz + (l-)p£

Vapor internal energy equation

- (ap a (aPvevUv)
a--t (apvev) + a- (x p eU

+ P - (aU + P a
at

Qwv + iv Qkv

Liquid internal energy equation

-- [(l-a)peI + [(l-a)p eU]

- 0aa Q
aat wk

+ P (l-c)U£]

+ Qik + Qkki2t k2.

(2.1.a)

(2.l.b)

=-Fwv -Fiv + cPV x.g (2.1.c)

x.g (2.l.d)

(2.1.e)

(2.1.f)



Note: x is a unit vector parallel to the channel's centerline.

where:

r = interfacial mass exchange rate

Qwa = phase 'a' wall heat source

Qia = phase 'a' heat source due to interfacial effects

Qka = phase 'a' conduction heat transfer rate

Fia = phase 'a' interfacial momentum exchange

Fwa = phase 'a' wall momentum exchange

a = liquid or vapor phase

The interfacial momentum exchange terms are extensively presented

in section 11.3.2.

It should be noted that the internal energy equations are

not conservation equations. They are obtained from the total energy

conservation equations by substracting the corresponding mechanical

energy equation from the total energy equation.

This form is used for numerical convenience. Also the

momentum equations are written in non-conservative form for the same

convenience reason, which will later become apparent.



Table 2.1.Two-Phase Flow Models

(General assumption: ptspv)

= Conservation
= Conservation
= Conservation

of
of
of

Mass
Energy
Momentum

Ta = Phase "a" temperature; a = v or a
U = Relative velocity = Uv - U

*note that the interface mass exchange, r, is needed whenever Qi and/or Fi are needed.

Two-Phase- Conservation Imposed Required Constitutive Relations
Flow Model Equations Restrictions
(suggested External Interfacial
nomencla- Total
ture) M E K Total Ta Ur Total Q Fw r Qi Fi

3C 1 1 1 3 2 1 3 1 1 0 0 0 2

4C2M 2 1 1 ,4 1 1 2 1 1 1 0 0 3

4C2E 1 2 1 4 1 1 2 2 1 1" 1 0 5

4C2K 1 1 2 4 2 0 2 1 2 1* 0 1 5

5C1K 2 2 1 5 0 1 1 2 1 1 1 0 5

5C1E 2 1 .2 5 1 0 1 1 2 1 0 5

5C1M 1 2 2 5 1 0 1 2 2 1* 1 1 7

6C 2 2 2 6 0 0 0 2 2 1 1 1 7
. . .. , , , . , i , , , , ,,I

Legend:



There are 8 unknowns in equations (2.1). These are a, Pv, Pa' P,

ev, et, Uv and U . The wall and interfacial exchange terms as well

as the effective fluid conduction heat sources (defined above),

are assumed to depend, via constitutive relations, on these varia-

bles and the phase temperatures,Tv and T., which represent two addi-

tional unknowns. Thus we have a total of 10 unknowns.

Equations (2.1) are equivalent to 6 equations, hence we must

provide 4 additional equations for closure. These are the

equations of state given in the form:

Pv = v (P, TV ) (2.2a)

p = pt(P, T ) (2.2b)

ev = ev(P, Tv) (2.3a)

e. = e (P, T ) (2.3b)

11.2. Mixture models

As mentioned earlier on, a mixture model is a degene-

rate form of the six-equation model and we should expect consis-

tent results from all models by activating the appropriate cons-

traints or assumptions that led to each model. Table 2.1. gives

a summary of the two-phase flow models.

The four-equation model will be discussed in greater

detail because of its relevance to the THERMIT-4E code that is

used in this work. The homogeneous equilibrium model shall also be



discussed because it provides an easy analytical tool for the

treatement of condensation in chapter 4.

11.2. 1. The four-equation model

The detail of the considerations leading to the adop-

tion of the four-equation model in THERMIT-4E has been given

in reference [5]. Importantly, the code is developed for the

particular applications of the analysis of two-phase sodium

coolant flows. The very high conductivity of the liquid sodium

precludes significant temperature gradients in the vicinity

of the liquid-vapor interface and thus makes the assumption of

thermal equilibrium at saturation of the coexisting phases a

reasonable one. The assumption of mechanical equilibrium cannot

be justified however, because the enormous liquid-vapor den-

sity ratio of sodium at near atmospheric pressure coupled

with the prevalent low flow conditions lead to substantial slip

ratios. It will therefore be necessary to write separate momen-

tum equations for the two-phase in any worthwhile mixture model.

In the 6-equation model, the paramaters Pv' P, ev,

ez are functions of Tv or T, and P (eqs. 2 and 3) but with the

assumption of thermal equilibrium at saturation, Tv = T = Ts,

these parameters all become functions only of Ts. Thus , the

equations of state become:

Pv = Pv( P ) (2.4 a)

p = p ( P) (2.4 b)

ev = ev( P) (2.4 c)

-Y-L--mrr~- arrar-- ---ll---r



e. = e ( P) (2.4 d)

Ts  = Ts( P) (2.4 e)

Hence, the 3 unknowns Tv, T, P in (2.2) and (2.3) reduce to

only I unknown P in (2.4). The number of conservation equations

is also reduced by two, from six to four, yielding the four-

equation model as follows:

Mixture mass equation

- p + [ apv U + (l-a)p Ui] = 0 (2.5 a)

Momentum equations

(identical to 2.1 (c) & (d) ) (2.5 b,c)

Mixture internal energy equation

(p em) [ap evU + (l-a)p eU ]

+ P a [aU + (l-) U ] = Qw + Q + Q (2.5 d)ax v z w im k

where

Pm aPv + (1-a) pR (2.6 a)

em = [apvev + (1-a) e~pZ]/pm (2.6 b)

Qw mixture wall heat source

Qwv + QwY



Qim mixture heat source due to interfacial effects

Qiv + Qi

Qk - mixture conduction heat transfer rate

= kv + Qkk

Pm and em are 2 additional unknowns to the 10 unknowns

counted in the six-equation model. Thus we have a total of 12

unknowns. Equations (2.5) and definitions (2.6) represent a

total of 6 equations. The 4 equations of state (2.4), and the

2 equations implied in the assumption of thermal equilibrium

at saturation:

Tv = T = Tsat(P) (2.7)

provide the additional 6 equations required for closure.

By using the four equations (2.5), the two de-

finitions (2.6) and the two constraints (2.7), we shall

be able to calculate the following eight quantities a, Tv,

T, Pm' Pv' P ' e , et, for any given P and em. This is a

very important step in the solution technique in THERMIT.

As shall be shown in a later section, reduction of conserva-

tion equations to pressure problem is a dominant feature of

the numerical method in the code.

The following terms are neglected in the THERMIT-4E

formulation-because of their relatively very low magnitudes:

(i) contribution of interfacial effects to mixture heat source,



i.e., work terms due to interfacial momentum exchange and the

kinetic energy transport via interfacial mass exchange, the

mixture heat source due to interfacial effects, ii) the pseudo-

work terms due to wall forces in the wall heat source.

11.2.2. The homogeneous equilibrium model (HEM)

The HEM or the three-equation mixture model is obtained

by assuming thermal equilibrium of the co-existing phases at

saturation and equal phase velocities. Equilibrium drift flux

model would result if a correlation for relative velocity

were used.

The resulting HEM conservation equations are given

below:

Mixture mass equation

SPm +  (PmU) = 0 (2.8 a)

Mixture momentum equation

aum + Um -F +
)m t + (P ax T - w pmx.g

(2.8 b)

Mixture internal energy equation

aUm

-t(Pmem ) + a(peUm) + P w Qk

(2.8 c)



Figure 2.1. The Fluid-Wall Interaction



where

U = the mixture velocity

Um  = Uv = Uk

II.2.3. The exchange terms and the interfacial jump conditions

The wall and the interfacial exchange terms are the

mass, momentum and energy exchanges that take place at the fluid-

wall and the fluid-fluid interface respectively. The interfacial

jump conditions are essentially the equations of conservation

of mass, momentum and energy at the fluid-fluid interface.

The definitions of the exchange terms and the interfa-

cial jump conditions have been given in reference [5].

II.3. The physical models in THERMIT

II.3.1. Wall friction

The fluid-solid interaction at the wall leads to

momentum dissipation Fwa [force per mixture unit volume] of

the phase "a" forming interface with the solid (fig. 2.1).

In fig. 2.1 Twa represents the average wall shear

for the phase "a" and Awarepresents the average area 'wetted'

by the phase "a".

Fwa w a  T (2.9)wa V wa

By analogy to single-phase flow, Twa can be related

to the kinetic energy of phase "a" through a Darcy-type re-

lation.



Twa l fwa a IUal Ua (2.10)

where

fwa E friction factor for phase a.

The wetted area per unit volume for phase "a" is given as:

Pwa L
AL

P
- Cfa

A

4 C
D0 Cfae

(2.11)

wetted perimeter for phase "a"

= 'length' of the control volume

= total flow area

= total wetted perimeter

= equivalent hydraulic diameter

= 4A/Pw

contact fraction of phase a = Pwa/Pw

Combining (2.11), (2.10) and (2.9) we obtain the

final forms of the wall frictional force per unit volume for

phase a as:

Cfa

2D fwa Pa IUal Ua

S Kwa Ua

(2.12 a)

(2.12 b)

Awa

V

where

Pwa

L

A

Pw

Cfa

F wawa
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We shall refer to Kwa as the wall friction coefficient for

phase a.

The factor Cfa and fwa must be defined with proper

considerations to the two-phase situations.

An assumption which has been deemed adequate is

that whenever two-phase flow exists, an annular flow regime

prevails, with the liquid coating the solid surfaces. At very

high void fractions, some vapor wall contact is allowed. Ac-

cordingly, Cfa is prescribed as:

1.0 ; < 0.89

Cf, = 10(0.99-a); 0.89 < a < 0.99

0.0 a > 0.99 (2.13)

and

Cfv = -Cf

For fwa' the following postulate is made by analogy

to the single-phase flows:

f = C Re-b (2.14)
wa a

The Reynold's number Rea of the phase "a" is defined to take

into account the actual flow area of phase "a".

PaUaDe,a (2.15)Re a



where

4Aa

e,a Pw

4aaA
pw

= %aDe (2.16)

We shall now provide the working form correlation

(equation (2.14)) for the axial flow condition that is rele-

vant to our 1-D loop flow problem.

The correlations that follow are formulated for

wire-wrapped rod bundle flow-channels; they are specific

forms of equation (2.14).

Axial flow

(f ) = 32 . 5 1 , for Rea<400 (2.17a)(fwa laminar : [_E Rea a

(f) 0.316M , for Rea >2600 (2.17b)
wa turbulent ReO.25

a

(fwa transition = (fwa turbulent + (fwa laminar

x VT-T, for 400 < Rea < 2600 (2.17c)



where: 0.885
1.034 29.7(P/D) Re a (0.086)

M 0.124 + 2.239
(P/D) (H/D)

= (Rea - 400)/2200

H = wire-wrap lead length (meters),

P/D = pitch-to-diameter ratio,

H/D = helical pitch-to-diameter ratio

The laminar flow correlation was proposed by Engel

et al, and the correlation used in turbulent flow is a slight-

ly modified version of the correlation due to Novendstern.

To avoid unrealistic situations for bare rods (i.e. H co),

a cut-off is imposed on the laminar correlation by requiring

f laminar Re > 60. The hydraulic diameter has been recommended

to be calculated as :

De = 4 x A (bundle)/Pw (rods + ducts) (2.18)

11.3.2. Interfacial momentum exchange

The interfacial momentum exchange Fia in (2.2) is

made up of two components, one due to interfacial mass ex-

change, the other due to form and shear drag at the inter-

face.

The form of the correlation used in THERMIT-4E for

F.ia are given below1a



Fiv Kiv (Uv - U )

Fi = Ki (Uv - U) (2.19)

where

Kiv = r + Ki

Ki (1-) r + Ki  (2.20)

n is a weighting factor defined (empirically) for the pre-

sent by a donor-like formulation [5].

n = 1 , if r > 0 (evaporation)

n = 0 , if r < 0 (condensation)

r and Ki must be specified in (2.19) in order to obtain the

momentum exchange coefficients Kiv and Ki. in (2.20).

r is obtained from the equation of conservation of mass on

any one of the phases. Thus for the vapor phase;

S= (pv) + - (ap U) (2.21)

The following correlations for Ki are obtained using the

Wallis correlation [5] for friction factor.

= 0.01 [1 + 150 (1-v )]pvlUrl (2.22)
(Ki)turbulent (vr (2.22)

32a v
(K i)lamina r  2

De



YES

NO

YES

YES

s"A

SATURATED NU-
CLEATE BOIUNG
AND CONVECTICN
TO TWO- PHAS E
MIXTURE

FILM BOILING

Heat Transfer Selection Logic

FLUID FLOW
VAPIABLES
AND TW

CONVECTION TO
SINGLE-PHASE
VAPOR

CONVECTION TO
SINGLE-PHAS E
LIQUID

NO

NO

Figure 2.2.



where

Ur = relative velocity = Uv - U2

11.3.3. Wall heat transfer

The heat transfer correlations between the fluid

and the solid surfaces (heater or fuel rods and the hex can)

that are used in the code are given in this section.

Fuel or heater rods

The heat transfer regime selection logic is pre-

sented in fig. 2.2 adapted from reference [5]. The correla-

tion for single-phase liquid in triangular - arrayed bundle

due to Schad is adopted.

Nu = Nu0 (Pe/150)0 .3  Pe > 150

(2.24)
= Nu Pe < 15

where

Nu = 4.5 [-16.15 + 24.96 (P/D) - 8.55 (P/D) 2]

and Pe = Re.Pr

The single-phase vapor heat transfer correlation used is the

well-known Dittus-Boelter's correlation:

Nu = 0.023 Re0.8 Pr 0.4 (2.25)

For two-phase fluid heat transfer, the total heat

transfer coefficient for two-phase flow boiling with no li-

quid deficiency is given by:



hTP =h h h NB (2.26)

as suggested by Manahan [5 ].

The convective component hc could be represented by

the Schad's correlation in which the Peclet number for two-

phase (PeTP) is given by:

PeTP = ReTP Prk (2.27)

and the two-phase Reynold's number (ReTp) is obtained through

the factor F defined as

F = (ReTP/Re )0.8 (2.28)

F depends on the Martinelli's parameter, Xtt.

Xtt 1 {x0.9 p 0.5 [V1 (2.29)

The heat transfer correlation for nucleate boiling

due to Forster-Zuber's analysis is [5]:

h 0.00122 79 04AT 0 24 AP0.75  S (2.30)NB 1  0.5 I 0.29 0.24  0.24 sat sat
a fg p

where

ATsat = wall superheat,

APsat = pressure difference corresponding to Tsat ,

S = nucleate boiling suppression factor,

= (AT /AT sat) 0.99,sat,e sat



ATsat,e = effective wall superheat.

The following fits for F and S are given in reference [5].

1.0 ,
C -1
Xtt

< 0.10

(2.31)

2.35(XttI + 0.213)0.736
Xtt > 0.10

[1.0 + 0.12 (Rep) 1.14 -1

[1.0 + 0.42 (Rep) 0.78 -1

0.1

, ReTp < 32.5

, 32.5 < Rep < 70.0

Rejp > 70.0

(2.32)

where

Rep = ReTp(10 - 4 )

At high void regimes, (0.89 < a < 0.99), film begins

to blanket the surface. Heat transfer decreases and is approximated

by:

hfilm : 2hTP,c + (1-92)hvapor

- 10(0.99 - a)

where

(2.33)
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11.4. The numerical methods

11.4.1. Introduction

THERMIT is a lumped parameter component code that can

handle up to three-dimensional two-phase flows. An Eulerian nu-

merical approach is used for the fluid dynamics. This approach

follows the evolution of the volume- (and time-) averaged values

of material parameters and other quantities of interest at fixed

points in space. The reactor is divided by a mesh into a collec-

tion of cells and the parameters and quantities are calculated

at each cell as a function of time. The smearing of transported

entities within the cells due to this technique is minimized by

reducing the sizes of the averaging volumes wherever there is a

strong spatial variation of the quantity being averaged.

The numerical method in THERMIT is a modified form of

the successful I.C.E. (Implicit Continuum Eulerian) technique.

Like the I.C.E. method, it uses a staggered grid, treats sonic

propagation implicitly and convective transport explicitly and

obtains a pressure-field solution from which the other variables

are inferred. In THERMIT, all the equations (mass, momentum and

energy) are blended simultaneously to obtain the pressure-field

solution while in the I.C.E., the energy equation is treated ex-

plicitly. This choice of treatment is necessary in THERMIT be-

cause the change in density with energy can no longer be assumed

a small correction to the flow field in two-phase flows as can be

done in single-phase flows [8].
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The next subsection gives a review of the numerical

method used in the four-equation model THERMIT-4E simplified

to a one-dimensional formulation. The detail of the analysis

for multidimensional flows has been given in Schor and Todreas[5].

11.4.2. The numerical methods for fluid dynamics

The finite difference equations

The choice of the method of treatment of the time

discretization of a system of partial differential equations

can be obtained from a spectrum of schemes, ranging from fully

explicit to fully implicit ones. Whatever the choice, stability

and consistency must be ascertained in order to guarantee con-

vergence. A judicious choice can be qualitatively inferred from

the curve of minimum computational efforts (figure 2.3. [7])

and from the knowledge of the time scales of the phenomena invol-

ved. In light of the above, we seek a numerical method that treats

local phenomena (couplings) and sonic propagation in a fully or

highly implicit manner, while describing explicitly transport

mechanisms by convection and diffusion.

In space, a fully donor-cell differencing is used

accompanied by additional averaging whenever quantities are

required at the locations other than those at which they are

originally defined. The widely used staggered-mesh approach

is adopted, whereby the scalar quantities are defined at the
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cell center while the fluxes are defined at the cell faces

to which they are normal (fig 2.4).

The discrete analogs of the partial differential equa-

tions describing our two phase model will now be presented.

The mixture mass equation

v(pn+ -P m/At + {Aap ) (Uv )n+ + ((1-a)p )n(U )n i+/2
m m z+1/2

-{A[(ap v)n( )n+l + ((1-a)p )n(u )n+l ]i-1/2 = 0

(2.38)

In the above, the convected quantities are needed at cell faces,

where fluxes are defined. Full donor-cell differencing being used

to define these quantities, let C stand for any cell-centered

quantity (see fig. 2.4)and consider the face (i + 1/2), nor-

mal to the direction of flow in the loop. The quantity Ci+1/2

is then determined as:

C , if (U)n > 0

i+1/2 =
C if (U) 0

Si+l .i+l/2

It is important to note that donor-cell decisions

are made only with regard to quantities at time level n, using

velocities at the same time level. As a result no difficulty

arises even if a.velocity sign change occurs during a time step.



The mixture energyequation

A number of variants for the finite difference

equation exists. The conservative/semi-implicit convection

(CSIC) scheme is given below:

V[(p em )n+l _ ( e)n]t + [pn + ( e) [Aa n(U) n+l
- i m m +1/2[Anv )  ]i+I/2

+ [pn + (pen )+1/2[A(lc)n(U )n+li+1/2

i/2[ i-+i/2
Sn + e )-/2][an(Uv n+ i-1/2

[Pn + (pe )n_/2][A(1-a)n(U )n+1 i-1/2

Qw n+1/2 Kn+1/2 (2.39)

The difference forms of energy and the mass equations,

(2.38) and (2.39) are a strict adaptation of the scheme used

for a six-equation model to a four-equation "mixture" model.

The schemes for both models are equivalent for single-phase,

either liquid or vapor. For two-phase however, the four-equa-

tion adaptation suffers a subtle flaw, namely the lack of

monotonicity of the mixture internal energy density (Pm em)

with respect to em. This feature is undesirable for the New-

ton method used to solve our system of equation.

To avoid the problem raised by the product Pmem ,

a non-conservative/semi-implicit convection (NCSIC) form

of the energy equation is used. To this end, the mass equa-

tion is multiplied by em and then subtracted from the conser-



-vative form of the energy equation. The resulting difference

equation is

V(P )n[(em)n+l - (em )n]/t + [conve - conV mn+1/2

=(Qw + QK) n + 1/2

n+1/2 n+1/2where convm n+ /2 and cony e /2 stand for the semi-implicit

convective terms in the mass and energy equations, respec-

tively. The heat sources appear with superscript n+1/2,

indicating a combination of implicit / explicit components

in the constitutive relations used for them.

The phasic momentum equations

The momentum equations are used in the non-conser-

vative form, particularly convenient to our method. The con-

trol volume for which the momentum equation is written is

offset by half mesh with respect to that used for the scalar

quantities (fig. 2.4). The momentum equations are written below:

Vapor momentum equation

S) [(Uv)n+1 - (Uv)n]i+1/ 2
ap i+1/2

At

n AUv
+ (aPv)i+1/2 (Uv)i+1/2( A ) i + 1/ 2 n

n (Pi+l -
P )n+l

+ 1i+1/2 Ax W/2

)n+1/2 )+1/2 )n 
-(Fwi+/2 - (Fivi+l/2 - x.g

(2.41 a)



Liquid momentum equation

(similar to (2.41 a)
AU

In the above equations (--A)i+1/2 represents a dif-

-ference approximation for the spatial derivatives aua/ax

evaluated at the point i+1/2, where a = R or v.

Again the cell-centered quantities a,p ,pk are now

needed at the cell faces. Donor-cell differencing can be

used in case of single-phase liquid where the properties in

the adjacent cells are not greatly different. Things are dif-

ferent, however, once the face in question separates a liquid

cell and a two-phase cell. In this case the mixture density

(mainly through a ) may vary by as much as two orders of

magnitude. In such a situation a change in the sign of the

velocities at the face, for donor-cell scheme, would lead

to very large changes in terms of the momentum equations,

which in turn could generate large pressure spikes and

even ruin the solution, by imposing an impractically

short time steps. As a result, a weighted average scheme is

adopted. Let C be a cell-centered quantity, then its value

at the cell surface is specified as:

Ci+1/2 = (CiAxi + Ci+ 1AXi+l)/(Axi + Axi+l) (2.42)

for the product aaPa for instance, we define

(aaPa)i+1/2 = (aa)i+1/2 (Pa)i+1/2 (2.43)



The difference approximation of the convective

derivatives are defined through a donor-cell logic:

(Uv)i+ 3/2 - (uv)i+1/ 2 , if (Uv)i+1/2 < 0

Axi+
lAUv

'AX i+1/2

(Uv)i+1/2 - (Uv)i+1/ 2 , if (Uv)i+1/2 > 0

Ax

(2.43)

and the mesh spacing (Ax)i+1/ 2 needed in the pressure gradient

is given by:

(=x)i+1/2 = (Axi + Axi+ 1 )/2 (2.44)

In the momentum equations, the wall and the inter-

facial exchange terms have a linear dependence on the new

time phase velocities or they can be linearized in these new

time velocities about the old time velocities [5]. The fol-

-lowing forms of constitutive relations are adopted in our

calculations.

n+1/2
(Fwa) = (K wa)n (Ua)n+l

i+1/2 i+1/2 i+1/2 (2.45)

n+1/2
(Fia) = (Ki )n (Uv - U)n+l (2.46)

i+1/2 a i+1/2 i+1/2



The coefficients Kwa and Kia can be complex functions of any

variables, the only requirement being its evaluation using

old time quantities.

With equations (2.45) and (2.46) the momentum equa-

tions (2.41 a) and (2.41 b) can be written in the form:

n+l = aPn+l + b
v v v

n+l n+l (2.47)
U = a kAP + b

where the coefficients a , a., by and bk contain old time

quantities only.

Apn+l = (Pi+l - pi)n+l is the pressure drop between

two consecutive cell centers.

The spatial subscripts have been dropped in (2.47)

with the understanding that the velocities are evaluated at

the faces of a node.

The quantities av, aV, b , bk are defined below [5]

a -t [ae2 + At Ki  (1-a)]/d (2.48 a)v Ax 2 iv

a = - [(l-a)el + At Ki1 c]/d (2.48 b)
Ax

by = (fle 2 + At Kivf 2)/d (2.48 c)

b = (f2el + At Kitfl)/d (2.48 d)

el = ap + at(Kwv + Kiv) (2.49 a)



e2  = (l-a)pt + At(KwZ + Kit) (2.49 b)

fl = aP [U - At(conv + x. )] (2.49 c)

f2  = (l-a)p[U - At(conv + x. )] (2.49 d)

d = ee 2 - (At)2 Kiv K (2.49 e)

In equations (2.48) and (2.49), everything is evaluated at the

old time. Consequently the coefficients a's and b's can be cal-

culated only once at the beginning of the current time step

and stored.

11.4.3. The solution scheme

The finite difference equations described in the

preceding section combined with the equations of state (equa-

tions 2.3) form a large system of non-linear equations. The

following seven new time variables appear as unknowns for

all cells in the domain of the problem:

n+l n+l n+l n+l n+l n+l n+
p ,P , e ,T ,T ,U and Um m ' v v R

The new time temperatures appear from the fully-implicit

treatment of the heat sources and sinks that is adopted for

this formulation. The high heat transfer coefficient and

the low heat capacity of the plenum material that are required

to keep the plenum temperature constant during transients may

give rise to instabilities for a fully explicit or a semi-

implicit treatment, hence the decision to use a fully-implicit

treatment for tests of our method on a loop version of THERMIT.
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n+l n+lNote also that pm and em now appear as separate unknowns due

to the non-conservative form of the energy equation adopted (equa-

tion 2.40). This splitting of the product (pmem)n+l, which other-

wise would appear as an unknown from the conservative form (equa-

tion 2.39), is highly desirable. The product pmem is a non-monotonic

function of em for sodium and also for water at low pressure (fig.

2.5). This behavior have the tendancy of ruining the Newton-

Raphson method adopted to solve our non-linear system. Generally,

the Newton-Raphson method is destroyed when an extremum point

exists between the guess and the solution.

11.4.4. The Jacobian matrix and the pressure problem

The new time velocities that appear in the mass and the

energy equations are eliminated in favor of the new time pressures

using the momentum equations in the form of (2.47). Thus for each

cell we now have two scalar conservation equations namely the mass

and the energy equations. The appropriate equations of state are

combined with these scalar conservation equations for closure.

In our one-dimensional formulation, the elimination of the new

time velocities leads to the appearance of the new time local and

two neighboring pressures in the mass and the energy equations

for each node.

Note that our numerical scheme uses the internal ener-

gy as primary variable, therefore the temperature must be infer-

red. It is determined through an iterative procedure applied to

equations (2.3c,d).



The resulting mass and energy together with the state equations

can be written in functional form for node 'i' as follows [71:

Rmi (Pmi' Pi-l' Pi' Pi+l )  = 0 (2.50 a)

Rei (Pmi' emi' Pi-' i' Pi+l) = 0 (2.50 b)

mi - mi Pi emi )  = 0 (2.50 c)

where

Rmi refers to the mass equation for node 'i'

Rei refers to the mass equation for node 'i'

and all the quantities inside the parentheses are now

evaluated at the new time level.

Equations (2.50) are generally highly non-linear,

the source of non-linearity being mainly the state equation.

The pressure P and the mixture internal energy em

are taken as the main variables and the mixture density pm

is eliminated through the equation of state. Consequently we

obtain two non-linear scalar equations in P's and em for

each node. These equations can be written symbolically as:

(iT) = 0 (2.51)

where

- .T
R = [Rml, Rel ......... RmN, ReN

S = [Pl eml ........ ' PN emN]T

Applying Newton's method to solve (2.51) we have



()where the = - ()is given by

where the jacobian J(U) is given by

j(U)

(2.52)

au

Let K be the counter for the Newton iteration. Then the

scheme becomes:

-j(U) ( + - UK) = - R(UK). (2.53)

The entries of the jacobian matrix for a particular

node 'i' are obtained from the following partial derivatives

aRmi

DPi-1

DR mi
aP.il

aRmi

aemimi

aRmi

aPi+ l

aRei aRei DRei 3Rei
aPi- aPi a em aPi+l

We denote these generally non-zero entries by "x"

and thus obtain a matrix form for equation (2.52), for cell i:

I. -,K+1

x 0 x x x 0

x 0 x x x 0

6Pi

6emi

6emi+l

R - K

Rei

(2.54)



Equation (2.54) forms a total of 2N equations, where N is the

total number of nodes. The full 2 x 2 block in (2.54) provides

local (within cell) coupling while the sparse 2 x 2 blocks

provides spatial coupling, indicating a field coupling through

pressure only.

The next step in the solution is to solve the main

diagonal block to eliminate 6emi in favor of the neighboring

pressures. This procedure effectively reduces the problem to

a pure pressure problem in N equations. The pressure problem

in matrix form becomes:

6Pi K+l

x x x 6Pi = RiK (2.55)

i+l

Equation (2.55) when written for the N-cell domain

gives rise to an-N x N tridiagonal jacobian matrix in the left

hand side while right hand side becomes an N x 1 vector.

The pressure increments are solved in (2.55) by

a direct technique (i.e., LU decomposition).

The increment 6emik+lis then obtained from the second equation

of (2.54) in each cell. This completes a Newton iteration.

The process is then repeated until successive changes in the

main variables become very small.
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III. Description of the problem

III.1. Introduction

Experiments suggest that the condensation process

is basically the reciprocal of boiling: both can be represen-

ted as a mere change in phase. However because of the differ-

ence in density of vapor and liquid, small pressure pulses

cannot be absorbed as easily for liquid as it is for vapor.

Indeed this aspect of condensation will prove to be determi-

nant for the final understanding and the resolution of this

phenomenon.

The intuitive physical model considered in order to

encounter a condensation problem- has been a channel with a

test section in which heat would be removed through the

structure walls maintained at very low temperature. An in-

coming two-phase mixture flow would then condense in this

test section. Other conditions involving less computation

were investigated: those conditions were designed so that

they would re-create the same situation leading to high pres-

-sure spikes as they were witnessed indeed in the loop simula-

-tion of THERMIT.

In this latter case condensation is taking place

in the neighboring cells of the upper and lower plenum [4].

The following studies shall essentially focus on

one dimensional channels, and also using simple legitimate

simplifications such as:



- no transverse flow

- no heat input

- adiabatic flow

- pressure-pressure boundary conditions

This last choice of boundary conditions will enable

us to avoid imposing the flow in and/or out of the channel and

to observe a natural behavior of the flow, especially flow re-

versal during change of phase as the case may be.

111.2. Typical cases of condensation

111.2.1. Description of the numerical experiments

The first series of benchmarks that have been inves-

tigated features a flow of two-phase mixture injected into

stagnant subcooled liquid. The same flow pattern in indeed ob-

served in the heated section of the upcomer of the reactor

loop simulation: a two-phase mixture reverses and flows back

into the lower plenum which contains subcooled liquid at appro-

ximately 8400 K. Pressure-pressure boundary conditions is impo-

sed, the expected result being a pressure gradient throughout

the channel.

Results showed the interface-cell pressure increasing

rapidly and exceeding the upper limit of the pressure range

prescribed by the equation of states (20.0 bars): simultaneous-

ly the incoming flow starts to reverse direction and to push the

liquid away, but not sufficiently to alter substantially the
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pressure increase.

The second series of benchmarks represents water-

hammer-like problems: a flow of subcooled liquid is injected

into stagnant two-phase mixture at higher temperature. Other

conditions of the tests remained similar to previous calcula-

tions. Condensation occurs also at the interface-cell and

leads to pressure going out of range.

111.2.2. Analysis of the results

It is important to note that all calculations were

run keeping a tight allowable conservation error (on the order

of 0.5%) since larger mass error would artificially and non-

physically "solve" the problem; when the code reached this

limit it automatically reduced the time-step and reiterated

the calculations.

Also, for simplicity reason, no slip was assumed;

actually this condition is a much more severe situation than

if slip existed since the flow has more difficulties in reversing

for liquid than for a two-phase mixture or vapor: the obvious

advantages of using the HEM is to eliminate a variable and an

equation making hand-calculations possible.

A final reduction in computing will consist of consi-

dering a one-cell volume filled with stagnant two-phase mixture

in which very subcooled liquid is injected at a given pressure.

The results of these numerical tests exhibited most

interesting anomalies leading to some instabilities



of the flow yet to be defined. The pressure and the void

fraction in the cell start dropping due to condensation effects,

while mass flows and velocities at both cell interfaces are

directed inward with increasing absolute value in order to

compensate this trend. When condensation is completed, pressure

rises abruptly because of the inward flows; at this point of

the experiments the channel contains only subcooled liquid.

The code will recover from the above described behavior

for an initial void fraction in the cell lower than a critical

void fraction. However for larger initial void fractions pressure

as well as velocities at the interfaces oscillate with growing

amplitudes preventing the flow from reaching steady-state.

The calculations eventually stop because of the pressure going

out of range of state functions.

Besides the dependancy on the initial void fraction

in the cell, different tests demonstrated also that the final

state of the flow is greatly affected by effective quantity of

subcooled liquid injected on the the two-phase mixture and not

by the numberof cells of subcooled liquid.

During the process of condensation, when the mesh-

volume still contains a two-phase mixture, the sonic velocity

in the cell becomes small compared with the sonic velocity in

liquid or vapor (approximately 320 m/sec at 1 bar). In cases of

larger initial void fraction than the critical void fraction

mentioned above, the flow becomes supersonic until the



condensation ends: the flow returns to a subsonic regime as the

sonic velocity becomes large. SHAPIRO [6], referring to steady

state flows, predicted that the transition from subsonic to su-

personic flow is stable whereas the transition from supersonic

to subsonic is unstable. However, thus far, the case of the

latter situation during transients has been unexplored; in fact,

one of the consequences of our tentative findings is the possi-

bility of a stable supersonic-subsonic transition for short

transients such as condensation.

A decisive feature of these tests as far as the

final solution of the problem ic concerned is deeply related to

the time step control of the code. At the first stage of the runs,

vapor in a cell condenses and causes the time steps to be appre-

ciably reduced because of the large mass error involved. The final

stage of the runs corresponds to a fully condensed state.

During this period, the time steps remain relatively

small compared with the time step limit due to the convective

term, even though the system is basically quasi-linear; indeed

linearization errors in pressure, mass and energy are very small.

We have noted the importance of the inertia effect of the system

for liquid sodium: pressure undershoots or overshoots the es-

timated pressure at steady state because the velocities at the

cell edges are still respectively directed outward or inward.

In many cases, the velocities fail to reverse this trend soon

enough before pressure reaches the upper or lower limits defined

by the state functions -0.0 and 20.0 bars-. This inertia effect



has been determined as being responsible for the code's break-

down. The observation of this phenomenon lead us to restart

the problem from the point of terminated condensation using

a time-step size of the order of the convective limit; the

problem is in fact equivalent to a liquid-filled channel with

an initial pressure perturbation. Surprisingly, steady-state

was reached within few time-steps. Clearly, a definite influen-

ce of the time-step size on the code's behavior toward conden-

sation was actually perceived: these effects are extensively

discussed and thoroughly examined in chapters IV and V.

111.3. Review of previous studies

As stated before, studies have been done on this

subject by various workers and it is worthwhile reviewing

some of them here since they have been most useful at the

very beginning of this research by giving some ideas of what

was wrong.

-a) A major effort has been going on at Los Alamos

Scientific Laboratory [1] where the research has been based

on the TRAC computer code.

Like THERMIT, in differencing the governing equa-

tions, a staggered grid is used in which velocities are eva-

luated on mesh cell edges and the remaining are cell centered.

They proposed a procedure that consists of a correction to the

pressure gradient term in the momentum equation.



The correction needs to be made only if a packing situation

is expected. Generally, the equation for the change in velo-

city will be written as

6Vi+/2 = F1[6Pi+l - 6Pi] + F2

where 6Pi is the change in pressure in cell i, 6Vi+1/2 is

the change in velocity at cell edge i + 4, and F1 and F2

contain the remaining terms of the momentum equation.

If a packing situation is expected, say within the i-th cell,

this equations is then rewritten as

6Vi+1/2 = FI[6Pi+l - S6Pi] + F2 ,

where S is the scaling factor chosen to minimize the pressure

spike. Generally, a constant factor of 1000 was found sufficient

and it need only be applied for a single time step in most

cases. The scaling:factor-is:only applied to-the cell being

packed. Caution must be exercised not to apply the scaling

factor to two adjacent cells simultaneously since this may

preclude a real water-hammer effect.

Even though the method appears to solve the pro-

blem, it affects results in ways that are not readily apparent.

- b) Water packing anomalies in thermal-hydraulics

codes have been investigated at Lawrence Livermore Laboratory by

Lyczkowski [2].

The source of these pressure spikes has been conjectured to

be caused by nonuniform enthalpy distribution or wave reflec-



tion off the closed end of a pipe or abrupt changes in pres-

sure history when the fluid changes from subcooled to two-

phase conditions. It was demonstrated that many of the faults

can be attributed to inadequate modeling of the average volume

flow and the sharp fluid density front crossing a junction.

General corrective models are difficult to devise

since the causes of the problems touch on the very theoretical

bases of the differential field equations and associated solu-

tion scheme. This is why simple corrective models, economical

to implement and use, were developed.

When incorporated into the one-dimensional homogeneous

transient thermal-hydraulic analysis computer code, RELAP-4,

they help mitigate many of the code's difficulties related to

average volume flow and water-packing anomalies.

- c) Another approach on the problem comes from

Padilla and Rowe [3]. They have developed a donor flow for-

mulation for momentum flux differencing, that have been in-

corporated into the CAPRICORN subchannel code. Originally

CAPRICORN has,as THERMIT a staggered grid formulation where

the momentum cells are shifted by one-half a computational

cell from the continuity-energy cells. However their imple-

mentation was prompted by anomalies which do not occur in

THERMIT and therefore it seemed reasonable to dismiss this

new approach for our final solution.



111.4. Preliminary investigations

- a) The relatively large linearization errors

due to mass conservation during the condensation process sug-

gested to write the continuity equation in difference form

using the momentum cell which is translated a half-cell away

from the usual mass cell (see Appendix A ).

However, qualitative considerations showed that

the large mass errors involved are solely due to high non-

linearity of the system when two-phase are present and no

evidence of improvement emerged from this calculations as

far as the stability of the flow is concerned.

- b) Earlier on, we have mentioned the abnormal

variation of pressure still decreasing while flow is coming

in or increasing pressure while flow is going out of the

mesh-volume. It seemed opportune to find an expression

of the variation of pressure in terms of density, energy

and their respective derivatives using basic thermodynamic

derivations (see Appendix B) .

These derivations have been most helpful in

understanding of the pressure's dependancy on other variables

and its effect on the stability of the system.

- c) The low pressures attained during condensation

of the two-phase mixture, and the corresponding large veloci-

ties that were witnessed in our tests indicated that a trans-

onic flow situation may have occured.
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Therefore sonic velocities and Machnumber have

been derived (see Appendix C) and inserted in the code's

calculations. Indeed, in many cases supersonic flow situa-

tion did exist and its consequences are discussed in the

following chapter.



IV. A Mathematical Solution of Condensation for THERMIT-4E

IV.l. Introduction

In the previous chapter, we have emphasized on the

importance of the time step strategy that has been noticed

in our numerical experiments run on THERMIT-4E especially

when complete condensation is achieved. The system examined

here is an adiabatic channel filled with very subcooled liquid

and an initial pressure pertubation imposed somewhere in that

channel; inlet and outlet pressures are imposed and finally

we assume that the temperature and the energy remain constant

throughout the tests which is a very reasonable assumptions

in our case.

Consequently, the state function [5] of liquid den-

sity becomes a linear function of pressure (T constant):

p = a + b.P (4.1)

where

a = As + A + A7T2 - Pref/c

b = I/c'

As = 1.0042 x 103 c 2 = 2.0 x 10- 7

A6 = -2.1390 x 10-1 Pref = 1.5 x 10s

A7 = -1.1046 x 10- s

T is in °K and P in Pa . Range of validity: 550 < T < 2270 OK

In the next subsection, we shall study a simple one-

dimensional problem of a channel defined by a single cell for

which a pressure perturbation is applied given
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the assumptions stated before while the following subsection

applies the results for a multi-cell case.

IV.2. A'single-cell problem

As stated before inlet and outlet pressures are

imposed as boundary conditions. The initial pressure pulse

condition is applied on the cell itself.

Because of the symmetry of the problem (fig. 4.1)

the velocities at both cell edges are always equal in absolute

value and opposite in direction

U = -U_ (4.2)

Therefore we are left with 2 unknowns only: the pressure

in the cell and the velocity at the cell face (Po and U1).

Writing the mass equation using (2.38), (4.1)

and (4.2) , we obtain:

b (Pn+l - pn ) Ax + 2pi Un+l = 0 (4.3)

where:

Sn if U > 0
o 1/2

P1/2 =

if U/ 2 < 0b 1/2

Pb = a + b.Pb

Pb = constant pressure at boundaries

U = U1/ 2

n
P1/2 01/2 (4.4)



We now write the momentum equation using expression

(2.41a) and the same conventions mentioned above. For the pur-

pose of the generality we are writing a mixed friction term:

Fn+1/ 2 = (1-e)KnUn+l + KnUn (4.5)w

where -l<6<+l. For e=+], the treatment of wall friction becomes

fully explicit; while e = 0 corresponds to a semi-implicit one.

Kn can be deduced from equation (2.12a) and we simplify the

notation by writing K with the understanding that it is an old

time parameter. The momentum equation can be written as:

un+l[p + (1-e)KAt] = (P 1 - Pb)At/Ax +

pUn(1 - At.conv - 6Kat/p)

where (4.6)

n n n
/Ax if U = U/2 > 0

conv = {(4.7a)

n
0 if U < 0

p = 1/2(pn + pb) from (2.47) (4.7b)

Re-arranging equation (4.6) so that we have en expression of

the new time velocity in terms of the new time pressure yields:

pn+l P
Un+l Po - pb (At/Ax) + pUn(-cony.t-6KAt/j)

(p + (1-)KAt) (p + (1-e)KAt)

(4.8)

Inserting equation (4.8) into (4.3) yields an expression of
n+lPO as a function of old time quantities that are already known.



However, being rather interested in having the

pressure variation over the time step, we substract by Pn so

that we obtain the following relation:

~n+= AX 2+ BX

pn+1 _ pn A X+ B X (4.9)0 0 A X7+ B' X + CE

where

X = At

A = 2 pl/2[Pb - + UnAx(pconv + eK)]

B = -2pI/2pUnAx

A' = 2P/2

B' = (1-0)Kb(Ax)2

C' = bp(Ax)2

(4.10)

A', B', C' are always positive and therefore there is no real

positive time step size for which the pressure variation

(pl _ pn) will be infinite.

We now concentrate on the critical situations that

lead to the code's breakdown after completed condensation:

1) pressure decreasing and undershooting the

steady state pressure which is here equal to Pb (P < Pb)"

We are also placing ourself in the most critical condition

where Po is very close to 0.0 bar and the velocity is still

positive accentuating the trend (fluid extracted from the cell,

U1/ 2 > 0). We then look for the At's for which a flow reversal



is possible before Po goes to nonphysical values.

2) The second critical condition is the opposite

of the first one: it corresponds to the pressure increasing

and overshooting the steady state pressure situation (Pn >b'

and Po = 20.0 bars), while the velocity is still negative

(fluid injected into the cell, Un,< 0 ).

Examining the first case described above, we can easi-

ly note that B is negative and A is positive when U is positive

and Po is smaller than Pb (especially when Po = 0.0 bar).

If Ato is the non-zero root that cancels the numerator

of (4.9), Ato is equal to:

- n
p U". x

At0  = - B/A =(4.1)[Pb - pn + UnAx (p.conv + eK)] (4.11)

Let Atc be the convective time step limit

At Ax (4.12)c cunl
We check that Atc is always larger than Ato:

Ato < Atc (4.13)

Proof:

pU .Ax AX

[P n + UnAx (-.conv + K)] IUn Ib - bU

UnUn -Pb p+ pn Unx (p. cony + eK )
- < 0

IUni [Pb-_ P + UnAx (- . convy + K )]

(4.14)

after dividing by.Ax from each side of the inequality.



Since U > 0, cony =2U from equation (4.11). Therefore in theAx

numerator of equation (4.14), the following expression

[ un lUnl - Un.Ax.(p.conv + K) ]

is necessarily negative. Po being smaller than Pb the numerator of

(4.14) is also negative. The denominator is positive, therefore

(4.13) is true. We can easily check that Ato > 0 when Un > 0 and

Pn < Pb from equation (4.11).

The study of equation (4.9) where APo is a function of At

and using equation (4.3) yields the following results:

n+l n un+1for At = Ato ; Po Po and U = 0

for Ato < At < At P > P and U n+
c

for 0 < At < Ato P n+l < n and Un+1 > 0 (4.15)

Important conclusions can be drawn from these expressions.

We see that too small time steps keep the pressure decreasing and

prevent any flow reversal, whereas time steps larger than Ato allow

a flow reversal and the pressure to increase. This demonstrates that

the semi-implicit scheme has a lower time step limit, and we will

show in the next chapter the reasons for the existence of such unex-

pected limit.

Two additional remarks are to be made at this point.

- a) Considering the same experiment for vapor, the

equations remain unchanged the only difference being in the value of

the density: the changing terms are p and pl.

Specifically, the expression of At0 (4.11) is unchanged:

p is smaller while other variables are the same. p appears in the

numerator and the denominator of (4.11). A study of this function,

p being then the only variable, indicates a decrease of



the whole expression when p decreases. Practically, Ato , which is

our previously defined lower limit of "pseudo-stability" of the sys-

tem, is much smaller for vapor and therefore seldom noticeable com-

pared to the situation for liquid.

- b) When < Pb' Pn 0.0 bar and Un< 0 so that the flow has

already reversed, we can see that Ato is negative meaning that pn+lpn0 0 0

is always positive whatever the time step size. We have checked that

the pressure has to increase when flow is injected in the cell which is

a normal behavior. We now turn to the aforementioned second critical

condition which turns out to be very similar to the former one:

Pn> p pn 20.0 bars U < 0 and conv = 0o b o

Inequality (4.14) remains the same; however here, we note

that the denominator is negative. In order to have At < Atc, the nume-

rator has to be positive; the velocity must verify the following

inequality:
(un)2 < (Pn- Pb ) / p

Considering a typical case where Pb= 1.0 b, p = 800 kg/m

Un must be less than 50 m/sec; if Pb= 16.0 b, Un must be less than

22 m/sec. For our numerical experiments of condensation, these situa-

tions were never encountered and therefore for our analysis inequality

(4.14) is always true.

Also At > 0 when Un< 0 and Pn> Pb from (4.11). Similarly to (4.15)

we have:
for At = At n+l= pn and U n+l= 0

for Ato< At < At P < P and Un+ > 0
0 c 0 (4.16)

for 0 < At < At ; Pn+1> pn and Un+l< 0 (4.16)
0 0
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Figure 4.2. Staggerred mesh for the
momentum equations.



Again, in this case, flow reversal occurs if the

time step size is larger than Ato, which sets the same lower

limit for the code's ability to simulate a pressure pertuba-

tion and condensation.

If Pn . 20.0 bars and Un > 0 then Ato < 0 ; meaning

here again that pressure can only decrease whatever the time

step size.

We have finally demonstrated in this subsection the

existence of a lower limit to the time step beyond which the nume-

rical scheme in THERMIT-4E cannot reverse the flow of subcooled

liquid following either an undershooting or an overshooting of the

expected pressure level. This is a rather surprising finding and

it is a result of the intrinsic non-linear dependancy of the pre-

sure on the time step. We shall now try to generalize this result

to multi-cell channels.

IV.3. Application to multi-cell pipes

For our one-dimensional, barotropic and multi-

cell analysis, let G = pU and co = a(pUU)/3x. Then the

finite difference analogs of the mass and momentum equations

are (THERMIT's semi-implicit numerical method):

1 n+l n 1 n+l n+
A ( p i Pi x (G - G_ ) 0

1 n+1
A- (G

(-)

n n + L pn+l - n+l n
-G )+ co+ -xi (P+ - pl) = F+
(-) (-) (i) (i-l) (-)

(4.17)

(4.18)

where the (-) and (+) refers to the two cell boundaries of

our familiar staggered mesh arrangement (fig 4.2) and F



represents the friction term. Substituting the two momen-

tum equations (for the (-) and (+) cell edges) into the

mass equation for cell (i) results in

P+ p ) + (Gn - Gn )- i 1 - 2pn+l pn+
t 1 AtAx (G+ G - 1 - - i-i

1 (co n  con 1 (F- Fn)
Ax + x +

(4.19)

We now eliminate the density in favor of the pressure, using

the equation of state (4.1) in the form:

n+1 n 1 +1
Pn+ - pn = c ( +l - pl ) (4.20)

Substitute equation (4.20) into (4.19):

(At/x)2 { 2+(AX/At)2] _ Pnl _ pn+l /C 2) pn
(At/Ax) +l[ 2 (/t)2] i-l i+l = (/C I

- (At/Ax) (Gn - Gn ) + (t 2/Ax) [(con - con) - (Fn - Fn)

(4.21)

The right-hand-side of the above equation contains

only old-time quantities; we have indeed an equation for the

new pressure. We now cast equation (4.21) in the way that gives

the variation of pressure in a cell over the time step as

it was done in equation (4.9):

At2pn+l + P+l - 2Pn +(Acon - AFn)*x] + AxAtAGn

pn+l_ p =i- i+l 1
i 2At2  + (Ax/c ~

(4.23)



where:

6A = n n

and ¢ = co, F or G

We can deduce from equation (4.22) the critical time step that

was defined in equation (4.11) and for which Pn+1 - pn = 0i 1

At (AxAGn)/[Pn + + P-l - 2Pn + Acon - AFn] (4.23)021 i+l i-1 1

We see that Ato i is expressed in terms of the new

time pressure of the neighboring cells. If N is the number of

cells composing the pipe, in order to find Ato, i for which

p1 =PI , we have to solve a linear system of N equations

and N unknowns - the 6Pi's - with a parameter - Ato i - that

appears in both the right-hand-side and in the Jacobian matrix

of equation (2.55).

More specifically, we have to find the right parameter

corresponding to the solution which would include 6PI = 0 , if

I is the cell number where the critical time step (At , i ) calcu-

lation is needed.

Numerically, we decouple the system into two linear

sub-systems of equations.

The first sub-system has (I-1) equations and (I-1)

unknowns: 6P1, 6P2' ... , 6PI- 1. The second sub-system has (N-I)

equations and (N-I) unknowns: 6PI+ 1, 6PI +2' "" 6PN"

Therefore, we can obtain the 6Pi's (i = 1, N and i f I)



in terms of Ato i . Considering now the Ith equation which

contains 6PI- 1 6PI and 6PI+ 1, knowing 6PI_-(Ato ), 6PI+(Ato,I)

previously calculated and 6PI= 0 , we then solve this equation

for Atoi *

This procedure has to be repeated for every cell

encountering a condensation problem; we will then consider only

the maximum of all the t oi's computed at every time step.

However, this operation has proved to be very

costly in computing time; it seemed more reasonable to call

for the convective time step limit whenever a critical time

step is needed since; it has been demonstrated in (IV.2) that

the former is always larger and in these circumstances flow

reverses avoiding the breakdown of the calculation.

In order to implement the method we have described

before, a subroutine presented in Appendix E performs a series of

tests on the void fraction at each cell: the subroutine is activa-

ted by a flag which is turned on whenever the void fraction of any

cell decreases especially when the void fraction goes from some

value to zero. The flag is also turned on when all the cells are

filled with liquid. Once it is turned on, the code will use the

minimum of the convective time step limit calculated for the whole

channel and the (At)max prescribed by the user in the input file.

A flowchart of the subroutine is given on figure 4.3.
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proceeding of the calculation.

Figure 4.3. Logic of the subroutine implemented.



V. Comparative Analysis with other Methods

This chapter is devoted to the investigation of a

spectrum of numerical methods and the possible existence of

a minimum time step necessary for condensation simulations.

For the review of the following schemes, the con-

ventions and notations remain unchanged and the assumptions

made are those listed in sub-section (IV.2). Also, for the

simplicity of the calculations, a one-cell control volume

is considered all throughout our work: same results can be

obtained for a multi-cell channel since the problem is basi-

cally equivalent.

V.I. An implicit mass convection scheme

The difference between the semi-implicit scheme

examined in chapter IV and a fully implicit mass equation

scheme is that the densities in the mass equation (the con-

vective term) are treated implicitly: the momentum equation

remains the same. With these considerations, the

equations can be written as:

Mixture Mass Equation:

Ax n+Iun+lb*AP o Ax + 2p + l= 0 (5.1)

where: n+ if Un >

Pn+ =I Pb if Un < 0 (5.2)

Momentum equation:

identical to equation (4.6)



In order to linearize the mass equation we denote:

Pn+l= AP + Pn

Un+l = AU + Un  (5.3)

Using equations (5.3) into the momentum equation, we have:

AU = R-APo + S (5.4a)

where:

R At /[ + (1-e8)KAt]
AX

S = [(pn - Pb)  t UnAt.(Ke + pconv)]/[p + (l-e)KAt]

(5.4b)

If Un < 0, then from equation (5.2) = +l b and therefore

the mass equation is identical to the one for the semi-implicit

scheme: the results pertaining to the case of pressure over-

shooting are also the same. However, for Un > 0, p+l pn+l;
S2

in this case, the mass equation is written as follows after

combining equations (5.1), (5.2), (5.3) and (4.4) and neglecting

the second order term:

b*-AP~__- + 2a(AU+U n ) + 2b(UnAp+ pnAU + pnUn ) = 0

(5.5)

Replacing the expression for AU from equation (5.4a) into

equation (5.5) and solving for APo yields:

APO= A*At + B
: C (5.6a)

where:

A = - Un [p-conv + (2e-1)-K ] + (Po - Pb)/Ax

B = Un.p

C t _ n[p + (l-e)KAt](U n + 2 ) (5.6b)



since: =a + b from equation (4.1).
o 0

For our case, B is positive and C is negative. Considering a

critical situation of a pressure undershooting where Pn pb and

n n+1 n
U > 0, then A is negative. The function for APo = Po1 - P. in

equation (5.6a) leads us to define a time step Ato which has a

similar significance to those defined in (4.2) and (4.3):

At. = -B/A = pUn/[Un(p-conv + (2e-1)-K ) + (Pb- Pn)/Ax]

(Ato) semi-implicit

This result shows that an implicit mass equation

scheme behaves like the semi-implicit one toward condensation or

any pressure perturbation: in case of a pressure undershooting

or overshooting of the steady state pressure level (here Pb), it

can be easily overcome by using a time step larger than Ato.

Moreover, work done on this particular implicit scheme by S. Free

and A. Schor [14] demonstrated that it is unconditionally stable, (for

subsonic flow) so that there is no upper limit on the time step.

V.2. The fully explicit scheme

Once again, the same single-cell control volume is

considered, its simplicity enabling us to gain insight into the

problem. The mass equation can be written:

b-AtPo Ax/At + 2 p, Un = (5.7)

n+l n
where: AtPo = Po - Po

n+l
Re-arranging (5.7), Pn+ can be calculated by:

Pn+l pn - (2p,.UnAt)/bAx (5.8)

Considering a pressure undershooting such that:

0 < Pn b and Un > 0 (5.9)



Calculating the adequate At's for which Pn+1 is positive
0

using (5.8) yields:

p n b AxAt < n (At) (5.10)
2p+ U

The momentum equation can be written as:

Pn P
Un+ l  U + b (At/Ax) - Un At (conv + K/p)

(5.11)

Since U" > 0, we need to find the adequate At's that give a

negative Un+l which corresponds to a flow reversal; (5.11)

yields

n -
At > U -Ax (at)

Un p Ax(conv + K/p) + Pb - mom

(5.12)

In conclusion, in order to have a succesful rever-

sed flow before P becomes negative we.need to choose At

such as:

mom < At < (At)mass (5.13)

Therefore, we have to check that such At's do exist by

verifying that:

(At)mom (At)mass (5.14)



using (5.10) and (5.11) into (5.14) gives:

2 (Un) < b/p (5.15)

U p Ax(conv + K/p) + Pb pn 0

Practically, the inequality (5.15) turns out to be

invalid, especially for low Pb's; for example, for Pn= 0.5 bar

and Pb= 1.0 bar while Un = 2.0 m/sec, the flow will not reverse

and Po will keep decreasing and become negative.

The relatively large density of subcooled liquid

renders (at) larger and (At)mas s smaller so that eventually

we rather have:

(At)mom > (t)mass

This result shows that unlike the implicit

scheme, explicit schemes cannot correctly simulate either

a condensation process or an important pressure pertubation.

V.3. The Method of Characteristics

V.3.1. Introduction

The basic equations of the HEM (2.8) are transformed into

the characteristic form, leading to a set of ordinary differential equa-

tions. One of the most attractive features of the characteristic

method is that the numerical schemes based on it conserve the

physical properties of the system. Basically, the characteristic

method tracks the propagation of waves and calculates their

strength. Therefore, it is comparatively easy to simulate a fluid

system including fluid discontinuities or shock waves.
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Considering our one-dimensional homogeneous flow of

subcooled liquid in a conduit of uniform cross-section, the equa-

tions of continuity and motion are respectively equations (2.8a)

and (2.8b) (repeated below for convenience), and the energy equa-

tion is cast in terms of specific enthalpy:

at m + (PmU) = 0 (2.8a)

au aum aP +p m (PmUm x - = -F + p x - g (2.8b)m mm x ax w m

ah ah aP aP
p t + U + U ) = 0 (5.16)

Note that no heat input is being considered. The partial

derivatives of h may be written as:

ah ah p + h P (5.17)
at ap at aP at

ah - h ap ah aP
ax Tp ax P ap ax

The square of sonic velocity can be defined as (App.C, eq. C-20):

c2 = - ah/ap (5.19)
ah/aP - 1/p

Using equations (2.8a), (5.17), (5.18) and (5.19) equation

(5.16) is transformed to:

pc 2 aU + P aP

pc2 U-- + (P + U = 0 (5.20)

The set of equations (2.8a), (2.8b) and (5.20) are

the basic equations used to derive the characteristic equations.
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Let us first consider the set of equations (2.8b) and (5.20):

along an arbitrary chosen curve on the x-t plane we have the

following equations:

dU = U dt + dx (5.21)at ax

dP = aP dt + dx (5.22)at ax

Equations (2.8b), (5.20), (5.21) and (5.22) provide a sufficient

set to determine au/at, aU/ax, aP/at and aP/ax along this curve if

the determinant of the coefficients is not zero. Being however

interested in the family of curves for which the determinant is zero,

we have:

p pU 0 1

0 pc2  1 U 0= (5.23)
dt dx 0 0

0 0 dt dx

Expanding the determinant and solving for dx/dt we obtain:

dx = U + c (5.24)
dt

dx = U - c (5.25)
dt

where (5.24) and (5.25) are referred to as sonic characte-

ristic lines. When (5.24) is satisfied by a curve on the

x-t plane, the set of equations (2.8b), (5.20), (5.22) and

(5.24) are consistent only if the following determinant

becomes zero: p pU 0 F

0 pc2  1 0 = 0 (5.26)

dt dx 0 dU

0 0 dt dP



where F is the friction term in the momentum equation (2.8b).

(5.26) and (5.24) yields:

dU dP
pc + d = cF (5.27)

Similarly along a curve satisfying (5.25) we have:

dU dP
- pc + d -cF (5.28)

In our case, we have assumed constant temperature

and energy of the fluid (subcooled liquid) and therefore

(5.24), (5.27), (5.25) and (5.28) are used to calculate P

and U along the sonic characteristic lines. We shall now

apply this method of solution to our sample problem

using successively an implicit and an explicit scheme.

V.3.2. Implicit characteristic method

The lines represented by (5.24) and (5.25) in a

time and space mesh box are referred to as positive and ne-

gative characteristic lines respectively, or simply as sonic

characteristic lines. They are illustrated in fig. 5.1.

Recalling the configuration of our problem, con-

sisting of a single-cell and equal pressures at boundaries,

its symmetry allows us to consider the equivalent problem

of only a half of the cell with imposed pressure at the inlet

and zero velocity at the outlet as boundary conditions.



a) Implicit scheme

a) Implicit scheme

n+l

1 G1 H2 2

b) Explicit scheme

Figure 5.1. Sonic Characteristic lines

i



If subscripts 1 and 2 refer to the inlet and outlet,

we have:

n n+1
= P2 = P2 = constant

U1 = 0 (5.29)

The difference approximation to equations (5.27)

and (5.28) along the characteristic lines may be written,

respectively, as:

n+l
P2 - PG Un+ -UG+ (pc)+ = (cF)+ (5.30)
At At

n+l - P 0- U- (pc) H -(cF)_ (5.31)
At At

Implicit difference schemes for characteristic

equations are obtained in accordance with fig. 5.1a where

the points G and H are located on the vertical sides

of each mesh box. The values of P and U at those points are

interpolated between the values of (l,n) and (l,n+l) for G

and between (2,n) and (2,n+l) for H applying equations (5.29):

G ( - n+)P + n pn
P n

G  (l1- )U 1 +bU : 0

U 1 ) Un+1 + Un = 0

P = pn+l n =
H (l -n)P 2 + 2 2

UH = (Un+l + n
H : (I- n_) 2 nU 2

(5.32)



where:

Ax 1
At (c + U2) +

- AX 1 (5.33)
t (c - U2)

()+ and ()_ denote averages along the positive and

negative sonic characteristic lines. With the following change

of variables :

n+1 n
AU U - Un

2 2 2

n+l n
AP P - Pn1 1 1

and using equations (5.32) and (5.33) into (5.30) and J5.31) we

finally obtain:

-(1 - ) AP1 + (pc) AU2  = Ax (cF) - (pc)+U~

(C + U2) +

- Axpn (5.34)

AP1 + (pc) ( - n) AU2  : Ax (cF) - (pc)_Un

- (c - U2 )

+ A xn (5.35)

where AxPn P2 - nx 2 1

We now have to solve at every time step, a system

of 2 equations and 2 unknowns, AP1 and AU2. However, being

concerned only with the pressure variation over the time

step when critical situations are expected, AU2 is eliminated

between equations (5.34) and (5.35) to give:
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A At + B (5.36)
1 At.C

where:

A = Ax ax

Ax +_F+- Ax +Cp+F_- (p-c_ + p c+)Ax Pn

(c + U2 )+ (C - U 2 )-  (pC

B Ax c p (c+U 2 + AxPn A c+F+)
(c - U2) - (c + U2)+

C = (m - l)(l - n_)(pc) - (pc)+ (5.37)

Since n+ < I and n < 1, C is always negative, as well as the

denominator of equation (5.36). Defining Ato such as Ato = -B/A

(5.38), if -B/A > 0 then AP1 = 0 for At = Ato. Considering the

case of pressure undershooting where Pn 0.0 bar so that A xn>0,

and U2>0, equations (5.37) shows that practically the first two terms in

the expression of A are comparable in magnitude and opposite

so that the third term turns out to be dominant: in this case,

A is negative. Also, in the expression of B, the last term is

always negligible compared to the first and second terms so

that B is positive here. Since C is negative, from equation (5.36)

we deduce that AP1 is positive if At >Ato and AP1 is negative if

0 < At < Ato.

For the case of pressure overshooting where P1 20.0 bars

and U2 < 0, the assumptions previously made concerning the

expressions of A and B remain valid so that now A is positive and

B is negative. Since C is negative, from equation (5.36) we deduce

that AP1 is negative if At > Ato and AP1 is positive for 0 < At < Ato.



These results mean that in order to have a flow

reversal which is necessary to avoid having pressure going

out of range (negative pressure or exceeding 20.0 bars),

we need to impose a time step larger than some critical value

Ato. This conclusion is entirely similar to our findings in

chapter V for the treatment of the implicit finite difference.

Furthermore, the implicit method of characteristic

requires a time step larger than:

Ax
At > c-

c - jU21

so that it will be always possible to reverse the flow in these

particular "critical" conditions described before, resulting

from complete condensation.

V.3.3. Explicit characteristic method

For the explicit scheme, points G and H are on the

bottom line of the mesh-box as shown in figure 5.1b.

The values of P and U at those points may be calcu-

lated by interpolating the known values at (l,n) and (2,n);

using (5.29) we have:

xG
G :Ax

xG

xH

P = (1- H)H AX (

xxH
UH (1H Ax

+ xG
Ax 2

XG n XG n

XH
Ax 2
x x
XH n =H Un+ U Ax 2Uax 2 ax 2

(5.39)

(5.40)

(5.41)

(5.42)



Substituting the values of PG' UG' PH and UH into (5.30) and

(5.31) while recalling that U1 = 0 and P2 is constant at all

times, those equations can be written as:

XH
AP1 ax P n - (Pc)U2 ]  (5.43)

1 A pAU2 = Ic [AtcF+Un + (1 - )( 1 2 - (c)+U)]

(5.44)

where AP1 p pn (5.45)1 1 1 (5.45)

and AU2 = +1 - U2  (5.46)2 2 U2

As for the implicit scheme, ()+ and ()_ refers to the average

quantity along the positive and the negative characteristic

lines respectively.

In equations (5.43) and (5.44) , xG/Ax and xH/Ax need

to be calculated.

From equation (5.24) which corresponds to the positive charac-

teristic line we have:

xG = Ax - At (0 + c+) (5.47)

where 0 = 0.5 (UG + U n 1)+ l  (5.48)

Using equations (5.40) in (5.48) and then in (5.47) yields,

after dividing by Ax:

xG 2 Ax - At (Un+l + 2c+)
A-x 2 A (5.49)2 Ax + U At2



Similarly, xH is computed from equation (5.25) using the

negative characteristic line;

xH = At (c_- 0) (5.50)

n+l
where 0 = 0.5 (UH + U ) (5.51)

Equation (5.42) substituted into equation (5.51) yields:

XH U
H 2 (5.52)Ax 2

Then equations (5.50) and (5.52) combined give after dividing

by Ax: XH 2c.At (5.53)
x nAx 2 Ax + U At

Introducing the equation for xH/Ax from (5.53) into (5.43)

we obtain :

AP1  2cAt [( - pn) - (pc)_Un
2 Ax + U2 At

(5.54)

Considering a pressure undershooting due to condensation,

where the most critical condition already described is encoun-

tered:

Pn= 0.0 bar and Un > 01 2

(5.54) shows that the pressure trend will not reverse if

n P2
U2 (pc)

whatever the time step is. Considering now a pressure



overshooting situation where P1 n 20.0 bars and Un < 0

(5.54) shows again that the incorrect pressure trend will not

reverse whatever the time step size if:
n -

Un P1 2
2 > (pc)_

These results prove that the explicit characteris-

tic method will not adapt to a situation of large pressure

pertubation created by such tests as a condensation or a water-

hammer phenomenon. This is indeed consistent with the reported

behavior of the explicit finite difference examined in V.2..

V.4. A generalized approach

At this point of the research, when some of the

reviewed numerical methods seemed to exhibit difficulties in simu-

lating a condensation process without the remedial use of relati-

vely large time steps, and other schemes have been proved to be

totally ineffective even with such remedy, an approximated analy-

tical solution has been sought for the same problem that have

been tested all throughout this work.

As previously done for the method of characteristics, only a

half of the one-cell control volume is considered, with fixed

pressure boundary condition at the outlet and zero velocity at

the inlet. Furthermore, constant temperature and energy is also

assumed so that density becomes a linear function of pressure and

therefore only mass and momentum equations are used: namely eqs.



(2.8a) and (2.8b) from the HEM and equation (4.4) for the equa-

tion of state. Denoting by subscript 1 the boundary corresponding

to the inlet and 2 for the outlet, we make the additional appro-

ximation that the mesh-size is small enough so that the following

assumption can be justified.

Let 4 = P, pU or pU2

4 = 2 l (5.55)
ax Ax

We also recall that P2 is constant and U1 = 0. (5.56)

Using (4.4), (5.55), (5.56) and (2.8a) the mass equa-

tion can then be written as:

dP1  U2

b dt +  P2 x = 0 (5.57)

We now consider the density at the boundary constant so that:

dU
(pU) = p au + U P2 d (5.58)~t 2 t (5.58)t

Using (5.55), (5.56), (5.57) and (2.8b) the momen-

tum equation can be written as:

dU2  U 2 P2 P
P2 +  P2 + = - K*U2  (5.59)

Equation (5.57) is re-arranged as written below :

dPU = b*Ax 1
P2 dt (5.60)

Substituting equation (5.60) and its derivative into (5.59)



(recalling that p2 is assumed constant) yields:

P (b*Ax) + P (Kb*Ax/p2) - p2(b2.Ax/p2) + p (1/Ax) = P2(l/Ax)

.(5.61)
where:

P= P1
dP1

dt

d2P (5.62)
P Tt-7-Pdt

Let a 0 = b-Ax

a = Kb*Ax/p
2

a2 = I/Ax

a3 = - b2*Ax/p 2

a4 P2/Ax (5.63)

With the change of variable defined by P = P - P2, equation

(5.61) becomes:

a0 P + aP a2  + a3P = 0 (5.64)

The approximation method of Krylov and Bogolyubov

[131 yields an equivalent linearization of the given differential

equation (5.64) with an error of the order of (1/p 2 )2 which is

a very good approximation for subcooled liquid as it is the case

here. The details of the approximation method are given in appen-

dix D. Therefore, the linearized form of equation (5.64) is:

a0P + alP + a2P = 0 (5.65)



Let A = a2 - 4 (a a2) (5.66)

Then, using equations (5.63) :

A = (Kb.Ax/p 2 )2 - 4b (5.67)

Since we made the initial assumption of small Ax,

we necessarily have:

Ax < (5.68)
Kv'-

Typically, for p2 = 800 kg/m 3 , U2 = 1 m/sec, b=2*10 -7 and

Ax = 0.1 m and using equation (2.12) for K, the right-hand-side of

inequality (5.68) is indeed greater than the mesh size assumed; we

can see that inequality (5.68) does not restrict the generality of

our analysis and therefore from equation (5.67) , we conclude that

a is always negative. This means that the differential equation

(5.65) has an underdamped (oscillatory) solution of the form:

(t) = R.et.sin(wNt + a) (5.69)

where:
a is the damping constant

a = - al/2ao = - K/2P 2  (5.70)

wN is the natural circular frequency

WN = ( 4a a2 - aj )/2ao  (5.71)

R and a are chosen so as to match given initial conditions.

Let P(t=O) = Po (5.72)

and P(t=O) = 0 (5.73)

because U2(t=0) = 0

Equations (5.69), (5.72) and (5.73) yield:

tN
tan a - - and R = (Po- P2)/sina (5.74)



Then, equations (5.4.15) can be re-written as:

P - P 2 at
Pt) = P2 +  sina et .sin(wNt + a) (5.75)

The above equation for P (5.75) shows that if Po> 2-P2'

P will go through negative values since for the damping constant for sub-

cooled liquid (at), which is a function of density, is too small and

thus does not provide enough damping to prevent these oscillations

from reaching negative minima (figure 5.2).

Similarly, the phenomenon can be observed for a pressure

overshooting case with the maxima of the oscillations reaching the

upper limit of the pressure range (20.0 bars) as shown on figure 5.2.

In the case of vapor however, from equation (5.70) , it

is interesting to note that since the density is much smaller in the

denominator, the damping constant for vapor (a ) is much larger

and thus this effect is actually not felt.

Moreover, the time step strategy that has been recommended

as a remedy to avoid pressure spikes mainly for semi-implicit and

fully implicit schemes can now be understood as a method which

predicts the time at which the minima of these oscillations cease

to be negative and will remain positive until steady state is reached.

Also, the method enables us to evaluate the time for which

the maximum of the oscillations (for pressure overshooting situations)

do not exceed the upper limit of the pressure range as shown on

figure 5.2.



a) Pressure undershooting
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Figure 5.2. Solution of the equivalent linearized
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VI. Tests of the method

VI.l. Tests with a circular pipe

Several numerical experiments have been examined, each of

them involving a condensation phenomenon, using the computer code

THERMIT-4E and its modified version for loop simulation with our

proposed algorithm. Computer outputs illustrating sample problems

for each of these tests are given in Appendix F. First series of

tests consist of a one-dimensional channel designed to generate a

condensation process alone whereas a second series of tests is essen-

tially considering a boiling-condensation combination.

First runs already described in chapter III feature subcoo-

led liquid injected into two-phase mixture assumed initially stagnant

(figure 6.1a). The two-phase mixture fully condenses so that only

subcooled liquid flows in the channel at steady state. The correspon-

ding computer code results are given in pages F-l to 3.

The second type of runs feature a channel in which a two-

phase mixture is injected: the first half of the channel is maintained

at adiabatic conditions while heat is withdrawn at a constant rate

from the fluid in the second half downstream. The boundary conditions

are prescribed pressures at the inlet and the outlet; as expected,

the two phase mixture fully condenses to liquid (figures 6.1b and 6.2;

pages F-4 to 6).

For the tests described above where only condensation is

taking place, the method implemented here enabled the code to reach

steady state within a reasonable elapsed time.



SL TPM

-Q + + -Q
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Legend:

TPM: Two-phase mixture

SL : Subcooled liquid

(1): Initial conditions

(2): Steady state conditions

TPM ; SL.

Figure 6.1. Test description
(1) (2)- e-
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The second series of tests considers a channel where the

heat input in the first half of the total axial length is removed

in the second half (figure 6.1c), thus creating essentially symme-

trical density, enthalpy and velocity profiles. The boundary condi-

tions are inlet mass flow rate and outlet pressure. The code reached

steady state in this particular case of boiling-condensation experi-

ments with the help of our algorithm. As expected, the results show

here the coexistence of two-phase mixture-filled cells in the top

half with subcooled liquid-filled cells in the bottom half of the

channel and thus an interface of density gradient is correctly

simulated (figures 6.2 and 6.3; pages F-7 to 12).

Furthermore, by keeping the same boundary conditions and

the same heat input in the first half of the channel as before

while maintaining the second half adiabatic (figure 6.1e) so that

only boiling is taking place, we could check that the steady state

obtained features now a two-phase mixture-filled pipe with some

subcooled liquid at the inlet due to the inertia of the system

(figures 6.2 and 6.3; pages F-13 to 20).

However, some remarks are to be made at this point, as far

as these applications are concerned.

First,it is interesting to mention that the time step

control algorithm is indeed turned on only whenever the void fraction

of a cell changes from some value to zero. This situation takes

place in the condensation test (figure 6.1b) and the boiling-conden-

sation test (figure 6.1c) when in both cases, the channel initially
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circular pipe tests.
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contains two-phase mixture. For a subcooled liquid initial state

(figure 6.1d), the flow evolves toward a final steady state without

encountering a transition such as the one described above.

Secondly, when boiling numerical experiments were perfor-

med (figure 6.1e), we have noted the following behavior of the code:

the flow is rejected from each side of the heated section of the

channel in spite of the incoming flow at the inlet-side of the

heated section; physically, the fluid flashes, entailing a very dras-

tic density change. This trend causes the Newton iterations to diver-

ge if the option of multiple Newton is invoked, eventually leading to

pressure going out of range in the neighboring cells of the heated

test section and finally to the code breaking down. However, a single

Newton iteration i.e., a linearization only about old time values

enables the code to overcome this trend successfully.

Whereas the code demonstrates the capability of simulating

boiling with inlet mass flow and outlet pressure boundary conditions,

it is not possible to achieve a boiling situation at steady state

for a fixed inlet pressure as a boundary condition at the inlet of the

channel. A tentative explanation of this behavior can be drawn from

the numerous tests performed using such particular boundary conditions.

When sufficient heat input is provided for at least one cell

to boil, the flow slows down substantially because of the relatively

large friction factor of vapor. This leads to the boiling cell's

pressure exceeding the pressure at the boundary such as to create a

flow reversal from this particular cell to the inlet, while for the
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downstream cells, the flow keeps the same direction. Eventually, the

boiling cell being depleted and heated at the same time reaches a

state of superheated steam and the vapor temperature rapidly goes out

of range of state functions (1649 K).

VI.2. Tests with loop simulations

Last series of tests were performed using the loop version

of THERMIT-4E. The loop geometry used for our numerical tests of loop

simulations (figure 6.4) was developed by 0. Adekugbe [41.

This geometry was found to be well adapted to the series

of experiments performed in the sodium boiling test facility loop at

the Oak Ridge National Laboratory.

Basically, the fluid undergoes a combination of the five

simple processes previously described when flowing in the simulated

loop. Considering the results from previous tests using the basic ver-

sion of the computer code THERMIT-4E, it should be noted that in a

reactor loop, the coolant undergoes a combination of our simple tests

reviewed before. It was therefore expected that we would encounter

difficulties in simulating natural circulation loop since in that case,

it would imply a fixed pressure at the inlet as boundary conditions,

whatever the location of the cut used for our simulations [4.

Indeed, a similar pattern of the code's breakdown to the

one described in section VI.1 was observed. However, forced circulation

loop tests simulated by using inlet mass flow-outlet pressure bounda-

ry conditions were successfully performed. Various power levels were
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assumed and steady state was achieved (Appendix F, pages F-24 to 33);

figures 6.5 and 6.6 (pages F-28 to 33) present two such cases.

For a given power input in the heated section, a given

inlet mass flow rate and outlet pressure as boundary conditions, the

pressure at the inlet varies non-monotonically for some time before

reaching the steady state level (figure 6.7).

This behavior can be interpretated as being due to the

pressure gradient necessary to prevent the flow reversal tendancy

caused by flashing cells in the heated region of the loop.

It should also be noted that the location of the ficti-

tious cut (figure 6.4) which is required in our loop simulation, has

not proved determinant as far as the code's behavior toward condensa-

tion is concerned; for all our calculations, this cut has been located

at the inlet of the upper plenum.

Keeping the same heat input as well as the same outlet

pressure, an oscillatory flow behavior was observed for lower inlet

mass flow rates. Figure 6.8 indicates this behavior for one such case.

This behavior is similar to the oscillatory loop flow encountered

in single-phase by Adekugbe [4].
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VII. CONCLUSION

VII.1. Conclusion and summary of the work

A general analysis of the effects of a vapor or two-

phase mixture to liquid phase change has been carried out.

A number of numerical methods commonly used to solve

the mass, momentum and energy equations for a thermo-hydraulic

system were reviewed with regard to their behavior following complete

condensation. The pressure perturbation generated following a full

condensation process was proved to be damped differently by the

system depending on the degree of explicitness of the equations.

Specifically, fully implicit and semi-implicit numerical

methods are capable to absorb any pressure perturbation caused by

condensation whereas a fully explicit scheme may encounter situations

of large pressure spikes for which the calculations will fatally

break down.

Furthermore, our findings cast doubt on the friction

factor in the particular case of complete condensation and subse-

quent large pressure pulses: it appears from subsection V.4. that

indeed the friction factor correlated in [5] and presented in chapter II

is under-estimated leading to a small damping factor for the appro-

ximate solution of the mass and momentum equations. In addition,

it is now ascertained that numerical methods and the corresponding

legitimate approximations involved
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are not the source of the breakdown of the basic numerical scheme

used in the computer code THERMIT-4E, as far as these types of

problems are concerned.

The outcome of this research which leads to a time step

strategy by applying a time step increase (as opposed to a time

step reduction originally implemented) whenever condensation condi-

tions are met, is finally an optimized time step since it is also

computed so as to maintain a small allowable mass conservation

error. The ultimate results are very appreciable savings in compu-

ting time, and in many cases, making actually possible a broad

range of calculations.

VII.2. The limitations of the analysis and recommendations

for future work

An adequate friction factor should be investigated

in those situations of sudden large pressure gradients for

subcooled-liquid-filled channel. It would enable us to use

time steps as small as it is needed, when a detailed picture

of the physics of the channel is sought.

Also the use of a new donor flow formulation for

momentum flux differencing has been investigated. Even though

the convective term in the momentum equations do not affect the

code's global behavior for our tests of boiling and condensation

a new formulation would help eliminate the small pressure and

velocity anomalies caused by fictitious momentum sources that

arise when the actual numerical formulation is used to characte-

rize the large density gradients associated with sodium boiling.

To illustrate the incentive for a new formulation of the momentum
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flux, let us consider the following situation: one dimensional

steady-state flow with constant area and without gravity and

friction.

The momentum equation used for this situation is

cast in a non-conservative form:

dU + dP -0 (7.2.1)

dx dx

since pU is constant, equation (6.1.1) can be integrated as:

P2 - P1 = (pU)*(UI - U2) (7.2.2)

where U1 and U2 are the velocities at the cells center.

The code's formulation however uses the velocities

placed at the boundaries of the cells.

To compare the numerical solution used in THERMIT-4E

with the analytical solution, a simple case can be considered

(see Figure 7.1) where two low-densities cells (p =1) are sepa-

rated from high-density cells (p =2) on both ends, the flow is

steady with pU = 20. Figure 7.1 shows the pressure profiles per-

taining to the numerical and analytical solutions.

As expected, the analytical solution produces a sym-

metrical pressure profile but the numerical solution gives a

different pressure profile which is translated downstream from

the geometric symmetry axis of the channel. In order to remedy

this discrepancy a new donor flow formulation, adapted-from

the one proposed by Rowe and Padilla [3] should be applied to

the THERMIT-4E computer code.
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However, it should be pointed out that the above mentioned formu-

lation is applicable to the conservative form of the momentum

equations, and its modification to a non-conservative momentum

form (as used in THERMIT-4E) does not appear straightforward.
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APPENDIX A

Derivation of the momentum equation using the staggered mesh

in the continuity equation.

The mass equation is written for the control volume

located between cell centers (i) and (i+l) as represented in

figure 2.4.

i+l/2 + (PU)Ji+1/2
= 0 (A-l)

The momentum equation is written for the same control volume

in a conservative form:

A (pU)
i+1/2

+ I (pUU) i+1/2LAx )i+1/2

where R includes the pressure gradient and the friction term

which remain unchanged. Expanding (A-2) yields:

(U A )At i+1/2

+ (U)i+1/2 A-i+1/2 (A-3)

Multiplying equation (A-l) by Ui+1/ 2 and substracting it from

equation (A-3) we obtain the momentum equation in a non-conser-

vative form:

AUi+/2
i+1/2 + (pU)i+1/2 Ai+/2

(A-2)

(p*AU ) + U * - (pU)
SAt i +/2 i+Ii+1/2 ilZ (U i+1/2

= R (A-4)
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We see that there is no difference between the usual momentum

equation (2.41) and equation (A-4). This transformation was

therefore determined not to be worthwile pursuing.
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APPENDIX B

Thermodynamic Derivations

Pressure is considered as a function of density and

energy so that:

P = P(p,e) (B-l)

The total derivative of P is:

dP * dp + de (B-2)
e p

Let M be the mass input to the volume V and ein the correspon-

ding energy input, we have:

n+l ( . V + M * At)/V = p + • AtP p +V V (B-3)

and

(pe)n+l = (pe) + M . At h
(pe) V hin (B-4)

Assuming an isentropic flow, equation (B-4) yields:

[(pe)n+l [(pe)n] = d(pe) = edp + pde = 0

Equation (B-5) yields:

de e

using equation (B-6), equation (B-2) can be re-written as

dP = [ . e) + *deap e ep

(B-5)

(B-6)

(B-7)

Note-that p and e with subscripts refers to mixture.
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In eq.(B-7)

In [5] ape

ap- and -ae ae
have to be evaluated.

has been calculated:

= . dp
ap, v +2 ap

e e

dpdp , ap
dP ae

p

de dev

dP ev dP

(B-8)

where:

p2 (ev - e ) (e - e ) / Denom2Y,

p (e - e )v (ev - e) / Denom2

v  Pv P2 (P - Pv) (e - e.) / Denom2

e PQ Pv (P - Pv ) (ev - e) / Denom 2

Denom = pP (e - e2 ) + P2 (ev - e)

dp p. ap dT.
a-

dP

de a
dP

P T aT a dP

Dea a dTsat
a IT a aT a dP

a = v or Z

and ea a
IT

can be easily calculated from state functions

in [5] written as:

apee

ap=
apz

aPa I

aITa

(B-9)
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Pa a (P,Ta)

e = ha (T) - P
a a a p.

(B-10)

P

The internal energy can be considered as a function

of pressure and density. Thus the following is inferred:

de ae dP + - * dpa aP aP+ r- (B-11)

The internal energy of a mixture can be written as:

e = [CPve + (1 - a)p e ] /P (B-12)

where

Py - pv
P- Pv

(B-13)

the expression for can be obtained using equations (B-12) and

(B-13). Since T, = Tv = Tsat:

-pa dpa
p

aea dea
aP dPP

let Ap = p - PV and Ae = ez - ev

a = v or k

Using equations (B-15), (B-14), (B-13) and (B-12) we have:

(B-14)

(B-15)
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S~Adp dPv A
e I [C dP (e - PP e -) d (ev £,e + )p p(Ap)2 p(Ap)2

de de
SdP P (1 - PPv ) - Pv(1 - PP)]

(B-16)

where A = (p - p) Pvev + (p - Pv) pyek (B-17)

de de
Note that the expressions for ide and d- (a = v or k) have been

derived above. Thus a final expression for dP has been obtained

in our particular case.
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APPENDIX C

Derivation of Sonic Velocity

h = e+ pv

dh = de + pdv + vdp

Tds = de + pdv

ds = 0 if isentropic

dvi= 1
- de = -pdv or d- I -- (C-1)

dh = dp (C-2)p

p = p (p,e) (C-3)

dp I= dp +  
i de (C-4)

3P e ae p

dp = E j2E de (C-5)dp ,ap ae dp

p = 2  (C-6)dps () + (p) d
ap e aep dp s

dv av- d + av vde (C-7)
ap ae

for s constant, using (C-1), (C-7) yields:

dv - 1 1 ) av )p (C-8)
de s p p e de ae

Then (dp/de)s can be written as:

S ( -  av- ( av
de (p ae p ) /ape

= ( - 2 p -F2 ap e) (C-9)

de s (aP/ap)e

.de (a/ae)p (aP/ap)e (C-10)
(e p dp s P/p - (P/ae)p
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Using equations (C-10), (C-6) yields:

c2 = -dp s

/p - (P/ae)
a )P

( P/ap)e(Pp-( P e)) + ( /ae) * (P/ap)e

or:
dp ,

where

Pp ep

p aple
and p = aIe ae

We now calculate the sonic velocity in terms of the entlhalpy.

The enthalpy is defined as:

h = e + P/p

dh = de + 1 dP - - 2dp
p

We know that: Tds = de - -2dp

(C-11)

(C-12)

(C-13)

(C-14)We are considering an isentropic process: ds = 0

Equations (C-12), (C-13) and (C-14) yield:

dh = dP/p

The enthalpy is a function of pressure and density:

h = h(P,p)

(C-15)

(C-16)

Differentiating equation (16) gives:

dh _ ah *dP + -- dp- p p (C-17)

Re-arranging eq. (C-17) and recalling that we are considering

an isentropic process yields:

ah dh ah dP

p dp

From equation (C-15), equation (C-18) can be written as:

Thp
Dp P

dP 1 ThM )
d p PP 0

(C-18)

(C-19)
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We finally obtain after re-arranging equation (C-19):

dP p P = 2

= 1 ah c (C-20)

p- Vp
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APPENDIX D

Approximation Method of Krylov and Bogolyubov [13]

To solve a differential equation of the form

dy + 2y + df(y, ) = 0 (D-l)
dt2 dt

where w is a given constant, and the last term is a small non-

linear perturbation, we write

y = r(t)- cost (t) (D-2)

Assuming that errors of the order of p2 are negligible, the

"amplitude"r(t) and the "total phase" ~ (t) are then obtained

from the first-order differential equations

dr i ' "'[f(rcosA, -r-sinX)-sin dX = - ral(r)/2 D-3)

d t + 2 r [f(rcosX,-rwsinX)-cosk]-dX = 'a2 (r) (D-4)

For a given value r(O) = r , the solution of the

equivalent linear differential equation

d 2  + al(ro) d + a2(ro)-y = 0 (D-5)
dt2  + a dy 2o

approximates the solution of the given differential equation (D-1)
2

with an error of the order of 2

In our case, we have:

S= 1/p 2  (D-6)

and f(y , ) = (al+ a3P)/a (D-7)
dt 1 2/a 3D-7
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Substituting equations (D-6) and (D-7) into equation (D-3) yields

after integrating:

dr a
d = alr/2ao = - ral(r)/2

S a(r) = al/a 0  (D-8)

Similarly, substituting equations (D-6) and (D-7) into equation

(D-4) yields after integration:

t = a2/a0 = va2(ri

.. a2(r) = a2/a0  (D-9)

Recalling then equation (D-5) and using equations (D 8) and (D-9),

the equivalent linear differential equation for P is:

P + a1P/a0 + a2 P/a = 0 (D-10)
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APPENDIX E: Implemented and modified subroutines

Listing of the subroutine for the

time step algorithm

subroutine cdnstn(alp.alpn.nc,nzp2.ncdns)
implicit real*8 (a-h.o-z)
integer ncdns
dimension alp(nzp2,nc),alpn(nzp2,nc)
ncdns=O
sma-O.0
do 20 i=1,nzp2
do 10 =1,inc

if (alpn(i,j).gt.0) go to 10
if ((alpn(i,j)-alp(i,j)).lt.0) ncdns=1

10 continue
20 continue

do 40 i=,.nzp2
do 30 j=1,nzp2

sma=sma+alpn(i,j)
30 continue
40 continue

if (sma.eq.O) ncdns=l
50 continue

return
end
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Heat removal capability implemented in THERMIT-4E

subroutine initrc (rf.rrdrf,vmf,vpf,qz.qt,qr.rn.dz.twf.tr.trn.
1 ifcar,iarf,nrzf,nrmzf.,nfnfml,drzf.qpp,q
2 nc.narf.nz,nfmx.nfmlmx.nrzfmx)

C
c initialize rod conduction arrays
c and make initial call to gap conductance calculation
C

implicit real*8 (a-h.o-z)
C

common /prop/ ftd, fpuo2,fpress, cpr, expr. grgh, pgas.
1 gmix(4), hgap, burn, effb, frac

C

dimension rf(nfmx,1),rrdrf(nfmimx,1),vmf(nfmx.1).vpf(nfmx.1),
1 qz(l),qt(narf.l1).qr(nfmmx.1).rn(narf,1).dz(1),twf(nz.1),
2 tr(nfmx.nz,1),trn(nfmx,nz.1).ifcar(1),iarf(1).nrzf(1),
3 nrmzf(nrzfx,1).nf(1),nfml(1),drzf(nrzfmx,1).qpp(nz.1)
data pi/3.14159265/. rpi2/.159154943/
data zero,half.one /O.OdO.O.5dO,1.OdO/

c
c geometry arrays
c

do 100 J-1,narf
rf(1,J) a zero
m - 2
do 10 k-l.nrzf(j)

dr = drzf(k.j)/nrmzf(k,J)
do 10 l=l,nrmzf(k,j)

rf(m.j) rf(m-i.J) + dr
m m+ 1

10 continue
nfmtj = nfml(j)
do 20 k=1,nfmlj

20 rrdrf(k,j) - half*(rf(k+1,J)+rf(k.,))/(rf(k+l.,j)-rf(k.j))
vmf(1,j) = zero
rp = half*(rf(2.]) + rf(1.j))
vpf(i.J) = half*(rp*rp - rf(1,j)*rf(1,j))
if(nfmlj.eq.1) go to 35
do 30 k=2.nfmlJ

rp = half*(rf(k+,.j) + rf(k,j))
rm = half*(rf(k.j) + rf(k-l,j))
vpf(k,j) = half*(rp*rp - rf(k.j)*rf(k,j))
vmf(k,j) = half*(rf(k.J)*rf(kj) - rm*rm)

30 continue
35 rm = half*(rf(nf(j).J) + rf(nfmlj,j))

vmf(nf(j).j) = half*(rf(nf(j).J)*rf(nf(J).j) - rm*rm)
vpf(nf(J).j) - zero

c radial and transverse heat source distribution arrays
c

sum a zero
do 40 k=1.nfmlJ

40 sum-sum+qr(k,j)*pi*(rf(k+1,j)*rf(k+1,J)-rf(kj)*rf(k.j))
if(sum.eq.zero) go to 55
rsum - one/sum
do 50 k=1.nfmij

50 qr(kj) - qr(k,j)*rsum
sum x zero

55 do 60 k-i,nc
60 sum = sum + qt(J.k)*rn(J.k)

if(sum.eq.zero) go to 100
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rsum = one/sum
do 70 k-,.nc

70 qt(j,k) * qt(j,k)*rsum
100 continue

c axial heat source distribution array
C

ncond = nz+1

do 190 J=l.nz-1
jj=J+l
if(qz(j)-qz(jj).ge.O) go to 190
ncond-jj
go to 195

190 continue
195 sum = zero

do 200 J=l.ncond-1
jj = j + 1
sum = sum + qz(j)*dz(jj)

200 continue
rsum = dabs(one/sum)
do 210 j=l.ncond-1

210 qz(j) = qz(j)-rsum
nzp a nz + 1
if(ncond.eq.nzp) go to 235
sum = zero
do 220 j=ncond,nz

jj = J + 1
sum = sum + qz(j)*dz(jj)

220 continue
rsum = dabs(one/sum)
do 230 J=ncond.nz

230 qz(j) = qz(j)*rsum
235 continue

Heat extraction

capability implemented

C set iarf: this array assigns a region number to each axial level
c

if(narf.eq.1) go to 255
do 250 j=2.narf
do 250 k=ifcar(j-).,ifcar(j)-1

250 iarf(k) = j-1
255 do 260 k=ifcar(narf),nz
260 larf(k) = narf

C

c set initial rod temperatures
c

do 300 i=l,nc
do 300 J=,.nz

do 300 k=,.nf(iarf(j))
trn(k.j.i) = twf(j.i)
tr(k,j,.) = twf(j,i)

300 continue
c
c set up heat flux distribution for "fast" steady-state
C

do 400 ic=1,nc
do 400 iz=l,nz

iarfz = iarf(iz)
qp = q*qz(iz)*qt(iarfz,ic)
qpp(iz,ic) = qp*rpl2/rf( nf(iarfz),.arfz )

400 continue
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c initialize gap conductance calculation
C radia below are from slsf-wl experiment, typical of fast reactors

radfu - 2.465e-3
radcl - 2.540e-3

call mp2(.true..burn.dl,d2.d3,d4,d5,grgh.radfu.radcl.d6,d7,d8,
d9.diO,dl1,d12.d13.d14)

return
end
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Excerpt of the modified timstp subroutine

Activation of the process for the time step increase

dtconv = one/(rtscvz + rtscvy + rtscvx)
50 dtconv = dmini(clm*dtconv,dtmax)

if (ncdns.ne.1) go to 55
delt=dtconv
go to 56

C

55 delt = dmini(dtconv,dtnew )
56 if (delt.lt.0.9*dtconv) ird = I

kred = kred + ird
dtmina = dabs(dtmin)
if (dtmin.eq.zero) dtmina = 0.O01*dtconv
if (delt.ge.dtmina) go to 100
if (dtmin.ge.zero) go to 60
lerr = .true.
ierr = 10

return
60 delt = dtmina

C
100 if (dtold.gt.zero) tsmult = delt/dtold

return
end
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Appendix F: Code's input and outputs for typical cases.

Input for test of subcooled liquid coming
into a stagnant two-phase mixture (Fig. 6.1a).

I
two-mesh calculation with pressure b.c.'s
Sintgin nc=l nz=2 nr=i narfsO nx=1 nrzs=1 issal ixfl=O ibb=O

ichnge=l ishpri11111 istrpr=l nitmax=-5 ipfsol=34 noumax=O
neq=4 ieqvax=l.0 numder=O kfold=4 S

Srealin epsn=O.1OeO gravO.0 hdt=2.6e-3 pdr-l.15 hdr-20.0
radf=4.325e-3 delpr=l.0 delro=1.0 delem-l.0 errmax=0.5e-t $
1 $ ncr
0 S indent
26.47e-3 $ dx
22.92e-3 $ dy
0.12e0 0.03e0 0.03e0 0.12e0 $ dz
2(0.OeO) S arx
2(O.OeO) S ary
3(169.8475e-6) $ arz
2(O.Oe+O) $ vol
5.263e-3 S hedz
3.616e-3 $ wedz
1.60e+5 1.40e+5 1.40e+5 1.40e+5
2(0.OeO) 2(0.3e0) $ alpha
2(800.OeO) 2(1195.92e+0) $ tfluid
2(0.OeO) O.OeO $ velocity
Stimdat tendl1.Oe-1 dtmin=-1.Oe-7
Stimdat tend=-1.0 $

S pressure

dtmax=l.Ge-2 dtspul.0 dtlp=O.0 irednx=10 $



INITIAL CONDITIONS FOR TEST 6.1a

time step no a 0
number of newton iterations •
number of Inner iterations •

total reactor power * 0
total heat transfer * 0
flow enthalpy rise * 0
flow energy rise * 0

real time * 0.000000 sec
0
0 0 0

.000 kW

.000 kW

.000 kW

.000 kW

inlet flow rate a
outlet flow rate a
total system mass a
global mass error n

time step size * 0.000000+00 sec cpu time * 0 00 sec
0 time step reductions due to error 0
0 reduced time steps since last print

0.000 g/s
0.000 g/s
6.822 g

0.0000+00 g

maximum temperatures
rod: 0 00 at
wall: 0 00 at
liquid: 1195.92 at

maximum relative changes over the time step
In pressure: 0.0000+00
in mixture density: 0.0000+00
in mixture energy: 0.000000

maximum
in
In
in

relative lnearization errors
pressure: 0.0000400
mass/volume: 0.0000+00
energy/volume: 0.0000+00

Ic Iz z(mm) P(bar) void qual(%)

0.0 1.60000 0.0000
15.0 1.40000 0.0000
45.0 1.40000 0.3000
60.0 1.40000 0.3000

0.000
0.000
0.022
0.022

am rom T vap T liq T sat

1048857.
1048857.
1550819.
1550819.

826. 1
825.91
512.86
512.86

800.00
800.00
1195.92
1195.92

800.00 1211.97
800.00 1195.92
1195.92 1195.92
1195.92 1195.92

vvz viz rov rol flowig/s)

0.000 0.000 0.5768 826.11 0.000
0.000 0.000 0.5047 825.91 0.000
0.000 0.000 0.3692 732.49 0.000

0.3692 732.49



FINAL STEADY-STATE FOR TEST 6.la

time step no a 24
number of newton iterations *

number of inner iterations 
•

total reactor power * 0
total heat transfer a 0
flow enthalpy rise * -0
flow energy rise * -0

real time a 0.100057 sec
2
2 0 0

.000 kW

.000 kW

.012 kW

.000 kW

inlet flow rate a
outlet flow rate a
total system mass a
global mass error a

time step size * 0.436970-02 sec cpu time * 3.83 sec
0 time step reductions due to error 0
0 reduced time steps since last print

073.783
873.783

8.4180
-0.3440-17

maximum temperatures
rod; 0.00 at
wall: 0.00 at
liquid: 800.00 at

maximum relative changes over the time step
in pressure: 0.3870-06
in mixture density: 0.7100-09
in mixture energy: 0.1000-09

maximum relative linearization errors
in pressure: 0.7210-19
In mass/volume: 0.3870-18
in energy/volume: 0.5080-19

Ito I z(mm) P(bar) void qual(%) em rom T vap T liq T sat vvz vlz rov rol flowig/s)

0.0 1.60000
15.0 1.51670
45.0 1.48334
60.0 1.40000

0.0000 0.000
0.0000 0.000
0.0000 0.000
0.0000 0.000

1048857.
1048857.
1048857.
1048857.

826.11
826.03
825.99
825.91

800.00 800.00 1211.97
800.00 000.00 1205.49
800.00 800.00 1202.82
800.00 800.00 1195.92

6.227 6.227 0.4176
6.228 6.228 0.3975
6.228 6.228 0.3894

0.3692

826.I1
826.03
825.99
825.91

873.783
873.783
873.783
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CONDENSATION TEST (Fig. 6.16): INPUTS

condensation test
Sintgin nc=1 nz=2 nrl narf=1l nx=1 nrzs=l iss=1 Ixfl=O ibb=2 thtf=1
ichnge=l ishpr=11111 istrpr=1 nttmax--2 ipfsol=lO noumax=O

neq=4 ieqvax=0.0 numder=O kfold=4 $
$realin epsn=0.10eO grav=0.0 hdt=2.6e-3 pdr-l.15 hdr-20.0
radf=4.325e-3 delpr=l.0 delro=1.0 delem=l.0 errmax=O.Se-1 winlet=16.616e-3 $

Srodinp qO=9000.0 $
I $ ncr
0 $ indent
1$ifcar
1Snrzf
1$nrmaf
3$mnrzf
26.47e-3 $ dx
22.92e-3 $ dy
0.12e0 0.10e0 O.leO 0.12e0 $ dz
2(0.Oe0) $ arx
2(0.OeO) $ ary
3(169.8475e-6) S arz
2(0.Oe+O) $ vol
5.263e-3 S hedz
3.616e-3 $ wedz
1.6e5 2(1.4e+5) 1.4e+5 S pressure
2(0.5) 2(0.OeO) $ alpha
1195.920 1(1195.92) 2(1040.0) $ tfluid
3(0.118eO) $ velocity
1(1200.00) 1(1040.0) Stwf
0.0 -1.0 Sqz

1.0 sqt
1.0 Sqr
1.0 Srn
1.625e-3 Sdrzf
Stimdat tend=10.OeO dtmin=-1.Oe-6 dtmax=1.OeO dtsp=20.0 dtlp=0.iel iredmx=20 S
Stimdat tend=-1.0 S
0



INITIAL CONDITIONS FOR TEST 6.1b

time step no * 0 real time * 0.000000 sec
number of newton iterations * 0
number of inner Iterations * 0 0 0

time step size * 0.00000400 sec cptj time * 0 00 sec
0 time step reductions due to error 0
0 reduced time steps since last print

totql reactor power a
total heat transfer a
flow enthalpy rise -
flow energy rise a

9.000 kW
-9.000 kW
5.963 kW
5.963 kW

inlet flow rate a
outlet flow rate v

total system mass a
global mass error a

7.344 g)
16.553 g/
20.252 g

0.0000400 g

maximum temperatures
rod: 0.00 at
wall: 0.00 at
liquid: 1195.92 at

maximum relative changes over the time step
in pressure: 0.0000400
In mixture density: 0.0000400
in mixture energy: 0.0000400

maximum relative linearization errors
in pressure: 0.000000
in mass/volume: 0.0000400
in energy/volume: 0.0000+00

Ic is z(mm) P(bar) void qual(%)

0.0
50.0
150.0
200.0

1.40000 0.5000 0.050
1.40000 0.5000 0.050
1.40000 0.0000 0.000
1.40000 0.0000 0.000

em rom T vap T liq T sat

1552141.
1552141.
1048857.
1048857.

366.43
366.43
825.91
825.91

1195.92
1195.92
800.00
000.00

1195.92 1195.92
1195.92 1195.92
800.00 1195.92
800.00 1195.92

vvz viz rov rol flow(g/s)

0.118 0.118 0.3692
0.118 0.118 0.3692
0.118 0.118 0.5047

0.5047

732.49
732.49
825.91
825.91

7.314
7.344
16.553



FINAL STEADY-STATE FOR TEST 6.1b

time step no a 295
number of newton Iterations s

number of Inner Iterations •

total reactor power * 9
total heat transfer * -9
flow enthalpy rise * -9
flow energy rise * -8

real time * 9.986820 sec
2
2 0 0

.000 kW

.000 kW

.000 kW

.963 kW

Inlet flow rate 
outlet flow rate a
total system mass v
global mass error -

time step size a 0.314050-01 sec cpu time W 21.59 sec
0 time step reductions due to error 0
0 reduced time steps since last print

16.616 g/s
16.616 g/s
19.233 g

-0.2730-14 g

maximum temperatures
rod: 1195.96 at
wall: 1195.96 at
liquid: 1195.96 at

maximum relative changes over the time step
in pressure: 0.1000-09
In mixture density: 0.3160-07
In mixture energy: 0.1380-06

maximum
In
In
in

relative linearitation errors
pressure: 0.5240-16
mass/volume: 0.2180-13
energy/volume: 0.4450-18

Ic iz z(mm) P(bar) void qual(X) em rom T vap T liq T set vvz vlz rov rol flow(g/s)

1196.01 1196.01
1195.96 1195.96
790.70 1195.91
790.70 1195.92

3.152 0.259 0.3695
2.630 0.320 0.3693
0.118 0.118 0.3692

0.3692

0.0
50.0

150.0
200.0

1.40112
. 40058

1.39993
1.40000

0:4868
0.5849
0.0000
0.0000

0.048
0.071
0.000
0.000

1552141.
1553146.
1037139.
1037139.

376.06
304.30
828.06
828.06

1196.01
1195.96
790.70
790.70

732 47
732.48
828 06
828.06

16 616
16.616
16.616



F-7

INPUTS FOR BOILING-CONDENSATION TEST (Fig. 6c)

I
boiling and condensation test

Sintgin nc=1 nz=2 nr=1 narfl1 nx-i nrzs=1 issl ixfl=O ibb-2 lhtf1l
ichnge=1 ishpr*11111 istrpr=1 nitmax--2 ipfsol=10 noumax=O

neq=4 ieqvax=0.0 numder-O kfold=4 $
Srealin epsn-0.iOeO grav=0.0 hdt=2.6e-3 pdr=1.15 hdrs20.O
radf=4.325e-3 delpr-1.0 delro-1.0 delem=1.0 errmax=0.5e-1 winlet=16.616e-3 $
Srodinp qO=9000.0 S
1 $ ncr
0 $ indent
I$ifcar
1$nrzf
1Snrmaf
3$mnrzf
26.47e-3 $ dx
22.92e-3 S dy
0.12e0 0.10eO 0.leO 0.12e0 $ dz
2(0.OeO) S arx
2(0.OeO) $ ary
3(169.8475e-6) $ arz
2(0.Oe+O) $ vol
5.263e-3 S hedz
3.616e-3 $ wedz
1.6e5 2(1.4e+5) 1.4e+5 S pressure
2(0.00) 2(0.OeO) $ alpha
800.00 1(1040.00) 2(1040.0) $ tfluld
3(0.118e0) S velocity
1(1200.00) 1(1040.0) $twf

1.0 -1.0 Sqz
1.0 $qt
1.0 Sqr
1.0 Srn
1.625e-3 Sdrzf
$timdat tend=10.OeO dtmin=-1.Oe-6 dtmax=1.OeO dtsp=20.0 dtlp=O.1el Iredmx=20 $

Stmdat tend=-1.0 $
0



INITIAL CONDITIONS FOR TEST 6.1c

time step no * 0 real time * 0.000000 sec
number of newton iterations * 0
number of inner iterations * 0 0 0

time step size * 0.000000+00 sec cpu time * 0.00 sec
0 time step reductions due to error 0
0 reduced time steps since last print

total reactor power -
total heat transfer a
flow enthalpy rise a

flow energy rise a

9.000 kW
0.000 kW
3.469 kW
3.469 kW

Inlet flow rate w
outlet flow rate a
total system mass M
global mass error a

i6.557 g/s
15.426 g/s
26. 146 g

0.0000+00 g

maximum temperatures
rod: 0.00 at
wall: 0.00 at
liquid: 1040.00 at

maximum relative changes over the time step
in pressure: 0.0000*00
In mixture density: 0.0000*00
in mixture energy: 0.000000

maximum relative linearization errors
In pressure: 0.0000000
In mass/volume: 0.000000
in energy/volume: 0.0000400

Ic Iz z(mm) P(bar) void qual(%)

0.0
50.0

150.0
200.0

1.60000 0.0000 0.000
1.40000 0.0000 0.000
1.40000 0.0000 0.000
1.40000 0.0000 0.000

em roam T vyap T liq I sat

1048857.
1350604.
1350604.
1350604.

826.11
769.70
769.70
769.70

800.00 800.00 1211.97
1040.00 1040.00 1195.92
1040.00 1040.00 1195.92
1040.00 1040.00 1195.92

vvz viz rov rol flow(g/s)

0.Ii8 0. I8 0.5768 826. I 16.557
0.118 0.118 0.4116 769.70 15.426
0.118 0.118 0.4116 769.70 15.426

0.4116 769.70



FINAL STEADY STATE FOR TEST 6.1c

time step no * 2826
number of newton iterations a

number of inner iterations •

real time * 5.001014 sec
2
1 0 0

time step size * 0.148970-02 sec cpu time * 154.92 sec
0 time step reductions due to error 0
I reduced time steps since last print

total reactor power =
total heat transfer a
flow enthalpy rise a
flow energy rise -

9.000 kW
-0.000 kW
0.011 kW
0.018 kW

inlet flow rate a
outlet flow rate w

total system mass *
global mass error w

16.616 g/s
16.610 g/s
17.280 g

0. 1980-13 g

maximum temperatures
rod: 1519.13 at
well: 1212.65 at
liquid: 1196.07 at

maximum relative changes over the time step
in pressure: 0.4290-09
in mixture density: 0.5910-06
in mixture energy: 0.244D-05

maxImum
in
In
In

relative linearzation errors
pressure: 0.6010-09
mass/volume: 0.3980-12
energy/volume: 0.9990-19

io is Z(mm) P(bar) void qual(%)

1.40204
(.40185
1.39975
1.40000

0.0000 0.000
0.7316 0.137
0.0000 0.000
0.0000 0.000

em rom T vyap T liq I sat

1076470.
1556336.
1077928.
1077928.

820.83
196.85
820.56
820.56

821.94
1196.07
623.10
823.10

821.94 1196.09
1196.07 1196.07
823.10 1195.89
823.10 1195.92

vvz vil rov rol flow(g/s)

1.088 0.119 0.3697 820.83 16.616
4.951 0.491 0.3696 732.46 16.616
0.119 0.119 0.3691 820.56 16.610

0.3692 820.56

0.0
50.0

150.0
200.0



F-10

INPUTS FOR BOILING-CONDENSATION TEST (Fig. 6.1c)

(ten cells)
boiling and condensation test

$intgin nc=l nz=10 nr=1 narf=l nx-l nrzs-i issl= ixfl=O ibb=2 ihtful

ichnge-1 ishpr1111li istrpr=i nitmax--2 ipfsol-10 noumaxlO
neq=4 ieqvax=0.0 numderwO kfold=4 $

Srealin epsn=0.lOeO grav=0.0 hdt=2.6e-3 pdr=l.15 hdr=20.0
radf=4.325e-3 delpr-l.0 delrol=.0 delem=l.0 errmax-O.5e-1 winlet=16.616f-3 S
Srodinp qO=90000.0 $
1 $ ncr
0 $ indent
$Sifcar
l$nrzf
lSnrmaf
3Smnrzf
26.47e-3 $ dx
22.92e-3 $ dy
0.12eO 10(0.10eO) 0.12e0 S dz
10(0.OeO) $ arx
10(0.OeO) $ ary
11(169.8475e-6) $ arz
10(O.Oe+O) $ vol
5.263e-3 $ hedz
3.616e-3 $ wedz
1.6e5 10(1.4e+5) 1.4e+5 $ pressure
6(0.00) 6(0.OeO) S alpha

800.00 5(1040.00) 6(1040.0) $ tfluid
11(0.118eO) S velocity
5(1200.00) 5(1040.0) $twf
5(i.0) 5(-1.0) Sqz
1.0 $qt
1.0 Sqr
1.0 Srn
1.625e-3 $drzf
$timdat tend=5.OeO dtmin=-1.Oe-6 dtmaxl.0OeO dtsp=20.0 dtlp=O.Iei l redmx=20 $

$timdat tend=-1.0 S



INITIAL CONDITIONS FOR TEST 6.1c

(10 cells)

time step no * 0 real time 0.000000 se
number of newton Iterations * 0
number of inner iterations O0 0 0

time step size * 0.000000+00 sec cpu time * 0.00 sec
0 time step reductions due to error 0

0 reduced time steps since last print

total reactor power m
total heat transfer a
flow enthalpy rise -
flow energy rise w

9.000 kW
0.000 kW
3.469 kW
3.469 kW

inlet flow rate w
outlet flow rate a
total system mass W
global mass error a

16.557 g/
15.426 g/s

130.731 g
0.0000+00 g

maximum temperatures
rod: 0.00 at
wall: 0.00 at
liquid: 1040.00 at

maximum relative changes over the time step
in pressure: 0.0000400

In mixture density: 0.0000400
in mixture energy: 0.0000400

maximum relative linearizatlon errors
in pressure: 0.0000#00
In mass/volume: 0.0000+00
in energy/volume: 0.0000+00

ic Iz z(mm) P(bar) void quai(X)

0.0
50.0
150.0
250.0
350.0
450.0
550.0
650.0
750.0
850.0
950.0

1000.0

1.60000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

em rom T vap T llq T sat

1048857.
1350604.
1350604.
1350604.
1350604.
1350604.
1350604.
1350604.
1350604.
1350604.
1350604.
1350604.

826.11
769.70
769.70
769.70
769.70
769.70
769.70
769.70
769.70
769.70
769.70
769.70

800.00
1040.00
1040.00
1040.00
1040.00
1040.00
1040.00
1040.00
1040.00
1040.00
1040.00
1040.00

800.00
1040.00
1040.00
1040.00
1040.00
1040.00
1040.00
1040.00
1040.00
1040.00
1040.00
1040.00

121i.97
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92

vvz vlz rov rol flow(g/s)

0.118
0.118
0. 118i
0.18
0.11
0. 118
0.118
0.118
0. 16
0.l18
0. t18

0.1 I5
0. 18i
0. 168
0. 18t
0. lI8
0. 118
0.118
0. 1is
0.118

0.118
. lii

0.5768
0.4116
0.4 16
0.4116
0.4116
0.4116
0.4116
0.4116
0.4116
0.4116
0.4116
0.4116

626.11
769.70
769. 70
769.70
769.70
769.70
769.70
769.70
769.70
769.70
769.70
769.70

16.557
15.426
15.426
15.426
15.426
15.426
15.426
15.426
15.426
15.426
15.426



FINAL STEADY-STATE FOR TEST 6.1c

(10 cells)

time step no a 5410 real time * 25.001880 sec
member of enewton iterations * 2
number of inner Iterations * I 0 0

time step size * 0.432200-02 sec cpu time * 967.13 sec
0 time step reductions due to error 0
0 reduced time steps since last print

total reactor power a
total heat transfer -
flow enthalpy rise •
flow energy rise a

9.000 kW
-0.000 kW
-0.004 kW
-0.004 kW

Inlet flow rate *
outlet flow rate a
total system mass a
global mass error a

16.616 g/s
16.616 g/u
64.796 g

0.1810-14 g

maximum temperatures
rod: 1268.99 at
wall: 1211.69 at
liquid: 1197.38 at

maximum relative changes over the time step
in pressure: 0.1000-09
In mixture density: 0.1000-09
in mixture energy: 0.1000-09

maximum relative lineariration errors
In pressure: 0. 1540-16
in mass/volume: 0.2700-15
in energy/volume: 0.1660-18

Ic is z(mm) P(bar) void qual(%)

0.0
50.0

150.0
250.0
350.0
450.0
550.0
650.0
750.0
050.0
950.0
1000.0

1.41769
1.41756
1.41742
1.41702
1.41400
1.41072
1.40460
1.40153
1.39999
1.40008
1.40013
1.40000

0.0000
0.0000
0.3100
0.7179
0.8044
0.8630
0.8331
0.7959
0.5676
0.0000
0.0000
0.0000

0.000
0.000
0.023
0.130
0.209
0.319
0.252
0. 196
0.066
0.000
0.000
0.000

em rom T vap. I lq T sat

1349212.
1457536.
1552777.
1557636.
1561045.
1565649.
1561891.
1559010.
1552850.
1457309.
1348984.
1340984.

769.98
749.70
505.30
206.84
143.49
100.63
122.56
149.80
316.92
749.72
770.00
770.00

1038.90
1124.17
1197.38
1197.35
1197.16
1196.82
1196.30
1196.05
1195.91
1123.99
1038.72
1038.72

1038.90
1124.17
1197.38
1197.35
1197.16
1196.82
1196.30
1196.05
1195.91
1123.99
1038.72
1038.72

1197.4 1
1197.40
1197.38
1197.35
1197. 16
1196.82
1196.30
1196.05
1195.91
1195.92
1195.93
1195.92

vvz viz rov rot flow(g/s)

0. 127
0.536
2.401
8.987

15. 149
20.824
14.792
8.292
1.484
0. 130
0. 127

0. 127
0. 130
0. 193
0.4362
0.6151
0.909
0.7133
0.638
0.30)8
0. 130
0. 127

0.3735
0.3735
0.3734
0.3733
0.3728
0.3718
0.3703
0.3696
0.3692
0.3692
0.3692
0.3692

769.98
749.70
732. 16
732. 17
732.2
732.29
732.41
732.47
732.50
749.72
770.00
770.00

16.616
16.616
16.616
16.616
16.616
16.616
16.616
16.616
16 616
16 616
16.616



F-13

INPUTS FOR BOILING TEST (Fig. 6.1e)

1
boiling test
Sintgin nc-l nz-2 nrt1 narfl= nx-1 nrzs-i tss-1 ixfl-O ibb=2 ihtf-I
ichnge-1 ishpr11111i istrpr-1 nitmax--2 ipfsol-iO noumax-O

neq=4 leqvax*O.0 numderO kfold=4 $
Srealin epsn-0.10eO grav-0.0 hdt=2.6e-3 pdrrl.15 hdrt20.0
radf=4.325e-3 delprtl.0 delro=1.0 delem-l.0 errmax=0.5e-1 winlet=16.616e-3 $
Srodinp qO9000.O0 $
1 $ ncr
0 $ Indent
Sifecar
i$nrzf
1$nrmaf
3$mnrzf
26.47e-3 $ dx
22.92e-3 $ dy
0.12e0 0.10eO 0. le 0.12e0 $ dz
2(0.OeO) $ arx
2(0.0eO) $ ary
3(169.8475e-6) $ arz
2(0.Oe+O) S vol
5.263e-3 $ hedz
3.616e-3 S wedz
1.6e5 2(1.4e+5) 1.4e+5 $ pressure
2(0.00) 2(0.OeO) S alpha

800.00 1(1040.00) 2(1040.0) $ tfluid
3(0.118e0) $ velocity
1(1200.00) 1(1040.0) Stwf

1.0 0.0 $qz
1.0 Sqt
1.0 Sqr
1.0 $rn
1.625e-3 Sdrzf
$tmdat tend=10.OeO dtmin--.Oe-6 dtmax=l.OeO dtsp=20.0 dtlp=O.lel iredmx=20 $

Stimdat tend=-1.0 $



INITIAL CONDITIONS FOR BOILING TEST 6.1 e

time step no * 0 real time * 0.000000 sea
number of newton Iterations * 0

number of inner iterations * 0 0 0I-
LL

time step size * 0.000000+00 sec cpu time * 0.00 sec
0 time step reductions due to error 0

0 reduced time steps since last print

total reactor power w
total heat transfer a
flow enthalpy rise -

f low energy rise a

9.000 kW
9.000 kW
3.469 kW
3.469 kW

inlet flow rate a
outlet flow rate a
total system mass W
global mass error -

maximum relative changes over the time step
in pressure: 0.0000+00
in mixture density: 0.000000
in mixture energy: 0.0000#00

16.557
15.426
26. 146

0.0000+00

maximum
in
In
in

maximum temperatures
rod: 0.00 at
wall: 0.00 at
liquid: 1040.00 at

relative linearization errors
pressure: 0.000000
mass/volume: 0.0000+00
energy/volume: O.OOO000D+00

Ic iz z(mm) P(ber) void qual(%)

0.0
50.0

150.0
200.0

1.60000 0.0000
1.40000 0.0000
1.40000 0.0000
1.40000 0.0000

0.000
0.000
0.000
0.000

em rom T vap T Ilq T sat

1048857.
1350604.
1350604.
1350604.

926.11
769.70
769.70
769.70

600.00 000.00 1211.97
1040.00 1040.00 1195.92
1040.00 1040.00 1195.92
1040.00 4040.00 1195.92

vvz viZ roy rol flow(g/s)

0.118 0.118 0.5768
0.110 0.116 0.4116
0.118 0.118 0.4116

0.4116

626. I1
769.70
769.70
769.70

16 557
15 426
15 426



FINAL STEADY-STATE FOR TEST 6.Ie

time step no 0 2467 real time * 5.001642 sec
number of newton iterations * 2
number of inner iterations 1 0 0

total reactor power a
total heat transfer a
flow enthealpy rise u
flow energy rise -

9.000 kW
9.000 kV
8.976 kW
8.287 kV

inlet flow rate -
outlet flow rate •

total system mass •
global mass error -

time step size * 0.175830-02 sec

16.616 gi
16.616 gO
1.394 g

-0.2090-16 g

cpu time * 137.94 sec
me step reductions due to error 0
educed time steps since last print

maximum temperatures Ic iz
rod: 1578.06 at I I
wall: 1291.58 at 1 1
liquid: 1199.68 at t I

maximum relative changes over the time step
in pressure: 0.1000-09
In mixture density: 0.1000-09
in mixture energy: 0.1000-09

maximum relative Ilnearization errors
in pressure: 0.1160-12
in mass/volume: 0.4150-16
in energy/volume: 0.1870-18

Ic Iz z(mm) P(bar) void qual(%) em rom T vap T liq T sat vvz vlz rov rotl flow(g/s)

1200.43 1200.43 1200.43
1199.68 1199.68 1199.68
1197.55 1197.55 1197.55
1195.92 1195.92 1195.92

23.754 0.812 0.3823
51.186 1.928 0.3801
52.076 1.9800 0.3739

0.3692

0.0
50.0

150.0
200.0

1.45406
1.44494
1.41939
1.40000

0.6482
0.9436
0.9452
0.9485

0.291
0.802
0.873
0.920

1569069.
1594373.
1592084.
1592084.

11l.35
41.59
40.47
38.07

731.47
731.64
732. 12
732.50

16.616
16.616
16.616



INPUT FOR BOILING TEST (6. 1 e)

(ten cells)

boiling test
$intgin nc=1 nz=iO nr=1 narf=i nx=i nrzs=l iss=l ixfl=O ibb=2 Ihtfl=

ichnge=l ishpr=littl istrpr=1 nltmax=-2 ipfsol
= 34 noumax=O

neq=4 ieqvax=0.0 numder=0 kfold=4 $

$realin epsn=0.iOeO grav=0.0 hdt=2.6e-3 pdr
= 1. 15 hdr=20.0

radf=4.325e-3 delpr=1.0 delro=1.0 delem=1.0 errmax=0.5e-I winlet=16.616e-3 $

$rodinp qO=i5000.0 $
1 $ ncr
0 $ indent
1$ fcar
i$nrzf
1$ nrmaf
3$mnrzf

Io 26.47e-3 $ dx
22.92e-3 $ dy

iLL 0.12e0 10(0.leO) 0.12e0 $ dz
1O(O.OeO) $ arx
1O(O.OeO) $ ary
11(169.8475e-6) $ arz
1O(O.Oe4O) $ vol
5.263e-3 $ hedz
3.616e-3 $ wedz
1.50e5 10(i.4e+5) i.4e+5 $ pressure
6(0.00) 6(0.OeO) $ alpha

800.0 1(800.0) 10(800.0) $ tfluid
11(0.118eO) $ velocity
5(800.00) 5(800.0) $twf

5(1.0) 5(0.0) $qz
1.0 $qt
1.0 $qr
1.0 $rn
i.625e-3 $drzf
$timdat tend=50.OeO dtmin=-l.Oe-6 dtmax=1.OeO dtsp=20.0 dtlp=0. let iredmx=20 $

$timdat tend=-1.0 $



INITIAL CONDITIONS

time step no = 0
number of newton iterations -

number of Inner Iterations =

real time = 0.000000 sec
0
0 0 0

time step size = 0.000000400 sec cpu time = 0.00 sec
0 time step reductions due to error 0

0 reduced time steps since last print

total reactor power =
total heat transfer =

flow enthalpy rise =
flow energy rise =

15.000 kW
15.000 kW
-0.002 kW
-0.002 kW

Inlet flow rate =
outlet flow rate =
total system mass =
global mass error =

16.555 g/s
16.553 g/s

140.279 g
0.OOOD+00 g

maximum temperatures ic iz
rod:
wall:
liquid:

0.00 at
0.00 at

800.00 at

maximum relative changes over the time step
in pressure: 0.0000+00
In mixture density: 0.OOOD+00
in mixture energy: 0.0000+00

maximum relative linearization errors
in pressure: 0.0000+00
In mass/volume: 0.OOOD+00
in energy/volume: 0.0000+00

Ic iz z(mm) P(bar) void qual(%)

0.0
50.0

150.0
250.0
350.0
450.0
550.0
650.0
750.0
850.0
950.0

1000.0

1.50000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

em

1048857.
1048857.
1048857.
1048857.
1048857.
1048857.
1048857.
1048857.
1048857.
1048857.
1048857.
1048857.

rom T vap T liq T sat

826.01
825.91
825.91
825.91
825.91
825.91
825.91
825.91
825.91
825.91
825.91
825.91

800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00

800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00

1204. 16
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92

vvz vlz roy

0.118
0.118
0. 118
0.118
0.118
0. 118
0.118
0. 118
0.118
0. 18
0.118

0. 118
0. 118
0. 118
0.118
0. 118
0.118
0.118
0.118
0.118
0.118
0.118

0.5408
0.5047
0.5047
0.5047
0.5047
0.5047
0.5047
0.5047
0.5047
0.5047
0.5047
0.5047

rol flow(g/s)

826.01
825.91
825.91
825.91
825.91
825.91
825.91
825.91
825.91
825. 91
825.91
825.91

16.555
16.553
16.553
16.553
16.553
16.553
16.553
16.553
16.553
16.553
16.553

(6.le)



Final steady-state

time step no = 6539
number of newton iterations =
number of inner iterations

real time = 25.998644 sec
2
1 0 0

time step size = 0.367700-02 sec cpu time = 1201.10 sec
0 time step reductions due to error 0
0 reduced time steps since last print

total reactor power =
total heat transfer =
flow enthalpy rise =
flow energy rise =

15.000 kW
15.000 kW
14.987 kW
14.473 kW

Inlet flow rate =
outlet flow rate =
total system mass =
global mass error =

16.616 g/s
16.616 g/s
44.729 g

0.317D-14 g

maximum temperatures
rod: 1314.40 at
wall: 1218.91 at
liquid: 1199.84 at

maximum relative changes over the time step
in pressure: 0.1000-09
in mixture density: 0.1000-09
In mixture energy: 0.1000-09

maximum
in
in
in

relative linearization errors
pressure: 0.2120-12
mass/volume: 0.3570-15
energy/volume: 0.4080-17

Ic iz z(mm) P(bar) void qual(%)

0.0
50.0

150.0
250.0
350.0
450.0
550.0
650.0
750.0
850.0
950.0

1000.0

1.44730
1.44716
1.44703
1.44688
1.44605
1.44176
1.43384
1.42726
1.42065
1.41401
1.40732
1.40000

0.0000
0.0000
0.0000
0.5014
0.7934
0.8699
0.8710
0.8714
0.8715
0.8724
0.8708
0.8769

0.000
0.000
0.000
0.052
0.199
0.345
0.347
0.347
0.346
0.347
0.340
0.358

em

1053920.
1234461.
1415002.
1557306.
1563979.
1570246.
1569455.
1568729.
1567960.
1567287.
1566259.
1566259.

rom T vap T liq T sat

825.03
791.50
757.68
365.00
151.47
95.51
94.76
94.47
94.38
93.76
94.94
90.48

804.02
947.77
1090.80
1199.84
1199.77
1199.41
1198.76
1198.21
1197.65
1197.10
1196.53
1195.92

804.02
947.77
1090.80
1199.84
1199.77
1199.41
1198.76
1198.21
1197.65
1197.10
1196.53
1195.92

1199.87
1199.86
1199.85
1199.84
1199.77
1199.41
1198.76
1198.21
1197.65
1197.10
1196.53
1195.92

vvz vlz

0.119
0.124
0.789
4.184
14.402
23.945
24.085
24.215
24.355
24.476
24.670

0.119
0.124
0.129
0.266
0.618
0.945
0.952
0.955
0.956
0.962
0.950

rov

0.3807
0.3806
0.3806
0.3806
0.3804
0.3793
0.3774
0.3758
0.3742
0.3726
0.3710
0.3692

rol flow(g/s)

825.03
791.50
757.68
731.60
731.62
731.70
731.85
731.97
732. 10
732.23
732.35
732.50

16.616
16.616
16.616
16.616
16.616
16.616
16.616
16.616
16.616
16.616
16.616

(6.1e)

Ic iz



Initial conditions for

boiling test. (with gravity)

time step no = 0
number of newton iterations =
number of inner iterations *

total reactor power =
total heat transfer =
flow enthalpy rise *
flow energy rise =

real time * 0.000000 sec
0
0 0 0

10.000 kW
10.000 kW
-0.002 kW
-0.002 kW

time step size = 0.000000+00 sec cpu time = 0.00 sec
0 time step reductions due to error 0
0 reduced time steps since last print

inlet flow rate =
outlet flow rate =
total system mass =

16.555 g/s
'16.553 g/s
140.279 g

global mass error = O.OOOD+00 g

maximum temperatures
rod: 0.00 at
wall: 0.00 at
liquid: 800.00 at

Ic iz

maximum relative changes over the time step
in pressure: O.OOOD+00
in mixture density: O.OOOD+00
In mixture energy: O.O00D+00

maximum relative linearization errors
in pressure: 0.0000+00
in mass/volume: 0.0000D+00
in energy/volume: O.O00D+00

ic iz z(mm) P(bar) void qual(%)

0.0
50.0

150.0
250.0
350.0
450.0
550.0
650.0
750.0
850.0
950.0

1000.0

1.50000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

em

1048857.
1048857.
1048857.
1048857.
1048857.
1048857.
1048857.
1048857.
1048857.
1048857.
1048857.
1048857.

rom T vap T liq T s.at

826.01
825.91
825.91
825.91
825.91
825.91
825.91
825.91
825.91
825.91
825.91
825.91

800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00

800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00
800.00

1204.16
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92

vvz vlz rov rol flow(g/s)

0.118
0.118
0.118
0.1I8
0.118
0.118
0.118
0.118
0.118
0.118
0.118

0.118
0.118
0.118
0. 118
0.118

0.118
0.118
0.118
0.118
0.118
0.118

0.5408
0.5047
0.5047
0.5047
0.5047
0.5047
0.5047
0.5047
0.5047
0.5047
0.5047
0.5047

826.01
825.91
825.91
825.91
825.91
825.91
825.91
825.91
825.91
825.91
825.91
825.91

16.555
16.553
16.553
16.553
16.553
16.553
16.553
16.553
16.553
16.553
16.553



Steady state of boiling test with gravity (6.le): 10 cells

time step no = 4222
number of newton iterations =
number of inner iterations =

real time = 30.000652 sec
2
1 0 0

time step size = 0.610990-02 sec cpu time = 79.6 5 sec
0 time step reductions due to error 0

0 reduced time steps since last print

total reactor power =
total heat transfer =
flow enthalpy rise =
flow energy rise =

10.000 kW
10.000 kW
9.995 kW
9.717 kW

inlet flow rate =
outlet flow rate =
total system mass =
global mass error =

16.616 g/s
16.616 g/s
60.349 g

0. 520-13 g

maximum temperatures
rod: 1275.73 at
wall: 1212.06 at
liquid: 1198.35 at

maximum relative changes over the time step
In pressure: 0.OOD-09
in mixture density: 0.1000-09
in mixture energy: 0.1000-09

maximum relative linearizat
in pressure: 0.
in mass/volume: 0.
in energy/volume: 0.

Ic iz z(mm) P(bar) void qual(%)

0.0
50.0

150.0
250.0
350.0
450.0
550.0
650.0
750.0
850.0
950.0
1000.0

1.45830
1.44961
1.44194
1.43449
1.42898
1.42548
1.42084
1. 41677
1.41269
1.40860
1.40449
1.40000

0.0000
0.0000
0.0000
0.0000
0.5384
0.7809
0.7866
0.7877
0.7882
0.7894
0.7874
0.7971

0.000
0.000
0.000
0.000
0.060
0.182
0. 188
0.189
0.189
0. 190
0.187
0.198

em

1168701.
1289062.
1409422.
1529782.
1555733.
1560984.
1560742.
1560334.
1559888.
1559479.
1558900.
1558900.

rom T vap T liq T sat

803.78
781.28
758.72
736.25
338.05
160.70
156.52
155.70
155.38
154.52
156.00
148.91

895.38
991.20
1086.41
1180.42
1198.35
1198.06
1197.67
1197.33
1196.99
1196.64
1196.30
1195.92

895.38
991.20
1086.41
1180.42
1198.35
1198.06
1197.67
1197.33
1196.99
1196.64
1196.30
1195.92

1200.78
1200.06
1199.43
1198.81
1198.35
1198.06
1197.67
1197.33
1196.99
1196.64
1196.30
1195.92

vvz vlz rov . rol flow(g/s)

0. 122
0. 125
0.129
5.986
9.427

14.611
14.580
14.625
14.685
14.730
14.837

0. 122
0. 125
0.129
0.133
0.284
0.583
0.599
0.602
0.603
0.606
0.601

0.3833
0.3812
0.3794
0.3776
0.3762
0.3754
0.3743
0.3733
0.3723
0.3713
0.3703
0.3692

803.78
781.28
758.72
736.25
731.94
732.01
732.09
732.17
732.25
732.33
732.41
732.50

16.616
16.616
16.616
16.616
16.616
16.616
16.616
16.616
16.616
16.616
16.616

ic iz

ion errors
1190-12
1400-14
1300-15



Input for condensation-boiling test

boiling and condensation test
$tntgin nc=1 nz=10 nr=1 narf=l nx=i nrzsl=1 ss=i ixfl=O ibb=0 ihtful
Ichnge=1 ishpr=iliti Istrpr=i nitmax=-2 ipfsol=34 noumax=0

neq=4 leqvax=0.0 numder=0O kfold=4 $
$realin epsn=0.IOeO grav=0.0 hdt=2.6e-3 pdr=1.15 hdr=20.0
radf=4.325e-3 delpr=l.0 delroi.0 delem=i.0 errmax=0.5e-1 winlet=i6.616e-3 $
Srodinp qO=3000.0 $
1 $ ncr
0 $ Indent
1s fcar
1$nrzf
i$nrmaf
3$mnrzf
26.47e-3 $ dx
22.92e-3 $ dy
0.12e0 i0(0.ieO) 0.12eO $ dz
10(0.OeO) $ arx

LL 1O(O.OeO) $ ary
11(169.8475e-6) $ arz
10(0.Oe+O) $ vol
5.263e-3 $ hedz
3.616e-3 $ wedz
1.5e5 10(1.4e+5) 1.4e+5 $ pressure
6(0.50) 6(0.5e0) $ alpha
1204.16 1(1195.92) 10(1195.92) $ tfluid
11(0.118e0) $ velocity
5(800.00) 5(800.0) $twf
5(-1.0) 5(1.0) $qz

1.0 $qt
1.0 $qr
1.0 Srn
1.625e-3 $drzf
$timdat tend=5.OeO dtmin--1.Oe-6 dtmax=i.OeO dtsp=20.0 dtlp=O.e tIredmx=20 $
$timdat tend--1.0 $
0



Initial conditions for condensation-boiling test

time step no = O
number of newton iterations *
number of Inner iterations -

real time = 0.000000 sec
0
0 0 0

time step size = O.O0000OD+00 sec cpu time = 0.00 sec
0 time step reductions due to error 0
0 reduced time steps since last print

total reactor power w
total heat transfer a
flow enthalpy rise -
flow energy rise =

3.000 kW
0.000 kW

-0.051 kW
-0.051 kW

Inlet flow rate =
outlet flow rate =

total system mass a
global mass error •

7.325 g/s
7.344 g/s

62.238 g
0.0000+00 g

maximum temperatures
rod:

ic iz
0.00 at 0 0

wall: 0.00 at 0 0
liquid: 1195.92 at 1 1

maximum relative changes over the time step
in pressure: 0.0000+00
in mixture density: O.O00D+00
in mixture energy: 0.O00D+00

maximum relative linearization errors
In pressure: 0.0000+00
in mass/volume: 0.0000+00
In energy/volume: 0.O00D+00

Ic tz z(mm) P(bar) void qual(%)

0.0
50.0

150.0
250.0
350.0
450.0
550.0
650.0
750.0
850.0
950.0
1000.0

1.50000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000
1.40000

0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000
0.5000

0.054
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050

em

1562990.
1552141.
1552141.
1552141.
1552141.
1552141.
1552141.
1552141.
1552141.
1552141.
1552141.
1552141.

rom T vap T liq T sat

365.50
366.43
366.43
366.43
366.43
366.43
366.43
366.43
366.43
366.43
366.43
366.43

1204.16
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92

1204.16
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92

1204.16
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92
1195.92

vvz vlz rov

0.118
0.118
0.118
0.118
0.118
0.118
0.118
0.118
0.118
0.118
0.118

0.118
0.118
0. 118
0.118
0.118
0. 118
0.118
0.118
0.118
0.118
0.118

0.3934
0.3692
0.3692
0.3692
0.3692
0.3692
0.3692
0.3692
0.3692
0.3692
0.3692
0.3692

rol flow(g/s)

730.61
732.49
732.49
732.49
732.49
732.49
732.49
732.49
732.49
732.49
732.49
732.49

7.325
7.344
7.344
7.344
7.344
7.344
7.344
7.344
7.344
7.344
7.344

LL 1
i

1
1

1
i
1

1
1



Final steady-state for condensation-boiling test

time step no = 1009
number of newton iterations =
number of Inner iterations =

real time = 5.002808 sec
2
1 0 0

time step size = 0.488440-02 sec cpu time = 186.27 sec
0 time step reductions due to error O
0 reduced time steps since last print

total reactor power *
total heat transfer =
flow enthalpy rise =
flow energy rise =

3.000 kW
0.000 kW
-0.009 kW
-0.084 kW

inlet flow rate =
outlet flow rate =
total system mass =
global mass error =

115.855 g/s
115.855 g/s
79.584 g

-0.139D-13 g

maximum temperatures
rod: 1226.94 at
wall: 1207.84 at
liquid: 1203.11 at

maximum relative changes over the time
in pressure: 0.100D-09
in mixture density: 0.1OOD-09
in mixture energy: 0.100D-09

step maximum relative linearization errors
in pressure: 0.638D-15
in mass/volume: 0.1380-14
In energy/volume: 0.724D-19

Ic iz z(mm) P(bar) void qual(%)

0.0
50.0
150.0
250.0
350.0
450.0
550.0
650.0
750.0
850.0
950.0
1000.0

1.50000
1.48700
1.47728
1.46936
1.46336
1.45926
1.45833
1.45154
1.44260
1.43133
1.41736
1.40000

0.5003
0.4703
0.4261
0.3615
0.2771
0.0000
0.2212
0.3530
0.4402
0.5058
0.5405
0.6679

0.054
0.047
0.039
0.030
0.020
0.000
0.015
0.028
0.041
0.053
0.060
0.101

em

1562990.
1561332.
1559941.
1558668.
1557585.
1555702.
1556808.
1556709.
1556318.
1555652.
1554474.
1554474.

rom T vap T liq T sat

365.30
387.28
419.73
466.99
528.75
731.46
569.72
473.40
409.78
361.90
336.60
243.48

1204.16
1203.11
1202.32
1201.68
1201.19
1200.45
1200.78
1200.22
1199.48
1198.55
1197.38
1195.92

1204. 16
1203.11
1202.32
1201.68
1201. 19
1200.45
1200.78
1200.22
1199.48
1198.55
1197.38
1195.92

1204. 16
1203.11
1202.32
1201.68
1201.19
1200.85
1200.78
1200.22
1199.48
1198.55
1197.38
1195.92

vvz vlz rov

14.670
12.879
10.859
8.601
5.426
2.819
7.683
10.831
13.765
16.658
20.269

1.860
1.756
1.621
1.459
1.289
0.933
1.196
1.438
1.660
1.877
2.016

0.3934
0.3903
0.3879
0.3860
0.3846
0.3836
0.3834
0.3817
0.3795
0.3768
0.3734
0.3692

rol flow(g/s)

730.61
730.85
731.03
731. 18
731.29
731.46
731 .39
731.51
731.68
731.89
732. 16
732.50

115.855
115.855
115.855
115.855
115.855
115.855
115.855
115.855
115.855
115.855
115.855

Ic iz



Initial conditions for loop test (700 W)

TIME STEP NO = O REAL TIME - 0.000000 SEC
NUMBER OF NEWTON ITERATIONS O
NUMBER OF INNER ITERATIONS = O O O

TIME STEP SIZE = 0.00000D+00 SEC CPU TIME = 0.00 SEC
O TIME STEP REDUCTIONS DUE TO ERROR O
O REDUCED TIME STEPS SINCE LAST PRINT

TOTAL REACTOR POWER *
TOTAL HEAT TRANSFER x
FLOW ENTHALPY RISE -
FLOW ENERGY RISE •

0.700 KW
0.700 KW
0.000 KW
0.000 KW

INLET FLOW RATE a
OUTLET FLOW RATE =

TOTAL SYSTEM MASS 
=

GLOBAL MASS ERROR =

0.845 G/S
0.845 G/S

26.483 G
0.0000+00 G

MAXIMUM TEMPERATURES IC IZ
ROD: 0.00 AT 0 0
WALL: 0.00 AT 0 0
LIOUID: 693.15 AT 1 1

MAXIMUM RELATIVE CHANGES OVER THE TIME STEP
IN PRESSURE: 0.0000+00
IN MIXTURE DENSITY: 0.000D00
IN MIXTURE ENERGY: O.0000D+OO

MAXIMUM
IN
IN
IN

RELATIVE LINEARIZATION ERRORS
PRESSURE: 0.0000+00
MASS/VOLUME: O.O00OD+00
ENERGY/VOLUME: 0.0000+00

IC IZ Z(MM) P(BAR) VOID OUAL(%)

0.0
308.7
846.2
1383.7
1921.2
2458.7
2967.5
3367.5
3717.5
4017.5
4167.5

1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

EM

913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.

ROM T VAP T LIO T SAT

850. 14
850.14
850.14
850.14
850.14
850.14
850.14
850.14
850.14
850.14
850.14

693.
693.
693.
693.
693.
693.
693.
693.
693.
693.
693.

693.
693.
693.
693.
693.
693.
693.
693.
693.
693.
693.

1158. 78
1158.78
1158. 78
1158.78
1158.78
1158. 78
1158.78
1158.78
1158.78
1158.78
1158.78

VVZ VLZ ROV

0.120
0. 120
0.120
0. 120
0. 120
0. 120
0. 120
0. 120
0. 120
0. 120

0.120
0.120
0.120
0.120
0.120
0.120
0.120
0.120
0.120
0. 120

0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107

ROL FLOW(G/S)

850.
850.
850.
850.
850.
850.
850.
850.
850.
850.
850.

0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845



Final steady-state for loop test (700 W)

TIME STEP NO = 7164
NUMBER OF NEWTON ITERATIONS =
NUMBER OF INNER ITERATIONS =

REAL TIME = 50.000788 SEC
2
1 0 0

TIME STEP SIZE 
= 
0.628990-02 SEC CPU TIME 

=  
1388.52 SEC

0 TIME STEP REDUCTIONS DUE TO ERROR 0
0 REDUCED TIME STEPS SINCE LAST PRINT

TOTAL REACTOR POWER a
TOTAL HEAT TRANSFER =
FLOW ENTHALPY RISE *

FLOW ENERGY RISE =

0.700 KW
0.700 KW
0.700 KW
0.685 KW

INLET FLOW RATE =
OUTLET FLOW RATE =

TOTAL SYSTEM MASS =
GLOBAL MASS ERROR =

0.845 G/S
0.845 G/S

22.021 G
0.4170-12 G

MAXIMUM TEMPERATURES
ROD: 1165.16 AT

IC IZ
1 8

WALL: 1161.97 AT 1 8
LIQUID: 1161.56 AT 1 8

MAXIMUM RELATIVE CHANGES OVER THE TIME
IN PRESSURE: 0.3690-08
IN MIXTURE DENSITY: 0.1130-06
IN MIXTURE ENERGY: 0.1420-06

STEP MAXIMUM
IN
IN
IN

RELATIVE LINEARIZATION ERRORS
PRESSURE: 0.3550-08
MASS/VOLUME: 0.1050-11
ENERGY/VOLUME: 0.856D-18

IC IZ Z(MM) P(BAR) VOID QUAL(%)

0.0
308.7
846.2
1383.7
1921.2
2458.7
2967.5
3367.5
3717.5
4017.5
4167.5

0.98732
0.96243
0.96175
1.00379
1.04584
1.08901
1.08823
1.05615
1.03885
1.02142
1.01325

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.8323
0.8376
0.8548

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0. 187
0. 192
0.217

EM

913556.
1128239.
1128239.
1128203.
1128110.
913569.
913569.
1386908.
1513989.
1511745.
1511745.

ROM T VAP T LIO T SAT

850. 12
810.81
810.81
810.86
810.91
850.21
850.21
762.55
124.42
120.56
107.84

693. 15
863.14
863.14
863.11
863.04
693. 16
693.16
1068.68
1161.56
1159.67
1158.78

693. 15
863.14
863.14
863. 11
863.04
693. 16
693. 16
1068.68
1161.56
1159.67
1158.78

1155.91
1153.09
1153.01
1157.74
1162.31
1166.86
1166.78
1163.41
1161.56
1159.67
1158.78

VVZ VLZ ROV ROL FLOW(G/S)

0. 120
0.126
0. 126
0. 126
0. 126
0.120
0. 120
7.382

21.060
21.463

0. 120
0. 126
0. 126
0. 126
0.126
0.120
0.120
0.134
0.782
0.806

0.2674
0.2611
0.2609
0.2715
0.2820
0.2927
0.2925
0.2846
0.2802
0.2759
0.2738

850.12
810.81
810.81
810.86
810.91
850.21
850.21
762.55
740.38
740.81
741.02

0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845



Initial conditions for loop test (600 W)

TIME STEP NO = O REAL TIME - 0.000000 SEC
NUMBER OF NEWTON ITERATIONS 0 O
NUMBER OF INNER ITERATIONS O O O

TIME STEP SIZE = O.OOOOOD+00 SEC CPU TIME - 0.00 SEC
O TIME STEP REDUCTIONS DUE TO ERROR 0
O REDUCED TIME STEPS SINCE LAST PRINT

TOTAL REACTOR POWER =
TOTAL HEAT TRANSFER =
FLOW ENTHALPY RISE *

FLOW ENERGY RISE a

0.600 KW
0.600 KW
0.000 KW
0.000 KW

INLET FLOW RATE =
OUTLET FLOW RATE =
TOTAL SYSTEM MASS *
GLOBAL MASS ERROR =

0.845 G/S
0.845 G/S
26.483 G

0.0000+00 G

MAXIMUM TEMPERATURES IC IZ
ROD: 0.00 AT 0 0
WALL: 0.00 AT 0 0
LIQUID: 693.15 AT 1 1

MAXIMUM RELATIVE CHANGES OVER THE TIME STEP
IN PRESSURE: 0.OOOD+00
IN MIXTURE DENSITY: 0.0000+00
IN MIXTURE ENERGY: O.OOOD+00

MAXIMUM
IN
IN
IN

RELATIVE LINEARIZATION ERRORS
PRESSURE: 0.0000+00
MASS/VOLUME: 0.0000+00
ENERGY/VOLUME: 0.0000+00

IC IZ Z(MM) P(BAR) VOID QUAL(%)

0.0
308.7
846.2

1383.7
1921. 2
2458.7
2967.5
3367.5
3717.5
4017.5
4167.5

1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

EM

913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.

ROM T VAP T LIQ T SAT

850. 14
850.1 4
850.14
850. 14
850.14
850. 14
850.14
850. 14
850. 14
850. 14
850.14

693. 15
693. 15
693.15
693. 15
693.15
693.15
693. 15
693.15
693. 15
693. 15
693. 15

693. 15
693. 15
693. 15
693. 15
693.15
693.15
693.15
693.15
693.15
693. 15
693.15

1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78

VVZ VLZ ROV

0.120
0.120
0.120
0. 120
0.120
0. 120
0.120
0.120
0.120
0. 120

0.120
0.120
0. 120
0. 120
0.120
0.120
0.120
0.120
0. 120
0. 120

0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107

ROL FLOW(G/S)

850.14
850. 14
850. 14
850.14
850.14
850. 14
850. 14
850. 14
850. 14
850.14
850. 14

0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845



Final steady-state for loop test (600 W)

TIME STEP NO = 4087 REAL TIME =
NUMBER OF NEWTON ITERATIONS = 2
NUMBER OF INNER ITERATIONS = 1 O O

49.998278 SEC TIME STEP SIZE = 0.10646D-01 SEC CPU TIME = 800.08 SEC
0 TIME STEP REDUCTIONS DUE TO ERROR 0
0 REDUCED TIME STEPS SINCE LAST PRINT

TOTAL REACTOR POWER -
TOTAL HEAT TRANSFER =
FLOW ENTHALPY RISE *

FLOW ENERGY RISE -

0.600 KW
0.600 KW
0.600 KW
0.592 KW

INLET FLOW RATE
OUTLET FLOW RATE

TOTAL SYSTEM MASS
GLOBAL MASS ERROR

= 0.845 G/S
0.845 G/S

= 22.483 G
* 0.2300-12 G

MAXIMUM TEMPERATURES
ROD:
WALL:
LIQUID:

1163.70
1160.97
1160.56

MAXIMUM RELATIVE CHANGES OVER THE TIME STEP
IN PRESSURE: 0.177D-08
IN MIXTURE DENSITY: 0.3820-06
IN MIXTURE ENERGY: 0.2340-06

MAXIMUM
IN
IN
IN

RELATIVE LINEARIZATION ERRORS
PRESSURE: 0.1690-08
MASS/VOLUME: 0.3270-12
ENERGY/VOLUME: 0.533D-17

IC IZ Z(MM) P(BAR) VOID QUAL(%)

0.0
308.7
846.2
1383.7
1921.2
2458.7
2967.5
3367.5
3717.5
4017.5
4167.5

0.97967
0.95478
0.95411
0.99615
1.03819
1.08137
1.08058
1.04824
1.02955
1.01854
1.01325

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.7101
0.7200
0.7519

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.092
0.095
0. 112

EM

913556.
1128239.
1128239.
1128203.
1128113.
913569.
913569.
1319288.
1508356.
1506975.
1506975.

ROM T VAP T LIQ T SAT

850.11
810.80
810.80
810.85
810.91
850.21
850.21
775.21
214.87
207.63
184.06

693.15
863.14
863. 14
863. 11
863.04
693.16
693. 16
1015.19
1160.56
1159.36
1158.78

693.15
863.14
863.14
863.11
863.04
693.16
693. 16
1015.19
1160.56
1159.36
1158.78

1155.05
1152.21
1152.13
1156.89
1161.49
1166.06
1165.98
1162.57
1160.56
1159.36
1158.78

VVZ VLZ

0.120
0.126
0.126
0.126
0.126
0.120
0.120
7.084
12.572
12.681

0. 120
0.126
0.126
0.126
0.126
0. 120
0. 120
0.132
0.464
0.480

ROV

0.2654
0.2592
0.2590
0.2696
0.2801
0.2908
0.2906
0.2826
0.2779
0.2752
0.2738

ROL FLOW(G/S)

850.11
810.80
810.80
810.85
810.91
850.21
850.21
775.21
740.61
740.88
741.02

0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845

IC IZ



Input for loop test (26 cells, 600 W)

SINGLE PHASE MEASUREMENT FOR SODIUM NATURAL CONVECTION
IN A VERTICAL LOOP:ORNL/TM-7018

$INTGIN NC= 1 ,NZ=26,NR=1 ,NARF= ,NX= ,NRZS=I,IHTF=i,
IITS=3,ISS=1.IXFL=O, IDUMP=1.IBB=2,
ISTRPR=O.ISHPR=iOiitNITMAX=-2,IPFSOL=34,
NEO=4,NUMDER=O,IHiTRPR=0 $

$REALIN HDT=3.25E-3.PDR=1.2533,HDR=1.OE+10,DELPR=0.5.
RNUSS=7.0,RADF=I.625E-4,WINLET=8.50E-4.GRAV=110.O S

$RODINP 00=600.0 $
1$NCR
O$INDENT
i$IFCAR
I$NRZF
i$NRMAF
3$MNRZF
I$INX
7$MNRZS
4$NRMZS
4.07327E-3 $DX
4.07327E-3 $DY
1.OE-6 0.6175 4(0.4575) 6(0.6175) 4(0.4575) 0.6175 5(0.194)
5(0.3) 1.OE-6 $DZ
26(0.0) $ARX
26(0.0) $ARY

co 27(8.285E-6) $ARZ
"C 5.122162E-6 4(3.794962E-6) 6(5.12212E-6) 4(3.794962E-6)

5.122162E-6 5(1.60923E-6) 5(2.4885E-6) $VOL
3.25E-3 $HEDZ
3.25E-3 $WEDZ
28(i.01325E+05) $P
28(0.0) SALP
28(693.15) $TEMP
27(12.OE-2) $VEL
-9.8 5(0.0) 5(9.8) 5(0.0) 11(-9.8) $GRAV
26(693.15) $TWF
16(0.0) 5(1.0) 5(0.0) $QZ
1.0 $QT
1.0 $OR
1.0 SRN
1.625E-3 $DRZF
1.62929E-2 $PCX
2.03E-2 $DRZS
1.OE+6 14(0.0) 1.OE+6 10(0.0) $HOUT
863.15 14(500.0) 693.15 10(500.0) $TOUT
26(693.15) $TWS
26(2.5E+6) $HLSS
$1IMDAT TEND=200.0,DTMIN=I.OE-6,DTMAX=I.0,DTSP=20.0,DTLP=i.0,IREDMX=20 $
$TIMDAT TEND=-1.0$

0



Initial conditions for loop test (600 W)

TIME STEP NO = 0 REAL TIME = 0.000000 SEC
NUMBER OF NEWTON ITERATIONS = O
NUMBER OF INNER ITERATIONS = 0 0 0

TIME STEP SIZE 
= 
O.OOOOOD+00 SEC CPU TIME 

=  
0.00 SEC

0 TIME STEP REDUCTIONS DUE TO ERROR 0

0 REDUCED TIME STEPS SINCE LAST PRINT

TOTAL REACTOR POWER =
TOTAL HEAT TRANSFER =
FLOW ENTHALPY RISE
FLOW ENERGY RISE =

0.600 KW
0.600 KW
0.000 KW
0.000 KW

INLET FLOW RATE =
OUTLET FLOW RATE =

GLOTAL MASS ERRORA
GLOBAL MASS ERROR =

0.845 G/S
0.845 G/S
78.005 G

O.00OD+00 G

MAXIMUM TEMPERATURES
ROD: 0.00 AT
WALL: 0.00 AT

LIQUID: 693.15 AT

MAXIMUM RELATIVE CHANGES OVER THE TIME STEP
PRESSURE:
MIXTURE DENSITY:
MIXTURE ENERGY:

IC IZ Z(MM) P(BAR) VOID OUAL(%)

1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.O00D0+00
0.O0000+00
O.OOOD+O0

EM

913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.

MAXIMUM RELATIVE LINEARIZATION ERRORS
IN PRESSURE: 0.0000+00
IN MASS/VOLUME: 0.0000D+00
IN ENERGY/VOLUME: O.O00D+00

ROM T VAP T LIQ T SAT

850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850.14
850. 14
850. 14
850. 14
850.14
850. 14
850.14
850.14
850.14
850. 14
850.14
850.14
850.14
850. 14
850. 14
850.14
850. 14
850.14

693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693.15
693. 15
693. 15
693. 15
693. 15
693. 15

693.15
693. 15
693. 15
693. 15
693. 15
693.15
693. 15
693. 15
693. 15
693.15
693. 15
693. 15
693. 15
693.15
693. 15
693. 15
693. 15
693. 15
693.15
693.15
693.15
693.15
693.15
693. 15
693. 15
693. 15
693. 15
693. 15

1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78

VVZ VLZ

0. 120
0.120
0. 120
0. 120
0. 120
0.120
0. 120
0.120
0. 120
0. 120
0. 120
0.120
0. 120
0.120
0. 120
0.120
0. 120
0. 120
0. 120
0.120
0. 120
0.120
0. 120
0. 120
0. 120
0. 120
0.120

0. 120
0. 120
0. 120
0. 120
0. 120
0. 120
0. 120
0.120
0. 120
0. 120
0.120
0. 120
0.120
0. 120
0. 120
0. 120
0. 120
0.120
0.120
0. 120
0.120
0. 120
0.120
0.120
0.120
0.120
0. 120

ROV

0.4107
0.4107
0.4107
0.4107
0.4107
0. 4107
0.4107
0.4107
0.4107
0. 4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107

ROL FLOW(G/S)

850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850.14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14

0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845

IC IZ

1 0.0
2 308.7
3 846.2
4 1303.8
5 1761.3
6 2218.8
7 2756.2
8 3373.7
9 3991.2
10 4608.7
1 5226.2
12 5843.8
13 6381.3
14 6838.8
15 7296.3
16 7753.8
17 8291.3
18 8697.0
19 8891.0
20 9085.0
21 9279.0
22 9473.0
23 9720.0
2410020.0
2510320.0
2610620.0
2710920.0
2811070.0



FINAL STEADY-STATE FOR LOOP TEST (600 W)

TIME STEP NO a 16556
NUMBER OF NEWTON ITERATIONS -
NUMBER OF INNER ITERATIONS *

TOTAL REACTOR POWER a 0
TOTAL HEAT TRANSFER * 0
FLOW ENTHALPY RISE O
FLOW ENERGY RISE * 0

REAL TIME a 195.995733 SEC TIME STEP SIZE 0. 0863D0-01 SEC

I 0 0

.600 KW

.600 KW

.600 KW

.592 KW

INLET FLOW RATE
OUTLET FLOW RATE
TOTAL SYSTEM MASS
GLOBAL MASS ERROR

0.850 G/S
.0.850 G/S
66.231 G

0.1550-16 G

CPU TIME v 8344.33 SEC
ME STEP REDUCTIONS DUE TO ERROR O
EDUCED TIME STEPS SINCE LAST PRINT

MAXIMUM TEMPERATURES IC IZ
ROD: 1167.08 AT 1 21
WALL: 1165.11 AT 1 21
LIOUID: 1164.81 AT 1 21

MAXIMUM RELATIVE CHANGES OVER THE TIME
IN PRESSURE: 0.1000-09
IN MIXTURE DENSITY: 0.100D-09
IN MIXTURE ENERGY: 0.1000-09

STEP MAXIMUM RELATIVE LINEARIZATION ERRORS
IN PRESSURE: 0.4090-12
IN MASS/VOLUME: 0.3960-15
IN ENERGY/VOLUME: 0.6100-18

IC IZ Z(MM) P(BAR) VOID QUAL(%)

1 0.0
2 308.7
3 846.2
4 1303.8
5 1761.3
6 2218.8
7 2756.2
8 3373.7
9 3991.2
10 4608.7
11 5226.2
12 5843.8
13 6381.3
14 6838.8
15 7296.3
16 7753.8
17 8291.3
18 8697.0
19 8891.0
20 9085.0
21 9279.0
22 9473.0
23 9720.0
2410020.0
2510320.0
2610620.0
2710920.0
2811070.0

0.94834
0.92344
0.92276
0.92219
0.92161
0.92104
0.92036
0.96865
1.01694
1.06524
1.11353
1.16183
1.16116
1. 16058
1.16001
1.15943
1. 15870
1. 12460
1. 10893
1.09377
1.07911
1.06938
1.06027
1.04986
1.03943
1.02898
1.01852
1.01325

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.6815
0.6922
0.6970
0.7016
0.7058
0.7117
0.7453

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.083
0.087
0.088
0.089
0.090
0.092
0.108

EM ROM T VAP T LIO T SAT

913556.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
913569.
1054741.
1195913.
1337085.
1478257.
1513437.
1512359.
1510987.
1509599.
1508187.
1506800.
1506800.

850.08
810.77
810.77
810.77
810.77
810.77
810.77
810.81
810.86
810.91
810.96
811.01
811.01
811.01
811.00
811.00
850.28
824.55
798.36
771.92
745.49
235.77
227.93
224.42
221.09
218.10
213.77
188.96

693.15
863.14
863.14
863. 14
863.14
863.14
863.14
863.14
863.14
863.14
863. 14
863.14
863. 14
863. 14
863. 14
863.14
693. 16
804.67
917.06
1029.30
1140.36
1164.81
1163.85
1162.74
1161.63
1160.50
1159.36
1158.78

693.15
863.14
863.14
863.14
863.14
863.14
863.14
863. 14
863.14
863.14
863.14
863.14
863. 14
863.14
863.14
863. 14
693.16
804.67
917.06
1029.30
1140.36
1164.81
1163.85
1162.74
1161.63
1160.50
1159.36
1158.78

1151.47
1148.55
1148.47
1148.41
1148.34
1148.27
1148. 19
1153.80
1159.19
1164.37
1169.37
1174.21
1174.14
1174.08
1174.03
1173.97
1173.90
1170.50
1168.91
1167.35
1165.83
1164.81
1163.85
1162.74
1161.63
1160.50
1159.36
1158.78

VVZ VLZ ROV ROL FLOW(G/S)

0.121
0. 127
0. 127
0. 127
0.127
0. 127
0. 127
0. 127
0. 127
0. 127
0. 127
0.127
0. 127
0. 127
0. 127
0. 127
0. 121
0. 24
0. 129
0. 133
7.148
11.680
11.718
11.890
12.070
12.262
12.427

0.121
0.127
0.127
0. 127
0. 127
0. 127
0.127
0. 127
0.127
0.127
0. 127
0.127
0.127
0. 127
0.127
0.127
0.121
0. 124
0.129
0.133
0.138
0.426
0.440
0.447
0.454
0.460
0.469

0.2576
0.2513
0.2511
0.2510
0.2508
0.2507
0.2505
0.2627
0.2748
0.2868
0.2988
0.3108
0.3106
0.3105
0.3103
0.3102
0.3100
0.3016
0.2977
0.2939
0.2903
0.2879
0.2856
0.2830
0.2804
0.2778
0.2752
0.2738

850.08
810.77
810.77
810.77
810.77
810.77
810.77
810.81
810.86
810.91
810.96
811.01
811.01
811.01
811.00
811.00
850.28
824.55
798.36
771.92
745.49
739.63
739.85
740.11
740.36
740.62
740.88
741.02

0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850



w

Input for loop test (26 cells, 640 W)

2
SINGLE PHASE MEASUREMENT FOR SODIUM NATURAL CONVECTION

IN A VERTICAL LOOP:ORNL/TM-7018
SINTGIN NC=i,NZ=26.NR=1,NARF=1,NX=i,NRZS=I,IHTF=1,

IHTS=3,ISS=1,IXFL=0. IUMP=i,IBB=2,
ISTRPR=O.ISHPR=10111,NITMAX=-2,IPFSOL=34.
NEQ=4,NUMDER=O,IHTRPR=O $

SREALIN HDT=3.25E-3,PDR=I.2533,HDR=1.OE+1O,DELPR=0.5,
RNUSS=7.0,RADF=1.625E-4,WINLET=8.50E-4,GRAV= 10.O $

$RODINP 00=640.0 $
I$NCR
O$INDENT
i$IFCAR
i$NRZF
I$NRMAF
3$MNRZF
I$1NX
7$MNRZS
4$NRMZS
4.07327E-3 $DX
4.07327E-3 $DY
1.OE-6 0.6175 4(0.4575) 6(0.6175) 4(0.4575) 0.6175 5(0.194)
5(0.3) i.OE-6 $DZ

LL 26(0.0) $ARX
26(0.0) $ARY
27(8.285E-6) $ARZ
5.122162E-6 4(3.794962E-6) 6(5.12212E-6) 4(3.794962E-6)
5.122162E-6 5(1.60923E-6) 5(2.4885E-6) $VOL
3.25E-3 $HEDZ
3.25E-3 $WEDZ
28(i.O1325E+05) $P
28(0.0) $ALP
28(693.15) $TEMP
27(12.OE-2) $VEL
-9.8 5(0.0) 5(9.8) 5(0.0) 11(-9.8) $GRAV
26(693.15) $TWF
16(0.0) 5(1.0) 5(0.0) SQZ
1.0 SOT
1.0 $OR
1.0 $RN
i.625E-3 $DRZF
1.62929E-2 $PCX
2.03E-2 $DRZS
1.OE+6 14(0.0) 1.OE+6 10(0.0) $HOUT
863.15 14(500.0) 693.15 10(500.0) STOUT
26(693.15) $TWS
26(2.5E+6) $HLSS
$TIMDAT TEND=10.O,DTMIN=1.OE-6,DTMAX=1.O,DTSP=20.ODTLP=1.O.IREDMX=20 $
STIMDAT TEND=-i.O$

0



Initial conditions for loop test (26 cells)

TIME STEP NO = 0 REAL TIME = 0.000000 SEC
NUMBER OF NEWTON ITERATIONS = 0
NUMBER OF INNER ITERATIONS = O O O

TIME STEP SIZE = 0.000000+00 SEC CPU TIME = 0.00 SEC
0 TIME STEP REDUCTIONS DUE TO ERROR O
O REDUCED TIME STEPS SINCE LAST PRINT

TOTAL REACTOR POWER =
TOTAL HIEAT TRANSFER =
FLOW ENTHALPY RISE =
FLOW ENERGY RISE =

0.640 KW
0.640 KW
0.000 KW
0.000 KW

INLET FLOW RATE =
OUTLET FLOW RATE =
TOTAL SYSTEM MASS =

GLOBAL MASS ERROR n

0.845 G/S
0.845 G/S

78.065 G
0.0000+00 G

MAXIMUM TEMPERATURES
ROD: 0.00 AT
WALL: 0.00 AT
LIQUID: 693.15 AT

MAXIMUM RELATIVE CHANGES OVER THE TIME STEP
IN PRESSURE: 0.0000+00
IN MIXTURE DENSITY: O.000D+00
IN MIXTURE ENERGY: 0.OOOD+00

MAXIMUM RELATIVE LINEARIZATION ERRORS
IN PRESSURE: O.OOOD+00
IN MASS/VOLUME: 0.OOOD+00
IN ENERGY/VOLUME: 0.0000+00

IC IZ Z(MM) P(BAR) VOID QUAL(%)

1 0.0
2 308.7
3 846.2
4 1303.8
5 1761.3
6 2218.8
7 2756.2
8 3373.7
9 3991.2

10 4608.7
11 5226.2
12 5843.8
13 6381.3
14 6838.8
15 7296.3
16 7753.8
17 8291.3
18 8697.0
19 8891.0
20 9085.0
21 9279.0
22 9473.0
23 9720.0
2410020.0
2510320.0
2610620.0
2710920.0
2811070.0

1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325
1.01325

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

EM

913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.
913556.

ROM T VAP T LIQ T SAT

850. 14
850. 14
850.14
850.14
850. 14
850. 14
850.14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850.14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850.14

693.15
693. 15
693. 15
693.15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693.15
693. 15
693.15
693.15
693. 15
693. 15
693. 15
693. 15
693. 15
693.15
693. 15
693. 15
693. 15
693.15

693.15
693. 15
693.15
693. 15
693.15
693. 15
693.15
693.15
693. 15
693.15
693.15
693. 15
693. 15
693.15
693. 15
693.15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693. 15
693.15
693. 15
693. 15

1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78
1158.78

VVZ VLZ ROV

0. 120
0. 120
0. 120
0. 120
0. 120
0. 120
0. 120
0. 120
0. 120
0. 120
0.120
0. 120
0. 120
0. 120
0. 120
0. 120
0. 120
0. 120
0. 120
0. 120
0. 120
0.120
0. 120
0. 120
0.120
0. 120
0.120

0.120
0.120
0. 120
0. 120
0. 120
0.120
0.120
0.120
0.120
0. 120
0.120
0.120
0.120
0. 120
0. 120
0.120
0. 120
0. 120
0. 120
0. 120
0. 120
0. 120
0. 120
0.120
0. 120
0.120
0. 120

0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0. 4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107
0.4107

ROL FLOW(G/S)

850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14
850. 14

0.845
0.845
0 845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845
0.845

a 0

IC IZ



FINAL STEADY-STATE FOR LOOP TEST (640 W)

TIME STEP NO * 21805
NUMBER OF NEWTON ITERATIONS "
NUMBER OF INNER ITERATIONS "

TOTAL REACTOR POWER a 0
TOTAL HIEAT TRANSFER * 0
FLOW ENTHALPY RISE O0
FLOW ENERGY RISE * 0

REAL TIME * 200.000669 SEC
2
1 0 0

.640 KW

.640 KW

.639 KW

.629 KW

INLET FLOW RATE
OUTLET FLOW RATE
TOTAL SYSTEM MASS
GLOBAL MASS ERROR

TIME STEP SIZE a 0.853610-02 SEC CPU TIME * 10960.49 SEC
0 TIME STEP REDUCTIONS DUE TO ERROR 0
0 REDUCED TIME STEPS SINCE LAST PRINT

0.850
0.850
65.369

0.9880-15

MAXIMUM TEMPERATURES
ROD: 1169.15 AT
WALL: 1167.05 AT
LIOUID: 1166.53 AT

MAXIMUM RELATIVE CHANGES OVER THE TIME STEP
IN PRESSURE: 0.1000-09

IC IZ Z(MM) P(BAR)

0.95451
0.92962
0.92894
0.92836
0.92779
0.92721
0.92654
0.97483
1.02312
1.07141
1.11971
1.16801
1.16734
1.16676
1.16619
1.16561
1.16488
1.13080
1.11518
1.10010
1.08582
1.07688
1.06652
1.05488
1.04313
1.03127
1.01932
1.01325

MIXTURE DENSITY:
MIXTURE ENERGY:

VOID QUAL(%)

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0384
0.7628
0.7710
0.7740
0.7768
0.7792
0.7831
0.8056

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.002
0. 126
0.131
0.131
0. 132
0.132
0.134
0. 153

0.1000-09
0.1000-09

MAXIMUM RELATIVE LINEARIZATION ERRORS
IN PRESSURE: 0.2330-12
IN MASS/VOLUME: 0.7960-15
IN ENERGY/VOLUME: 0.6510-17

EM ROM T VAP T LIO T SAT

913556.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
1128239.
913569.
1064153.
1214736.
1365319.
1511939.
1516388.
1515202.
1513651.
1512067.
1510440.
1508836.
1506836.

850.08
810.77
810.77
810.77
810.77
810.77
810.77
810.82
810.87
810.92
810.96
811.01
811.01
8t1.01
811.01
811.01
850.29
822.83
794.85
766.64
710.88
175.62
169.58
167.46
165.45
163.71
160.90
144.29

693.15
863. 14
863.14
863.14
863.14
863. 14
863.14
863. 14
863.14
863.14
863.14
863.14
863.14
863. 14
863.14
863. 14
693.16
812.15
932.06

1051.64
1166.53
1165.60
1164.51
1163.28
1162.02
1160.75
1159.45
1158.78

693.15
063. 14
863.14
863.14
863. 14
863. 14
863. 14
863. 14
863.14
863.14
863.14

S863. 14
863.14
863. 14
863.14
863.14
693.16
812.15
932.06
1051.64
1166.53
1165.60
1164.51
1163.28
1162.02
1160.75
1159.45
1158.78

1152.18
1149.28
1149.20
1149. 13
1149.07
1149.00
1148.92
1154.50
1159.86
1165.02
1170.00
1174.81
1174.75
1174.69
1174.63
1174.58
1174.51
1171. 12
1169.54
1168.00
1166.53
1165.60
1164.51
1163.28
1162.02
1160.75
1159.45
1158.78

VVZ VLZ ROV ROL FLOW(G/S)

0.121
0.127
0.127
0.127
0.127
0.127
0.127
0.127
0.127
0.127
0.127
0.127
0.127
0.127
0.127
0.127
0.121
0.125
0.129
0.134
7.512
14.712
14.813
15.052
15.302
15.569
15.815

0.121
0.127
0. 127
0. 127
0. 127
0. 127
0.127
0.127
0. 127
0.127
0.127
0.127
0.127
0.127
0.127
0.127
0.121
0. 125
0.129
0. 134
0. 144
0.566
0.586
0.594
0.601
0.607
0.617

0.2591
0.2529
0.2527
0.2525
0.2524
0.2523
0.2521
0.2642
0.2763
0.2884
0.3004
0.3123
0.3121
0.3120
0.3119
0.3117
0.3115
0.3031
0.2992
0.2955
0.2919
0.2897
0.2871
0.2842
0.2813
0.2784
0.2754
0.2738

850.08
810.77
810.77
810.77
810.77
810.77
810.77
810.82
810.87
810.92
810.96
811.01
811.01
811.01
811.01
811.01
850.29
822.83
794.85
766.64
739.23
739.45
739.70
739.98
740.27
740.57
740.86
741.02

0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850
0.850

1 0.0
2 308.7
3 846.2
4 1303.8
5 1761.3
6 2218.8
7 2756.2
8 3373.7
9 3991.2

10 4608.7
11 5226.2
12 5843.8
13 6381.3
14 6838.8
15 7296.3
16 7753.8
17 8291.3
18 8697.0
19 8891.0
20 9085.0
21 9279.0
22 9473.0
23 9720.0
2410020.0
2510320.0
2610620.0
2710920.0
2811070.0


