
CONTINUED DEVELOPMENT OF NODAL METHODS
FOR REACTOR ANALYSIS

by
A.F. Henry, O.A. Adekugbe, W.H. Francis,

I.S. Muhtaseb, A.C. Onyemaechi,
T.A. Taiwo, E. Tanker

Energy Laboratory Report No. MIT-EL-85-003

March 1985



CONTINUED DEVELOPMENT OF NODAL METHODS
FOR REACTOR ANALYSIS

by

A. F. Henry
0. A. Adekugbe

W. H. Francis
I. S. Muhtaseb

A. C. Onyemaechi
T. A. Taiwo
E. Tanker

Energy Laboratory
and

Department of Nuclear Engineering

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Sponsored by

Consolidated Edison Company of New York
Northeast Utilities Service Company

Pacific Gas & Electric Company
PSE&G Research Corporation

under the

M.I.T. Energy Laboratory Electric Utility Program

Final Report for the Period: January 1, 1984 - March 31, 1985

M.I.T. Energy Laboratory Report No. MIT-EL-85-003

March 1985

. 11- 11111 1110=1010 - ii n n I I I r I I



10 1,

TABLE OF CONTENTS

Page
No.

I. Introduction .................................. 1

1.1 Review of Earlier Work ......................... 1

1.2 Summary of Present Contract Work ............... 5

1.3 Future Work ................................... 7

II. Studies Carried Out During the Present Contract
Period .......... .......................... 9

2.1 Comparison of the Koebke and Generalized Equiva-
lence Approach to Determining Discontinuity
Factors ..................... .................... 9

2.2 Determination of Approximate Discontinuity
Factors for BWR's ................................ 10

2.3 Matching Transport Theory Results with Finite
Difference Diffusion Theory Models ............ 11

2.4 The Use of Node-Averaged Discontinuity Factors
for Assembly-Sized Nodes ....................... 25

2.5 Derivation of Simpler Nodal Models from the
QUANDRY Equations .............................. 26

2.6 Nodal Methods for Transient Analysis ........... 28



IWAVWAOMW MOONN 10 11101 Wi

Final Report on Continued Development
of Nodal Methods for Reactor Analysis

I. Introduction

This report is a final summary of work carried out

with the support of Consolidated Edison Co., Northeast

Utilities Service Co., Pacific Gas and Electric Co., and

Public Service and Gas Research Corp. The project was ini-

tially for the period January 1984 through December 1984,

but a no cost extension stretched its duration through

March 1985.

Work performed under the project has been concerned

with the development of Nodal Methods for Reactor Analysis.

The two-group, three dimensional, time-dependent nodal code

QUANDRY (1 ) has been the basis for the development. Studies

carried out have been aimed at testing and increasing the

efficiency, capability, accuracy and reliability of this

code. In addition, the code has been used to perform numer-

ical tests of certain standard design procedures for which,

hitherto, reference calculations have been too expensive.

In order to put the work, which will be summarized in

the following sections, into proper context, this introductory

portion of the report will first review older work, then sum-

marize the results to be discussed in more detail in later

sections, and finally point out areas where further study

might be very fruitful.

1) Review of Earlier Work.

Historically, the use of QUANDRY for reactor analysis

has evolved in three stages. The original code (1 was aimed

-1-
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at solvinq the static and time-dependent, two-group diffusion

equations for reactors composed of large homogeneous nodes.

It was found that, given the homogenized nodal parameters,

very accurate values of node-averaged powers (maximum error

% 2%) could be found. No adjustment of albedoes or correc-

tion parameters to reference calculations was necessary.

Computer running times were orders of magnitude less than

those required by finite difference methods to obtain the

same accuracy.(1,2)

The second stage of evolution involved the develop-

ment of systematic and accurate methods for determining the

homogenized group-constants needed by the code. Here the

use of "discontinuity factors" (3,4) came into the picture.

These factors are a variant on the "heteroaeneitv factors"

first introduced by K6ebke.(5) They correct the basic QUANDRY

equations so that reference results will be reproduced exactly.

Thus, if a quarter-core PDQ solution is available, edits from

that solution can be used to find discontinuity factors which,

when used in QUANDRY, will yield average nodal powers that

equal to within computer round-off error those edited from the

PDQ result. Moreover, discontinuity factors found from local

assembly or color set calculations do almost as well (% 1%

maximum error in node-averaged power).

The final stage of QUANDRY development dealt with the

reconstruction of local fuel-pin powers -- the "dehomogeniza-

tion" problem. The approach here was to express the detailed
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heterogeneous flux shape throughout a node as the product

of a local "fine-structure" shape (found from a detailed

PDQ solution for an assembly, color set or quarter core at

the beginning of life) multiplied by a general quadratic

function of the coordinate directions. The coefficients of

the quadratic -- twenty-seven of them in three dimensions --

are found by matching to the volume-averaged and face-

averaged fluxes of the node (which can be backed out of the

QUANDRY solution) and to the nodal corner point fluxes and

average fluxes along lines connecting corner points (which

can be obtained from the QUANDRY solution by interpolation.(6,7)

The reconstruction methods were tested through the be-

ginning of the third depletion cycle for small, two-

dimensional PWR and BWR benchmarks, composed of realistic

fuel assemblies and surrounded by water reflectors includ-

ing a stainless steel baffle for the PWR case). For the PWR

case, with discontinuity factors and fine-structure flux

shapes found from assembly calculations for interior nodes

and from color sets extending into the reflector for periph-

eral nodes, maximum errors in reconstructed local fuel-pin

power were % 5% ( 2% for the highest power pins.89)

However, to obtain comparable accuracy for BWR's, it was

necessary to use color sets of larger size (comprising sev-

eral assemblies) or to use iterative response matrix tech-

niques.(1 0 ) For control rod tips at axial mesh interfaces,

comparable accuracy was obtained for three-dimensional
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benchmark test problems at BOL, the reference results being

3D PDQ's run for us by Northeast Utilities.(7,8,10,11)

Many schemes for improving the efficiency or capability

of QUANDRY have been investigated since the initial version

of the code became available. For example, if two-group

albedoes at the core-reflector interface are available from

reference calculations, these may be collapsed to equivalent

one-group albedoes and used along with one-group homogenized

cross sections and discontinuity factors computed from two-

group, zero-current-boundary-condition assembly computations

in order to obtain parameters for a one-group QUANDRY(12)

which yields power shapes and critical eigenvalues very

close to two-group QUANDRY predictions.

On the other hand, we have not succeeded in using com-

putations for local regions to compute consistently accurate

albedoes for reflectors. It appears necessary either to per-

form some reference 2D QUANDRY calculation with the reflector

explicitly included or to impose the albedoes conditions sev-

eral mean free paths away from the core, rather than at the

core-reflector interface.(13) Once found, however, the albedoes

seem to be acceptably accurate for situations differing signif-

icantly from the reference case for which they were computed.

One development that has been quite successful has

been the resolution of the so-called "rod-cusping" problem.

A way has been devised for employing discontinuity factors

at axial interfaces to account for a control rod partially
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inserted in a node. The procedure can be made entirely in-

ternal to the code so that no auxiliary calculations are

required. It appears to be very accurate for both static

and transient problems.(14)

(15)
Finally, a method suggested by Kord Smith for

reducing the storage requirements of the code by a factor

of five has been successfully tested. Also, vis-a-vis the

supposed complexity of the code, it should be noted that a

static version is now available on an IBM PC.(16)

2) Summary of Present Contract Work

During the present report period we have looked at a

number of schemes for improving the accuracy and efficiency

of QUANDRY. Thus we ran a small test problem to compare the

accuracy of the K6ebke (5 ) vs. the Smith (3 ) homogenization

procedures. The accuracy of both methods appears to be com-

parable (Section II-1).

An attempt to improve the efficiency of the response

matrix method for determining BWR discontinuity factors dur-

ing depletion calculations was unsuccessful (Section 11-2).

On the other hand, a first look at a method for going

directly from a spectrum code, such as CASMO, to QUANDRY (avoid-

ing both assembly-sized and quarter core PDQ's) is very prom-

ising (Section 11-3). This work indicates that, for pin-cell-

sized mesh intervals, it is often accurate to replace the

face-dependent discontinuity factors (which cause finite

difference equations based on cell-homogenized cross sections

---- IYI1
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to match exactly transport calculations for the heterogeneous

cell) by their average values. We have shown (Section II-4)

that this use of average discontinuity factors can be ex-

tended to assembly computations performed by the analytical

nodal method embodied in QUANDRY. We have also shown that,

if the use of node-averaged discontinuity factors is accu-

rate for assembly-sized nodes analyzed using the coarse-

mesh-finite-difference option in QUANDRY, the standard one-

and one-and-a-half group nodal models EPRI-NODL-P/B, FLARE,

PRESTO, SIMULATE can be derived systematically from the

basic QUANDRY equations (Section II-5).

We had hoped to test the QUANDRY scheme for recon-

structing local pin-cell power against a quarter-core PDQ

analysis of Indian Point-2. An attempt to apply QUANDRY to

a similar SALEM-1 quarter-core PDQ result had been only par-

tially successful (1 7 ) (maximum difference in node-averaged

powers % 3.9%), since the PDQ color set edits needed to de-

termine discontinuity factors had not been requested when

the original PDQ's were run. Through a contract with EPRI

we have now developed that edit capability and are currently

engaged in analyzing the first depletion cycle for ZION-2.

Unfortunately, manpower limitations have prevented Con

Edison from assembling and sending us all the original color

set and quarter core data we would need to carry out the

Indian Point-2 analysis. We still hope eventually to carry

out the analysis.
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One major effort which has been successfully carried

out during the year is the development and preliminary test-

ing of point-kinetics and quasi-static methods for analyzing

reactor transients using expressions for the kinetics param-

eters (reactivity, prompt neutron lifetime, etc.) derived

from the nodal equations. Comparison of the results pre-

dicted by these approximations with 2D and 3D reference

transient calculations provided by QUANDRY for simple bench-

mark problems suggests that the quasi-static scheme is fairly

accurate, but more expensive than the full space-time reference

calculations. The point kinetics calculations differ from the

reference calculations by amounts that for some cases are un-

expectedly large (Section II-6).

3) Future Work

The homogenized two-group cross sections and discon-

tinuity factors needed as input for QUANDRY can be edited

from the same computations used to determine the one or one-

and-a-half group parameters needed for conventional nodal

schemes. The overall procedure is sketched in our progress

report for the period September 1982 - December 1983.(18)

At present three groups (S. Levy, Inc.; N.U.S., and Studsvik of

America) are creating production versions of the code, which

should make the job of preparing input much more automatic.

Under these circumstances, we believe that future work at

M.I.T. should be concerned with testing how to use the code

in the most accurate and efficient manner. We still hope to

analyze Indian Point-2 and to extend our comparison against

Ii i u u I Iii
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the first cycle depletion of ZION-2 to the reconstruction of

pin-cell powers. We need to compare our depletion methods

with those of the KWU group (who claim that one must account

for the flux tilt across assemblies in doing depletion prob-

lems). Finally, for BWR's, we need to develop a more effi-

cient way to find homogenized cross sections and discontinu-

ity factors and to reconstruct pin-cell powers from the nodal

results.

With quarter-core PDQ's no longer needed, the possible

gain in accuracy of going to four-group color sets may be

worth exploring. (The color set results would be used to

edit two- or one-group homogenized nodal parameters for

global QUANDRY calculations. An even more accurate -- and

much more efficient -- procedure would be to edit QUANDRY

input directly from spectrum codes, such as CASMO or CPM,

run for color sets. All PDQ calculations would be thereby

avoided.

Finally, we feel that more exploration of the tran-

sient area is important. For computations for which point

kinetics is adequate, we should learn how to solve the

QUANDRY adjoint flux equations so that an accurate determi-

nation of reactivity coefficients based on 3D static nodal

computations will be possible. In addition, with tests of

point kinetics calculations showing serious inaccuracies

and three-dimensional nodal calculations moderately expensive,

we should develop systematic ways of reducing three-dimensional

transient calculations to equivalent one-dimensional or "super-

node" (100 nodes for a 3D model of the entire reactor) compu-

tations.
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II. Studies Carried Out During the Present Contract Period

1) Comparison of the K6ebke and Generalized Equivalence

Approach to Determining Discontinuity Factors -

Oluwole A. Adekugbe.

In the original work of K6ebke for finding nodal equa-

tions that reproduce reference results exactly (Ref. 5) the

two extra degrees of freedom required for each group and each

direction in order to match reference results were obtained

by adjusting the diffusion coefficient and by imposing a

single discontinuity factor across the two inner faces of a

node in a given direction. Thus for each group and each node

there are three different D 's and three different discontinu-g

ity factors,

Generalized Equivalence Theory, as formulated by Smith

(Ref. 3), introduces instead a single (arbitrary) value of Dg

for all directions and two different discontinuity factors for

each group and each direction.

Both schemes will reproduce exactly reference results

if "exact" discontinuity factors and/or directional D 's are

used. The question arises, however, whether one method is

preferable when approximate correction parameters are used.

We have carried out a simple numerical test to exam-

ine this question for a small, one-dimensional reactor com-

posed of six heterogeneous assemblies consisting of fuel slabs,

control slabs and water channels. Two-group reference fluxes

were found for the reactor, and flux-weighted parameters

along with exact Ko6bke and Smith parameters were found. The

1161lllilil owilill oi
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reactor was then perturbed by changing cross sections and/or

external boundary conditions. New, fine mesh reference cal-

culations were performed, and these were compared with nodal

calculations found using the unperturbed (and hence no longer

"exact") K6ebke and Smith parameters. Resultant errors in

core eigenvalue are displayed in the following table:

% Error in Eigenvalue

Case Smith Parameters K6ebke Parameter

1 0.66 .24
2 -0.27 -0.29
3 -0.27 +0.59

These results suggest that there is little to choose

between the two methods. Since the Kaebke scheme requires

iteration and can in some cases lead to indeterminate results,

we propose to continue using the generalized equivalence

(Smith) scheme.

2) Determination of Approximate Discontinuity

Factors for BWR's - A. C. Onyemaechi.

References (18) and (19) show that, for PWR's, computing

discontinuity factors by running fine-mesh, zero-current-

boundary-condition PDQ calculations for individual assemblies

or color sets yields discontinuity factors and homogenized

group-parameters which, when used in QUANDRY, reproduce ref-

erence values of node-averaged powers with a maximum error

of < 1.5% However, to obtain comparable accuracy for BWR's,

an iterative procedure using response matrices for extended

assemblies appears to be required.
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To avoid the significant cost of computing response

matrices by fine mesh finite difference methods, we have at-

tempted to determine them using reconstructed, fine-mesh flux

shapes found by the (relatively cheap) methods used success-

fully for PWR's (and described in References 18 and 19).

Unfortunately, two different schemes applied to solve

the non-linear iterative equations which result have both

diverged. Thus a cheap method for finding discontinuity

factors for BWR's that yield maximum errors in nodal power

of less than 2% has yet to be found.

3) Matching Transport Theory Results with Finite

Differerence Diffusion Theory Models - Ediz Tanker

It is becoming standard practice for some utilities

to use sophisticated multigroup transport theory codes such

as CASMO or CPM applied to an entire fuel assembly in order

to obtain two-group diffusion theory parameters for fuel pin,

burnable poison pin and control rod cells. The procedure for

doing this is generally to edit two-group cross sections for

the various pin cells from the multigroup, multiregion, trans-

port theory results and then to adjust these values so that

fine mesh PDQ calculations run for the heterogeneous assembly

match the more important reaction rates (poison pin and fuel

cell absorption). Part of this adjustment is needed to cor-

rect for mesh size effects, one mesh square per pin cell be-

ing too large a size to provide an accurate solution of the

two-group diffusion equations solved by finite difference

methods.

11-i I AI , L j1WINIi ,
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A more systematic and accurate procedure for finding

the equivalent diffusion theory parameters is to take advan-

tage of the fact that, by using discontinuity factors it is

possible to derive coarse mesh finite difference (CMFD) equa-

tions that will reproduce reference results to within machine

round-off error. Such equations have the form

fiJk fi+1,Jk 1 -1
- h &x+ + rg f i+l,Jk i+l,jk

2Dijk 2 Di+l,jk gx- g

f ik Ij+1, k - -1

-h I -  + ... fij+1,k i, j+l
2Dijk 2 Dij+lk gy- g

f ijk fijk+1 -1

- h +± z + i,j,k+1 , j,k+1
2Dijk 2Dij,k+l gz+ g

h8 g .g

Si-1,jk fijk 1 -1
h gx+ x- fi-1ijk i-1,jk

2Di- k 2 Dijk gx+ g

f i,J-l,k f ijk -1

h + fi,j-1,k i,j-1,k

2D~ j-1,k 2DikJ gY+ g

f ijk-1 fijk -1
-h gz+ z- ,k-1 ij k-1

, i ' -
2Dijk-1 2Dijk z+

+ h3 ijk ijk

G

Sh 3 Mi jk ijk + h3 ijk ijk

i fjk ijk
gx+ g

gy+ g

f ijk ijk
gz+ g

f ijk 0ijk
gx- "g

fijk ijk

ijk ijk
gz- 1

(1)

g l1,2...G; i=1,2.. . I-1; J 1,2... J-1; k=1,2...K-1
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where fijk is the group-g discontinuity factor for the (+)gu+

side of node (ijk) in the uth direction (u = x y or z) and

fijk is its value on the (-) side, and the mesh size, h,
gu-

has, for simplicity, been taken equal in all directions.

in Equation (1), Z ijk is the removal cross section
gg

from group-g' to group-g, and

ijk ijk ijk
g totg gg

ijk = n E(ijk)ngg 1 g fg (2)

where the sum is over all fissionable isotopes, n.

If all the discontinuity factors in (1) are set to

unity, the conventional, "mesh centered" -- not PDQ -- form

of the finite difference equations results. Moreover, the

same finite difference form results if the discontinuity

factors for a given group-g, and a given node, (ijk) are

replaced by their average values. Thus, if we have

f i = fijk ; u = x,y,z , defining
gu± g

Dij k

Dijk = k
g f13k

g

Aijk

^ijk - (a)g(ijk)g ik ;(a) = tot, f or g'

g

Aijk ijk ijk (3)
g g g

-- I , 111111 mlh
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yields the conventional finite difference equations. Note
Aijk ijk _that the transformation (3) is such that Zijk 0 ijk

ijk
(a)g gjk . Thus all reaction rates are preserved.

In view of the possibility of correcting for trans-

port effects by the very simple procedure of redefining

group parameters according to (3), it is important to deter-

mine the error that results when the exact, face-dependent

fijk 's in (1) are replaced by average values fjk Alsogu g

it is important to determine the error that results when exact

parameters, determined for zero-current boundary conditions on

the faces of the assembly, are used when, in fact, the currents

are non-zero.

To shed light on these questions we have performed cal-

culations for the PWR assembly shown in Figure (1). Since

neither CASMO nor CPM is available to us, we used as refer-

ence calculations two-group, finite difference diffusion

theory solutions for the assembly of Fig. (1) with homogen-

ized fuel cells (the white squares) and control rod cells

(the black squares) replaced by two-region cells composed

of a central square of pure fuel or control rod material sur-

rounded by pure water, as is shown (for a quarter of the as-

sembly) in Figure (2). (If the control elements are removed,

the black squares in Fig. (1) and the shaded squares in

Fig. (2) become pure water.)

QUANDRY was used to solve Equas. (1) for the "super-

heterogeneous" reference cases. (For these reference cases
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all f's were taken as unity.) For a J n = 0 boundary con-

dition on all faces QUANDRY then edited exact cell-averaged

D 's and E 's and face-dependent f gu's so that when Equas.

(1) were solved for the assembly of Fig. (1) with J *n = 0

boundary conditions, the reference values were again ob-

tained.

The face-dependent and arithmetically averaged dis-

continuity factors for the J *n = 0 , boundary condition,S-g-

control-rod-free case are shown on Figure (3).

The figure shows that the exact, face-dependent dis-

continuity factors are all very nearly 1.000 for the fast

group. For the thermal group they are in the range 1.000 -

1.008 for fuel cells and r' 1.025 for all four faces of the

water holes. Thus, approximating them by their average

value is expected to yield accurate results. That this is

indeed the case is shown by the results in Table (1).

% Error Max. % Error
in X in Power Dist.

Reference 1.259204 0.0 0.0

Arithmetic
Averaged f's 1.258961 -0.02 ±0.40

Table 1. Unrodded Assembly; Error in Eigenvalue and Power
Distribution Due to Use of Arithmetically AverageO
Discontinuity Factors for Mesh Cells (J*n = 0
Boundary Conditions)

For the very fine-mesh "super-heterogeneous" problems, it
was necessary to run QUANDRY in double precision and to
alter the conventional iteration procedure. Otherwise the
problem will not converge. Kord Smith made such runs for
US.
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dimensions of each call 1.4 cm by 1.4 e

Fig. 1. Heterogeneous PWR Assembly Geometry
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-ig. 2. A "Superheterogeneous" Model Showing Explicit
O-W-Fig. 2. A "Superheterogeneous" Model Showing Explicit(Square) Fuel and Control Rods

11i11 , 1 U1 I r n . .
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The difference between the reference (superheterogeneous

geometry all f's = 1) and that using homogenized cell con-

stants with exact face-dependent discontinuity factors cal-

culated from the reference results is in the round-off

range and is not shown.

Tables (2) and (3) show the errors when reference,

face-dependent and averaged discontinuity factors, found for

the Jon = 0 reference problem, are used for cases where

J*n ; 0 . For Table (2) a uniform albedo boundary con-

dition was imposed for both energy groups on all four faces.

This condition was based on an estimate of the materials

buckling of the assembly. Thus the eigenvalue for the as-

sembly with this boundary condition imposed is close to unity.

% error Max. % Error
1 in X in Power Dist.

Reference 1.003824 0.0 0.0

Face-Dependent
f's from
J *n = 0

Reference 1.003921 0.01 -0.04

Arithmetic
Averaged f's 1.003739 -0.01 -0.40

Table 2. Unrodded Assembly; Error in Eigenvalue and Power
Distribution Due to Use of Arithmetically Averaged
Discontinuity Factors for Mesh Cells (Uniform
Albedo Boundary Conditions Based on Estimate of
the Materials Buckling)

For Table (3) zero current boundary conditions were

imposed on the two inner faces of the quarter assembly, and
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a boundary condition appropriate to a steel baffle followed

by a water reflector were imposed on the other two-faces.

% Error Max. % Error
X in X in Power Dist.

Reference 0.4547454 0.0 0.0

Face-Dependent
f's from
J *n = 0
- -
Reference 0.4566759 0.42 1.30

Arithmetic
Averaged f's 0.4565254 0.39 1.24

Table 3. Unrodded Assembly; Error in Eigenvalue and Power
Distribution Due to Use of Arithmetically Averaged
Discontinuity Factors for Mesh Cells (J-n = 0
Boundary Conditions on Two Sides; Aibedo Boundary
Conditions Appropriate to a Baffle and Water Re-
Flector on Other Two Sides)

For these cases, use of the face-dependent discontinu-

ity factors based on J -n = 0 boundary conditions on all four-g -
faces is an approximation. Table (2), however, shows that for

uniform albedo boundary conditions it is an excellent one,

even though the eigenvalue has changed 25%.

For the simulated baffle-reflector boundary condition,

Table (3) shows an unacceptably large error in eigenvalue

when either the face-dependent or averaged discontinuity

factors based on the J .n = 0 reference assembly calculation

are used. The perturbation in boundary conditions (which

caused the assembly eigenvalue to change from ' 1.25 to

0.455) is perhaps unrealistically extreme. Whatever the

cause, more work is called for in this area.
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The face-dependent and averaged discontinuity factors

for the rodded assembly with J*n = 0 boundary conditions im-

posed are shown on Fig. (4). Examination of these results

shows that use of an arithmetic average value of the discon-

tinuity factors for mesh cells adjacent to a rodded cell is

unlikely to be a good approximation. On the other hand, if

averaged discontinuity factors are used for all fuel cells

and for the inner side of the faces of a rodded cell, and

reference values are used for the outer sides of rodded cells

(i.e., for the inner sides of faces that adjacent cells have

in common with the rodded cell), discontinuity factors for the

other three faces of adjacent cells being replaced by the arith-

metic averages, greater accuracy ought to result. We shall call

this approximation "(3+1) discontinuity factors." Table

(4) shows that greater accuracy does indeed result from use

of the (3+1) approximation.

% Error Max. % Error
X in X in Power Dist.

Reference 0.8908857 0.0 0.0

Arithmetic
Average of
Discont.
Fact. 0.9060568 1.70 -3.47

(3+1) Discont.
Factors 0.8913067 0.05 -1.65

Table 4. Rodded Assembly; Error in Eigenvalue and Power
Distribution Due to Use of Arithmetically Aver-
aged and (3+1) Discontinuity Factors.
(J*n = 0 Boundary Conditions)
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Tables (5) and (6) show the analogous results when

the albedo boundary conditions of Tables (2) and (3) are

used for the rodded case, the individual or averaged dis-

continuity factors being those from the J .n = 0 rodded--g -

assembly calculation. In Table (5) the effect of using

reference f's for the mesh cells adjacent to the rodded cell

is also shown, while in Table (6) the (inaccurate) results

from using averaged f's for all cells are omitted.

Rodded

Reference

Face-Dependent
f's from
J *n = 0
- -
Reference

Arithmetic
Averaged f's

4 Different f's
for Neighboring
Cells

A

1.003863

1.003897

1.021008

1.004107

% Error
in A

0.0

0.003

1.71

0.02

Max. % Error
in Power Dist.

0.0

-0.04

3.47

0.61

Table 5. Rodded Assembly; Errors in Eigenvalue and Power
Distribution Due to Use of Approximate Discontinu-
ity Factors (Uniform Albedo Boundary Conditions
Based on Estimate of the Materials Buckling)
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Rodded
Albedo from % Error Max. % Error

EPRI-9 A in A in Power Dist.

Reference 0.7185753 0.0 0.0

Face-Dependent
f's from
J *n = 0-g -
Reference 0.7187487 0.02 -0.05

(3+1) Discont.
Factors 0.7186226 0.007 -1.85

Table 6. Rodded Assembly; Errors in Eigenvalue and Power
Distribution Due to Use of Approximate Discontinu-
ity Factors (J-n = 0 Boundary Conditions on Two
Sides; Albedo Boundary Conditions Appropriate to
a Baffle and Water Reflector on Other Two Sides)

For these rodded cases, the error in eigenvalue asso-

ciated with using f's from a J -n = 0 reference assembly

calculation when the assembly is subject to much different

albedo conditions is much smaller (Table (6) vs. Table (3)).

There is some room for improvement in the power distribution

predicted by the (3+1) approximation, but that approximation

appears to be a vast improvement over using averaged discon-

tinuity factors for all cells in the rodded assembly.

Many more details concerning the above results appear

in Reference (20). These results are of course preliminary.

Nevertheless, we feel that this systematic approach for ob-

taining finite difference equations that will reproduce reac-

tion and leakage rates predicted by spectrum codes is well

worth pursuing. The eventual goal is to avoid completely

the need to perform any fine-mesh diffusion theory computa-

tions.
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4) The Use of Node-Averaged Discontinuity Factors

for Assembly-Sized Nodes - I. S. Muhteseb

The procedure of replacing face-dependent discontinu-

ity factors by their average value can be extended to assembly-

sized nodes comprising an entire reactor. The advantage is

a reduction in the number of input numbers. Perhaps more

important is the fact that, if one can use average, rather

than face-dependent discontinuity factors for the nodes,

the transformation specified by Equation (3) will remove all

explicit f's from the QUANDRY equations. Thus a code such

as TITAN, which at present has no provision for including

discontinuity factors, can be made more accurate.

We have tested the use of assembly-averaged discon-

tinuity factors for the analytic nodal method with the quad-

ratic transverse leakage approximation; i.e., for the regu-

lar form of the QUANDRY equation (often called Quad-QUANDRY

to distinguish it from the simple CMFD form). The approxi-

mation has been applied to

i) The EPRI-9 rodded benchmark -- a small PWR (see

Ref. (18), Fig. 11)

ii) The EPRI-9 unrodded benchmark

iii) The Salem-I reactor

iv) The HAFAS benchmark -- a small BWR (see Ref. 3)

In order to obtain acceptable accuracy it was found

necessary to use full assembly-sized nodes, which, except for

a few of the burnable-poison-loaded Salem assemblies, have

" ilidd milli, ,,iiioomm
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ninety degree rotational symmetry. Also it was necessary

to represent reflector effects by an albedo boundary condi-

tion and to adjust the albedo so that the discontinuity

factor at a reflector interface of a peripheral assembly

could be arbitrarily set equal to the average of the other

three (almost equal) "internal" discontinuity factors. (It

is legitimate to do this, since it is the quotient of the

albedo and the discontinuity factor that appears in the

nodal equations.) Under these conditions the errors in

QUANDRY results (due solely to replacing face-dependent

discontinuity factors by their averages) are given in

Table (7).

Table 7. Error Due to Replacing Face-Dependent Discontinuity

Factors by Average Values in QUANDRY

% Error in Maximum % Error Average % Error
tor Model Core Eigenvalue in Nodal Power in Nodal Power

(i) 0.01 -0.56 0.20
(ii) 0.01 -0.10 0.05

(iii) -0.01 -2.53 0.68
(iv) -0.04 6.13 2.84

Except possibly for the HAFAS BWR model (iv), the ap-

proximation appears to be acceptable. A complete description

of this study is given in Ref. (21).

5) Derivation of Simpler Nodal Models from the QUANDRY

Equations - Winston H. Francis.

It has already been shown (Section II-3 Eq. 1) that by

using discontinuity factors it is possible to derive coarse

mesh finite difference equations (CMFD) that will reproduce

Reac
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reference values of node-averaged fluxes. In Section II-3

the equations were used for pin-cell sized mesh intervals.

However, they remain valid even if the nodes are hetero-

geneous and assembly-sized. Moreover, as pointed out in

Section 11-3, if the face-dependent discontinuity factors

for each node can be replaced by single, node-averaged

values, Equas. (1) reduce to a standard finite difference

form.

This situation raises the possibility of deriving

parameters for the standard nodal equations currently used

by utilities in a systematic, non-iterative fashion.

To this end we started with the two-group version of

Equa. (1) (with all f's = 1) and derived in a formally exact

manner the basic equations of SIMULATE, PRESTO and FLARE. As

a result, it is possible to determine the albedos and adjust-

able parameters (the "g" of FLARE and the "a" of PRESTO, etc.)

directly from QUANDRY. Not unexpectedly, the albedos and ad-

justable parameters turn out to be node-dependent. This may,

however, be a price worth paying to avoid iterative searches

for albedos and fitting parameters and for greater reliability

and accuracy when these simple models are used.

We are having considerable trouble testing these re-

duced equations. The first step of our testing procedure has

been an attempt to show that, with proper redefinition and

restriction of input, QUANDRY can be made to reproduce FLARE

results. But the version of FLARE available to us seems to

---I ---- - - __ _ -
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treat albedos for corner assembly nodes in a fashion that

we have been unable to understand and to determine variations

in axial parameters in an automatic and internal manner in-

volving thermal feedback, which precludes our computing the

"equivalent" input for QUANDRY problems. Thus we cannot run

"equivalent" QUANDRY and FLARE problems except for very trivial

cases.

Our present disposition is to accept the (positive)

evidence of these very simple test cases that QUANDRY can

be made to solve the FLARE and PRESTO equations. We can

then get on with the investigation of the accuracy of

eigenvalue and power shape computations determined using

FLARE and PRESTO adjustable parameters obtained systemati-

cally from higher order QUANDRY computations.

6) Nodal Methods for Transient Analysis - T. A. Taiwo

Heretofore it has been virtually impossible to eval-

uate the numerical accuracy of point kinetics methods when

applied to transients involving three space dimensions.

One difficulty was that of obtaining an accurate three-

dimensional reference. That was overcome with the advent of

QUANDRY. A corresponding difficulty was that of computing

reactivity coefficients from a nodal solution. The perturba-

tion formula could not be used because a code to solve the

adjoint equations was not available and because, even if

there had been such a code, there was no way to evaluate the

gradient terms 6D V*.V# from a nodal solution. Thus the
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only practical ways to obtain reactivity coefficients were,

(1) to perturb temperatures and densities uniformly over the

entire core and perform three-dimensional nodal calculations

to find the associated changes in critical eigenvalue and

thence average reactivity coefficients for the entire core

(use of which leads to kinetic predictions of questionable

accuracy if temperature and density changes are nonuniform),

or (2) to perturb temperatures and densities in each node

and perform separate criticality calculations for each of

several hundred -- or even thousand -- perturbed cases (a

very costly procedure).

We have overcome the difficulty of determining the

gradient term by deriving a perturbation formula based on

the QUANDRY matrix equations (rather than on the differen-

tial equations from which they are derived). Unfortunately,

however, the formula requires that we know the solution of

the adjoint form of these matrix equations, and, although

it is simple to write down that adjoint form, we have not

as yet found a convergent solution method.

Despite this difficulty, we have been able to make

what we feel is a meaningful comparison between full space-

dependent solutions to transients and corresponding solu-

tions based on a consistent point kinetics model. The trick

is to perform the space-dependent reference calculations us-

ing the CMFD form of the QUANDRY equations (the time-

dependent counterpart of Equa. (1)). We next assume that

JIM- NIMYNIIII Mu
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the discontinuity factors which cause the CMFD solution to

match exactly the full QUANDRY solution for the initial steady

state condition remain constant during the transient. We then

find the adjoint of the steady state CMFD eauations. (A code

to find adjoints for the CMFD form can be written fairly

easily.) It is then possible to derive a perturbation ex-

pression for reactivity based on the CMFD equations and their

adjoints. This formula requires that we obtain only two full-

core nodal solutions, the critical CMFD solution and its ad-

joint, for the steady state reference condition.

The essential assumption in this whole procedure is

that the discontinuity factors which make the reference CMFD

equations accurate do not change during the transients. Our

attempts to validate this assumption indicate that it is

fairly accurate. (2 3) However, we feel that the question of

its accuracy is not an important one for the purposes of com-

paring space-dependent and point kinetics solutions for the

same problem, provided we keep the discontinuity factors con-

stant for both calculations. We imposed that restriction for

all the test cases described in the following section.

For all numerical tests a two-group CMFD solution was

taken as the numerical standard. Temperature changes in

each node were computed by the simple constant-pressure,

constant flow, no-boiling heat-transfer model embodied in

the original QUANDRY.(1) These temperature changes lead to

changes in the two-group parameters of each node and thence
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to changes in core reactivity. For the point kinetics cal-

culations, temperature coefficients for each individual node

were computed by using the initial, steady-state adjoint flux

for the CMFD model. Point kinetics calculations based on

core-averaged temperature changes and full-core reactivity

coefficients were also made.

For three dimensional cases analyzed by point kinetics,

two methods for accounting for control rod motion were tested.

The first scheme was a totally consistent perturbation theory

method in which rod worths were computed by the perturbation

theory formula using initial flux and adjoint flux shapes.

For the second scheme, curves of reactivity vs. control rod

position were computed from a sequence of criticality calcu-

lations all run for the initial reactor temperature distribu-

tion. Reactivity contributions from these curves for the

control rod at any particular position were added to changes

due to temperature feedback as computed by the perturbation

theory expression to obtain the total reactivity at particu-

lar times.

The Quasi-static method (2 2) was also tested. This

scheme is an improvement over point kinetics in that the flux

shape used to compute reactivity is up-dated from time to

time by freezing the temperature profile then present in the

core and doing a fixed-source static calculation. The more

frequent the updates, the more accurate (but more expensive)

the quasi-static computation becomes.

II_~ _ ~_
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Both two- and three-dimensional test cases have been

run for the various approximate methods. These are all dis-

cussed (along with derivations underlying the theory) in

Reference (23). Three particularly significant cases are

the following:

a) EPRI-9 Control Rod Withdrawal; No Feedback

The EPRI-9 benchmark is shown as Figure (5). It

models a small, PWR reflected by a one inch thick baffle,

followed by a water reflector. Top and bottom reflectors

are pure water. The transient is caused by removing the

control rod 12 cm. in 0.08 sec. For feedback neglected,

results are displayed in Table (8).

The quasi-static results are fairly good, seven up-

dates, however, being little better than six. Also, they

are more expensive. The consistent point kinetics calcu-

lation is extremely inaccurate. Evidently computing the

rod worth with the unperturbed flux yields a total reactiv-

ity input less than prompt critical, whereas the reference

calculation corresponds to a super-prompt critical condition.

Use of the rod worth calibration curve significantly reduces

the problem, although the final power level is still under-

predicted by 18%.

(b) EPRI-9: Control Rod Withdrawal with Temperature

Feedback

Table (9) displays the comparisons of the various ap-

proximate kinetics model with the CMFD reference for the case
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TABLE 8

EPRI-9: CONTROL ROD WITHDRAWAL PROBLEM WITHOUT FEEDBACK

NORMALIZED REACTOR POWER VS. TIME

Point Kinetics
(Rod Worth by

Perturbation
Theory

1.000

1.274 (- 7.5)

1.702 (-28.7)

2.312 (-62.8)

2.742 (-86.7)

2.810 (-94.2)

2.828 (-97.2)

2.839 (-98.6)

2.849 (-99.2)

Quasi-static
6 Flux

Updates )

1.000

1.364 (-1.0)

2.345 (-1.8)

6.179 (-0.6)

18.940 (-7.9)

44.320 (-8.0)

95.800 (-5.0)

197.249 (-2.0)

393.155 (-0.1)

Quasi-static
7 Flux

Updates)

1.000

1.364 (-1.0)

2.345 (-1.8)

6. 179 (-0.6)

19.960 (-3.0)

48.648 ( 1.0)

105.098 ( 4.2)

215.446 ( 7.0)

428.852 ( 9.0)

Point Kinetics
(Rod Worth
from Table

1.000

1.380 ( 0.1)

2.381 (-0.2)

6.110 (-1.7)

19.551 (-5.0)

44.217 (-8.2)

89.155 (-11.)

171.193 (-14.)

321.118 (-18.)

Reference

1.000

1.378

2.386

6.215

20.569

48.172

100.817

201.211

393.426

(23.05) (22.47)

Time (s)

0.000

0.025

0.050

0.075

1.000

0.125

0.150

0.175

0.200

Comp. Time (2.24) (1.86) (5.5)
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TABLF 9

EPRI-9: CONTROL ROD WITHDRAWAL PROBLEM WITH FEEDBACK

NORMALIZED REACTOR POWER VS. TIME

Point Kinetics
(Rod Worth by

Perturbation
Theory

1.00000
1.22861
1.54203
1.93224
2.14362
2.16890
2.17424
2.17453
2.14508
2.10444
2.06127

(- 7.0)

(-23.9)
(-49,8)
(-68.8)
(-77.2)
(-78.4)
(-71.9)
(-57.3)
(-44.0)
(-34.2)

Point Kinetics Point Kinetics
(Rod Worth from (Rod Worth from
Table; Feedback Table; Feedback

Quasi-static
(11 Flux Update)

1.00000
1.30785
1.98194
3.72440
6.67886
9.39926
9.96237
7.37212
5.01442
3.64861
3.15282

(-1.0)
(-2.2)
(-3.1)
(-2.9)
(-1.3)
(-1.3)
(-4.7)
(-0.2)
(-2.9)
( 0.6)

from Local
Temperatures)

1.00000
1.38003
2.38127
6.10970
19.54880
79.94714
125.3680
5.03650
2.71196
2.12771
1.91468

( 4.5)
(17.5)

(5S.9)
(184.)
(739.)
(1141)

(-34.)
(-46.)
(-43.)
(-39.)

from Core-
average Temp.)

1.00000
1.38099
2.38341
6.11635

19.47240
79.08880

150.24200
5.91509
2.99543
2.24880
1.94288

( 3.8)
(17.6)
(59.1)
(183.)
(730.)
(1 388)
(-23.)
(-40.)
(-40.)
(-38.)

(26.36) (2.86)

Time (s)

0.000
0.025
0.050
0.075
0.100
0.150
0.200
0.450
0.700
0.950
1.200

Reference

1.00000
1.32072
2.02716
3.84550
6.87888
9.52692

10.09550
7.73183
5.02341
3.75662
3.13405

Comp. Time (3.27) (6.67)
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of feedback present. Point kinetics with rod worth computed

by perturbation theory seem not to be so bad as for the no-

feedback case. But this is only because feedback has brought

the CMFD power back down again. Again the quasi-static method

is acceptable, but almost four times as expensive as the CMFD

reference. The point kinetics calculations based on pre-

calibrated control rod worths are both absurd, the computa-

tion using average temperature changes being the worse of

the two. Evidently use of the unperturbed flux shape to

compute temperature feedback leads here to serious error.

(c) A Transient Induce by Changes in Coolant Inlet

Temperature

Table (10) shows the behavior predicted by various

models when the inlet coolant temperature is changed accord-

ing to the formula

Tin = 533 - 37.3333t + 20.00t2

The reactor model involved is similar to EPRI-9 ex-

cept that the four corner positions have been made fuel as-

semblies, and a no-returning-current boundary condition has

been applied over the radial surface of the (now square) core.

The point kinetics with reactivity feedback computed

as a sum of contributions from every node (Column 3) does

fairly well once the colder entering water has reached the

outlet of the axial zone (0 0.6 sec.). On the other hand,

use of a core-averaged temperature coefficient yields re-

sults significantly different from the reference values.

With 18 flux updates the quasi-static method is fairly
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TABLE 10

VARIABLE INLET TEMP. FLOW PROBLEM WITH FEEDBACK

(Tc  = 533 - 37.3333T + 20.00T2 )

NORMALIZED REACTOR POWER VS. TIME

Reference

1.00000
1.26994
1.89087
3.05521
5.52793

11.09740
7.80197
5.40020
3.59296
2.34338
1.54674

Point Kinetics
(Feedback

from Local
Temperatures)

1.00000
1.22856
1.64098
2.27518
3.26028

11.07470
7.30756
5.26561
3.65653
2.50223
1.72007

( -3.3)
(-13.2)
(-25.5)
(-41.0)
( -0.2)
( -6.3)
( -2.5)
( 1.8)
( 6.8)
( 11.2)

Point Kinetics
(Feedback
from Core

average Temp.)

1.00000
1.22831
1.64442
2.30771
3.43494

27.66200
13.32640
9.32945
6.01209
3.83647
2.50007

( -3.3)
(-13.0)
(-24.5)
(-37.9)
(149.3)
( 70.8)
( 72.8)
( 67.3)
( 63.8)
(61.6)

Quasi-static
(10 Flux Updates)

1.00000
1.22840
1.80472
2.91833
5.27298
10.98920
7.75787
5.45006
3.76891
2.45800
1.72207

-3.2)
-4.6)
-4.5)
-4.6)
-1.0)
-0.5)
0.9)
4.9)
4.9)

11.3)

Quasi-
static

18 Flux
Updates)

1.00000
1.27345
1.88758
3.08216
5.60374

10.70220
7.73877
5.44461
3.72162
2.46688
1.63752

(2.07) (2.35) (9.27)

Time (s)

0.0
0.1
0.2
0.3
0.4
0.6
0.8
1.0
1.2
1.4
1.6

( 0.3)
(-0.2)
( 0.8)
( 1.4)
(-3.6)
(-0.8)
(0.8)
( 3.6)
( 5.3)
(5.9)

Comp Time (7.26) (14.21)



-38-

accurate. However, again the computation time is longer

(a factor of 2). With only 10 flux updates the computation

time is reduced to 9.2 seconds. However the maximum error

increases up to 11.3%.

The tentative overall conclusions from these numeri-

cal test cases are:

i) It is essential to use a precomputed curve of rod

worth vs. position in performing point kinetics studies.

ii) It is preferable to use local temperature coeffi-

cients and temperature changes to compute feedback reactiv-

ities rather than average values.

iii) The quasi-static method can yield acceptably accu-

rate results, but the cost may be higher than that of running

the full 3D calculations.

A much more thorough investigation will be required

before any firm conclusion about the overall validity of the

point kinetics model can be drawn. However, these first,

simple tests indicate that, for the rod withdrawal and cold-

water accident, it is a very poor approximation.
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