
MIT Open Access Articles

Reliably Detecting Connectivity Using Local Graph Traits

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Cornejo, Alejandro, and Nancy Lynch. “Reliably Detecting Connectivity Using Local
Graph Traits.” Principles of Distributed Systems. (Lecture notes in computer science, v. 6490)
Springer Berlin / Heidelberg, 2010. 87-102. Copyright © 2010, Springer

As Published: http://dx.doi.org/10.1007/978-3-642-17653-1_8

Publisher: Springer

Persistent URL: http://hdl.handle.net/1721.1/62568

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/62568
http://creativecommons.org/licenses/by-nc-sa/3.0/

Reliably Detecting Connectivity using Local
Graph Traits

Alejandro Cornejo and Nancy Lynch

Massachusetts Institute of Technology,
Cambridge MA 02139-4307, USA

Abstract. Local distributed algorithms can only gather sufficient infor-
mation to identify local graph traits, that is, properties that hold within
the local neighborhood of each node. However, it is frequently the case
that global graph properties (connectivity, diameter, girth, etc) have a
large influence on the execution of a distributed algorithm.
This paper studies local graph traits and their relationship with global
graph properties. Specifically, we focus on graph k-connectivity. First we
prove a negative result that shows there does not exist a local graph trait
which perfectly captures graph k-connectivity. We then present three
different local graph traits which can be used to reliably predict the
k-connectivity of a graph with varying degrees of accuracy.
As a simple application of these results, we present upper and lower
bounds for a local distributed algorithm which determines if a graph is
k-connected. As a more elaborate application of local graph traits, we
describe, and prove the correctness of, a local distributed algorithm that
preserves k-connectivity in mobile ad hoc networks while allowing nodes
to move independently whenever possible.

1 Introduction

The t-neighborhood of a node u of a graph G, is the induced subgraph of G
consisting of all vertices at distance at most t from u, and all edges connecting
two such vertices. A graph trait is a pair (t, T) where t is a function from the
positive integers to the positive integers, and T is a predicate over a graph. A
graph trait (t, T) is satisfied by a graph G on n vertices, if the t(n)-neighborhood
of every node of G satisfies T . A graph trait is local if t is a constant.

Our motivation for studying local graph traits comes from the classical syn-
chronous distributed system model. In this model, each node of an undirected
graph G is occupied by a processor. The system progresses in synchronous lock-
step rounds, and at each round a process can send a message to its neighbors,
receive messages, and perform local computation. Observe that after running
for t rounds, the knowledge of a process is limited to learning about all nodes
at distance at most t, as well as the edges present between these nodes (i.e. its
t-neighborhood). Since we do not restrict either the amount of local computation
or the message size, it follows that after O(diameter(G)) rounds, every process
can acquire complete knowledge of the graph and can compute any function of

G. Therefore, distributed algorithms whose runtime is independent of the diam-
eter of the network are especially interesting. Awerbuch et al. [1] defined a local
algorithm as one whose runtime is significantly smaller than n for any possible
diameter of the network 1. Local distributed algorithms can only learn their local
neighborhood, and therefore they are limited to observing local graph traits.

Despite the fact that local distributed algorithms are limited to observe lo-
cal graph traits, it is often the case that global graph properties have a great
influence on the execution of a distributed algorithm. For example, the chro-
matic number of a graph is a lower bound on the number of rounds required for
every node to broadcast once without colliding with its neighbors. Similarly, in
algorithms which require coordination, the connectivity of a graph is an upper
bound on the fault-tolerance of an algorithm, since higher connectivity implies
more nodes can fail without disconnecting the graph.

Given the effects that graph properties, both local and global, have on the
execution of distributed algorithms, it is not surprising that studying the re-
lationship between local graph traits and global graph properties is a fruitful
direction for proving upper and lower bounds on local distributed algorithms.
This was first observed in the seminal work of Linial [11], who used an elegant
construction relying on t-neighborhood graphs to prove that any distributed al-
gorithm that finds a maximal independent set in a cycle must take at at least
Ω(log∗ n) rounds.

However, the study of the relationship of local graph traits and global graph
properties dates further back. In 1983, Wigderson [13] showed that if a graph is
locally k-chromatic, then it has a chromatic number of O(

√
kn). Even earlier, in

1952, Dirac [6] proved that if G has at least three vertices, and all nodes have
degree at least n/2, then G is Hamiltonian. In the same vein, we study local
graph traits which imply global graph k-connectivity.

Paraphrasing the formal definition given in Section 2, the connectivity of a
graph G, denoted κ(G), is the size of the smallest set of vertices whose removal
disconnects the graph. Although a complete graph on n vertices cannot be dis-
connected by removing vertices, by convention its connectivity is n− 1. We say
a graph G is k-connected if κ(G) ≥ k. In Section 3, we show that there does not
exist a local graph trait that characterizes a k-connected graph. More precisely,
we prove that for any constant k > 0 there does not exist a local graph trait
(t, T) such that a graph G satisfies (t, T) if and only if G is k-connected. We
show a similar result holds even when considering only simply connected graphs.
Namely, there does not exist a local graph trait (t, T) such that a connected
graph G satisfies satisfies (t, T) if and only if G is k-connected. These results
hold even in the case of unit disk graphs.

Since its not possible to locally characterize the k-connectivity of a graph, in
Section 4 we turn our attention to local graph traits that when satisfied imply

1 We remark that the algorithms presented in this paper satisfy a more stringent
notion of locality, since their runtime is constant and therefore independent of n or
the diameter of the network. However, our impossibility results hold for the weaker
notion of locality.

2

k-connectivity. Specifically, we describe three different local graph traits which
are parametrized by k, and when fulfilled imply that the is graph k-connected.

As a simple application of these results, in Section 5 we present straight-
forward algorithmic implementations of the local traits described in Section 4
which yield constant time distributed algorithms to test for k-connectivity. We
also describe a lower bound for distributed algorithms that reliably predict k-
connectivity, which is derived directly from the impossibility results described
in Section 3. As a more elaborate application, we show how to exploit the local
graph traits presented, to extend the algorithm described in [4] to preserve k-
connectivity in a mobile ad hoc network while allowing the agents of the network
to move as freely as possible.

Most of the previous work on k-connectivity is in the field of topology control.
Jorgic et al. [8] reported the experimental results of three different distributed
algorithms to detect k-connectivity on random geometric graphs, but the paper
lacks any formal guarantees. Czumaj and Zhao [5] presented a greedy centralized
algorithm to construct a k-connected t-spanner with runtime Õ(nk). Thurimella
[12] described a distributed algorithm to identify sparse k-connected subgraphs
that runs in O(diameter(G) +

√
n) time. Jia et al. [7] described a centralized

algorithm to approximate the minimum power assignment while preserving k-
connectivity. Similarly, Li and Hou [9] describe a distributed algorithm that given
a k-connected graph finds a k-connected spanner. A preliminary version of the
algorithmic counterpart of two of the local graph traits described in Section 4
was presented in [3].

2 Model

The communication network is modeled as a undirected graph. We use G =
(V,E) to denote an undirected graph, where V is the set of vertices, and E is the
set of edges (two-element subsets of V). A pair of vertices u, v ∈ V are neighbors
if and only if {u, v} ∈ E. For ease of exposition we use the notation E(G) (and
V (G)) to denote the set of edges (and vertices) of a graph G. It is well known that
most graph functions cannot be computed in anonymous networks, even for very
simple graphs G. Hence, we define labeled graphs, denoted by a tuple (G, id),
where id : V → I is an injective function that maps each vertex to a unique
identifier. In mobile ad hoc networks it is often useful to assume processes know
their own position. To this end, we consider two-dimensional Euclidean graphs,
denoted by a tuple (G, p) (or (G, p, id) when considering labeled two-dimensional
Euclidean graphs) where p : V → R2 is a function that maps each vertex to a
point in the Euclidean plane. A two-dimensional Euclidean graph (G, p) is a
unit disk graph if there is an edge between two nodes if and only if they are at
distance at most one, that is E := {{u, v} | ‖p(u)− p(v)‖ ≤ 1}.

We consider a synchronous network model. Specifically, each node of an undi-
rected graph G is occupied by a process. The system progresses in synchronous
lock-step rounds. At each round a process can send a message to its neighbors,
receive messages from its neighbors and perform local computation. If the graph

3

is labeled, we assume that at time zero the processor occupying node v ∈ V (G)
knows the identifier id(v) of that node. Similarly, if the graph has an associated
embedding (i.e. two-dimensional Euclidean graphs) we assume that at time zero
the processor occupying node v ∈ V (G) knows the position p(v) of that node.

For a positive integer t we denote with N t[u] the closed t-neighbors of u, the
set of vertices reachable by paths starting at u and of length at most t. Let Gt(u)
be the t-neighborhood of node u, the graph induced by the closed t-neighbors
of u in G. When t = 1 we simply use N [u] and G(u) to denote the 1-neighbors
and 1-neighborhood of node u respectively.

Since this model does not restrict the message size or the amount of local
computation, after t rounds a process at vertex v can learn about its t-neighbors
(including their unique ids and embedding when considering labeled Euclidean
graphs), but it cannot learn about any node which is more than t hops away.
In particular in unit disk graphs, after t rounds a process at vertex v can learn
exactly its t-neighborhood Gt(v). In general graphs, after t rounds a node can
learn all edges between its t-neighbors, except for those edges whose endpoints
are at distance exactly t. As shown in Section 5, this subtle difference between
unit disk graphs and general graphs can be bridged by using an additional com-
munication round to learn the t-neighborhood of a node in t+ 1 communication
rounds.

In Section 3 and 4 we e study the relationship between local graph traits and
global graph properties. A graph trait is a pair (t, T) where t is a function from
the positive integers to the positive integers and T is a predicate over a graph,
which (if applicable) can make use of the labeling or embedding of the graph. A
graph G on n vertices satisfies a trait (t, T), if the t(n)-neighborhood of every
vertex v ∈ V (G) satisfies T . A graph trait is local if t ∈ O(1); a graph trait is
weakly-local if t ∈ o(n).

A graph trait (t, T) implies a graph property P if any graph which satisfies
(t, T) also satisfies P . Similarly, a graph property P implies a graph trait (t, T) if
any graph which satisfies P also satisfies (t, T). A graph trait (t, T) characterizes
a graph property P (or alternatively a graph property P is characterized by a
graph trait (t, T)) if (t, T) implies P and P implies (t, T). Given the graph traits
(t, T) and (t′, T ′) which imply a graph property P , we say that (t, T) is more
accurate than (t′, T ′) with respect to P if every graph which satisfies (t′, T ′) also
satisfies (t, T), and there exists a graph which satisfies P and (t, T), but not
(t′, T ′).

In particular, the global graph property that we are concerned with is graph
k-connectivity. A vertex cut C of a connected graph G is a set of vertices whose
removal renders G disconnected. The size of a vertex cut C is the number of
vertices |C|. A vertex cut is said to be a minimum vertex cut if it is a vertex cut
of smallest size. The connectivity of a graph G, denoted by κ(G), is the size of
a smallest vertex cut of G. A complete graph on n vertices has no cuts at all,
but by convention its connectivity is n− 1. We say a graph G is k-connected if
κ(G) ≥ k.

4

3 The Impossibility of Locally Characterizing
Connectivity

In this section we show that it is impossible to characterize the k-connectivity of
a graph using (weakly-)local graph traits. The results hold even when restricted
to simply connected labeled unit disk graphs. As a warm up, we first show
that there does not exist a weakly-local graph trait that characterizes simple
connected graphs.

Fig. 1. All nodes are embedded in the horizontal axis. Neighboring nodes are 1 unit
apart.

Theorem 1. There does not exist a weakly-local graph trait (t, T) that charac-
terizes a simply connected graph.

Proof. Fix any local trait (t, T) which is implied by a simply connected graph.
We will show that there exists a disconnected graph G which satisfies (t, T).

Since t ∈ o(n) there exists a sufficiently large n such that n > 4t(n), we
consider graphs over the vertex set V = {1, . . . , n}. Throughout the proof we
assume all graphs are labeled using the same injective function. We group the
vertices into two connected components L1 and L2. Component L1 is a line
graph of the first n

2 nodes, namely for each i ∈ [1, n2 − 1] vertex i is connected
with vertex i+ 1. Component L2 is a line graph of the remaining nodes, namely
for each i ∈ [n2 + 1, n− 1] node i is connected with node i+ 1.

In the rest of the proof we describe how to connect L1 and L2 to produce
a disconnected graph G and four connected graphs F , F ′, H and H ′. We then
show that since (t, T) is satisfied by the four connected graphs by assumption,
it must be that G also satisfies (t, T).

Specifically, G is the disconnected graph made up of L1 and L2 with no
additional edges. The graphs F and F ′ result from joining L1 and L2 with the
edge

{
n
2 ,

n
2 + 1

}
, and the graphs H and H ′ result from joining L1 and L2 with

the edge {n, 1}.

5

These graphs can be embedded as unit disk graph such that: (i) L1 has the
same embedding in F , G and H ′. (ii) L2 has the same embedding in F ′, G and
H (cf. figure 1).

By assumption T is satisfied on the t(n)-neighborhood of every node in F ,
F ′, H and H ′. To show that G satisfies the local trait (t, T), it suffices to show
that every node has the same t(n)-neighborhood (including the labeling and
embedding of the nodes) in G as it does in F , F ′, H or H ′. We proceed by a
case analysis on i ∈ V .

1. If i ∈ [1, n4] the t(n)-neighborhood of node i in G is a line graph with the
nodes max(1, i− t(n)), . . . , i, . . . , i+ t(n), which is the same t(n)-neighborhood
of node i in F .

2. If i ∈ [n4 + 1, n2] the t(n)-neighborhood of node i in G is a line graph
with the nodes i− t(n), . . . , i, . . . ,min(i+ t(n), n2), which is the same t(n)-
neighborhood of node i in H ′.

3. If i ∈ [n2 + 1, 3n4] the t(n)-neighborhood of node i in G is a line graph
with the nodes max(n

2 , i− t(n)), . . . , i, . . . , i+ t(n), which is the same t(n)-
neighborhood of node i in H.

4. If i ∈ [3n4 + 1, n] the t(n)-neighborhood of node i in G is a line graph
with the nodes i− t(n), . . . , i, . . . ,min(i+ t(n), n), which is the same t(n)-
neighborhood of node i in F ′.

The previous theorem relies on the fact that if t ∈ o(n) we can construct
a large enough disconnected graph where every t(n)-neighborhood is indistin-
guishable from one in a connected graph. The same argument can be extended
to show it is possible to construct a large enough disconnected graph whose
t(n)-neighborhood is indistinguishable from a k-connected graph.

However, if we restrict our attention to characterizing the connectivity of
simply connected graphs, the same argument no longer works. In particular in a
graph which is connected but not k-connected, there exists a minimum vertex
cut C of size 1 ≤ |C| < k. It is conceivable that the t(n)-neighborhood of a node
u ∈ C in the cut might not fulfill all the local traits implied by a k-connected
graph. The following theorem rules out that possibility by showing that even
when restricted to connected graphs, there does not exist a local graph trait
that characterizes a k-connected graph.

Theorem 2. For any constant k > 0 there does not exist a weakly-local graph
trait (t, T) that characterizes k-connectivity of k

2 -connected graphs.

Proof. Let k be any positive constant, and fix any local trait (t, T) which is
implied by k-connectivity. We will show that there exists a k

2 -connected graph
G which is not k-connected and satisfies (t, T).

Since k is a constant and t ∈ o(n), then there exists a sufficiently large n
such that n = 2m · k where m > 4t(n), we consider graphs over the vertex
set V = {1, . . . , n}. We assume all graphs are labeled with the same injective

6

Fig. 2. Each point in the graph represents a clique of size k/2 embedded at that point,
there is a line between cliques A and B if every node in clique A is connected to every
node in clique B. The clique cycle Ci is formed by arranging the cliques uniformly
around a circle at distance 1 from each other. To form F , H and G we arrange the
clique cycles in a ring, where each clique cycle is at distance 1 from its neighboring
clique cycle. To break the links between C1 and C2 in G′ we “push” the nodes of K1

m
4
−1

some ε > 0 towards the center of C1.

function. We partition the vertices V into four sets V1, V2, V3 and V4 each of size
mk/2. Each vertex set Vi is partitioned further into m cliques Ki

1, . . . ,K
i
m, each

of size k
2 . In a slight abuse of notation we say cliques A and B are connected

if every node in A is connected to every node in B. For each vertex set Vi we
consider the clique cycle graph Ci = 〈Vi, Ei〉 formed by connecting clique Ki

j to

clique Ki
j+1 mod m for each j ∈ [1,m].

In the rest of the proof we describe how to connect these clique cycles to
produce the k-connected graphs F , G and H, and the graph G′ with connectivity
k
2 . We then argue that since (t, T) is satisfied by F , G and H by assumption,
then it must also be satisfied by G′, which completes the theorem.

To construct the graphs F , G and H we connect the clique cycles C1, C2, C3

and C4 in a ring. Specifically in G we connect cliques K1
m
4 +1 and K2

3m
4 +1

, cliques

K2
m
2 +1 and K3

1 , cliques K3
3m
4 +1

and K4
m
4 +1, and cliques K4

1 and K1
m
2 +1. In F and

H we connect cliques K1
3m
4 +1

and K2
m
4 +1, cliques K2

m
2 +1 and K3

1 , cliques K3
m
2 +1

and K4
3m
4 +1

, and cliques K4
1 and K1

m
2 +1. Finally, G′ is the graph that results from

removing the edges between C1 and C2 in G. Observe that to disconnect F , G
or H we need to remove delete all the nodes of at least two cliques, and since
each clique is of size k/2, it follows that these graphs are k-connected. Similarly,
to disconnect G′ it is sufficient and necessary to remove all the nodes of a single
clique, and since each clique is of size k/2, it follows G′ has connectivity k

2 .

7

These graphs can be embedded as a unit disk graph such that: (i) The em-
bedding of G and G′ are identical except for the clique K1

m
4 +1. (ii) The clique

cycles C1 and C4 have the same embedding in G′ and H. (iii) The clique cycles
C2 and C3 have the same embedding in G′ and F (cf. figure 2).

By assumption G, F and H satisfy the local trait (t, T), hence the t(n)-
neighborhood of every node satisfies T in each of these graphs. To show that G′

satisfies the local trait (t, T) it suffices to show that ∀i ∈ [1, 4],∀j ∈ [1,m] every
node v ∈ Ki

j has the same t(n)-neighborhood in G′ as it does in G, F or H.

Observe thatG andG′ only differ by the embedding ofK1
m
4 +1 and by the pres-

ence (or lack thereof) of the edges between K1
m
4 +1 and K2

3m
4 +1

. Therefore, for any

node whose t(n)-neighborhood does not include a node from K1
m
4 +1 or K2

3m
4 +1

,

its t(n)-neighborhood is identical in G and G′. Moreover since t(n) < m/4 only
a “few” nodes in C1 and C2 include a node from K1

m
4 +1 or K2

3m
4 +1

in their t(n)-

neighborhood. Specifically, only a node v in clique K1
j for j ∈ [2, m2] can include

a node from K1
m
4 +1 in its t(n)-neighborhood. However, its t(n)-neighborhood

cannot include a node from K1
3m
4 +1

, and hence its t(n)-neighborhood is identical

in G′ and F . Similarly, only a node v in clique K2
k for k ∈ [m2 +2,m] can include

a node from K2
3m
4 +1

in its t(n)-neighborhood. However, its t(n)-neighborhood

cannot include a node from K2
m
4 +1, and hence its t(n)-neighborhood is identical

in G′ and H.

Given that it is impossible to characterize the connectivity of a graph with
local graph traits, in the next section we focus on studying local graph traits
which imply k-connectivity. In Section 5 we leverage these local graph traits to
design local distributed algorithms.

4 Local Graph Traits That Imply k-Connectivity

We describe three local graph traits which imply graph k-connectivity for simply
connected graphs. The first graph trait holds for general graphs, while the other
two local traits hold only for unit disk graphs.

4.1 A Natural Local Trait for k-Connectivity

Perhaps the simplest and most intuitive local graph trait for k-connectivity is to
check if the neighborhood of a vertex is k-connected. Specifically, consider the
local trait (c,K(k)) where c > 0 is a positive constant and K(k) is the predicate
that checks if the c-neighborhood of a vertex is k-connected. We now show that
this local graph trait implies k-connectivity.

Theorem 3. The local graph trait (c,K(k)) implies k-connectivity for simply
connected graphs.

8

Proof. Suppose by contradiction that a connected graph satisfies the local graph
trait (c,K(k)) but it is not k-connected. Since G satisfies (c,K(k)), then Gc(u)
must have at least k + 1 vertices, hence |V | ≥ k + 1. Since by assumption G is
not k-connected, it has a vertex cut with at most k − 1 vertices. On the other
hand since G is connected, any vertex cut is of size at least 1.

In particular let C denote a minimum vertex cut, and let P and Q be two
connected components produced by removing all vertices in C. Fix any vertex
u ∈ C, we make the following claim (proved later):

Claim. There exists vertices p, q ∈ N(u) such that p ∈ P and q ∈ Q.

Let U = N t[u] \ {p, q}, where p and q are fixed as in the claim. Observe that
since G satisfies (c,K(k)) then Gc(u) is k-connected. In particular this means
|N c[u]| ≥ k+1 and hence |U | ≥ k−1. Moreover, this also implies that removing
any subset of U of size at most k − 1 leaves a path from p to q in Gc(u).

However by assumption, removing the set C ⊆ V of size at most k − 1 pro-
duces two connected components P and Q. Since removing C ⊆ V disconnects
P from Q in G, then removing U ∩ C ⊆ U has to disconnect p and q in Gc(u).

Finally since |C| ≤ k − 1 then |U ∩ C| ≤ k − 1, but this contradicts that
removing any subset of U of size at most k − 1 leaves a path from p to q in
Gc(u), which completes the theorem.

Proof. [of Claim 1] By assumption, C is a minimum vertex cut that separates
P and Q. Hence, if we consider the smaller vertex set C ′ = C \ {u}, it must be
that removing the vertices from C ′ does not separate P and Q.

This implies that for any pair of vertices p′ ∈ P and q′ ∈ Q there exists a
simple path between p′ and q′ using only vertices from the set V −C ′. Since this
path does not exist when removing the set C, the path must go through u.

Follow the path starting at p′ ∈ P , and let p ∈ P be the last vertex in the
path that belongs to P . It must be that the vertex in the path after p is u (and
hence p ∈ N(u)). Otherwise it would contradict that P is a component separated
from the rest of the vertices when removing C. By following the path starting
at q′ ∈ Q the same argument can be used to show there exists a vertex q ∈ Q
such that q ∈ N(u), which completes the proof.

It’s not immediate how to improve the accuracy of (c,K(k)). To illustrate
this difficulty, assume there exists some local graph trait (c,K ′(k)) which implies
k-connectivity and is more accurate than (c,K(k)). Therefore, there must exist a
k-connected graph G with a vertex u ∈ V whose c-neighborhood does not satisfy
K(k) but does satisfy K ′(k). However, this also implies that if we consider the
graph G′ = Gc(u), then G′ is not k-connected but K ′(k) is satisfied at node u.

Using this logic it is tempting to go further and argue that since any lo-
cal graph trait which implies k-connectivity should not be satisfied by a graph
which is not k-connected, then K ′(k) does not imply k-connectivity (reaching a
contradiction). However, a graph trait (c,K ′(k)) is only satisfied by a graph, if
the c-neighborhood of all nodes satisfies K ′(k).

The next subsection describes a local graph traits which is less accurate than
(c,K). However, this local trait will introduce ideas which will inspire a better

9

graph trait presented in the last subsection, one which uses techniques that allow
us to use it to preserve k-connectivity in Section 5. We remark that up to this
point, we have not used either labeled or Euclidean graphs.

4.2 Small Edges Increase Connectivity

Given an Euclidean graph (G, p), we define the length of an edge as the Euclidean
distance between the embedding of its endpoints. In unit disk graphs, one would
expect that moving all nodes closer together (thereby decreasing the length of
all the edges) would increase the connectivity of the graph. This observation is
exploited by the local graph trait (c, Small(k)). Here c > 0 is a positive constant
and Small(k) is a predicate that checks if the c-neighborhood of a node has at
least k + 1 nodes and has a connected spanning subgraph using only edges of
length at most 1/k. To prove that this local graph trait implies k-connectivity
we first show the following:

Lemma 4. If a unit disk graph with n ≥ k+1 vertices has a connected spanning
subgraph using edges of length at most 1/k, then it is k-connected.

Proof. Fix any unit disk graph graph G with n ≥ k + 1 vertices which has a
connected spanning graph using edges of length at most 1/k. If G were a clique
then it is k-connected, hence we assume G is not a clique and let C be a minimum
vertex cut of G. We will show that |C| ≥ k, which implies that G is k-connected.

Let P and Q be two connected components produced by the cut C. Since G
has a connected spanning subgraph using edges of length at most 1/k, then for
any pair of vertices p ∈ P and q ∈ Q there exists a simple path p q from p to
q in using only edges of length 1/k. We use the vertices of C to define a gap in
p q, as a maximal set of contiguous vertices in p q that belong to C. For
each gap g let g.first and g.last be the vertices in the path immediately before
and after the gap.

Any gap g is of size at most |g| ≤ |C|, and the Euclidean distance between
g.first and g.last is bounded by (|g| + 1)/k. Hence if |C| ≤ k − 1, then the
distance between the g.first and g.last is at most k/k = 1. However, since G is
a unit disk graph by assumption, there must exist an edge (g.first, g.last) in G
which bridges the gap and there would exist a path from p to q. Therefore, for
C to be a cut, it must be that |C| ≥ k, and thus G is k-connected.

We can stitch Lemma 4 with Theorem 3, which showed that (c,K(k)) implies
k-connectivity of connected graphs, to prove the following.

Theorem 5. The local graph trait (c, Small(k)) implies k-connectivity for sim-
ply connected unit disk graphs.

Proof. By Theorem 3 it suffices to show that, for every vertex u ∈ V , if the
c-neighborhood of u satisfies Small(k) then it also satisfies K(k).

Fix a vertex u ∈ V which satisfies Small(k), then it follows that Gc(u) has at
least k+1 vertices and has a connected spanning subgraph using edges of length

10

at most 1/k. However, then by Lemma 4 Gc(u) is k-connected and it satisfies
K(k).

In the process of proving Theorem 5 we showed that the graphs which satisfy
(c, Small(k)) also satisfy (c,K(k)). It is not difficult to construct unit disk graphs
which satisfy (c,K(k)) but where (c, Small(k)) does not hold (i.e. a clique with
k + 1 vertices using only “large” edges). Therefore it follows that by definition
(c,K(k)) is more accurate than (c, Small(k)) for k-connectivity.

A natural question, is to ask weather all edges in the connected spanning
graph need to be small for the connectivity of a graph to increase, or is it
sufficient only for some edges to be small? We answer this question in the next
subsection.

4.3 Spanning Trees with Small Edges Imply k-Connectivity

Given an Euclidean graph (G, p), let MSTG denote a minimum spanning tree
of G. Observe that in labeled graphs, ties between edges of the same length can
be broken consistently using the unique identifiers associated with each node.
Therefore, in Euclidean labeled graphs, we can assume distinct edge lengths,
which implies there is a unique minimum spanning tree.

For any positive constant c > 0, let LMST c
G = (V, F) denote the local

minimum spanning tree of G = (V,E). The edge set of the local minimum
spanning tree is F :=

{
{u, v} | {u, v} ∈ E(MSTGc(u)) ∩ E(MSTGc(v))

}
. In other

words, LMST c
G is the intersection of the minimum spanning trees associated

with the c-neighborhood of every node in G. It is known [10] that in graphs G
with a unique minimum spanning tree MSTG, the local minimum spanning tree
contains the minimum spanning tree and is therefore connected. This property
suggests an improved local graph trait using the same ideas of (c, Small(k)).

Consider the local graph trait (c,MSTSmall(k)) where c > 0 is any positive
constant and MSTSmall(k) is a predicate that checks if the c-neighborhood of
a node u has at least k + 1 nodes and all the edges of the form {u, v} in its
minimum spanning tree have length at most 1/k. The next theorem shows that
(c,MSTSmall(k)) implies k-connectivity as a consequence from the properties
of LMST c

G and Lemma 4.

Theorem 6. The local graph trait (c,MSTSmall(k)) implies k-connectivity for
simply connected labeled unit disk graphs.

Proof. Let G be any simply connected labeled unit disk graph. Therefore G has
a unique minimum spanning tree MSTG. If G satisfies (c,MSTSmall(k)) then
by definition it follows that all the edges in LMST c

G are of length 1/k.

Moreover, since MSTG ⊂ LMST c
G and MSTG is a connected spanning graph

by definition, then clearly LMSTG is also a connected spanning subgraph of G.
Finally since G has a connected spanning subgraph with edges of length at most
1/k (namely LMST c

G), then Lemma 4 implies it is k-connected.

11

A feature which is shared by graphs that satisfy (c,MSTSmall(k)) and
(c, Small(k)), is that they contain connected spanning subgraphs using edges
of length at most 1/k. This will prove to be a valuable property in Section 6.

A well known folklore result is that amongst all spanning trees, a minimum
spanning tree minimizes the length of the longest edge. Together with the fact
that it is possible to construct a k-connected graph where (c,MSTSmall(k))
is satisfied, but not (c, Small(k)), we can conclude (c,MSTSmall(k)) is more
accurate than (c, Small(k)) with respect to k-connectivity.

In fact, it turns out that (c,MSTSmall(k)) is satisfied in some k-connected
graphs where (c,K(k)) is not satisfied. However, the converse is also true,
and therefore the accuracy of (c,K(k)) and (c,MSTSmall(k)) for k-connected
graphs is incomparable. Which of them is more useful depends on the charac-
teristics of the graphs being considered.

5 Applying Local Graph Traits to Distributed Algorithms

As a warm up, we first consider the simplest applications of the local graph traits
described in Section 3. Specifically, we use them to design a local distributed
algorithm to test for a k-connected graph.

Consider the following constant time procedure (which is the algorithmic
counterpart of the local trait (c,K(k))). The process running at each node u ∈
V (G) executes a full information protocol for c + 1 communication rounds to
recover the c-neighborhood of u. At the end of the c + 1 rounds, the process
outputs true if Gc(u) is k-connected and outputs false otherwise.

Since (c,K(k)) implies k-connectivity, then if this procedure outputs true at
every node, then G is guaranteed k-connected. On the other hand, if G is not
k-connected we are guaranteed that at least one process will output false.

This procedure can be used by itself as a constant time distributed algo-
rithm to test for k-connectivity, or can be used as a building block to solve other
problems. For example in a distributed topology control algorithm, to guaran-
tee k-connectivity, every process could run the procedure repeatedly with an
increasing power assignment, stopping when the procedure outputs true. If the
maximum transmission power is sufficiently large and the graph has at least
k+ 1 nodes, this algorithm eventually stops and guarantee a k-connected graph.
However, there is no guarantee that it will stop in the first round when the graph
becomes k-connected. Moreover, the impossibility result on weakly-local graph
traits for k-connectivity, implies that any distributed topology control algorithm
that finds an optimal solution requires at least Ω(n) communication rounds.

In deployments where the unit disk graph assumption holds and nodes are
equipped with GPS, an algorithmic implementation of (c,MSTSmall(k)) re-
quires one less communication round, and might yields better results.

In the remainder of this section we discuss another application of local graph
traits. Namely, we show how to leverage the local graph trait (c,MSTSmall(k))
together with the connectivity preserving algorithm presented in [4], to yield a
k-connectivity preserving algorithm for mobile ad hoc networks.

12

5.1 Maintaining k-Connectivity of Robot Swarms

We consider a mobile ad hoc network composed of n mobile robots (aka pro-
cesses). When possible we adhere to the standard synchronous network model
described in Section 2. At the beginning of every round, in addition to the usual
operations, each robot can query its own position (perhaps using GPS), query its
intended target position for the next round (via an existing motion planner) and
feed a trajectory to its actuators (for example, a linear trajectory to its intended
target). Actuators are imperfect, and hence a robot following a trajectory may
stop or slow down abruptly and travel only a fraction, possible none, of this
trajectory. We assume the communication graph is a unit disk graph induced by
the positions of the robots. For simplicity, we will assume that at the beginning
of every round each robot knows its neighbors in the communication graph and
their positions, this could be implemented by exchanging hello messages tagged
with the position of the robots.

Since robots (as opposed to regular processes) can move and change their
position from round to round, we extend our notation to account for this. Let
p(v, r) denote the position of the robot occupying node v at round r. Similarly,
let G(r) = (V,E(r)) denote the communication graph induced at round r, and
let N [u, r]t be the closed t-neighbors of node u at round r. We use N [u, r] as
short hand notation for the closed 1-neighbors of u at round r.

In previous work [2, 4] we addressed the problem of maintaining connectiv-
ity (k = 1) for robot swarms. Specifically, we described a distributed algorithm
that modifies an existing short-term motion plan to ensure connectivity. The
algorithm uses only local information, is stateless, does not require a fixed set of
neighbors and does not make any assumptions on the current or goal configura-
tions. Moreover, the algorithm is robust to the robots’ speed changes; if robots
travel any fraction of the trajectory (perhaps none) at any speed, connectivity is
preserved. The progress of the algorithm is defined as the total distance traveled
by all robots (summing over all the robots) towards their intended destinations.
Let d be the minimal distance each robot intends to move and let R be the
communication radius. Assuming that the target configuration of the robots is
connected and the motion does not require breaking any cycles, we proved that
the algorithm guarantees that the progress is at least min(d,R). Furthermore,
we exhibited a class of configurations where no local algorithm can do better
than this bound, and hence under these conditions the bound is tight and the
algorithm is asymptotically optimal. Finally we proved that all robots get ε-
close to their target within O(D0/R+n2/ε) rounds where D0 is the total initial
distance to the targets and n is the number of robots [4].

Starting with a graph which satisfies the local trait (c,MSTSmall(k)), we
describe how to extend the ConnServ algorithm presented in [4] to enforce
the local graph trait (c,MSTSmall(k)) throughout the execution and preserve
k-connectivity with similar robustness, safety and progress conditions as the
original algorithm.

Connectivity Maintenance Algorithm. The ConnServ algorithm [4] is
parametrized by a communication radius R ∈ R and a neighbor filtering function

13

f : 2V → 2V which receives a closed set of neighbors N [u, r] and returns a
filtered set of neighbors N ′(u, r) ⊆ N [u, r]. These parameters should satisfy
the following properties: P1. Any two robots which are at distance R or less
can reliably exchange a message (i.e. are connected). P2. Filtered neighbors are
within distance R (∀v ∈ N [u, r], ‖p(v)− p(v)‖ ≤ R). P3. Preserving connectivity
with the filtered neighbors is sufficient to preserve global graph connectivity.
Formally, if G(r) = (V,E(r)) is connected, then the spanning subgraph H =
(V, F) where F := {{u, v} | u ∈ N ′(v, r) ∧ v ∈ N ′(u, r)} is also connected.

When run by a robot at node u at round r, the input of the ConnServ
algorithm is a tuple (pu, Nu, tu), where pu = p(u, r), Nu = N [u, r] and tu is the
intended target position at round r. The output of the ConnServ algorithm is
a new target position t∗u. For any parameters which satisfy the properties above,
the ConnServ algorithm was shown to provide the following guarantees [4].

Safety Theorem. If u ∈ N ′(v, r) and v ∈ N ′(u, r), then |t∗u − t∗v| ≤ R

In other words, if by the beginning of the next round every robot moves to
the target position output by ConnServ , if G(r) was connected then G(r+ 1)
will also be connected (this follows from the safety theorem and the guarantees
assumed on the filtering function).

However, it would be unreasonable to expect all robots to be able to reach the
target output by the algorithm by the beginning of the next round. For example,
a robot might encounter an obstacle, it might stop or slow down suddenly due
to hardware malfunction, or it might be to slow to complete the trajectory. This
motivates the next result, which shows that the graph will remain connected
even if robots stop or slow down unexpectedly.

Robustness Theorem. If u ∈ N ′(v, r) and v ∈ N ′(u, r), then for any point p
in the linear trajectory from p(u, r) to t∗u, and any point q in the linear trajectory
from p(v, r) to t∗v, it holds that ‖p− q‖ ≤ R.

For the algorithm to be useful, it needs to provide a progress guarantee that
relates the input and the output target, since a trivial algorithm which forces
all robots to remain stationary vacuously provides the previous safety and ro-
bustness properties. On the other hand, it is not possible to guarantee progress
unconditionally, since, for example, if two robots want to move in opposite di-
rections as to disconnect the graph, guaranteeing any progress would violate the
safety and robustness properties. Therefore, our progress guarantees are condi-
tioned on the assumption that the intended targets do not require breaking any
edges needed for connectivity.

We define the progress of a robot as the distance advanced to the input target
assuming it moves to the output target. If at round r a robot at node u has an
input target tu, let du = ‖p(u, r)− tu‖ be the distance from its current position
to its input target. If the algorithm ConnServ outputs a target t∗u the progress
is defined as δu = du − ‖tu − t∗u‖

The progress of the system is then the sum of the progress of each robot,
that is

∑
u∈V δu. In the following d is defined as d = minu∈V du.

14

Progress Theorem. In any configuration where the intended targets do not
require breaking edges needed for connectivity, the progress is at least min(d,R).

Finally, assuming the robots have the same target for sufficiently many
rounds, the following result provides an upper bound on the number of rounds
required for every robot to reach their target. Here D0 =

∑
u∈V du is the sum

of the distances from each robot to its intended long term target.

Termination Theorem. In any configuration where the intended targets do
not require breaking edges needed for connectivity, every robot gets ε-close to its
target within O(D0/R+ n2/ε) rounds.

k-Connectivity Maintenance. We will argue that if the starting configuration
satisfies (c,MSTSmall(k)), it is possible to select the communication radius R
and the filtering function f to guarantee the ConnServ algorithm preserves
k-connectivity.

Concretely, we let R = Rmin/k where Rmin is the smallest distance such
that any two robots within distance Rmin can exchange messages reliably. For
the filtering function f , let S ⊆ N [u, r] be the subset of vertices which are at
distance less than or equal to Rmin/k from u. We let f return every vertex v
such that v ∈ E(MSTS), in other words the neighbors of u in the minimum
spanning tree involving only vertices in S (i.e. closer than Rmin/k to u). Finally,
we assume the communication graph is initially k-connected, or more specifically,
we assume G(0) satisfies the local graph trait (c,MSTSmall(k)).

The parameters described satisfy P1 and P2, however it is not evident that
the filtering defined satisfies P3 and much less that the resulting algorithm
guarantees k-connectivity.

Theorem 7. ∀r ≥ 0, f satisfies P3 and G(r) is k-connected.

Proof. Let H(r) be the graph that results from removing all edges of G(r) which
are of length more than Rmin/k. We make the following claim (proved later).

Claim. H(r) is a connected spanning subgraph of G(r).

Then it follows that H(r) satisfies (c,MSTSmall(k)) and hence H(r) (and
therefore G(r)) are k-connected. Finally since the filtered neighbors returned by
f define a local minimum spanning tree over H(r), f satisfies P3.

Proof. [of Claim] We proceed by induction on r. The base case is trivial since
G(0) satisfies (c,MSTSmall(k)). Suppose by inductive hypothesis that H(r) is a
connected spanning subgraph of G(r). Let LMST (r) be the connected spanning
subgraph of H(r) described by the filtered neighbors returned by f .

By the safety and robustness theorems, all the edges of LMST (r) are present
in G(r+1) with length at most R = Rmin/k. Therefore the subgraph H(r+1) ⊆
G(r+ 1) also contains LMST (r), and thus it is a connected spanning subgraph
of G(r + 1).

Therefore, since the parameters chose for the ConnServ algorithm sat-
isfy P1, P2 and P3, the safety and robustness theorems imply the graph is

15

k-connected at every time instant even if the robots slow down or stop unex-
pectedly and only execute some fraction of the trajectory.

On the other hand, the progress and termination theorems imply at every
round the progress of the system is at least min(d,Rmin/k) and the system
becomes ε-close to its targets within O(D0k/Rmin+n2/ε). Therefore, preserving
k-connectivity via this extension to the ConnServ algorithm incurs in a cost
linear in k compared to preserving simple connectivity.

References

[1] B. Awerbuch, M. Luby, AV Goldberg, and S.A. Plotkin. Network decom-
position and locality in distributed computation. Proc. of the 30th Annual
Symposium on Foundations of Computer Science, 1989.

[2] A. Cornejo and N. Lynch. Connectivity Service for Mobile Ad-Hoc Net-
works. Spatial Computing Workshop, 2008.

[3] A. Cornejo and N. Lynch. Fault-Tolerance Through k-Connectivity. Work-
shop on Network Science and Systems Issues in Multi-Robot Autonomy:
ICRA 2010, 2, 2010.

[4] A. Cornejo, F. Kuhn, R. Ley-Wild, and N. Lynch. Keeping mobile robot
swarms connected. DISC 2009: 23rd International Symposium on Dis-
tributed Computing, September 23-25 2009.

[5] A. Czumaj and H. Zhao. Fault-tolerant geometric spanners. Discrete and
Computational Geometry, 32(2):207–230, 2004.

[6] G. A. Dirac. Some theorems on abstract graphs. Proc. London Mathematical
Society, 2, 1952.

[7] X. Jia, D. Kim, S. Makki, P.J. Wan, and C.W. Yi. Power assignment
for k-connectivity in wireless ad hoc networks. Journal of Combinatorial
Optimization, 9(2):213–222, 2005.

[8] M. Jorgic, N. Goel, K. Kalaichevan, A. Nayak, and I. Stojmenovic. Localized
detection of k-connectivity in wireless ad hoc, actuator and sensor networks.
Proc. 16th ICCCN, 2007.

[9] N. Li and J.C. Hou. FLSS: a fault-tolerant topology control algorithm for
wireless networks. In Proceedings of the 10th annual international confer-
ence on Mobile computing and networking, pages 275–286. ACM New York,
NY, USA, 2004.

[10] N. Li, J. C. Hou, and L. Sha. Design and analysis of an MST-based topology
control algorithm. INFOCOM, 3:1702–1712, 2003.

[11] N. Linial. Distributive graph algorithms Global solutions from local data.
In 28th Annual Symposium on Foundations of Computer Science, 1987.,
pages 331–335, 1987.

[12] R. Thurimella. Sub-linear distributed algorithms for sparse certificates and
biconnected components. In PODC, pages 28–37. ACM New York, NY,
USA, 1995.

[13] A. Wigderson. Improving the performance guarantee for approximate graph
coloring. Journal of the ACM (JACM), 30(4):735, 1983.

16

