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Abstract

This paper studies the optimal trade-off between commitment and flexibil-

ity in an intertemporal consumption/savings choice model. Indi\iduals expect

to receive relevant information regarding their own situation and tastes - gen-

erating a value for flexibility - but also expect to suffer from temptations -

generating a value for commitment. The model combines the representations

of preferences for flexibihty introduced by Kreps (1979) with its recent antithe-

sis for commitment proposed by Gul and Pesendorfer (2002), which nests the

h\T>erbolic discounting model. We set up and solve a mechanism design prob-

lem that optimizes over the set of consumption/saving options available to the

individual each period. We characterize the conditions under which the solu-

tion takes a simple threshold form where minimum sa\dngs policies are optimal.

Our analysis is also relevant for other issues such as situations with externalities

or the problem faced by a "paternahstic" planner, which may be important for

thinking about some regulations such as forced minimum schooling laws.

Introduction

If people suffer from temptation and self-control problems, what should be done to

help them? Most analysis lead to a simple and extreme conclusion: it is optimal to

take over the individual's choices completely. For example, in models with h\-per-
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bolic discounting preferences it is desirable to impose a particular savings plan on

individuals.

Indeed, one commonly articulated justification for government involvement in re-

tirement income in modern economies is the belief that an important fraction of the

population would save "inadequately" if left to their own devices (e.g. Diamond,

1977). From the workers perspective most pension systems, pay-as-you-go and capi-

talized systems alike, effectively impose a minimum saving requirement. One purpose

of this paper is to see if such minimum saving policies are optimal in a model where

agents suffer from the temptation to "over-consume"

.

In a series of recent papers Gul and Pesendorfer (2001, 2002a,b) have given prefer-

ences that value commitment an axiomatic foundation and derived a useful represen-

tation theorem. In their representation the individual suffers from temptations and

may exert costly self-control. This formalizes the notion that commitment is useful

as a way to avoid temptations that either adversely affect choices or require exert-

.

ing costly self-control. On the opposite side of the spectrum, Kreps (1979) provided

an axiomatic foundation for preferences for flexibility. His representation theorem

shows that they can be represented by including taste shocks into an expected utility

framework.

Our model combines Kreps' with Gul and Pesendorfer's representations. Our main

application modifies the intertemporal taste-shock preference specification introduced

by Atkeson and Lucas (1995) to incorporate temptation. In their model the individual

has preferences over random consumption streams. Each period an i.i.d. taste shock

is realized that affects the individual's desire for current consumption. Importantly,

the taste shock at time-t is assumed to be private information. We modify these

preferences by assuming that agents suffer from the temptation for higher present

consumption. This feature generates a desire for commitment.

The informational asymmetry introduces a trade-off between commitment and

flexibility. Commitment is valued because it reduces temptation while flexibility is

valued because it allows the use of the valuable private information. We solve for the

optimal incentive compatible allocation that trades-off commitment and flexibility.

One can interpret our solution as describing the optimal commitment device.

In addition to Gul and Pesendorfer's framework, models with time-inconsistent

preferences, as in Strotz (1956), also generate a value for committment. In particular,



the hyperbolic discounting model has proven useful for studying the effects of a temp-

tation to 'over-consume' as well as the desirability of committment devices (Phelps

and Pollack, 1968, and Laibson, 1994). As Krusell, Kuruscu and Smith (2002) have

pointed out, however, the temptation framework provided by Gul and Pesendorfer

effectively generalizes the hyperbolic discounting model: it results in the limiting case

when the agent cannot exert any self-control, giving in fully to his temptations. For

expositional purposes we first treat the hyperbolic discounting case in detail and then

show that the results extend to Gul and Pesendorfer's framework.

We begin by considering a simple hyperbolic discounting case with two possible

taste shocks. By solving this case, we illustrate how the optimal allocation depends

critically on the strength of the temptation for current consumption relative to the

dispersion of the taste shocks. For the resulting second-best problem there are two

important cases to consider.

For low levels of temptation, relative to the dispersion of the taste shocks, it is

optimal to separate the high and low taste shock agents. If the temptation is not

too low, then in order to separate them the principal must offer consumption bundles

that yield somewhat to the agent's temptation for higher current consumption. Thus,

both bundles provide more present consumption than their counterparts in the first

best allocation. When temptation is strong enough, separating the agents becomes

too onerous. The principal then finds it optimal to bunch both agents: she offers a

single consumption bundle equal to her optimal uncontingent allocation. This solution

resolves the average over-consumption issue at the expense of foregoing flexibility.

In this way, the optimal amount of flexibility depends negatively on the strength

of the temptation relative to the dispersion of the taste shocks. These results with

two shocks are simple and intuitive. Unfortunately, with more than two shocks, these

results are not easily generalized. We show that with three shocks there are robust

examples where 'money burning' is optimal: it is optimal to have one of the agents

consuming in the interior of his budget set. Moreover, bunching can occur between

any pair of agents. The examples present a wealth of possibilities with no obvious

discernible pattern.

Fortunately, strong results are obtained in the case with a continuum of taste

shocks. Our main result is a condition on the distribution of taste shocks that is

necessary and sufficient for the optimal mechanism to be a simple threshold rule: a



minimum savings level is imposed, with full flexibility allowed above this minimum.

The optimal minimum savings level depends positively on the strength of temptation.

Thus, the main insight from the two type case carries over here: flexibility falls with

the strength of temptation and this is accomplished by increased bunching.

We extend the model to include heterogeneity in temptation of current consump-

tion. This is important because it is reasonable to assume that agents suffer from

temptation at varying degrees. Indeed, perhaps some agents do not suffer from temp-

tation at all. Allowing for heterogeneity in temptation would imply that those in-

dividuals that we observe saving less are more likely to be the ones suffering from

higher temptation. However, we show that the main result regarding the optimality

of a minimum saving policy is robust to the introduction of this heterogeneity.

The rest of the paper is organized as follows. In the remainder of the introduction

we briefly discuss the related literature. Section 1 lays out the basic intertemporal

model using the hyperbolic discounting model. Section 2 analyzes this model with

two and three taste shocks while Section 3 works with a continuum of shocks. Sec-

tion 4 extends the analysis to arbitrary finite time horizons and Section 5 extends the

results to the case where agents are heterogenous with respect to their temptation.

Section 6 contains the more general case with temptation and self-control proposed by

Gul and Pesendorfer (2001,2002a,b). Section 7 studies the case where agents discount

exponentially at a different rate than a 'social planner' and preferences are logarith-

mic. Section 8 diverges to discuss some alternative interpretations and applications of

our main results regarding the optimal trade-ofl[ between committment and flexibility.

The final Section concludes. An appendix collects some proofs.

Related Literature

At least since Ramsey's (1928) moral appeal economists have long been interested

in the implications of, and justifications for, socially discounting the future at lower

rates than individuals. Recently, Caplin and Leahy (2001) discuss a motivation for a

welfare criterion that discounts the future at a lower rate than individuals. Phelan

(2002) provides another motivation and studies implications for long-run inequality

of opportunity of a zero social discount rate. In both these papers the social planner

and agents discount the future exponentially.



Some papers on social security policies have attempted to take into account the

possible "undersaving" by individuals. Diamond (1977) discussed the case where

agents may undersave due to mistakes. Feldstein (1985) models OLG agents that

discount the future at a higher rate than the social planner and studies the optimal

pay-as-you-go system. Laibson (1998) discusses public policies that avoid undersaving

in hyperbohc discounting models. Imrohoroglu, Imrohoroglu and Joines (2000) use

a model with hyperbolic discounting preferences to perform a quantitative exercise

on the welfare effects of pay-as-you-go social security systems. Diamond and Koszegi

(2002) use a model with hyperbolic discounting agents to study the policy effects of

endogenous retirement choices. O'Donahue and Rabin (2003) advocate studying pa-

ternalism normatively by modelling the errors or biases agents may have and applying

standard public finance analysis.

Finally, several papers discuss trade-offs similar to those emphasized here in var-

ious contexts not related to the intertemporal consumption/saving problem that is

our focus. Since Weitzman's (1974) provocative paper there has been great interest in

the efficiency of the price system compared to a command economy, see Holmstrom

(1984) and the references therein. In a recent paper, Athey, Atkeson and Kehoe (2003)

study a problem of optimal monetary policy that also features a trade-off between

time-consistency and discretion. Sheshinski (2002) models heterogenous agents that

make choices over a discrete set of alternatives but are subject to random errors and

shows that in such a setting reducing the set of alternatives may be optimal. Laib-

son (1994, Chapter 3) considers a moral-hazard model with a hyperbolic-discounting

agent and shows that the planner may reward the agent for high output by tilting

consumption towards the present.

1 The Basic Model

For reasons of exposition we first study a consumer whose preferences are time-

inconsistent. Following Strotz (1956), Phelps and Pollack (1968), Laibson (1994)

and many others we model the agent in each period as different selves and solve

for subgame perfect equilibria of the game played between selves. In section 6 we

show that all our results go through when we use the more general framework pro-

vided by Gul and Pesendorfer (2001,2002a,b) which, in addition, does not require an



intrapersonal game interpretation.

Consider first the case with two periods of consumption, t = 1,2, and an initial

period t = from which we evahiate expected utihty. Section 4 extends the analysis to

arbitrary finite horizons. Each period agents receive an i.i.d. taste shock 9, normalized

so that Ed = \ which affects the marginal utility of current consumption: higher 9

make current consumption more valuable. The taste shock is observed privately by

the agent at time t} We think of the taste shock as a catch-all for the significant

variation one actually observes in consumption and saving data after conditioning on

the available observable variables. We denote first and second period consumption

by c and k, respectively.

The utility for selj-1 from periods i = 1, 2 with taste shock 9 is

9U (c) + [3W {k)

.

where U {) and W {) are increasing, concave and continuously differentiable" and

/3 < 1. The notation allows W () ^ U {), this generality facilitates the extension to

N periods in section 4.

The utihty for self-0 from periods t = 1, 2 is

9U (c) + W {k) .

Agents have quasi-geometric discounting: self-t discounts the entire future at rate

/? < 1 and in this respect, there is disagreement among the different t-selves and

1 — /3 is a measure of this disagreement or bias. On the other hand, there is agreement

regarding taste shocks: everyone values the effect of 9 in the same way. Below we often

associate the value of B to the strength of a 'temptation' for current consumption;

thus, we say that temptation is stronger if 13 is lower.

An alternative interpretation to 'hyperbolic' discounting is available if we consider

only periods 1 and 2. One can simply work with the assumption that the correct wel-

fare criterion does not discount future utility at the same rate as agents do, although

both do so exponentially. Although this alternative interpretation is available for

'With exponential CARA utility income shocks are equivalent to taste shocks.

^Note that a taste shock for period i = 2 is not included in this expression. However, its absence

is only apparent since k cannot depend on 60 and EOo = 1.



two-periods we will see that in general it does not permit a straightforward exten-

sion of the analysis to more periods. In section 7 we discuss a case in which it does

generalize.

We investigate the optimal allocation from the point of view of self-0 subject to

the constraint that 6 is private information of self-1. The essential tension is between

tailoring consumption to the taste shock and the self-1 's constant higher desire for

current consumption. This generates a trade-off between commitment and flexibility

from the point of view of self-O.

To solve the allocation preferred by self-0 with total income y we now set up the

optimal direct truth telling mechanism given y.

Two Periods

V2 {y) = max / [OU (c {9)) + W {k {6))] dF [9)

eU (c {9)) + m' (k {9)) > 9U (c {9')) + PW {k {9')) for all 9,9' eQ (1)

c{9) + k {9) < y for all G 6

where F (9) is the distribution of the taste shocks with support O.

This problem maximizes, given total resources y, the expected utility from the

point of view of self-0 (henceforth: the principal) subject to the constraint that 9

is private information of self-1 (henceforth: the agent). The incentive compatibility

constraint (1) ensures that it is in agent-^'s self interest to report truthfully, thus

obtaining the allocation that is intended for him. In the budget constraints the

interest rate is normalized to zero for simplicity.

The problem above imposes a budget constraint for each ^ G 0, so that insurance

across ^-agent's is ruled out. The planner cannot transfer resources across different

agent's types. This choice was motivated by several considerations.

First, it may be possible to argue that the case without insurance is of direct

relevance in many situations. This could be the case if pooling risk is simply not

possible or if insurance contracts are not available because of other considerations

outside the scope of our model.

Second, the cardinality of the taste shocks plays a more important role in an anal-

ysis with insurance. The taste shock 9 definitely affects ordinal preferences between



current and future consumption, c and k. However, we would like to avoid taking a

strong stand on whether or not agents with high taste for current consumption also

have a higher marginal utility from total resources as the expression 9u + w implictly

assumes. Focusing on the case without insurance avoids making our analysis depend

strongly on such cardinality assumptions.

Third, without temptation (/? = 1) incentive constrained insurance problems such

as Mirrlees (1971) or Atkeson and Lucas (1995) are non-trival and the resulting op-

timal allocations are not easily characterized. This would make a comparison with

the solutions with temptation (/? < 1) more difficult. In contrast, without insurance

the optimal allocation without temptation [j3 = 1) is straightforward ~ every agent

chooses their tangency point on the budget set - allowing a clearer disentangling of

the effects of introducing temptation.

Finally, we hope that studying the case without insurance may yield insights into

the case with insurance which we are currently pursuing.

Once the problem above is solved the optimal allocation for selj-0 solves a standard

problem:

max {9oU [cq) + (iv2 {yo - co)}
CO

where yo, Cq and ^o represents the initial t — 0, income, consumption and taste shock,

respectively. In what follows we ignore the initial consumption problem and focus on

non-trivial periods.

2 Two Types

In this section we study the optimal commitment with only two taste shocks, d^ > 6i,

occuring with probabilities p and 1 — p, respectively.

Without temptation, /3 = 1, there is no disagreement between the planner and the

agent and we can implement the ex-ante first-best allocation defined by the solution

to eU' {cfb {9)) /W {kfb {9)) = 1 and Cfh (9) + kfb {9) = y. For low enough levels of

temptation, so that /3 is close enough to 1, the first-best allocation is still incentive

compatible. Intuitively, if the disagreement in preferences is small relative to the

dispersion of taste shocks then, at the first best, the low shock agent would not envy

the high shock agent's allocation.



Proposition 1 There exists a (3* < 1 such that for P 6 [/5*, 1] the first-best allocation

is implementable.

Proof. At /5 = 1 the incentive constraints are slack at the ex-ante first-best allocation.

Define /3* < 1 to be the value of (3 for which the incentive constraint of di holds with

equality at the first best allocation. The result follows.

This result relies on the discrete diflFerence in taste shocks and no longer holds

when we study a continuum of shocks in Section 3.

For higher levels of temptation, i.e. lower /3, the first best allocation is not in-

centive compatible. If oflfered, agent-^; would take the bundle meant for &gent-9h

to obtain a higher level of current consumption. The next proposition characterizes

optimal allocations in such Ccises.

Proposition 2 The optimwn can always he attained with the budget constraint hold-

ing with equality: c* {9) -I- k* (6) = y for 9 — 9h, 9i. We have that 9i/9h < P* and:

(a) if P > 6i/9h separation is optimal, i.e. c* {9h) > c* {9i) and k {9h) < k {9i)

(b) if P < 9i/9h hunching is optimal, i.e. c{9i) = c{9h) and k{9i) = k{9h)

(c) if P = 9i/9h separating and hunching are optimal

Proof. First, P* > P follows since

u{c*{eH))-u{c*{ei))
p* =

Wiy-c*{9i))-W{y~c*{9H))

U'{c{e,)){c{9,)-c{9^)) U'{c{9,)) 9i _
'W'{y-c {9h)) (c {9n) - c {9i)) 'W'{y-c {9^)) 9h~-

where c* is the first best allocation.

Now, consider the case where P > P and suppose that c {9h) + k (9^) < y. Then

an increase in c{0k) and a decrease in k {9h) that holds {9i/P) U {c{9h)) -\- U {k (9^))

unchanged increases c{9h) + k {9h) and the objective function. Such a change is in-

centive compatible because it strictly relaxes the incentive compatibility constraint of

the high type pretending to be a low type and leaves the other incentive compatibility

constraint unchanged. It follows that we must have c {9h) + k {9h) = y at an optimum.



This also shows that separating is optimal in this case, proving part (a). Analogous

arguments establish parts (b) and (c).

Proposition 2 shows that for /?</?* the resulting non-trivial second-best problem

can be separated into essentially two cases. For intermediate levels of temptation, i.e.

61/dh < P, it is optimal to separate the agents. In order to separate them the principal

must offer consumption bundles that yield somewhat to the agent's ex-post desire for

higher consumption giving them higher consumption in the first period than the first

best.

For higher levels of temptation, i.e. /? < 9[/9h, separating the agents is too

onerous, bunching them is then optimal at the best uncontingent allocation - with

U {) — W {) this implies c(-) = k{-) = y/2. bunching resolves the disagreement

problem at the expense of flexibility. In this way, the optimal amount of flexibihty

depends negatively on the size of the disagreement relative to the dispersion of the

taste shocks as measured by 9i/9h-

Proposition 2 also shows that it is always optimal to consume all the resources

c{9) + k{6) = y. In this sense, 'money burning', i.e. setting c(0/j) + k{9h) < y, is

not required for optimality. As discuss below, with more than two types this is not a

foregone conclusion.

Figure 1 below shows a typical case that illustrate these results. We set U (c) =

c^-"/ {1-a), U (•) = W () , and a = 2, 9^ = 1.2, 9i = .8, p = 111 and y = \. The

figure shows consumption in the first period, c (0) , as a function of /3. For comparison

we also plots the optimal ex-post consumption for both types (i.e. the full flexibility

outcome). Note that these are always higher than the optimal allocation: the principal

does manage to lower consumption in the first period.

10
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Figure 1: Optimal first period consumption (c) with two shocks as a function of /3.

The figure illustrates Proposition 1 and 2 in the following way. For high /3 the

first best allocation is attainable so the optimal allocation does not vary with /? in

this range. For intermediate (3 consumption in the first period rises as /? falls. In this

way the principal yields to the agent's desire for higher consumption. For low enough

P bunching becomes optimal and c{6) = y/2.

To summarize, with two types we are able to characterize the optimal allocation

which enjoys nice properties. In particular, the budget constraint holds with equality

and we found simple necessary and sufficient conditions for a bunching or separating

outcome to be optimal.

Unfortunately, with more than two types extending these conclusions is not straight-

forward. For example, with three taste shocks, 9^ > 0^ > Oi-, it is simple to construct

robust examples where the optimal solution has the following properties: (i) the bud-

get constraint for agent 9m is satisfied with strict inequality - i.e. 'money burning'

is optimal; (ii) although (3 < 9m/9h remains a sufficient condition for bunching m
and h, it is no longer necessary: there are cases with /3 > 9m/9h where bunching 9m

and 9h is optimal; (iii) bunching can occur between 9i and 9m, with 9h is separated.

The examples seem to show a variety of possibilities that illustrate the difficulties in

characterizing the optimum with more than two types.

Fortunately, with a continuum of types more progress can be made. In the next

section we find conditions on the distribution of 9 which allows us to characterize the

optimal allocation fully.

11



3 Continuous Distribution of Types

Assume that the distribution of types is represented by a density / (9) over the interval

= [9,6]. We find it convenient to change variables from {c,k) to {u,'w) where

u = U {c) and w = VV (k) and we term either pair an 'allocation'. Let C (u) and

K {w) be the inverse functions of U {c) and W{k), respectively, so that C {) and

A' (•) are increasing and convex.

To characterize the incentive compatibility constraint (1) in this case consider the

problem faced by agent-^ when confronted with a direct mechanism {it. {9) , w [6)):

V{9) = m&xl^u(9') + tu(9')
0'ee [P

If the mechanism is truth telling then V (9) = |u [9) + w (6) and integrating the

envelope condition we obtain,

^u {9) + w [9) =
j^

~u[9)de + ^u{9) + w{9) (2)

(see Milgrom and Segal, 2002). Incentive compatibility of (u, u') also requires u to

be a non-decreasing function of 9. Thus, condition (2) and the monotonicity of u are

necessary for incentive compatibility. It is well know that these two conditions are

also sufficient (e.g. Fudenberg and Tirole, 1989).

The planner's problem is thus,

vo (y) = max f [9u {9) + w {9)] f {9) d9,

subject to (2), C (u {9)) + K {w [6)) < y and u {9') > u (9) for 9' > 9. This problem

is convex since the objective function is linear and the constraint set is convex. In

particular, it follows that ih (y) is concave in y.

We now substitute the incentive compatibility constraint (2) into the objective

function and the resource constraint, and integrate the objective function by parts.

This allows us to simplify the problem by dropping the function iu{9), except for

its value at 9. Consequently, the maximization below requires finding a function

n : 9 ^ R and a scalar w representing w {9).

12



Continuous Distribution of Types

v^ (y) = max i |u(0 + ^ + i A(l - F [9)) - 9 (1 - /3) f [9)] u {9) cW

K-' {y-C {u {9))) + ^u {9) -^u{9)-w-
j^

^u{9)d9 >

u {9') > u (9) for 9' >9

3.1 Bunching

For any feasible allocation u it is always feasible to modify the allocation so as to

bunch some upper tail of agents. That is, the allocation u given by u {9) = u (9) for

9 < 9 and u (9) = u{9) is feasible for any 9. Thus bunching the upper tail is always

feasible, we now show that it is always optimal.

To gain some intuition, note that agents with 9 < (59 share the ordinal preferences

of the planner with a higher taste shock equal to 9/13. That is, the indifference curves

9u + ^w and 9/[5u + w are equivalent. Informally, these agents can make a case for

their preferences. In contrast, agents with 9 > (59 display a blatant over-desire for

current consumption from the principal's point of view, in the sense that there is no

taste shock that would justify these preferences to the planner. Thus, it is intuitive

that these agents are bunched since separating them is tantamount to increasing some

of these agents consumption, yet they are already obviously "over-consuming"

.

The next result shows that bunching goes even further than ^9.

Proposition 3 Define 9p as the lowest value in such that for 9 > 9p:

E > 9
1

< -
9

- P

Note that 9p < j39 and 9p < l39 as long as f > 0. An optimal allocation u* has

u* {9) = u* {9p) for 9 > 9p (i.e. it bunchs all agents above 9p)

13



Proof. The contribution to the objective function from 9 > 9p is

1 f {{i-F{e))-e{i-p)f{e})u{9)d9.

Substituting u = Jg du + u {9p) and integrating by parts we obtain,

^i{Op)- I\{i-F{9))-9{1-P)f{9))d9

Note that,

J'
((l - F [§))

- 9 {1-^3) f (0")) d9 = (1 - F{9))9 I ^
-
E 9\9>9

<0,
9

for all 9 > 9p so it is optimal to set du = 0, or equivalently u (9) = u {9p) , for 6* > 9p.

With two types Proposition 2 showed that bunching is strictly optimal whenever

9h/9i < 1//3. Proposition 3 generalizes this result since with two types when 9h/9i <

1/P then according to the definition essentially 9p = 9i.

If the support is unbounded then 9p may not exist. This occurs, for example,

with the Pareto distribution. One can show that in this case it is either optimal to

allow full flexibility or bunch all agents depending on the Pareto parameter.

3.2 Assumption A

To solve for the optimal allocation for 9 < 9p we require the following condition on

the density / and /3.

A. The density f {9) is differentiable and satisfies

J'iO)^ 2-/3

f{e)- i-P

14



for all 9 <9p.

Assumption A places a negative lower bound on the elasticity of / that is contin-

uous and decreasing in /?. The highest lower bound of —2 is attained for /3 = and

as /3
—> 1 the lower bound goes off to — oo. Note that A does not impose the bound

on the whole support 0, only for 9 < 9p.

For any density / such that 9f'/f is bounded from below assumption A is satisfied

for /3 close enough to 1. Moreover, many densities satisfy assumption A for all /3.

For example, it is trivially satisfied for all density functions that are non-decreasing

and also holds for the exponential distribution, the log-normal, Pareto and Gamma

distributions for a large subset of their parameters.

3.3 Minimum Saving Policies

Define u* {9) , w* {9) to be the unconstrained optimum for agent-^:

r 9
{u* (9) , w* (9)) = arg max <^ —u + w

s.t. C (u) + K [w] < y

Our next result shows that under assumption A agents with 9 < 9p are offered their

unconstrained optimum and agents with 9 > 9p are bunched at the unconstrained

optimum for 9p. That is, the optimal mechanism offers the whole budget line to

the left of some point (c*,fc*), given by the ex-post unconstrained optimum of the

^p- agent.

Define the Lagrangian function as:

L{w,u\A) = ^ui9)+w + ^j [ip-l)9f{9) + {l-Fi9))]u{9)d9

+ 1 (^K-'{y-C{u{9))) + ^u{9)-(^^ui9}+w^-J^ ^u{9)d9^ dA {9)

where the function A is the Lagrange multiplier associated with the incentive com-

patibility constraint. We require the Lagrange multiplier A to be non-decreasing (see

Luenberger, 1969, Chapter 8).

Intuitively, the Lagrange multiplier A can be thought of as a cumulative distribu-

15



tion function'^. If A happens to be differentiable with density A then the continuum

of constraints can be incorporated into the Lagrangian as the famihar integral of the

product of the left hand side of each constraint and the density function X{6). Al-

though this is a common approach in many applications, in general, A may have points

of discontinuity and these mass points are associated with individual constraints that

are particularly important. In such cases, working with a density A would not be

valid. As we shall see, in our case the multiplier A is indeed discontinuous at two

points: 6 and 9p.

Consider the allocation {u, w) given by (u {9) , w (6)) = {u* {6) , w* [6)) for 9 < 9p

and (u* (9) , lu* (9)) = {u* {9p) , w* {9p)) for 9 > 9p.

Proposition 4 The allocation {u, w) is optimal if and only if assumption A holds.

Proof. Without loss of generality set A ((9) = 1. We will construct A to be left

continuous. Integrating the Lagrangian by parts:

L{w,u\A) = {^u{9) + w)A
/3

+ ^j i{f3-l)ef{9)-F{9) + A{e))u{9)d9

+
J'

(a-^ (y - C {u {9))) + ^u (^)) dA {9)

Note that the Lagrangian is a sum of integrals of concave functions of to and u [9).

This implies that the Gateaux differential exists and is easily computed (see the

Lemma on Gateaux differentiability in the Appendix) . In particular, at the proposed

^Except for the integrability condition. Also, for notational purposes, we make A a left-continuous

function, instead of the usual right-continuous convention for distribution functions.

16



allocation for lu, u the Gateaux differential is given by:

dL {w, u; h^, /7,„|A) = r|/i„ (0 +O A {6} (3)

+
-^ y ((/3

- 1) ef {9) - F (^) + A (^) - 1) /i„ (0) d^

^ r (I+ ^ I (^-llX[,„,]MA(^)

where x\g g\
is the indicator function over [6'p,^, i.e. x\q gi = 1 for 6* e \9p,6\ and

zero otherwise.

The problem is convex, the Lagrangian is differentiable and the proposed alloca-

tion is continuous. It follows that ty, u is optimal if and only if there exists some

non-decreasing function A such that:

5L(u),n;M,u|A) = (4)

c>L(«;,u;/i„,/i„|A) <0 (5)

for all /ij^ and hu that belongs to the convex cone given by A' = {w, u : w E R and u

is a non-decreasing function u : Q, ^^ R} (see Luenberger, Chapter 8).

Condition (5) requires that A {9) = 0. Using this and integrating (3) by parts

leads to

dL {w, u- h^, /i„| A) = 7 [9) K {d)+ [ 1 {0) dK {0) (6)
Je

where,

1(0)^^1 HP - 1) Of {e) -F{9) + A (9)) d^ + I y
(^i - 1

j X[e,^^^dA

It follows that condition (4) requires 7 (^) = for 9 G [9,9p] , i.e. where u is strictly

increasing. This implies,

A(^) = (l-,5)^/(^) + F(^), (7)

9 G {9,9p). The proposed allocation thus determines a unique candidate multiplier A
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in the separating region [9, Op) and assumption ^4 is necessary and sufficient for A {6)

to be non-decreasing. It follows that assumption A is necessary for the proposed

solution to be optimal.

We now prove sufficiency by showing that there exists a non-decrccising multiplier

A over the whole range fi such that the proposed Uku satisfies (4) and (5). We've

specified A for [9_, 9p) so we only need to specify the value of A for [9p, 9j and we set

A (^) = 1 in this interval.

The constructed A is not continuous, it has an upward jump at 9 and a jump at

Op. To show that A is non-decreasing all that remains is to show that the jump at 9p

is upward,

\-[{l-P)9pf{9p) + F{9p)]>0,

which follows from the definition of 9p. To see this, note that if ^p = ^ the result is

immediate since A jumps from to 1 at 9. Otherwise, recall that 9p is the lowest 9 such

that 7 (^) < for all 9>9, which implies 7' {Op) = {1 - p) Of {9) - {1 - F (0)) < 0.

The proposed allocation, w and u, and the Lagrange multiplier. A, imply that

7 < and that 7 = wherever u is increasing. Using (6) it follows that (4) and (5)

are satisfied.

The figure below illustrates the form of the multipher A {0) constructed in the

proof of the proposition.

separating with full flexibility

Figure 2: The Lagrange multiplier A {0)
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Proposition 4 shows that under assumption A the optimal allocation is extremely

simple. It can be implemented by imposing a maximum level of current consumption,

or equivalently, a minimum level of savings. Such minimum saving policies are a

pervasive part of social security systems around the vi^orld.

The next result shows the comparative statics of the optimal allocation with re-

spect to temptation /5. As the temptation increases, i.e. /? decreases, more types are

bunched (i.e. 6p decreases). In terms of policies, as the disagreement increases the

minimum savings requirement decreases so there is less flexibility in the allocation.

Proposition 5 The bunching point 9p increases with j3. The minimum savings re-

quirement, Smin = y — C {u {9p)) , decreases with j3.

Proof. That Op is weakly increasing follows directly from its definition. To see that

Smin is decreasing note that Smin solves

9p U' {y - Sm\n) _ ..

and that 9p, when interior, solves,

^-^ = E[9\9>9p].

Combining these, we obtain E [9\9 > 9p] U' [y - s^in) /W {smm) = 1- Since E[9\9>9p]

is increasing in 6p the result follows from concavity of U and W.

3.4 Drilling

In this subsection we study cases where assumption A does not hold and show that

the allocation described in Proposition 4 can be improved upon by drilling holes in

the separating section where the condition in assumption A is not satisfied.

Suppose we are offering the unconstrained optimum for a closed interval [9a , Oi,] of

agents and we consider removing the open interval {9a, Oh). Agents that previously

found their tangency within the interval will move to one of the two extremes, 9a or

6b. The critical issue in evaluating the change in welfare is counting how many agents

moving to 9a versus Oi,. For a small enough interval, welfare rises from those moving

to 9a and falls from those moving to 9h.
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Since the relative measure of agents moving to the right versus the left depends on

the slope of the density function this explains its role in assumption A. For example,

if /' > then upon removing {0a, Oh) more agents would move to the right than the

left. As a consequence, such a change is undesirable. The proof of the next result

formalizes these ideas.

Proposition 6 Suppose an allocation {u,w) has {u{9) ,w {9)) = (u* {6) ,w* {9)) for

6 € [^a,^fc] with db < 9p. If the condition in assumption A does not hold /o7' 9 G

[9a, 9),] then removing the interior of the set {{u* {9) , w* [9]) for 9 G (&„, 9b)} improves

welfare.

Proof. In the appendix.

Propositions 6 illustrates by construction why assumption A is necessary for a

simple 'threshold rule' to be optimal and gives some insight into this assumption. Of

course. Proposition 6 only identifies particular improvements whenever assumption A

fails. We have not characterized the full optimum when assumption A does not hold.

It seems likely that 'money burning' may be optimal in some cases.

4 Arbitrary Finite Horizons

We now show that our results extend to arbitrary finite horizons. We confine ourselves

to finite horizons because with infinite horizons any mechanism may yield multiple

equilibria in the resulting game. These equilibria may involve reputation in the sense

that a good equilibrium is sustained by a threat of reverting to a bad equilibria

upon a deviation. Some authors have questioned the credibility of such reputational

equilibria in intrapersonal games (e.g. Gul and Pesendorfer, 2002a, and Kocherlakota,

1996). We avoid these issues by focusing on finite horizons.

Consider the problem with N < oo periods t = 1, ..., TV where the felicity function

is U (•) in each period. Let 9^ = (6'i, ^2, •, ^t) denote the history of shocks up to time

t. A direct mechanism now requires that at time t the agent make reports on the

history of shocks r* = {r\,r2, ,rl). The agent's consumption is allowed to depend

on the whole history of reports: q {r^,r^~^, ..., r^). A strategy for self-t is a mapping

from the history of shocks and past reports into current reports: /?* (6'*,r'~\ ••,'"^)-

Truth telling requires R^ {9^9*-'^, ...,9^) = 9^ for all t and all histories 9K
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We first argue that without loss in optimahty we can restrict ourselves to mecha-

nisms that at time t require only a report r^ on the current shock 9t, and not of the

whole history of shocks 6*. This is the case in Atkeson and Lucas (1995) but in their

setup since preferences are time-consistent there is a single player and the argument

is straightforward.

In contrast, in the hyperbolic model we have A'' players and the difference in

preferences between these selves can be exploited to punish past deviations. For

example, an agent at time t that is indifferent between allocations can be asked

to choose amongst them according to whether there has been a deviation in the

past. In particular, she can 'punish' previous deviating agents by selecting the worst

allocations from their point of view. Otherwise, if there have been no past deviations,

she can 'reward' the truth-telling agents by selecting the allocation preferred by them.

Such schemes may make deviations more costly, relaxing the incentive constraints,

and are thus generally desirable.

One way to remove the possibility of these punishment schemes is to introduce

the refinement that when agents are indifferent between several allocations choose

the one that maximizes the utility of previous selves. Indeed, Gul and Pesendorfer's

(2001,2002a,b) framework, discussed in Section 6, dehvers, in the limit without self-

control, the hyperbolic model with this added refinement.

However, with a continuous distribution for 9 such a refinement is not necessary

to rule out these punishment schemes. We show that for any mechanism the subset

of over which ^-agents are indifferent is at most countable. This implies that the

probability that future selves will find themselves indifferent is zero so that the threat

of using indifference to punish past deviations has no deterrent effect.

For any set A of pairs (^i, w) define the optimal correspondence over x E X

M [x; A) = arg max {xu + w}
{u,w)eA

(we allow the possibility that M {x, A) is empty) then we have the following result.

Lemma (Indifference is countable). For any A the subset X^ C X for which

M (x; A) has two or more points (set of agents that are indifferent) is at most count-

able.

Proof. The correspondence M {x; A) is monotone in the sense that if xi < X2 and
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(ui.wi) e M{xi;A) and (u2,u'2) € M{x2;A) then ui < U2- Thus, in an obvious

sense, points at which there are more than a single element in M {x; A) represent

upward 'jumps'. As with monotonic functions, it follows easily that M (.t; A) can

have at most a countable number of such 'jumps'.

This result relies only on the single crossing property of preferences and not on the

linearity in u and w. We make use of this lemma again in Section 5.

These considerations lead us to write the problem with A'^ > 3 remaining periods

recursively as follows.

N Period Problem

vn (y) = max / [OU (c (9)) + v^-i {y [9))] clF {9)
c,y J

9U {c{9)) + (3vr,-i [y' [9]) > 9hU (c (9)^ + 3v^^, (ij (/5)) for all 9,9 ^Q

c {9) + y' {9) < y for all ^ G 9

where 112 (•) was defined in Section 2.

In the above formulation we assume, without loss in optimality, that the optimal

mechanism is ex-post optimal given the resources available i.e. t',v-i shows up in the

objective function and incentive constraint. This is without loss in optimality because

any inefficient continuation utility w' {9) < v^-i [y' [9)) can be achieved by 'money

burning' with the same effect: setting xu' {9) = i'at-i (y' [9)) for some y' [6) < y' {9).

For the simple recursive representation to obtain it is critical that, although the

principal and the agent disagree on the amount of discounting between the current

and next period, they both agree on the utility obtained from the next period on,

given by uw-i- This is not true in the alternative setup where the principal and the

agent both discount exponentially but with different discount factors. We treat this

case separately in Section 7.

For any horizon A'' this problem has exactly the same structure as the two-period

problem analyzed previously, with the exception that Vjsi-i (•) has substituted W {).

We only required W {) to be increasing and concave and since I'yv-i (•) has these

properties all the previous results apply. We summarize this result in the next propo-

sition.
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Proposition 7 Under assumption A the optimal allocation vnth a horizon of N pe-

riods can be implemented by imposing a minimum amount of saving St {yt) in period

t.

In Proposition 7 the minimum saving is a function of resources yt- With CRRA

preferences the optimal allocation is linearly homogenous in y, so that c {9, y) = c {9) y

and y' {9, y) = y' {9) y. It follows that the optimal mechanism imposes a minimum

saving rate for each period that is independent of yt-

Proposition 8 Under assumption A and U (c) = c^^'^ / {I — a) the optimul m.echa-

nism for the N-period problem imposes a minim.um saving rate St for each, period t

independent ofyt-

4.1 Hidden Savings

Another property of the optimal allocation identified in Propositions 4 and 7 is worth

mentioning. Suppose agents can save, but not borrow, privately behind the planner's

back at the same rate of return as the planner, as in Cole and Kocherlakota (2001).

The possibility of this 'hidden saving' reduces the set of allocations that are incentive

compatible since the agent has a strictly larger set of possible deviations. Importantly,

the mechanism described in Proposition 7 continues to implement the same allocation

when we allow agents to save privately, and thus remains optimal.

To prove this claim we argue that confronted with the mechanism in Proposition

7 agents that currently have no private savings would never find it optimal to ac-

cumulate private savings. To see this, first note that by Proposition 7 the optimal

mechanism imposes only a minimum on savings in each period. Thus agent-^ always

have the option of saving more observably with the principal than what the allocation

recommends, yet by incentive compatibility the agent chooses not to.

Next, note that saving privately on his own can be no better for the agent than

increasing the amount of observable savings with the principal. This is true because

the principal maximizes the agents utility given the resources at its disposal. Thus,

from the point of view of the current self, future wealth accumulated by hidden savings

is dominated by wealth accumulated with the principal.
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It follows that agents never find it optimal to save privately and the mechanism

implements the same allocation when agents can or cannot save privately.

Proposition 9 Under assumption A the m.echanism described m Proposition 7 im-

plern.ents the sam.e allocation when agents can save privately.

5 Heterogeneous Temptation

Consider now the case where the level of temptation, measured by ,i5, is random. Het-

erogeneity in f3 captures the commonly held view that the temptation to overconsume

is not uniform in the population and that it is the agents that save the least that

are more likely to be 'undersaving' because of a higher temptation to consume (e.g.

Diamond, 1977).

If the heterogeneity in temptation were due to permanent differences across indi-

viduals then the previous analysis would apply essentially unaltered. If agents knew

their /3 at time time they would truthfully report it so that their mechanism could

be tailored to their /3 as described above"*. To explore other possibilities we assume

the other extreme, that differences in temptation are purely idiosyncratic, so that j3

is i.i.d. across time and individuals. Thus, each period 9 and (3 are realized together

from a continuous distribution - we do not require independence of 6 and [3 for our

results. We continue to assume that /3 < 1 for simplicity.

For any set A of available pairs [u, w) agents with {6, /3) maximize their utility:

/^
arg max < —u + w

{u,w)eA yjj

Note that this arg max set is identical for all types with the same ratio x = 9/^ which

implies that we can without loss in optimality assume the allocation depend only on

X.

To see this note that the allocation may depend on 9 and /3 independently for

a given x only if the x-agent is indifferent amongst several pairs of u, w. However,

the lemma in section 4 showed that the set of x for which agents are indifferent is

*0f course, if agents can only report at f = 1 then one cannot costlessly obtain truthful! reports

on (5. However, with large enough N it is likely that the cost of revealing /3 would be small.
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of measure zero. As a consequence, allowing the allocation to depend on 6 or /3

independently, in addition to x, cannot improve the objective function. Without loss

in optimality we limit ourselves to allocations that are functions of x only^.

The objective function is then:

E [eu (x) + w {x)] =E[E [Ou (x) + w (x)| x]] = f [a (x) u{x) + w (x)] / (x) dx

where a (x) = E {6\x) and / (x) is the density over x. Let X = [x, x] be the support

of X and F (x) be its cumulative distribution.

Define Xp as the lowest value such that for x > Xp

E [a (x)| X > x]

X
"

We modify our previous assumption A in the following way.

Assumption A. For x e [x, Xp], we have that

xf'ix)^ 2-«'(x)

/(x) - l-a(x)/x

Note that without heterogeneity a (x) = /3x so that assumptions A and A are

equivalent in this case.

Heterogenous Temptation Problem

max / {a (x) u [x) + w (x)} dF (x)

<-)M) J

subject to

xu (x) + ly (x) = xu (x) + w (x) + u (x) dx

c{u{x)) + k{w{x)) < 1

u{x) > u (y) for all x > y

^Given /3 < 1 a simpler argument is available. The planner can simply instruct agents with given

X to choose the element of the arg max with the lowest u, since the planner has a strict preference

for the lowest u element. The argument in the text is similar to the one used to extend the analysis

to arbitrary horizons and can be applied to the case where /? > 1 is allowed.
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The proof of the next result closely follows the proof of proposition 4.

Proposition 10 Under assumption A agents with x < Xp are offered their uncon-

strained optimum and agents with x > Xp are bunched at the unconstrained optimum

for agent Xp.

6 Commitment with Self Control

Gul and Pesendorfer (2001,2002a,b) introduced an axiomatic foundation for prefer-

ences for commitment. We review their setup and representation result briefly in

general terms and then describe how we apply it to our framework.

In their static formulation the primitive is a preferences ordering over sets of

choices, with utility function P {A) over choice sets A. In the classical case P (A) =

maXagyip(a) for some utility function p defined directly over actions. Note that in

this case if a set A is reduced to A' without removing the best element, a* from A,

then P is not altered. In this sense, committment, a preference for smaller sets, is

not valued.

To model a preference for commitment they assume a consumer may strictly prefer

a set A' that is a strict subset .4, i.e. P {A') > P (.4) and A' C A. They show that

such preferences can be represented by two utility functions U and V over choices a

by the relation:

P {A) = max {p (a) + t{a)} — max t (a)
a€.4 ae.4

One can think of t (a) — maXag^ t (o) as the cost of self-control suffered by an agent

when choosing a instead of argmax^g^i (a). In a dynamic setting recursive prefer-

ences with temptation can be represented similarly (Gul and Pessendorfer (2002a,b).

In our framework the action is a choice for current consumption and savings, c

and k. In order to nest the hyperbolic preferences model we follow Krusell, Kuruscu

and Smith (2001) and use:

p (c, k) = On (c) + w {k)

t (c, k) = (p [On (c) + i5w (A:))
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where the parameter > captures the lack of self control. As —^ oo the agent has

no self-control and yields fully to his temptation. His preferences essentially converge

to those implied by the hyperboHc model. The only difference is that in the limit

as —* oo we obtain a tie-breaking criteria that whenever an agent is indifferent he

selects whatever is best for his previous 'selves' (i.e. maximizes t).

The objective function is:

/
{9u{e) + w{e))f{9)de + (p {9u{9) + pwie))f{9)de

Je Je,

-(p f [9u{9)+l3w{9))f{9)d9
Je,

where {u, w) is the allocation for the "temptation agent" and {u, w) is the allocation

of that is chosen by the "self-control agent" . It is convenient to define everything for

a support larger than 9 given by = [9, 9] where 9 = 9/3/ 13 < 9.

Given a set of offered (m, w) pairs, the "self-control agent" will choose an allocation

that maximizes 9u + f3w with /3 = (1 + 4>/3) / (1 + 0), while the "temptation agent"

will choose an allocation that maximizes 9u + (3w. Since both the "temptation" and

the "self-control" agents choose from the same set it follows that,

u{9)=u{9l3/P), (8)

so that the "self-control agent" 9 acts as a "temptation-agent" with a lower taste

shock.

Substituting (8) into the objective function we obtain,

(1 + 0)
/" (9u (^/3//3) + /3io (913/l3\) f {9) d9 - 4> f {9u {9) + (3w {9)) f (9) d9.

The first term can be shown to equal,

(1 + (/.) 13/ /3 / {9u {9) + f3iu {9)) f (9P/I3) P/pd9.
JiJ3/0 ^ '

Note that h [9) = f (9p//3] ^/l3 is the density of the random variable 9P/^; let H {9)

represent its corresponding distribution function.
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The objective function can be written as,

3 rS-e r§

(1 + <^) § r {9u (9) + /3w (9)) hi9)d9-d {9u (9) + Biv {9)) f (9) d9.

Substituting in the incentive constraint,

9u (9) + /3w {9) =
I

u{9)de + vo,

Je

where vq = {9J3/P)u{9) + (3w{§) and integrating by parts, we obtain:

{l + (P)^Jf il-H{9))u{9)de-(l>J^ {l-F{9))uie)d9+(^il + <P)p/l3-cP^vo.

where we are taking both intervals of integration as being from ^ to ^ by letting

h {9) = 0, for all 9 > ^/3//5 and / (^) = for all 9 < 9. In addition we require u to be

non-decreasing and the budget constraint:

vo+ ( u (9^ d9 - 9u {9) < (3K~' {y - C {u {9)))

.

Definition. Let 9p be the lowest value such that for 9 > 9p,

y_7(l + 0) ^ (1 - ^m -<P{1-F {9))] d9 <

Assumption A. For 9 € [9,9p], we have that

(l + ,/.)(/3//3)'/(^/3//3)-0/W>O

We now show that the optimal allocation is to offer all types below 9p their uncon-

strained optimum and to bunch types higher than 9p at the unconstrained optimum

for 9p. Denote this allocation by {w*,u) as before.
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The Lagrangian is

L = jU{l + <l>)^{l-H{9))-<l>{l-F{9))-il-A{e))\u{e)d9

+ /
{/3K-' {y-C {u (9)))+ 9ii) dk

/3

+ l(l+</>)^-0 (l-A(0)No

where A is a non-decreasing Lagrange multipUer for the budget constraint, normahzed

so that A(^) = 1.

Proposition 11 The allocation {w*,u) is optimal if and only if assumption A holds.

Proof. We follow the proof of Proposition 4 as closely as possible. At the proposed

allocation we have:

dLiw,u-h^Ji^\A)= l^{{l + <P)^{l-H{9))-cl){l-F{9))-{l-A{9))]h^{9)d9

+ (^P l^^[^f^-^]\\9..e]hudA + ;i + 0)|-(/.-(l-A(^)) L,

Equation (5) requires A{9) — {1 + 4>) (/3//9 — 1). Using this and integrating (3) by

parts leads to

dL {w, u- /i„, /),„! A) = 7 [9) hu {9)+ 7 (0) dh^, {9) (9)

where,

^{9)^ Nil + 4>)t [I- H {9))- <t^{l-F [9))- {I- K{9))\d9+e,j'^(^~^

It follows that (4) requires 7
(^i) = for 9 G 9,9r, , i.e. where u is strictly increasing.
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This in turn requires,'

A (^) = 1 - (1 + 0)
I

(1 - // [6)) + (1 - F (9)) (10)

6 G [9,9p). GiA'en the proposed allocation, this defines a unique multiplier A in the

separating region [9, 9p) and assumption A is necessary and sufficient for A {9) to be

non-decreasing. It follows that assumption A is necessary for the proposed solution

to be optimal.

We now prove sufficiency by showing that there exists a non-decreasing multipher

A over the whole range Q. such that the proposed iv,u satisfies (4) and (5). We've

specified A for [9, 9p) so we only need to specify the value of A for [9p. 9j and we set

A (^) = 1 in this interval.

Note that the constructed A is not continuous at 9p. To show that A is non-

decreasing all that remains is to show that the jump at 9p is upward which requires:

-{l + cP)^{l-H{9)) + <f>il-F{9))<0

This follows from the definition of 9p for 9p > 9: the lowest 9 such that 7 (6*) <
3

for all 9 >9, which implies 7' {9p) = - {I + 6) § [1 - H {9)) + (f>{l - F (9)) < 0. If

9p = 9 then the result is immediate.

The proposed allocation, w and u, and multiplier, A, imply that 7 < and that

7 = whenever u is increasing. Using (6) it follows that (4) and (5) are satisfied.

The next result establishes a connection between assumptions A and A showing

that A is a weaker requirement.

Proposition 12 // the condition for assumption A holds for [9_,6pj3/(3], then the

condition for assumption A holds for [9, 9p]

.

Proof. Let ^ = - > then assumption A is equivalent to

$ {9, e) = il + s)
[p {e) l^y f (^^ (e) //?) - / (0) >
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with /3 (e) = (/3 + e) / (1 + e). Note that $ {9, 0) = 0,

$, {9,e) =p [ep/p) +^ (2/3/ (e/3//3) + p'f (op/p) 9/p) /?' (e)

,

and ^' (e) = (1 - /?) / (1 + e)^ Thus:

$, (^, e) =^^ ((2 - ^ + e) / (^/5//3) + (1 - /3) /' (^/3//5) ^/3//3)

assumption A holding at ^ imphes that (2 - /3) f{9) + {l - P) f'{9)§ > 0. This imphes

(2 - /3 + e) /(^) + (1 - /3) f'{9)9 > for e > 0. So if the condition in assumption A

holds for [9,6pP/P] then $e(^,e) > for all £ > and 9 G [§,9p]. Given that

$ {9, 0) = 0, we have that if A holds for [9, e^P/P], then

/o

for ^ G [:^, ^p] so that assumption A holds.

7 Disagreement on Exponential Discounting

This section departs a bit from our intra-personal temptation environment. We now

consider the case where individuals discount the future exponentially but do so at a

different rate than a 'social planner'. Caplin and Leahy (2001) and Phelan (2002)

provide motivations for such an assumption. Here we simply explore the implications

of such a difference in discount rates.

It is important to note that this modification constitutes more than just a de-

parture on the form of discounting. Our previous analysis relied on the tensions

within an individual due to temptation. In contrast, in the current case we require

some paternalistic motivation for the social planner's disagreement with agents. As

a consequence, some may view this case as more ad hoc and somehow less worthy of

analysis. However, we believe that paternalistic motivations may be behind several

government policies. In the next section we discuss other examples of paternalism.

For the two period case the analysis requires absolutely no change, only a different
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interpretation for ,3. The difference in discounting in the incentive constraints versus

the objective function now arises from an assumed chfference in private and social

discounting, it is no longer motivated by time inconsistent preferences. The relevant

question that remains is whether we can extend the results to longer horizons.

A difficulty is that the planner and agent will disagree on more than just how much

to discount future utility relative to present utility: now there is also disagreement

on the evaluation of future lifetime utility itself. This makes a recursive formulation

more difficult since the key simplification was that the same value function appeared

in the objective function and in the incentive constraints.

Indeed, now we require two value functions, one for the planner, v, and one for the

agent, v^. Fortunately, in the case with logarithmic utility these two value fmictions

are related in a simple way. This allows us to keep track of only one value function,

V, rendering the analysis tractable. We can show that all our results go through in

this case.

Consider first the situation with three periods. Let the exponential discount factor

for the agent be given by P and for simplicity assume the discount factor for the social

planner is unity.

The highest utility achievable by the agent in the last two periods is

vt (y) = {I + P) log {y) + B^

for some constant B'^. For any homogenous mechanism the planner's value function

for the last two periods takes the form:

V2{y) = 2\og {y) + B''

The important point is that these value functions differ only by constants and coef-

ficients. As a consequence the correct incentive constraint for the first period can be

written with either value function. That is,

9U{c{9)) + pv^ {y{e)) > eu [c {ey)+(5i4 {y (b))
,
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is equivalent to,

du (c [9]) + kv2 {y {9)) > 0U (c (^~)) + Psv2 {y [e^)
,

(n)

where Ps = /3(1 + /3)/2 < 1 is a fictitious hyperbolic discount factor when there are

three periods to go. Note that the incentive constraint (11) has all the features of the

hyperbohc discounting case.

Thus, we can we can write the three period problem disagreement on exponential

discounting in the same way as the hyperbolic discounting problem. The arguments

generalizes to any finite horizon. With k remaining periods the discount factor that

must be applied is

Note that /3k is decreasing in k and converges to zero (this last feature is special to

the planner not discounting the future at all).

8 Other Interpretations

In this section we discuss how our model can be reinterpreted for other applications.

8.1 Paternalism

Another interesting application of the model to a paternalistic problem is the choice

between schooling and leisure choice. In many cases the relevant agent is not yet

an adult so that we can interpret paternalism literally as a struggle between the

preferences of parents and child. Alternatively, other adults may be altruistically

concerned about children without parents and support paternahstic legislation.

The child's preference are given by the utility function 9U (/) + /3W (s)where s

represents schoohng time and / represents other valuable uses of time. The taste

parameter 9 affects the relative value placed on schooling vs. other activities. The

parent's preferences are given by 6U (s) + W (s) , so that more weight is given to

schooling time.

The allocation of time is constrained by the time endowment normalized to one,

s + I < 1. In this example no insurance is possible.

33



8.2 Externalities

Another origin for a divergence of preferences between the planner and the agents is

when consumption of a good generates positive externalities. Agents do not internal-

ize the effects of their consumption on other agents but the planner does.

To make this precise, suppose there are two goods, c and /c, that the agent with

taste shock 9 obtains the following utility when the entire allocation is (c [6) ,k{9))

V [6- (c () , k ())) = eU [c {d)) +m {k (9)) +
{1-(3)J

W {k {9)) dF {9) (12)

The last term captures the externality from the consumption of k. The utilitarian

welfare criterion is:

W= fv {9, (c, k)) dF {9) = I
{BU (c {9)) + W [k {9))) dF {9)

.

Thus, we can represent 9U (c) + W (k) as the relevant utility function for agent-^

from the planner's point of view. Although this is not the utility actually attained

by agent-6', which is given by the expression in (12), it is an interpretation that leads

to the same welfare functional.

9 Conclusion

This paper studied the optimal trade-off between commitment and flexibility in an

intertemporal consumption/saving model without insurance. In our model, agents

expect to receive relevant private information regarding their tastes which creates a

demand for flexibility. But they also expect to suffer from temptations, and therefore

value commitment. The model combined the representation theorems of preferences

for flexibility introduced by Kreps (1979) with the preferences for commitment pro-

posed by Gul and Pesendorfer (2002).

We solved for the optimal solution that trades-off commitment and flexibility by

setting up a mechanism design problem. We showed that under certain conditions

the optimal allocation takes the simple threshold form of a minimum savings require-

ment. We characterized the condition on the distribution of the shocks under which

this result holds, and showed that if this condition is not satisfied, more complex
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mechanisms might be optimal. Future work will focus on the case with insurance,

with a hope of understanding how it may affect the results obtained here.

The model is open to a variety of other interpretations. A paternalistic principal

who cares about an agent but believes the agent is biased on average in his choices

would face a similar trade-off as long as the agent has some private information

regarding his tastes that the planner also cares about. We discussed applications to

schooling choices by teenagers and situations with externalities.

A Proof of Proposition 6

Suppose that we are offering a segment of the budget line between the tangency point

for 9l and that of Oh, with associated allocation cl and ch- Define the 9* that is

inchfferent from the allocation c^ and Ch then 9* G {9i,9h) for 9h > 9l- Upon

removing the interval 9 € {9*,9h) types move to Ch and 9 £ {Oi,0*) types move to

Cl allocation.

Let A{9h,9l) be the change in utility for the planner of such a move (normalizing

income to y = 1 for simplicity)

A{9h,9l)= /
{9U{c*{9H)) + W{y-c*{9H))}fi9)d9

{eu[c*[9L)) + w{y-e{eL))}f{9)d9
6l

Bh

{9U{c*{9)) + W{y-c*{9))}f{9)d9

where the function c* [9) is defined implicitly by

eU'[c*{9)]^l3W'{y-c*{9)) (13)

and 6* {9h, 9l) is then defined by

9* {9H,eL)U {c* {en)) + I3W {y - c* {9h))
,

(14)

= 9* {9h, 0l) u {c* {9l)) + m{y- e {9jy)

Notice that A{9l,9l) =0.
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The following lemma regarding the partial derivative oi A{9h,0l) is used below.

Lemma. The partial of A {9h,6l) with respect to 6h can be expressed as:

9^ ^n n , ofn ,.,U' [c* {Oh)) dc* [Oh)

where 5 [9] 9*) is defined by.

P 89H

S[9,9*) = {y-l3){9-9*)9*f[9*) t^e) f {t9)d9

Since U' (c* {9h)) > and

Proof. We have

dc-{eH)

d0H
> 0, then sign (Aj) = sign {S{9h,9*))

Ai {9h, 9l) = [9hU {c* {9h)) + W [y - c* {9h))\ f (^//)

- [r {9h.9j^) U (c* {9h)) + W {y - c* [9^))] f {9']

89*

WH
+ I {9U' (c* {9h)) - W [y - c* {9h))} f (9) ^-^^d9

+ {e* {9h. 9l) U {c* {9l)) + W {y - c* {9^))} f [9*]

- [OhU {c* {9h)) + W (y - c* {9h)) f {9h)]

89*

89H

Combining terms,

Ai(^;/,eL) =

/'"
[eU' {c* {9„)) - W [y - c* {9h))] f {9) d9) ^K^

+ {r {9h,Bi^) [U [c* {9l)) - U [c* {9h))\ + W [y - c* [9^)) - W {y - c* {9^))} f (9*)
89*

89h

Now, from (14) we have

9U'\c{9)\-W'{y-c{9)) =

Substituting above

/3-1
9U' [c*
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Ai(^h,^l) =

'O'(0H.eL)

9--^9H)f{0)d9^U'{c*{en))^^^

+ {e* {9h, 6l) [U (c* {6,)) - U {c* {9h))] + W{y-c* {9^)) - W {y - c* (9^))} f {9*

we also have that from (13)

9* {9h,9l'

39*

39H

(3

[U {c* {9l)) - U (c* i9H))] = {W {y - c* (0^)) -W{y-c* {9h))}

So,

^i{9h,9l) =

.e„

e*f {9*)\[IT {c* {9h)) -U [c* {9^))]

39*

j^" {^^9h -
9^ f {9)d9^U' {c* {9h))

39

3c* {9h)

H

39H

3c* 7H)

Differentiating (14) we obtain:

30*^ [U {c* {9h)) - U {c* {9,))] = - [9*U' {c* {9h)) - ^W {y ~ c* {9h))\
^^^

Using the fact that 9U' [c* {9)\ - pW {1 - c* {9)) = this imphes

^ [U {c* {9h)) - U {c* {9,))\ = [Oh - 9*] U' [c* {9h)] ^-—^

Substituting back the result follows.

From the lemma we only need to sign 5 {9h, 9*). Clearly, 5 {9* , 0*) = 0. Taking

derivatives we also get that

3S{9,9*)

39
= [l-P]e*f{9*)-{l-/3)9f{9)- / f{9)d9

Notice that
dS {9,

9*

39
=

3-S{9,9*)

id9f
= -{2-P)fi9)-{l-/3)9f'{9)
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Note that 9^5 (0,r)/(ae)^ does not depend on ^*,just on 5. It follows that sz.gn
(
^"gyM <

if and only if

f{0)
- 1-/3 ^ '

That is, if A holds. Integrating 9-5 {9, 9*) / [d9f twice:

ren red~S[d,9*
S{9h.B*)= / / / ,

' dOdB

d9]

Thns S{9h,0*) < if >! holds.

This impUes then that Ai [9, 9l) < for all ^ > ^i, if eissumption A holds; and

^{9h,9l)= / A,{9;9L)d9

so that

^7^ >-^ => A {Oh, 9l)<0 ;
for all 9h and 9^

and clearly 9i G argmaxe^>9^ A {9h^ 9l) In other words if assumption A holds then

punching holes into any offered interval is not optimal.

The converse is also true: if A does not hold for some open interval 9 € {di.O^)

then the previous calculations show that it is optimal to remove the whole interval.

In other words,

(6'i, ^o) e arg max A {9h, 9l)

S.t. ei<9L<9H < 02

This concludes the proof.
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B Lemma on Differentiability

Definition. Given a function T : Q. ^^ Y, where Q C X and X and Y are normed

spaces. If for x,h E fl the Umit:

lim - [T (x + ah) - T {x)]
a—>0 a

exists then it is called the Gateaux differential for x,h ^ Q, and is denoted by dT [x] h).

Lemma. Let

T{x)= I g{x{e),e)dii{9)
Je

(9,0,/.;,) is any measure space (not necessarily i? or a vector space) and x : Q ^ R^

in some space Q for which T is defined (an arbitrary restriction or perhaps a required

restriction to ensure measurability and integrability). Suppose g {-,9) is concave and

gx {-,0) exists and is continuous in x, for all 9. Then as long as x + a/i G fi for

a G [0, e] for some e > (a minimum requirement for existence! of course) then:

dT{x;h)= f gAx{9),9)h{9)d^t{9)
Je

if this expression is well defined.

Proof. By definition

dT (x; h) = lim - [T {x + ah) - T (x)]
a^O a

= hm [ -[g {x {9) + ah {9) ,9)-g{x (9) , 9)] dp {9)

= [ gAx{9),9)h{9)dfL
Je

-[g{x{9) + ah{9) ,9) - g{x{e) ,9)]- gAx{9) ,9)h{9)
rv

lim /
"^0 Je

d^i{9)

since for a < e we have

-[g{x{9) + ah{9) ,9) - g{x{9) ,9)]- g,{x[9) ,9)h{9)
a

< -Jg{x (9) + Eh {6) ,e)-g{x [9) , 9)]
- g, [x {9) , 9) h {9)
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by concavity of g.

Since g {x (9) + eh {9) ,6), g (x (9) , 9) and g^, (.r (9) , 9) h {9) are integrable by as-

sumption it follows that i
[g {x (9) + eh [9] ,9)- g{x {9) , 9)] -g^ {x {9) , 9) h (9) is also

integrable. Since any function / is integrable if and only if |/| is integrable [see Exer-

cise 7.26, pg. 192, chapter 8, SLP] we have that j^ [g {x (9) + eh {9) .9) - g (,t {9) , ^)]-

gx {x {9) , 9) h (9) \
is integrable. We then have the conditions for Lebesgue's Domi-

nated Convergence Theorem.

It follows that:

Hm -
[g (x {9) + ah (9) ,9) - g {x {9) , 9)] - g, {x {9) , 9) h {9)

a

Hm -
[g {x {9) + ah [9] ,9) ^ g {x {9) , 9)] - g, [x {9) , 9) h (9)Q—»o a

d^L =
'e

by continuity oig^ and its definition. It follows that dT {x; h) = Jq g^^ {x {&) , 9) h ((?) (i/i.

Remark: Suppose Q is convex and that we are interested in ST{xo;h) then the

obvious requirement that xq + ah E ^ for a E [0, e] for some £ > is satisfied if

and only if h = Xi — Xo and .ri G fi. Note that the case where fl is the space of

non-decreasing functions is convex and so is the space of measurable functions.
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