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Abstract

This paper argues that adding endogenous information aggregation to situations

where coordination is important - such as riots, self-ful filing currency crises, bank

runs, debt crises or Qiancial crashes - yields novel insights into multiplicity and char-

acterization of equilibria. Morris and Shin (1998) have highlighted the importance

of the information structure for this question. They also show that, with exogenous

information, multiplicity collapses when individuals observe fundamentals with small

enough idiosyncratic noise. In the spirit of Grossman and Stiglitz (1976), we endoge-

nize public information by allowing individuals to observe Qiancial prices or other noisy

indicators of aggregate activity. In equilibrium these indicators imperfectly aggregate

disperse private information without ever inducing common knowledge. Importantly,

their informativeness increases with the precision of private information. We show

that multiplicity may survive and characterize the conditions under which it obtains.

Interestingly, endogenous information typically reverses the limit result: multiplicity is

ensured when individuals observe fundamentals with small enough idiosyncratic noise.

JEL Codes: D8, E5, F3, Gl.

Keywords: Multiple equilibria, coordination, self-ful filing expectations, speculative at-

tacks, currency crises, bank runs, financial crashes, rational-expectations, global games.

1 Introduction

It's a love-hate relationship, economists are at once fascinated and uncomfortable with mul-

tiple equilibria. On the one hand, a variety of phenomena seem characterized by large

*We thank helpful comments and discussion from Daron Acemoglu, Francisco Buera and Ricardo Ca-

ballero.



and abrupt changes in outcomes not obviously triggered by commensurate changes in fun-

damentals. Commentators often attribute these changes to arbitrary changes in 'market

sentiments' or 'animal spirits'. Models with multiple equilibria may formally capture these

ideas. Prominent examples include self-fulQling bank runs, currency attacks, debt crises,

Qiancial crashes, riots and political regime changes. 1 In this class of models, multiplicity

arises due to a coordination problem: attacking a 'regime' - for instance, a currency peg -

is beneCbial if and only if enough agents are expected to attack.

On the other hand, models with multiple equilibria are sometimes viewed as incomplete

theories that should ultimately be extended in some dimension to resolve the indeterminacy.

Recently, Morris and Shin (1998)
2 have contributed to this perspective by enriching the

information structure away from common knowledge. They show that a unique equilibrium

survives when individuals observe fundamentals with small enough idiosyncratic noise. Their

analysis is particularly attractive because it can be viewed as a small perturbation around

the original common-knowledge model.

More generally, Morris and Shin introduce a useful framework for studying how informa-

tion heterogeneity affects the determinacy and characterization of equilibria. The dispersion

of valuable information about uncertain fundamentals plays a critical role for their unique-

ness result. An earlier literature dealt with the transmission and aggregation of disperse

information in rational-expectations equilibria. In particular, Green (1973) and Grossman

(1981) highlight that prices may be excellent aggregators of dispersed information by show-

ing that in some cases they can be fully revealing, yielding common knowledge of economic

fundamentals.

Morris-Shin abstracts from the role of Qiancial prices and other indicators as endogenous

aggregators of information. Taking the information structure as exogenous is a useful Qst

step and helps isolate the critical role played by disperse beliefs. However, if Qiancial prices

convey information about the underlying fundamentals, then the dispersion of beliefs is de-

termined endogenously in equilibrium. Information aggregation can thus play an important

role in determining whether multiple equilibria arise. Indeed, Atkeson (2000) notes that

multiple equilibria may survive in the extreme case that Qiancial prices are fully revealing

and restore common knowledge. Moreover, for most of the applications of interest, it seems

unnatural to rule out endogenous information aggregators, such as Qiancial prices or other

indicators of economic activity.

In this paper, we make the Qst attempt, to the best of our knowledge, to incorporate

^or example, Diamond and Dybvig (1983), Obstfeld (1986, 1996), Velasco (1996), Calvo (1988), Cooper
and John (1988), Cole and Kehoe (1996).

2Morris and Shin (1998) build on Carlson and van Damme (1993) who developed the Global Games
approach for the two-player two-action games. See also Morris and Shin (1998, 2000, 2001, 2003, 2004).



endogenous information aggregation in coordination economies with heterogenous informa-

tion. Our model takes as given the initially dispersed private information that is crucial

in the Morris-Shin framework. We build on this by allowing individuals to observe an eco-

nomic indicator that, in equilibrium, aggregates disperse information. Importantly, we avoid

restoring common knowledge by allowing enough 'noise' in the aggregation process, as in

Grossman and Stiglitz (1976, 1980). Thus, none of our results are driven by restoring com-

mon knowledge, the main theme in Atkeson's comments.

We consider a variety of endogenous information structures, including indicators other

than Qiancial prices. Indeed, we begin our exploration with a model that allows agents

to condition their behavior on a noisy signal of the aggregate actions of other agents. We

begin with this model for two reasons. First, this situation seems directly relevant in many

applications. For instance, during riots or bank runs, an important part of the story is that

people are actively watching what others are doing. Ignoring this aspect may be missing an

important piece of the puzzle. Second, this model parsimoniously highlights aspects of the

problem that recur when Qiancial prices are the instruments for aggregating information.

We study two versions of the observable actions case. In the Qst version, agents are

assumed to observe a noisy signal of contemporaneous aggregate actions. An equilibrium

requires that agents choose optimally given the observed signal and, at the same time, this

signal be generated by the aggregation of individual choices. Thus, our equilibrium concept

is novel and unavoidably at the crossroads of rational-expectations and game theory. The

second version avoids the simultaneity in the signal and actions by dividing the population

into two groups, 'early' and 'late' agents. Early agents move Qst and base their decisions

to attack solely on their private information. Late agents move second and can observe a

noisy signal about the aggregate activity of early agents. This non-simultaneous version only

requires standard game-theoretic equilibrium concepts. We show that the equilibria of this

second version converge to that of the Drst as the size of the early movers vanishes.

We next study environments where individuals cannot observe others actions directly but

instead can trade in a Qiancial asset market. This market opens after they have received

their private information but prior to choosing whether to attack the regime. The rational-

expectations equilibrium in the asset market generates imperfect public information that

agents use in addition to their private information when they decide whether to attack. This

framework opens up new modeling choices regarding the specittation of the asset's payoff

and the preferences over its risky return. Indeed, we consider four different specittations

that can be solved in closed-form.

A common insight emerges from all the cases we study: the precision of endogenous public

information is increasing in the exogenous precision of private information. We show that this



implies that introducing endogenous sources of information is important for understanding

the likelihood of uniqueness vs. multiplicity of equilibria. Interestingly, for all but one of

the six specifications we study, endogenous information reverses the Morris-Shin limiting

result: multiplicity is ensured when individuals observe fundamentals with small enough

idiosyncratic noise. Conversely, uniqueness is ensured if idiosyncratic noise is large enough.

Despite the difference in the limiting result we view our paper as underscoring the general

theme emphasized by Morris-Shin, that multiplicity or uniqueness may depend on details of

the information structure and that these are worth exploring. This paper has explored the

importance of endogenous information aggregation. 3

The rest of the paper is organized as follows. Section 2 introduces the basic model and

reviews the Morris-Shin benchmark with exogenous public information. Section 3 introduces

endogenous public information with a signal on aggregate actions. Section 4 studies the role

of Dnancial prices as endogenous aggregators of information. Section 5 concludes.

2 The Basic Model

We present an abstract general formulation of the basic model and then brieDy- discuss the

various interpretations available in the literature.

Actions, Outcomes and Payoffs. There are two possible regimes, the status quo and

an alternative. There is a measure-one continuum of agents, indexed by i € [0, 1]. Each agent

can choose between an action that is favorable to the alternative regime and an action is

favorable to the status quo. We call these actions, respectively, "attack" and "not attack".

All agents move simultaneously.

We denote the regime outcome with R G {0, 1}, where R = represents survival of the

status quo and R = 1 represents collapse. We similarly denote the action of an agent with

at e {0, 1}, where a; = represents "not attack" and a; = 1 represents "attack".

The payoff from not attacking is normalized to zero. The payoff from attacking is b >

if the status quo is abandoned and — c < otherwise. Hence, the utility of agent i is

U{ai} R) = <n(bR-c).

3Endogenizing the information structure is also the theme in Angeletos, Hellwig and Pavan (2003, 2004).

They examine how the information conveyed by active policy interventions may result to multiplicity, and
how the evolution of information over time affects the dynamics of regime change. Dasgupta (2002), on the

other hand, considers how social learning affects coordination.



Finally, the status quo is abandoned (R = 1) if and only if

A>9,

where A = f atdi G [0, 1] denotes the mass of agents attacking and G 1R parameterizes the

exogenous strength of the status quo (or the quality of the economic fundamentals). Let

£ = and = 1.

Note that the actions of the agents are strategic complements, since it pays for an indi-

vidual to attack if and only if the status quo collapses and, in turn, the status quo collapses

if and only if a sufficiently large fraction of the agents attacks. This coordination problem

is the heart of the model.

Interpretations. This simple model can capture the role of coordination and mul-

tiplicity of equilibria in a variety of interesting applications. For instance, in models of

self-fulQling currency crises (Obstfeld, 1986, 1996; Morris and Shin, 1998), there is a central

bank interested in maintaining a currency peg and a large number of speculators, with Unite

wealth, deciding whether to attack the currency or not. In this context, a "regime change"

occurs when a sufficiently large mass of speculators attacks the currency, forcing the central

bank to abandon the peg.

In models of self-fulling bank runs, a "regime change" occurs once a sufficiently large

number of depositors decide to withdraw their deposits, relative to liquid resources available

to the system, forcing the bank to suspend its payments. Similarly, in models of self-fulQling

debt crises (Calvo, 1988; Cole and Kehoe, 1996; Morris and Shin; 2003), a "regime change"

occurs when a lender fails to obtain reQiancing by a sufficiently large fraction of its creditors.

Finally, Atkeson (2000) interprets the model as describing riots. The potential rioters

may or may not overwhelm the police force in charge of containing social unrest depending

on the number of the rioters and the strength of the police force.

Information. Suppose for a moment that were commonly known by all agents. For

< 0, the fundamentals are so weak that the regime is doomed with certainty and the

unique equilibrium is every agent attacking. For > 9, the fundamentals are so strong that

the regime can survive an attack of any size and the unique equilibrium is every agent not

attacking.

For intermediate values, G (0,0], the regime is sound but vulnerable to a sufficiently

large attack and there are multiple equilibria sustained by self-fulQling expectations. In one

equilibrium, individuals expect everyone else to attack, they then Old it individually optimal

to attack, the status quo is abandoned and expectations are vindicated. In another, individ-

uals expect no one else to attack, they then Dad it individually optimal not to attack, the



status quo is spared and expectations are again fulUled. The interval (0, 8] thus represents

the set of "critical fundamentals" for which multiple equilibria are possible under common

knowledge.

Implicitly, each equilibrium is sustained by different self-MQling expectations about what

other agents do. With common knowledge, in equilibrium individuals can perfectly forecast

each other actions and coordinate on multiple courses of action. Following Morris and Shin

(1998), we assume that 6 is never common knowledge and that individuals instead have

private noisy information about 8. Private information serves as an anchor for individual's

actions that may avoid the indeterminacy of expectations about others actions.

Initially agents have a common prior about 8; for simplicity, we let this prior be (degen-

erate) uniform over the entire real line. Agent i then observes a private signal

where the idiosyncratic noise £{
is A/"(0, o~l) with ax > and is independent of 8. The signal

Xi is thus a sufficient statistic for the private information of an agent.

Note that because there is a continuum of agents the information contained by the entire

economy, (^i) ie r ji , is enough to infer the fundamental 9. However, this information is

dispersed throughout the population, which is the key feature of the Morris-Shin framework.

Finally, agents may also have access to some public information. We start by reviewing

the Morris-Shin benchmark, where the public signal is exogenous. We then consider the

endogenous public information generated by a noisy indicator of aggregate activity or prices

2.1 The Morris-Shin Benchmark: Exogenous Information

In this subsection, we assume an exogenous public signal z = 8 + v, where v ~ _A/"(0, o^) in

addition to the private signals Xi = 8 + £i;
where ^ ~ A/"(0, <t£). The private noise £ and

the public noise v are distributed independently of each other and independently of 8. Our

model then reduces to that of Morris and Shin (2000, 2001), with exogenous private and

public information (see also Hellwig, 2002).

In a monotone equilibrium, for any realization of z, there is a threshold x*(z) such that

an agent attacks if and only if x < x*(z). By implication, the aggregate size of the attack is

decreasing in 8, so that there is also a threshold 9*(z) such that the status quo is abandoned

if and only if 8 < 8*(z). A monotone equilibrium is identiCed by x* and 8*
. In step 1, below,

we characterize the equilibrium 8* for given x*. In step 2, we characterize the equilibrium x*

for given 8*
. In step 3, we characterize both conditions and examine equilibrium existence

and uniqueness.

6



Step 1. For given realizations of 8 and z, the aggregate size of the attack is given by the

mass of agents who receive signals x < x*(z). That is,

A(d,z) = $(^(x*(z)-d)),

where ax = a~ 2
is the precision of private information. Note that A(8, z) is decreasing in 8,

so that regime change occurs if and only if 8 < 8*(z), where 8*(z) is the unique solution to

A(8*(z),z)=8*(z).

Rearranging we obtain:

x*{z)=d*(z) + -^=$- 1
{F{z)). (1)

Jot*

Step 2. Given that regime change occurs if and only if 8 < 8*(z), the payoff of an agent

is

E[U(a,R{8,e))\x,z] = a(bPi[8 < 8*(z)
\

x,z]-c).

Let ax = a~ 2 and az = a~ 2 denote, respectively, the precision of private and public infor-

mation. The posterior of the agent is

8\x,z ~M(6x + (l—5)z , a' 1

) ,

where 5 = ax /(ax + az ) is the relative precision of private information and a = ax + az is

the overall precision of information. Hence, the posterior probability of regime change is

Pi[9<6*(z)\x,z] = l-$ (^{5x + (1 - 8)z - 8*(z)))
,

which is monotonic in x. It follows that the agent attacks if and only if x < x*(z), where

x* (z) solves the indifference condition

bPv[8<8*{z)
|
x*(z),z] =c.

Substituting the expression for the posterior and the deQiition of 5 and a, we obtain:

^(v^T ẑ (^r-x*(z) + ^-z-8*(z))) =
b—^.

(2)

\ \ax + az ax + az J J b

Step 3. Combining (1) and (2), we conclude that 8*{z) can be sustained in equilibrium

if and only if it solves

G(8*(z),z)=g, (3)



where g = y/l + az/ax§ l
(1 - c/b) and

G(8,z) = -^(z~8) +^ 1

(8)
'a.

With 6*{z) given by (3), x*(z) is then given by (1). We are now in a position to establish

existence and determinacy of the equilibrium by considering the properties of the function G.

Note that, for every zGE, G(6, z) is continuous in 8, with G(8, z) = -co and G{8, z) = oo,

which implies that there necessarily exists a solution and any solution satisCes 8*(z) e (8, 8).

This establishes existence; we now turn to uniqueness. Note that

dG(8, z) 1 az

88 0($" 1
(8)) y^

Since max^R <j){w) = 1/\/2tt then if az /^/a^ < \/27r we have that G is strictly increasing in

8, which implies a unique solution to (3). If instead az /^fcTx > V2tt, then G is non-monotonic

in 8 and there is an interval (z,z) such that (1) admits multiple solutions 9*(z) whenever

z £ (z, z) and a unique solution otherwise. We conclude that monotone equilibrium is unique

if and only if az /-
sfax

~ < y2n.

We summarize these results in the following proposition.

Proposition 1 (Morris-Shin) Suppose agents observe an exogenous public and private

signal. Let ax and az denote the standard deviations of the private and the public noise,

respectively. Monotone equilibria exist and are unique if and only if ax/a
2
z < v2tt-

Finally, consider the limits as ax
—> for given az , or az

—» oo for given ax . In either case,

ctz/^foLc —> and y/(ax + az )
/ax

—> 1. Condition (3) then implies that 8*(z) —> 8 = 1 — c/b,

for all z. This proves the following result, which we refer to as the Morris-Shin limit result:

Proposition 2 (Morris-Shin limit) In the limit as either ax —> for given az ,
or az

—>

oo for given ax ,
there is a unique monotone equilibrium in which the regime changes if and

only ifd<6, where 8 = 1 - c/b e (6, 6)

3 Endogenous Information on Actions

We now study the case where public information is endogenous. Agents no longer receive the

public signal z as assumed in section 2.1. Instead, individuals are able to observe a public

noisy signal of the aggregate actions of others.



We study two versions of such a model. In the dst version, contemporaneous actions

are observed with noise. Thus, our equilibrium concept is novel and unavoidably at the

crossroads of rational-expectations and game theory.

The second version, in Section 3.3, has non-simultaneous moves by dividing the popu-

lation into two groups, 'early' and 'late' movers. Individuals in the early group make their

decisions to attack or not based solely on their private information. Individuals in the late

group move and are able to observe a noisy signal of the early group's aggregate action. This

non-simultaneous version only requires standard game-theoretic equilibrium concepts. We
show that the equilibria of this second version converge to that of the Qst as the size of the

early movers vanishes.

3.1 Equilibrium with Endogenous Information

We assume that agents can condition their behavior on a noisy indicator of the contempora-

neous aggregate attack:

y = s(A,e)

where e is random noise and s : [0, 1] x R —* 1R. All agents are assumed to move simultane-

ously so that y is a signal about contemporaneous actions.

For reasons of tractability we specify the signal function as s(A,e) = <£
-1

(A) +e and the

noise s as J\f(0, o-
2
e ) with ae > 0. The common noise e is distributed independently of the

fundamentals 6 and the idiosyncratic noise £. As we will see, the above speciCbation allows

the equilibrium to preserves normality of the information structure, which in turn permits

closed-form solutions. This convenient specittation was introduced by Dasgupta (2001) in

a different setup.

The information structure is parameterized by the pair of standard deviations (ax ,a£ ). In

any symmetric equilibrium agents are distinguished solely by their information, summarized

by their observation of the private signal %i and the public signal y. Let a(x{,y) denote the

action chosen by such an agent. A symmetric rational-expectations equilibrium is deQied as

follows.

A symmetric equilibrium consists of an endogenous signal y = Y(9,e), an individual



attack strategy a(x,y), and an aggregate attack A(9,y), that satisfy:

a(x, y) = arg max E [ U{a, R(9, y)) j
x, y ] (4)

a£[0,l]

A(9,y) = Ja(x t
y)d^^^y (5)

y = $-\A(9,y))+s (6)

for all (9, e, x, y) e R4
. Where i?(0, y) = 1 if A(0, y) > 9 and E(0, y) = otherwise.

Condition (4) means that a(x,y) is the optimal strategy for the agent given that regime

change occurs if and only if A(9, y) > 9, whereas condition (5) means that A(9,y) is simply

the aggregate across agents. Of course, the aggregate public signal y must be consistent with

individual actions which gives condition (6). This is the rational-expectations feature in our

equilibrium concept.

For tractability we focus on symmetric equilibria where the information structure is

normally distributed and the strategy of the agents is monotone in private information. As

we shall see below, normality of the information structure is an implication of the non-

simultaneous model of section 3.3. We refer to such equilibria simply as monotone equilibria.

3.2 Equilibrium Analysis

We now study the equilibrium conditions (4)-(6). In monotone equilibria, for any realization

of y, there exist thresholds x*(y) and 0*(y) such that an agent attacks if and only if x < x*(y)

and the regime changes if and only if 9 < 9*(y). A monotone equilibrium is thus identiCed

with the triplet of mappings x*, 9* and Y.

We construct the set of monotone equilibria in four steps. In Step 1, we start with an

arbitrary x* used by the agents and use conditions (5) and (6) to characterize the implied

aggregate attack A, the resulting 9* and the possible public signals Y. In Step 2, we take

9* and Y as given and use condition (4) to compute the threshold x** that is individually

optimal. In Step 3, we study the Cked point x* = x**. Finally, in Step 4, we consider the

determinacy of Y.

Step 1. In a monotone equilibrium, a(x,y) = 1 if and only if x < x*(y), for some

function x*. The aggregate attack is then

A(9,y) = <S>(^-x (x*(y)-9)), (7)

10



where ax = ax
2

. Note that A(9,y) is decreasing in 9 so there exists a function 9*(y) such

that A{9,y) > 9 if and only if 9 < 9*{y). The threshold 9*(y) solves A(0*(y),y) = 6*(y), or

equivalently

**(y) = ^(y) + -4=*-1
(^(y)). (8)

\/CXt.

Equilibrium condition (6) implies that the signal signal must satisfy,

y = ^faTx [x*{y) -8]+e,

or equivalently

x*(y)-axy = 9-axe. (9)

For any (9,e) € R2
, let z = Z(6,e) = 9 — ax e and note that (9) is a relation between y and

z. DeQie the correspondence

y(z) = {yeR\x*(y)-axy = z}. (10)

In Step 4, we show that y(z) is non-empty and examine when it is single- or multi-valued.

Now take any function Y(z) that is a selection from this correspondence, i.e., such that

Y(z) £ y{z) for all z, and let the signal be Y(6,e) = Y(Z(9,e)) = Y{9 - ax e). As we shall

see any such selection preserves normality of the information structure.

Step 2. We now map 9* and Y to x**. Given that regime change occurs if and only if

9 <-9*(y), the expected payoff for the agent is given by

E[U(a,R(9,e))
|
x,y] = a{6Pr [

9 < 9*{y) \x,y]-c}.

We thus need to consider the determination of the posterior probability Pr
[ 9 < 9*

(y) \

x, y }

.

The observation of y = Y(9,e) = Y(z) is equivalent to the observation of

Z(y) = x*(y) - axy = 9 - axe = z

That is, it is as if the agents observe a public signal z about 9, with noise A/"(0, cr^cr
2
). Recall

that each agent also observes a private signal about 9, with idiosyncratic noise A/"(0, <jx ). Let

ax = <t~
2

, ae
= cr~

2
, and az = axae = (axa£

)~ 2
. Combining the two sources of information

we conclude that the posterior of an agent is

9\x,y ~ Af(5x + (l-S)Z(y) , a' 1

) ,

where a = ax + az is the total precision of information and S = ax /{ax + az ) is the precision

11



of x relative to the total.

It follows that

Pr [6 <d*(y)\x,y] = l-$ (yfa (Sx + (1 - 5) Z(y) - 6*(y))) .

Note that the above is monotonic in x so the agent attacks if and only if x < x**(y), where

x**(y) solves

bPv[9<6*(y) \x**(y),y] = c.

Combining the above two conditions and substituting Z(y) = x*(y) — y/.y/ax~, we did that

x**(y) must solve

$ (y/Z (5x**(y) + (1-5) (x*(y) - -j=y\ - P(y)X\ =~ (11)

Step 3. In equilibrium, x** = x* and (11) reduces to

1-5 \\ b-c${^(x*(y)-6\y)-±-=y\\ =

Combining the above with (8), using 5 = ax/(ax + az ) and a = ax + az , and rearranging,

we obtain:

6-(y) = • (-*-» + X^Z*-(^i)), (12)
\ax +az V ax + az \ b J J

**(y) = 9*(y) + -^t>- 1

(0*(y)), (13)

where a z = axaE . Hence, for all ax and ae , the equilibrium x* and 6* are determined uniquely

and irrespectively of the selected equilibrium signal Y. Moreover, both 0*(y) and x*(y) are

increasing in y. Finally, 9*(y) does not depend on ax , 6*(y) —
> 1 — c/6 as cre

—> oo and

e*(y)-+$(y) asa£ ^0.

Step 4. We Qially need to consider the equilibrium correspondence y(z). Recall that

this is given by the set of solutions to

x*(y) r=zy = z.

12



Using (12) and (13), the above reduces to

\ax + az J JoTx V ax + az
'

where A = \Jax j (ax + az)Q~
1
(l — c/b). Note that F(y) is continuous in y, and F(y) —> —oo

as y —> +co, and F(y) —> +oo as y —> — oo. Thus, the correspondence y(z) is non-empty and

an equilibrium always exist. To examine multiplicity, we ask whether y(z) is single-valued

for all z,. which is true if and only if F is monotonic in y.

Differentiating F we obtain

fto) = --*=-(l--£=#Y-5-V + A
a>x + az \ y/ax \ax + az

It follows that the determinacy of equilibrium hinges on the ratio az / y/oi^, like in the Morris-

Shin benchmark. Since max^gK <j){w) = 1/v2tt, we have that F is decreasing in y, and

therefore y(z) is single-valued for all z, if and only if az
j

' yfax
~ < \f2ir. If instead az

/
' sfcTx >

V2tt, there are thresholds z and z such that y(z) takes one value for z ^ (z,z) but three

values for z € {z,~z). These thresholds are given by z = F(y) and ~z = F(y), where y and y

are, respectively, the lowest and highest solution with F'(y) = 0.

Unlike the Morris-Shin benchmark, however, the ratio a z /^/ax
~

is endogenous. Using

az = a£ax ,
we conclude that the equilibrium is unique if and only if aey/ax

' < \f2ir.

The following proposition summarizes these results.

Proposition 3 (Morris-Shin meet Grossman-Stiglitz) A monotone equilibrium is

characterized by a triplet of mappings (Y,x*,6*) such that the endogenous signal satisDes

y = Y(9,e), a agent attacks if and only if x < x*(y), and regime change occurs if and only

tf0<9*(y).

A monotone equilibrium exists for all (ax ,a6 ) and is unique if and only if o\o~x > 1/V27r.

If a\ax < l/\/27r, the equilibrium signal function Y is indeterminate, but the equilibrium

threshold functions x* and 9* remain unique and independent of the selected Y.

We conclude that the equilibrium is unique only if there is enough noise in both sources

of information, the exogenous information of the agents and the endogenous signal about

aggregate activity. Multiple equilibria survive as long as either source of information is

sufficiently precise.

Interestingly, when multiplicity arises it is with respect to aggregate outcomes but not

with respect to individual behavior. To understand this result, consider the common-

knowledge limit (ax = ae — 0), in which case x — 9 and y = ^~ 1 (A), so that the agent learns
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9 perfectly by observing x and learns A by observing y. The agent then Qids it optimal

to attack if and only if A > 9, or equivalently x < $(y). Here, the equilibrium strategy

a(x,y) for the agent is uniquely determined with x*(y) = $(y). However, the equilibrium,

values of A and y are not uniquely determined. Instead, for every 9 E (9,6], both A =

and A = 1 can be sustained in equilibrium.4 When o^ and ae are non-zero, the same nature

of indeterminacy remains. The equilibrium behavior of the agent is uniquely determined for

any given observation x and y, but there can be multiple equilibrium values of A and y for

any given realization of 6 and e.

Finally, since our endogenous-information economy is different from the exogenous in-

formation economy of Morris-Shin, it is interesting that the determinacy of equilibrium in

both cases hinges on exactly the same ratio az /-
s
/ax'. However, note that, in equilibrium, the

information generated by y is equivalent to the information generated by z = Z(y) = 6 — axe.

Our endogenous-information economy is thus related to an exogenous-information economy

with precision of public information given by az = ay
= aeax . Indeed, substituting this

expression into the criterion for multiplicity from proposition, ?? that ox ja\ > v27r, yields

the criterion for multiplicity in proposition 3, that a^ax < 1/\/2tt. As the precision of private

information becomes inLnite so does the precision of public information.

Proposition 3 establishes that, for any given level of noise in the agents' private infor-

mation, multiple equilibria exist if and only if the noise in the macroeconomic indicator is

sufficiently small. Intuitively, an increase in a£ reduces the public information generated by

the observation of y and thus reduces the ability of the market to coordinate on multiple

courses of action. Indeed, the equilibrium conditions (12) and (13) imply that, for every y,

we have 9*(y) —> 1 — c/b = 9 and x*(y) —> 6 + ax
^~ 1

(9) as at
—> oo.

Proposition 4 (Limit a£ —> oo) Fix ax and let ay
—» oo. In the limit, the regime changes

if and only if 9 < 9, where 9 = 1 — c/b G (9, 9).

The Morris-Shin outcome is obtained as the noise in the observation of aggregate activity

becomes arbitrarily large. This is intuitive, for in this case no information is generated by

the observation of y and the endogeneity of public information is of no importance.

Consider next the limit of the precision of agents' private information, for given level

of noise in y. Proposition (3) establishes that, for given ae , multiple equilibria exist if and

only if o~x is sufficiently small. The interval (z,z) represents the region of multiplicity and a

4
If A — 0, then y = — oo and x*{y) = <5~ 1 (— oo) = 8, in which case all agents attack whenever 6 < 6 and

no agent attacks whenever 8 > 9_. If instead A = 1, then y = +oo and x*(y) = $_1 (+oo) = 9, in which case

all agents attack whenever 8 < 8 and no agent attacks whenever 8 > 8. In the former case, a regime change

is triggered if and only if 8 < 9; in the latter, if and only if 8 < 8.

14



reduction in ax reduces z and increases z making larger the multiplicity region. Indeed, as

ax —* we can show that any outcome is possible for all 9 G (9, 9).

Proposition 5 (Limit ax
—

> 0) Fix o~e and let ax — 0. There exists an equilibrium with

the probability of regime change converging to zero for all 9 G (9, 9), as well as an equilibrium

with the probability of regime change converging to one for every 9 G (#, 9)

.

Proof. First, note that y —> — oo and y —> +oo as ax —> 0. Next, note that both \o
J2

eux — (j)(y)\

and \o\ox — <f)(y)\ vanish. Since lim^-oo <f>{y)y = lim^+00 (j)(y)y = 0, the latter implies

o~xy —> and axy —> 0. Hence, z —> $(— oo) = 9 and z —> $(+oo) = 9 as crx —» 0. Moreover,

for every 9 and e, 61 — axe —> as o"x —> 0. It follows that

Pr
[ 9 - axe £ (z,z)

|
9 e {9,6) ]

-> 1 as cjx -» 0.

Next, let Y(9,e) = min3^(^ — ^e) and Y(9,e) = max3; (6
l — axe) and consider (^,e) such

that 9 — axe G (z,z). Note that y(^,e) < y <y < Y(9,e) and therefore

F(0,e)—>— oo and y(#,£)—>+oo as ox —> 0.

From (12), 0*(y) is independent of ax , 9*{y) —* <&(— oo) = ^ as y —> — oo, and 6*{y) —

>

$(+co) = 9 as y —> +oo. It follows that, as long as 9 G (9, 9),

Pr[ 9 < 9* (Y(9,e))
]
-> and Pr [

< 5* (F(d,e))
]
- 1 as ax -> 0,

which establishes the result.

This result stands in stark contrast to the Morris-Shin limit result in Proposition 2.

With exogenous public information a unique equilibrium survives as the noise in private

information vanishes. With endogenous public information as modeled here the multiplicity

present with common knowledge obtains as the noise in private information vanishes. The

reason is once again the endogeneity of public information: As the precision of private

information increases, the precision of public information also increases, and indeed at the

same rate, so that common knowledge is recovered in the limit.

3.3 Non-Simultaneous Signal

The analysis so far has assumed that agents can condition their decision to attack on a

noisy indicator of contemporaneous aggregate behavior. We now consider an alternative
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that introducing some simple dynamics to break the simultaneity of signals and actions. As

a result, the equilibrium concept in this model is entirely game-theoretic.

There are two types of agents, "early" and "late" . Early agents move [1st, on the basis

of their private information alone. Late agents move second, on the basis of their private

information as well as a noisy public signal about the aggregate activity of early agents.

Neither group can observe contemporaneous activity, but late agents can condition their

behavior on the activity of early agents.

Let
fj,

e (0, 1) denote the fraction of early agents, A Y the aggregate activity of early

agents, and A2 the aggregate activity of late agents. The regime changes if and only if

^ii4 1 + (1 - fi)A2 > 6. The signal generated by early agents and observed only by late agents

is given by

y1 = $-\A1 ) + e, (15)

where e ~ A/"(0, a^) is independent of 6 and £.

In a monotone equilibrium, an early agent attacks if and only if x < x\
,
for some threshold

x\. The aggregate attack of early agents is thus

A1 (9) = $( y/^[9-x*1]). (16)

Hence, in equilibrium

m = &- 1
(A, (9)) + e = ^Tx [x\ - 9} + e.

The observation of y is thus equivalent to the observation of a public signal z, which is

dedied by

-y = - ax e.
y/otx

The strategy of a late agent is contingent on his private signal x and the public signal y.

Since y and z has the same informational content, we can equivalently express the strategy

of a late agent as a function of x and z. Hence, in a monotone equilibrium, a late agent

attacks if and only if x < x\(z), for some threshold function x\. It follows that the aggregate

attack of late agents is

A2 (6,z) = $( x̂-[6-xl(z)}). (17)

Combining (16) and (17), we obtain the overall size of attack:

A (6, z) = ijl§ {^Tx [9-xl]) + (l- /i)$ (Vc£ [9 - x*2 {z]\)

.
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It follows that the regime changes if and only if 8 < 8*(z), where 9*(z) solves A (8*(z), z) =

9*(z), or equivalently

//$ {yfe [6*{z) - x*]) + (1 - //)$ (Vo~ [8*(z) - x*2 (z)}) = 8*(z). (18)

Next, consider the optimal behavior of the agents. Note that the realization of z is

known to the late agents but unknown to the early agents. The threshold x 2 (z) thus solves

6Pr [8 < 8* {z)\x*2 {z) , z] = c, or equivalently

$ (yfc(5x'2 (z) + {l-6)z- 8*(z))) = ~, (19)

where 5 = cx.x /{olx + az ) and a = ax + az . The threshold x\, on the other hand, solves

&Pr [9 < 9*(y)\x{] — c, or equivalently

f$(^[d*(z) - x\]) ^^(^[[z - x])dz = ^, (20)

where we used the fact that, conditional on x, z is distributed normal with precision ot\ =

axa£/{\ + a£ ).
5

Solving (18) for x*
2
{z) gives

x*2 {z) = 9*{z) - y^®- 1 U(z) + -^— [8*{z) -§(^TX \9*{z) - x\})]\ .

Substituting the above into (19) and using 5 = ax /(ax + az ) and a = ax + az , we obtain:

T(8*(z),z,x*
1 , f
i)=g, (21)

where g = y/l + az/ax§ x
(1 — c/b) and

r(e,z, Xl ,n) = ^=(z-9) + &- 1

(9 + -±- [8 - $ (^rx [9 - Xl])]\

.

For any x\ G E and any z G M, we have that Y(9,z,x\,n) is continuous in 8, with

T(8,z,xl,fi) = —00 and T{9,z,x\,n) — 00. Hence, for any given threshold x\ G M, con-

dition (21) determines a function 8*
: M —> [8,8]. On the other hand, for any given function

8*
: K —> [8,8], condition (20) determines a threshold x\ G K. An equilibrium is any joint

solution to (20) and (21).

5To see this, note that z = 6 - axe = x - £ - ax e, so that z\x ~ M (0, ax + a\a^)
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Consider now the limit as fi -> 0. Note that, for all (0, z, x\) 6l2,^0 implies

r(M,s» - G(M) = ^=(z-9) +^ (0) .

lOLn

Note that G is independent of x{ and is the same as in the Morris-Shin benchmark. Consider

now a function 9*
: R —> [0,0] such that, for all 2,

G(9*(z),z)=g. (22)

As shown earlier, 9* is unique if and only if az /^/a^ < v2n. If instead az /^/a^ > V27T,

there are multiple 9* solving (22). Moreover, for any such 9*, (20) admits a unique solution

x\ e R. We conclude that, for fi small enough, there are multiple solutions to (20) and (21)

whenever az/y/a^ > ^/2rr. But az = a£ax , so that multiple equilibria again emerge as long

as OLe^fOL^ > v2tt.

Moreover, the equilibria of this economy approximate the equilibria of our benchmark

model in the following sense. Let £^ denote the "dynamic" economy of this section and S

the "static" economy of the previous section. Let x* and 9* denote the equilibrium thresholds

for £, y the correspondence deQied in (10), and Y a function selected from this correspon-

p
(M-p<y(*)) < u anddence. For any u > 0, we can Qid \i small enough such that

x
l( )(

z )
~~ X*(Y(Z )) < u f°r au z

->
where x*

2 , . and 0^ are the thresholds associated with

an equilibrium of £^y To see this, note that 9* and Y are part of an equilibrium for S if and

only if the composite 9* o Y is a solution to (22).

Finally, let us introduce a random variable y2 deQied by

y2 = $- 1 (A2)+e,

where £ is the same realization as the one in (15). y2 is a noisy indicator about the activity

of late agents. If y2 is unobservable, late agents continue to attack if and only if x < x2 {z).

Hence, in equilibrium, $ _1
(A2 ) + £ = ^JaZ [x2 {z)

— z] and y2 is a function of z alone:

y2 (z) = y/aZ{x*2 {z) - z).

Since y2 conveys no more information than z and thus no more information than yi , nothing

changes if we allow late agents to condition their behavior on y2 in addition to y\. That is,

the equilibria of the economy where late agents observe both yi and y2 coincide with the

equilibria of the economy where late agents observe only y\

.

Now consider again the limit as \i
—

> 0. Since x*
2

, Az) —
> x*(Y(z)), we have y2(^)(z)

—

>

18



^/o^ x*(Y(z)) — z . By definition of Y(z), we have Y(z) = ^JaZ x*(Y(z)) — z . Hence,

V2(ii)(z )
~~

> Y(z )- That is, in the limit as \x —> 0, the random variable t/2(/x) that is part of

an equilibrium in economy £^ solves the Dxed-point condition y = <&
_1

{A{6
i y)) + e for

economy £. Conversely, any Y(z) that is part of an equilibrium for £ can be approximated

by a random variable y-zfji) of economy £(M). This indeed provides a justification for the

equilibrium selection we made in Section 3.1. Any equilibrium of the "static" economy in

which the signal y is not a function of z alone, if it exists, can not be approximated by an

equilibrium of a "dynamic" economy.

4 Financial Prices

The analysis so far has assumed that agents can condition their decision to attack on a noisy

indicator of aggregate behavior. Instead, we now allow agents to observe a Dnancial price

that is determined earlier in a competitively asset market.

We modify the environment as follows. There are two stages and we refer to stage 1

as the 'asset market'. All individuals begin with the same endowment of wealth w and an

exogenous private signal x, = 8 + £ { , where the noise ^ is as before.

In the fist stage, agents trade a financial asset that has a dividend that depends on the

underlying fundamentals, either directly or indirectly. In the second stage, agents decide

whether to attack the regime or not as in the basic model. The return of the asset and the

regime outcome are realized at the end of the second stage. Here, in deciding whether to

attack agents can no longer condition their choice on a direct signal of the aggregate attack

as in Section 3. However, in addition to their private information, they can use information

revealed by the equilibrium price from the [1st stage.

This framework opens up new modeling choices regarding the specification of the Qiancial

asset's payoff and the preferences over risky payoffs. Following Grossman-Stiglitz, we guide

our choice with an eye towards tractability. The four specifications we solve below are

designed so that they preserve normality of the information structure and are solvable in

closed-form.

We Qst introduce some general notation and state the equilibrium conditions. We denote

by p the price of the asset or more generally some measure of the terms of trade. Let / the

dividend paid by the asset is represented by / and k{ be the investment agent i makes in

this asset. For all cases we consider we can express the indirect utility the agent enjoys from

his portfolio choice by a function V(k, f,p) so that the total payoff is

Ui = V(ki,f,p) + U(a,i,R),
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where the utility from attacking U is just as in Section 2.

Let aggregate demand for the asset be K = J k{di. We assume there is a shock e to

the exogenous net supply of the asset. One interpretation of the net supply shock is that

it results from a shock to the demand of other 'noisy' traders. This shock is not observed

by individuals and we assume that it is A/^O, o~1) and independent of both the fundamentals

and the private noise.

Market clearing requires K = e which determines an equilibrium price function P(8,e).

As in Grossman and Stiglitz (1976, 1980), the role of the shock e is to introduce noise in

the information revealed by Qiancial prices about fundamentals. Since the price function

is a function of both 9 and e the observation of p does not reveal 9 perfectly, leading to a

signal-extraction problem.

A rational-expectations equilibrium is a price function, p = P(9,e), individual strategies

for investment and attacking, k(xl

,p) and a(x\p), and aggregate investment and attack

functions, K(9,p) and A(9,e), such that in the Crst stage:

k(x,p) = argmaxE[ V(k,f,p) \x,p] (23)

K(0,p) = Jk(x,p)d$(Z^\ (24)

K(9,P(9,e))=e (25)

and in the second stage

a(x,p) = axgmaxR[U(a,R)\x,p], (26)
a£[0,l]

' v ;

A(6,p)= f a(x,p)d<S>(^^-j, (27)

where R = 1 if A(8,p) > 8 and R = otherwise.

The information an agent has consists of the privately observed signal x and the publicly

observed price p. In this sense, the price p takes the place that the signal y had in the

observable action model of Section . Condition (25) imposes market clearing in the asset

market. Condition (23) and (27) requires that an agent's investment take into account the

information contained in their private information and prices.

The four speciCcations we consider below generate the following information structure.
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There is a strictly monotone function Z{y) and a random variable v that is A/"(0, Q{ax , aE
)~ l

)

and independent of 9 and £ such that Z(P(9,e)) = 9 + v for every realization of 9 and e.

Thus, the observation of an equilibrium price realization p is informationally equivalent to the

observation of a public signal z = Z(p) on 9 with normal error and precision ap
= Q(ax ,ae ).

The agent's posterior conditional on his private information x and the observed price p

is

9 \x,p ~N(5x + {l-8)z , a' 1

) ,

where 5 = ax/(ax+ap ) and a = ax+ap . Like in the Morris-Shin benchmark, the determinacy

of equilibrium turns out to depend on the ratio

ap

that is, the ratio of the precision of the public information generated by the price to the

square root of the precision of the exogenous private information. If ap /\faZ < V^w, then

the equilibrium is unique. If instead ap j\/ax
~ > V2ty, then there are multiple equilibria.

Unlike Morris-Shin, however, the precision of public information ap , and therefore the ratio

c^p/V^ri are endogenous and affected by ax .

In what follows, we consider four alternative speciCcations of the asset market (stage 1).

In each case, we solve for the equilibrium price function and the associated mappings Z and

Q. We then examine the critical ratio olp J sJ~oix
~ to study the determinacy of equilibrium as a

function of the exogenous information structure, (ax ,a£ ), or equivalently (ax ,aE ).

4.1 Risk Aversion — Fundamental Dividend

We start with an example that maps directly to the CARA-normal framework introduced by

Grossman and Stiglitz (1976, 1980) [see also Hellwig (1980)]. The agent can invest his wealth

either in a risky asset or a risk-less asset. We normalize the gross return of the risk-less asset:

it costs the agent 1 in the dst stage and delivers 1 in the second stage. The risky asset costs

the agent p in the Crst stage and delivers f(8) = 9 in the second. Here the return of the

asset depends directly on the exogenous fundamental.

The agent enjoys utility only from second-stage consumption and his preferences over

second-stage consumption exhibit constant absolute risk aversion (CARA). The indirect

utility from his portfolio choice is thus given by

V(k, f,p)=u(w- pk + fk) , u(c) = - exp(-27C)/27, (28)
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where k is the amount invested in the risky asset and w — pk is invested in the risk-less asset,

c = w — pk + fk is second-period consumption.

Setting J^E [
V(k, f,p) \

x,p] = we obtain,

We then guess and verify that

E[ 61

|
x,p ]

= <fa + (1 -5)p and Var[ (9
|
x,p ]

= a" 1

,

for some 5 G (0, 1) and a > 0, in which case the optimal demand reduces to

k(x,p) = — (x-p).
7

It follows that the aggregate demand for the asset is

K(9,p) = —(e- P).

1

In equilibrium, K = J kidi = e, and therefore the equilibrium price satis Ces

p = P(e,e)=e-^-e. (29)
da

By implication, the observation of p is equivalent to the observation of a public signal about

9 with precision (5a/^) 2ae . That is, in this case we have Z(p) = p, v = —(Sa/j)e, and

ap = (5a/~f)
2aE .

We now determine 5 and a. Note that x and Z(p) = p are independent signals of 9 with

precision ax and ap , respectively. It follows that E [ 9 |
x,p }

— 8x + (1 — 5)p, where

OiX Q>n

ax + ap a

a = ax + a
p
= ax + (Sa/^y)

2ae

Solving the above gives a = ax (l + axa£/^
2
), 5 = 1/(1 + axa£ /

,

'y
2
) ,
and

ap = Q(ae,ax ) = -J- L̂
. . (30)

Recall that in Section 3 we found that the precision of endogenous information increased pro-

portionally with the precision of private information. Here the precision of public information
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increases more than proportionally with the precision of private information. This will only

serve to reinforce our conclusions regarding the comparative static and limit exercises for ax .

To verify this, consider stage 2. A monotone (continuation) equilibrium is characterized

by thresholds x*(p) and 6*(p) such that an agent attacks if and only if x < x*(p) and the

regime changes if and only if 9 < 9*(p). The threshold x*(p) solves frPr [9 < 9*(p)\x,p] = c,

or equivalently

* (^+ P̂ (-~-*>) + 7TT7rS(P) - P<P))) =
h
-^- (

31
)

V \ax + ap ax + ap J J b

The threshold 9*(p), on the other hand, solves A(9*(p),p) = 9*(p), or equivalently

x*(p)=9*(p) + -±=<l>-\9*(p)). (32)

Combining the above two conditions and using Z(p) = p, we have that 9*(p) can be sustained

in equilibrium if and only if it solves

'

'"
: (p - 9*(p)) + 3>-\9*

(p)) -- J?Z±**-i (1 - c/b)

.

(33)
OCt.

Similar arguments as those used for Proposition 1 imply that there are multiple 9*
(p) if and

only if aPl ^/ox~ > V2tt, where ap is given by (30). On the other hand, the price function is

given by (29) and is uniquely determined.

Proposition 6 Suppose V is given by (28) and f = 9. The equilibrium price function

P{9,e) is always uniquely determined. There are multiple equilibrium thresholds x*(p) and

9*{p) if and only if

'

g\<j\ < 7
2
(27r)~ 1/2 .

As in the benchmark model, multiple equilibria survive as long as either noise is small

enough. Indeed, the common-knowledge outcomes are once again obtained in the limit as

ax —> for any given a£ .

4.2 Risk Aversion — Speculative Dividend

We now modify the previous example by letting / = f(A) = —$ -1
(,4). That is, the dividend

of the asset is now a function of the equilibrium size of the attack realized in the second

stage. We earlier showed that, in equilibrium, A = $
[ y
/c7x~[x* (p) - 9}) . It follows that
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/ = y/a^[9 — x* (p)] and therefore

k =

Let

v
/o^E[ 9

|

x,p
}
- y/a^x*(p) -p

jaxVen[ 9 \x,p]

1

P =
>OLn

zp + X*(p), (34)

and note that, for every p, the above deQies a unique p. We can then rewrite the optimal

demand as

k =
E[0

|
x,p] -p

7Var[ 9
\

x,p
]

where 7 = r)y/a~x
~. The rest is then as in the previous example, provided we replace 7 with

7. In particular, we have

(35)
da

so that Z(p) = p, v = —(5a/^)e, and ap = a£a
2
x j^( . Using 7 = 7^/0^, we conclude that the

precision of the information revealed by the price is now given by

ap = Q(a£ ,ax )
=

/y2.
(36)

Once again, the precision of public information increases more than proportionally with the

precision of private information, which only reinforces our results.

Indeed, consider stage 2. As in the previous example, the thresholds x*(p) and 9*{p)

solve (31) and (32). The difference is that now the endogenous signal is given by Z(p) =

p = -7==P + x*(p). Hence, (??) is now replaced by

9*{p) = $
'OL,

z®- 1
(1 - c/b)

ar,

-P (37)
y/ax + ap

' ax + ap

where ap is given by (36). It follows that the threshold 9*(p) and x*(p) are uniquely deter

mined. What may be indeterminate now is the price function.

Using (34), (35), and (37), we have that p must solve

F{p) = $ p + A +
ax + a. lot..

a 7

ax + a.
p + A (38)

where A = $ _1
(-^) ^foTx /\/ax~+~ap

' and z = 9 — (Sa/j)e. This equation is analogous to

equation (14) in the benchmark model. Note that F(p) is continuous in p, and F{p) —> —00

as p —
>• —00, and F(p) —> +00 as p —> +00, which implies that a solution always exists.
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**(p) = -^[^-«M--^-p + a
ax + ap \ ap \ ax + ap

Moreover,

so the solution is unique for all z if avj^fal < y/2n. If instead ap/^/a^ > v2tt, there are

thresholds z and z such that there exist multiple equilibrium prices whenever z G (z, z)

.

Proposition 7 Suppose V is given by (28) and f = — <&
-1

(A). The equilibrium thresh-

olds x*(p) and 9*{p) are always uniquely determined. There are multiple equilibrium price

functions P{6, e) if and only if a1ax < 7
2
j\phx.

The results here are reminiscent of the ones in the benchmark model. In equilibrium, the

price plays the role of an anticipatory signal of the size of the attack. Indeed, as we found

there, the strategies of the agents are uniquely determined, although the equilibrium price

function may not be. In contrast, in the previous example the price played the role of a

signal for the exogenous fundamental 9. Here indeterminacy arises for individual strategies

and not for the price function.

In both cases endogeneity of public information implies that its precision is increasing

with the precision of private information. In both cases this implies that multiplicity survives

with small noise and the common-knowledge outcomes obtain in the limit as ax
—

> for any

given a£ .

4.3 Risk Neutrality - Fundamental Dividend

We modify the asset market and the preferences as follows. There is no risk-less bond. One

unit of the asset costs 1 in the Crst period and pays / — p in the second period. The indirect

utility from the portfolio choice is thus given by

V(kJ,p)=u 1 (w-k)+u2 ((f-p)k) (39)

where k is the amount invested, u\ is the utility from Crst-period consumption, u2 is the

utility from second-period consumption, and U is the payoff from attacking.

Consider an agent who receives a private signal x and observes a price p. His optimal

investment k solves

u
/

l
(w-k)=E[(f-p)u'2 ((f-p)k) \x,p}. (40)

We assume that U\(c) is quadratic and 112(c) is linear, in which case (40) reduces to a simple

linear relation, ki = k {E [/|x,p] — p] + A, for some constants k > 0, AeM. With out any
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loss of generality, we normalize A = 0. Finally, we let / = f(9) = 9. That is, the return of

the asset depends only on the exogenous fundamental.

The analysis here is similar to that in the Crst example. The optimal individual demand

for the asset is

k = k {E
[ / |

x,p ]
- p} = k {E [ 9 |

x,p ]
- p} .

We conjecture

B[d\x,p]=5x + (l-6)p

for some 5 6 (0, 1) to be determined. It follows that k = k(x,p) = k8(x — p) and therefore

K(9,p) = k6 (9 — p) . In equilibrium, K = e. Hence, the equilibrium price is

P = P(M) = *_-L e .

By implication, p is a public signal about 9 with precision k2
5 aE . That is, in this example

Z(p) = p and v = — ^e. It remains to pin down 8 and the function Q.

Note that ap is bounded above by K2ae and therefore we immediately have that unique-

ness is ensured for ax high enough. To complete the analysis, note that

d =
ol. + ap ax + ae5

2K2

The above uniquely determines 5 e (0, 1) as an increasing function of au and a decreasing

function of a£ . To see this, let a = ax j (aeK
2
) and rewrite the above as a = 5

S
/(1 — 5).

Obviously, this gives a monotonic relation between a and 5, with 5 —* as a —> and 5 —> 1

as a —¥ oo. Using these results, we Old

ap
1x2 r2K CXr = {Ky/a£ )

' Otrp. \ / Oirr \ / LXn-

= (Kyfire)y/5(l-8).

The fact that 5(1 — 5)
—

> as either ax —> or ax —> oo then implies that, given a£ ,

we have that av j\fotx < v2tt and therefore the equilibrium in unique if and only if ax

is either sufficiently small or sufficiently high. On the other hand, for given ax , we have

5 (1 — 5) < 1/4 necessarily and therefore ae < Sn/K,
2

is sufficient for uniqueness, whereas ae

sufficiently high is sufficient for multiplicity. We conclude:

Proposition 8 Suppose V is given by (39) and f = 9. The equilibrium price function P
is always uniquely determined. There are multiple equilibrium thresholds x*(p) and 8*(p) if

and only if ax is either sufficiently small or sufficiently high relative to a£ .
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Thus, the Morris-Shin limit result is preserved in this example. Like in all previous cases

we have examined, the precision of public information increases with the precision of private

information. Unlike the previous cases, however, this effect is not strong enough to restore

multiplicity when ax is sufficiently small.

4.4 Risk Neutrality — Speculative Dividend

We modify the previous example by letting the return of the asset be / = —

$

_1
(A), where A

is the aggregate size of the attack occurring in the second stage. The analysis is now similar

to the second example. In particular, we will show that the strategies in stage 2 are unique

but the price function in stage 1 can be indeterminate.

Let x*(p) denote the threshold agents use in stage 2 in deciding whether to attack. In

equilibrium,

so that the asset return is / = y/a^[9 — x* (p)]. The demand for the asset is thus

k = k{E[ f |
x,p ] -p] = k{^/c^E[ 9

\

x,p]-p- y/a^x*(p)} .

Let

P= —p=P + x*(p)
JOL*

and note that, for every p, the above deQies a unique p. We can thus write the demand as

k = H{E[9
|
x,p]-p}

where k = Ky/a^. We now conjecture

E[9
|

x,p] =6x + (l -5)p.

It follows that K = k5(9 —p) and therefore

p = 9-±s.
ko

Hence, the observation of p is equivalent to the observation of p, which is a public signal for

9 with precision ap = K
2
5
2ae . It follows that

E[0
|
x,p] =E[0 |

x,p] =8x + (l-8)p,
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where
r

ctx ax
o = =

-^3o-
ax + ap ax + aEb k

This is the same as in the previous example, with k replacing k. Using k = n^/a^, we infer

i

5 =
1 + as5

2
K?

'

so that 5 is decreasing in ae but independent of ax . This means that ap is proportional to

ax , like in the benchmark model. Indeed, the critical ratio is now given by

~2 c-2av k b ae , 22 N
—

and is increasing in both a£ and ax . The rest of the analysis is similar to the second example.

We conclude:

Proposition 9 Suppose V is given by (39) and f = -$_1
(
J4). The equilibrium thresh-

olds x* (p) and 9*
(p) are always uniquely determined. There are multiple equilibrium price

functions P(6,e) if and only if o~x and/or a£ are sufficiently small.

Hence, the common-knowledge outcomes are once again obtained as ax —> 0.

5 Final Remarks

Building on Morris and Shin (1998) this paper introduced instruments that endogenized

the sources of public information in models where coordination is important. We modeled

public information by either: (i) a noisy signal of aggregate activity; or (ii) a Qiancial asset's

price that reveals information in equilibrium. An important feature of the equilibrium in all

cases is that the precision of public information is endogenous and rises with the precision

of private information.

We showed that in all but one of the six models considered this effect is strong enough

to reverse the limiting uniqueness result obtained with exogenous public information. Thus,

typically, with endogenous public information multiplicity is ensured when individuals ob-

serve fundamentals with small enough idiosyncratic noise. Conversely, uniqueness is ensured

if idiosyncratic noise is large enough.

We view the main theme in Morris-Shin as emphasizing the importance of the details

of the information structures for the multiplicity or uniqueness of equilibria. This paper

contributes to this same theme by studying the importance of endogeneous information

aggregation.
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