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ITERATIVE AffiTHODS FOR THE SOLUTION OF ECONOMIC MODELS
*

, by John Timothy McGettigan

^- THE f/ATHEI/ATICS

Before the introduction of digital computers, it was necessary to

solve economic models by hand. This imposed a severe restriction on the

size and type of model which could be solved. Although there are numerous

well established methods for solving systems of linear equations, the

amount of work required for solution increases so rapidly as the size of

the system increases that hand computation soon becomes impracticable.

Also to restrain the equations of the system to be linear severely re-

stricts the validity of an economic model. Since it is extremely difficult

to solve non-linear systems by hand, it was only the small, linear, eco-

nomic models which could be solved before digital computers became avail-

able.

The powerful computational abilities of the digital computer, in

effect, removed the restriction of size from model building. Using the

traditional methods, it became possible to solve linear systems of an

extremely high order. In order for a computer to function it requires as

algorithm, and these traditional methods were easily translated into com-

puter algorithms. However, even with the use of a computer, the solution

of a non-linear system of equations is still quite difficult. This sec-

tion will attempt to establish the mathematical foundation for several of

the algorithms which are available for the solution of such systems. Since

almost all of the algorithms available are extensions of methods for the

solution of linear systems, the mathematics of these algorithms has been

established in relation to their application to linear systems.

Consider the general problem of finding the solution to a set of

linear algebraic equations. Symbolically this involves finding a vector

This working paper represents part of an undergraduate MIT thesis submitted
to the Department of Economics in June, 1967. Details on the actual
numerical computations can be found there.



-2-

X which satisfies the equality

AX = B (1)

where A is a non-singular square matrix and B is a vector. The practical

methods for finding such a solution can be divided into two large classes,

namely, the exact methods and the methods of successive approximations.

In the first class are the simple Gaussian eliminations techniques which

are taught in high school algebra classes. Also in this class are the

matrix inversion methods which involve solving equation (1) for X

_i

X = a" B

It is characteristic of the exact methods that they produce the exact

solution in a given number of operations which is a function solely of

the order of the system of equations and not of the matrix of coeffi-

cients A.

The exact methods have several disadvantages when applied to rela-

tively large systems of equations. With these methods the number of

operations required for solution is roughly proportional to the cube of

the number of equations in the system: thus as the size of the model in-

creases the effectiveness of these methods rapidly decreases. Because of

the limited length of the computer registers, there is a certain amount

of rounding error introduced with every operation. With the exact methods

these errors are cumulative, and there is the possibility of introducing

significant error. In general economic models are too large to be effec-

tively handled by the exact methods: non-linear economic models which

contained more than ten equations could be more efficiently solved by

other methods.

Economic models also have the characteristic that any given equation

will contain relatively few variables. For a linear model this would imply
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that the matrix of coefficients, A, is sparse i.e. contains many zeros.

The exact methods are not able to take advantage of this and the number

of operations required for solution is not reduced.

The second class of methods, the methods of successive relaxation,

have none of the obvious disadvantages of the exact methods, and therefore

appear to be better suited for the solution of economic models. The rest

of this section will be devoted to establishing the mathematical basis for

this class of methods.

The general nature of the methods of successive relaxation is con-

tained in the equation

X^-^^ = A<"> + f(X^^>) (2)

where X is a single number, a function, a vector, or a matrix, according

(r)
to context. A is independent of X but not necessarily of £. The solu-

r+1
tion is the limit of the series of estimates, X , as £ goes to infinity.

For the solution of a system of linear equations the original vector is

immaterial: if the process converges, it will converge from any point.

Iterative methods form an important subset of the methods of successive

relaxation, and because their mathematics is relatively straightforward,

they serve as a good introduction to this area.

Let the system of linear equations be given in the following form

Xi = aiiXi + aisxs + ai^x^ + Cj

Xn = SniXi + a„2Xs + a^^X^ + Cn

At first glance such a representation appears somewhat artificial because

of the presence of like terms on both sides of the equality sign. However,

this arrangement of a linear system is the basis for an iterative process
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which^ although impractical for applications, is very convenient for illus-

trating certain properties of the iterative methods.

Let us now write system (1) in the form

X «= AX + C

where A is a matrix of coefficients and C is a vector of constant terms.

Starting with an arbitary initial vector X , the following series is

formed

X*" '' = AX^ '^+ C

X^ ^ = AX^ ^ + C

If the sequence X , X ,.... has a limit X, this limit will be the

r r+1
solution to system (2), for X will equal X and this will produce the

equality X = AX + C. Following through this recursive function it is

easily verified that

X^ -* = A X^ '^ + (I + A + A )C (3)

Now for this process to converge it is necessary and sufficient that the

series

(I + A + A ~^)C (4)

also converges. It can be proven that this series converges if and only

if all of the eigenvalues of the matrix A are of absolute value less than

one. And it is a necessary and sufficient condition for the convergence

of all iterative processes that the eigenvalues of the iterative matrix

be of absolute value less than one.

For this method the solution vector is the sum of a series of terms,

and referring back to the original mathematical description of the methods
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of successive approximations, X in this case is a function. The closer

the largest eigenvalue is to zero in absolute value, the faster the terms

in the series in (4) tend to zero and the faster is convergence. After a

few iterations one should be able to estimate the speed with which this

sura is approaching a limit and hence estimate the limit. Since the speed

of convergence is solely a function of the largest eigenvalues of the

iteration matrix, it is possible to estimate the solution at every itera-

tion knowing only the value of the largest eigenvalue.

Although this method is not very practicable for application to real

systems, it shows more clearly than other methods that both the criterion

for convergence and the speed of convergence of the iterative methods are

a function of the largest eigenvalue of the iteration matrix.

The Jacobi iterative methodis a more efficient method, particularly

when adopted to the solution of non-linear systems. Let a system of

linear algebra equations be represented in the matrix notation

AX = B. (5)

In order to express exactly the mathematics of the Jacobi method, it is

necessary to decompose the matrix of coefficients. A, into three compo-

nents, U, L, and D, which represent the upper-triangular, lower-triangular,

and diagonal elements of A.[l]Using this notation the system now becomes

(U + L + D)X = B.

Taking advantage of the commutative property of matrix multiplication, this

equation can be transformed into

DX = B - (U + L)X.

The Jacobi method approximates this equality by the following iteration
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function

r+1 r
DX = B - (U + L)X

or

X^^ = d'-"- B - d'-'-CU + L)X^

r+1
If this process converges, then for sufficiently large r, X will not

differ significantly from X , and by working backwards it can be easily

verified that this vector is the solution of the original system. To see

what this process actually involves, consider the following representation

of a linear system

ll = aiixi + ai2X^..ainXn

In = a^jXi + 3^2X2 . ..a„„Xn

Using this notation the approximation to the solution on the (r+l)th

iteration of the Jacobi method is

r + 1 2 2

xi = ai p xp. + a^axs - 1

an ai 1 an

r + 1 , r

^n " a^^xi + apgXg .... - J^
ann ann &^n

For the Jacobi scheme the matrix of iteration is D~ (U + L), and this

process will converge to the solution vector if all of the eigenvalues of

this matrix are less than one in magnitude.

The Gauss-Seidel and the Jacobi iterative are closely related.

Decomposing the matrix of coefficients in the same manner, equation (5)

is solved slightly differently to produce the Gauss-Seidel iterative method

+1 _ ,, .^-l,^ _.^ ,jr
. ,^ ^,-1

f^^ = (I-L) ^(D + U) X^ + (I - L)"^B
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Using the more detailed notation, the solution vector on the (r+l)th

iteration is approximated by the vector

Xl s ajsxs + ai3 X3 .... - ^^
aix ^11 ai

r+l
S3

r + l T

+ % 3^ • • • • -I2

^2 as2 as a

xr' C3
r + l

ann

r+ l
a.o Xr) ...... .. -1.

ana ann

This process differs from the Jacobi method in that the vector of approx-

imations, X, is immediately updated with the new estimates of the individ-

ual components. Thus for a system of order n, the solution vector is

updated n times during every iteration, whereas for the Jacobi method

it is updated only once for every iteration.

The matrix of iteration for the Gauss-Seidel method is

(I- L)-^ (D + U)

and again it is necessary that all of the eigenvalues of this matrix be

of absolute value less than one for the process to converge. For both of

these methods there are many ways in which the system of equations can be

normalized. The term nonnalization in this context refers to which vari-

able a given equation is solved for. For instance, the first equation may

be solved for the tenth variable. If the matrix of coefficients for a n

order linear system contained no zeros, there would be n factorial differ-

ent normalizations possible. Since each normalization produces a differ-

ent matrix of iteration, there is the possibility that for a given system

the process will converge with certain normalizations and not for others.

Also since the solution vector in the Gauss-Seidel method is continually



updated, the way in which the equations are ordered will affect the matrix

of iterations. For the Jacobi method the ordering is immaterial.

There is an extensive list of conditions, which if satisfied, guaran-

tee that the eigenvalues of the matrix are less than one in absolute

value. Unfortunately these are only sufficient conditions and there is

a large class of matrices for which the eigenvalues are less than one in

absolute value which do not satisfy these conditions. Since it requires

approximately the same amount of work to calculate the largest eigenvalue

as to perform the entire iteration process, the determination of the

largest eigenvalue is an impractical way of testing for convergence. Un-

fortunately, as yet, there is no practical algorithm for normalization or

ordering, and one can only proceed on a hit or miss basis.

As was seen, in solving a system of linear equations given in the

form X ° AX + F, the solution vector is the sum of a series of vectors.

Since the speed with which this sum converges to the solution vector is

a function of the largest eigenvalue in absolute value of the iteration

matrix, it is possible at every step to estimate the final sum of this

series. And for every iteration scheme, the speed of convergence is in-

versely proportional to the largest eigenvalue of the iteration matrix.

This implies that when the largest eigenvalue is close to one in absolute,

there is only a small step taken towards the solution vector during each

iteration. Thus the speed of convergence can be improved by taking a

larger step during each iteration than the iterative scheme prescribes,

and the closer the largest eigenvalue is to one in absolute value, the

larger the step should be. For every iteration method the following

approximation holds

1 - e.
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where ej is the largest eigenvalue in absolute value of the iteration

matrix. This approximation can then be taken as the current estimate

of the solution for the next iteration. Thus the number of steps re-

quired for solution is significantly reduced when the value of the

largest eigenvalue is known.

Besides the iterative schemes, there is another class of methods

which come under the heading of methods of successive approximation.

These are known as the methods of steepest descent, or the gradient

methods. For an understanding of these methods, consider the relation-

ship which results when a vector of initial estimates is substituted

into a system of linear equations

R » AX - B.

If X were the true solution vector, then the vector R would have only

zeros for entries. The purpose of the gradient method is to produce a

series of vectors, the limit of which forces R into the null vector.

During each iteration it changes a given variable such that the sum of

squares of the components of the resulting vector R is brought to a

minimum. For instance, if the residual of the first equation is 100,

then by changing variable one in this equation by

100

units, the residual of this equation will become zero. The general

gradient method reduces the sum of squared residuals by taking the

weighted average of these changes for each variable. The change in vari-

able i during iteration is given by

aiiTi + ajgrs + ai„ro

afi + ah + af „
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It can be proven that for a system of linear equations the gradient method

will converge from any starting point; however the computation for every

iteration is lengthy and the rate of convergence may often be slow. The

Jacobi and the Gauss-Seidel method have the advantage that convergence

can be very rapid, but these processes may not converge.

The application of these methods to non-linear systems is relatively

straightforward. During each iteration the partial derivatives of each

variable are held constant; this suppresses the non-linearities and the

system of equations becomes linear. For example consider the following

equation

10 = 5x + wyz.

If the current estimates for the solution values of w, x, y, and z, are

respectfully 2, A, 6, and 8, this equation would be forced into one of

the following forms

10 = 5x + 12z

10 = 5x + 16y

10 = 5x + 48w

When the non-linear equations are linearized in this manner, it is possi-

ble to apply the algorithms which were described in this chapter. There

is a great deal of mathematics concerned with the methods of successive

approximations as applied to linear systems of equations, but unfortunately

there has been little written about these methods as applied to non-linear

systems. To a great extent this is due to the fact that the class of non-

linearities is so large that there is little which can be said about the

mathematics of such systems. Economic models contain a restricted class

of non-linearities. The object of this paper was to apply several of these

iterative methods, particularly the Gauss-Seidel, to an economic model to see

how efficiently they produced the solution, and if there were any characteristics

in their application to economic models.
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II. THE MODEL

It can be seen by solving some ordinary systems of linear equations

that when the Gauss-Seidel method converges, it converges very quickly.

However, just as the mathematics implies, this method does not always

produce convergence. On the other hand, the gradient method always con-

verges, but the rate at which it approaches the solution is generally

slow. The application of these two methods to non-linear economic models

raises some interesting questions. In what portion of the time will the

Gauss-Seidel method converge, and how fast is the average rate of con-

vergence? What is the best way to solve for the variables and then order

the equation in order to produce the optimum conditions for convergence

of the Gauss-Seidel method? To what extent is convergence conditioned

upon the starting values? Will the gradient method always converge when

applied to a non- linear system which has a real solution?

In an attempt to answer these questions, these methods were used to

solve a real economic model. The model which was chosen was a modifi-

cation of the "Revised Klein-Goldberger Model. '[3"] This is a macro-

econometric model which presents a Keynesian analysis of the United

States economy. The equations for this model were estimated from annual

time series of the United States economy for the period 1929 to 1962,

with the years 1942 to 1945 omitted. These iterative methods were used on

this model to solve a simulation of the 1929 economy. Originally the model

contained twenty-seven equations, but when used to simulate the 1929 econ-

omy, four of these equations become recursive. Of the remaining twenty-three

equations twelve are non-linear. With one exception, all of the non-linear
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terms are products which have the variable representing "price" as one of

the terms. This makes the system non-linear enough to give the methods a

good test. The model is large enough to place a premium on speed. The

difference of a half a second between two methods when solving a system

of five equations may not be important, but as the size of the system

increases the difference between the two methods is likely to increase

more than proportionally. But perhaps the most important characteristic

of the model is that it is a good representation of modem Keynesian

economics; it is a representative model.

The model contains the following variables:

Consumption of durables, billions of 1954 dollars.

Consumption of non-durables and services, billions of 1954
dollars

.

Residential construction, billions of 1954 dollars.

Stock of inventories, billions of 1954 dollars.

Imports, billions of 1954 dollars.

Index of hours worked per week, 1954 = 1.00.

Annual earnings, thousands of dollars.

Wages and salaries and supplements to wages and salaries,
billions of 1954 dollars^.

Wage and salary workers, millions.

Corporate saving, billions of 1954 dollars.

Corporate profits, billions of 1954 dollars.

Rental income and net interest, billions of 1954 dollars.

Gross national product, billions of 1954 dollars.

Personal disposable income, billions of 1954 dollars.

Proprietors' income, billions of 1954 dollars plus P and IVA.
c

1
^d

2 C
n

3 R

4 H

5
^m

6 h

7 w

8 W

9 N
w

10 S
c

11 P
c

12 n
r

13 X

14 Y

15 n



16 IT

17
^c

18 PT

19 SI

20 BT

21 GT

22 P

23 IVA

24 T

25 r
s

26 D

27 r

El ID

E2 W
g

E3 Pm

E4 N
g

E5 N
s

E6 \
E7 GS

E8 D
u

E9
^d

ElO R
e

G
Ell

E

E12 SD

E13
I

R

EU WB
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Indirect taxes, billions of current dollars.

Corporate profits taxes, billions of current dollars.

Personal taxes, billions of current dollars.

Contributions for social insurance, billions of current dollars.

Business transfers, billions of current dollars.

Government transfers, billions of current dollars.

Implicit GNP deflator, 1954 = 1.00.

Inventory valuations adjustment, billions of current dollars.

Investment in plant and equipment, billions of 1954 dollars.

Yield on prime commercial paper, 4-6 months, per cent.

Capital consumption allowances, billions of current dollars.

Average yield on corporate bonds (Moody's), per cent.

Exogenous Variables

Net interest paid by government, billions of current dollars.

Government wages and salaries, billions of 1954 dollars.

Implicit price deflator for imports, 1954 = 1.00.

Government employees, millions.

Self-employed workers, millions.

Total labor force, millions.

Subsides - current surplus of government enterprise, billions
of current dollars.

Dummy variable, for 1929-1946, 1 for 1947-1962.

Average discount rate at all Federal Reserve Banks, per cent.

Year-end ratio of member banks' excess to required reserves.

Government expenditures, billions of 1954 dollars.

Exports, billions of 1954 dollars.

Statistical discrepancy, billions of current dollars.

Value of last twenty years investment.

Average weekly benefits for unemployed.
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1 Cd - a^ Y = (.7 + ag) CcLi - . 7 a^ Y_i + 83

2 Cn - a^ Y " ag Cn_i +

3 R - %i Y = a^g r_i + a^a ILi + a^.

4 (1 + aiB)H - ajB X - (a^B + a^g ) H_i + a^,

5 Im - a^e X + a^g p = a^g Pm + a^o InUi + b^:

6 X-aasR-aggNw- a34h = Wg + .95(X - Wg)_i + a^g I

9

- a^a Ng - Ns + .95(Nw - Ng + Ns)_i - .95 a^^ h.^ + a^^

7 h - age w + aa7 Nw = - a^g w_i + 327 (Nl - Ns) + a^^

8 W - a^g X = (1 - agg) Wg + 330 (W - Wg)_i + 33^

9 W + 332 NW = W_i + 332 (Nl " Ns) + 333 (P_ ^ - P.g) + 33,

10 pSc + IVA - Sge (pPc + IVA - Tc) = 33g (pPc - Tc - pSc)_;^ + a^j

11 pn - pPc - IVA - a^i p X = a^g (p(n - Pc) - IVA).;^ + a.43

12 pnr - 344 pR - 344 pi =. 345 (r- r.^) + 343 (pnr)_i + a,47

13 X-Cd-Cn-R-H+Im=H_i+I+ G + E

=11

14 pY - pX + pSc + IT + Tc + PT + SI - GT + IVA = GS - SD - D +ID

15 pn - pX + pW + pnr + IT + BT = - D + GS - SD

16 IT - Cg pX = Ci
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17 Tc - C4 pPc = C3

18 (1 - C^) PT - C^ pY = C5

19 SI - Cg (pY + PT) = C7

20 BT - ag7 pX - age BT_i + a^^

21 GT + Cg Nw = Cg (Nl - Ns) + Cjo WB + C^i

22 pW - wh Nw =

23 IVA - 855 p = - ag5 p_i + age

24 I - a, (X - Wg)_i + ag r_i + (.95 + a^ ) Li + a^^

25 rs - 851 rd + a^^ Re.^ +853 Du & ag^

26 D = a^g i:p(I + R) + a^g Du + ago

27 r a agg rs + agg r.^ + 837

III. THE RESULTS OF THE SOLUTION

There are three ways in which the Gauss-Seidel process can be varied:

(I) the normalization can be changed, that is, different equations can be

solved for different variables; (2) the order of the equations can be

changed; and (3) the starting estimate can be varied. From the mathematics

of this method as applied to linear systems, it is clear that the normali-

zation is critical; a system will converge for some normalizations and

not for others. However, in none of the books on numerical analysis is

there any mention of whether the ordering is a criterion for convergence.

The model v/as normalized in approximately ten different v/ays. There is

only a limited number of normalizations possible. Since each variable
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must be associated with an equation, and the matrix is so sparse that there

is not more than fifteen ways in which it can be renormalized. Of the ten

normalizations tried, only two were found to converge. When the model was

run with the original ordering it was found that variable six was consist-

ently the first to diverge, eventually pulling the other variables with

it. The model converged when equation nine was solved for variable six,

equation seven was then solved for variable nine and equation six for

variable seven. With this normalization approximately eight of the

twenty-seven orderings converged. The orderings tried were generally

choosen randomly. This result establishes that in some cases the order-

ing is very critical. The other ordering which converged was solving

equation nine for variable seven and equation seven for variable nine.

Thus the two successful normalizationaare very similar. However, if only

slight modifications are made in these orderings, the system will diverge.

The same orderings were used for each normalization, and for this normali-

zation, twenty-five of the twenty-seven orderings tried converged.

It is interesting to note that the rate of convergence for the

different orderings was by no means uniform. Some of the orderings con-

verged in as few as nine iterations while others required well over a

hundred. The criterion for convergence was rather loose. If none of the

solution values changed by more than .01 in two successive iterations,

the process was said to have converged. The initial estimates used were

the actual values for the time period, but the process also converged with

the zero vector as the initial estimate.

As the Gauss-Seidel process converges in each iteration it will pro-

duce a change in the current estimate of each variable. A damping factor

was applied to this change to determine whether it was possible to force
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convergence upon normalizations and orderings which normally diverge. With

a damping factor the current estimate of the solution is given by

^' = \-l + ^(\ - \-P
where Y' is the new estimate of the vector of solutions, "d" is the damp-

ing factor, Y, , is the estimates solution from the last iteration, and

Y]^ is the solution which the Gauss-Seidel process would produce without

a damping factor. When the damping factor is 1. this method becomes

equivalent to the normal Gauss-Seidel process. Damping factors of .3,

.5, and .7 were tried on all combinations of normalizations and order-

ings. In all of the normalizations for which the process had previously

diverged, it also diverged with the damping factor. Thus if the normali-

zation is one which diverges, applying a damping factor will be of no

benefit. Yet for the two normalization which had converged, the applic-

cation of a damping factor produced convergence in every case. Even for

the orderings for which the normal step diverged, the process converged

for all three damping factors. Thus it appears that at least for this

model, the ordering of the equations is not critical if a damping factor

is used. If this is true in general, it in effect removes one of the

degrees of freedom from the Gauss-Seidel process. If the ordering is not

critical for convergence, then one must only be concerned with the normali-

zation and the original estimate.

There is in general little lost in speed when using a damping factor.

On the contrary, the application of a damping factor often reduced the

number of iterations necessary for convergence. This was particularly

true when the normal step took many iterations to converge. If the normal
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step did not converge rapidly it was usually because the estimates were

oscillating around the true solution. By applying a damping factor in

this situation the oscillations are damped out, and consequently requires

less iterations to converge. However, when the normal step converged in

less than twenty, the application of a damping factor only prolonged con-

vergence. In all cases the damping factor of .7 provided more rapid con-

vergence than the damping factor of .5, and similarly the damping factor

of .5 was more rapid than .3. In all cases the process came to the iden-

tical solution. The application of a damping factor never forced the

process to a false solution.

The mathematics implies that convergence can be increased by taking

larger steps than the Gauss-Seidel method prescribes. Different accelera-

tion factors were applied in a similar manner as the damping factors. A

value of 1.1 was the smallest acceleration factor tried which produced

convergence. Often when the normal step converged, the application of the

acceleration factor of 1.1 made the process diverge. In no case did the

acceleration factor produce more rapid convergence. Thus as far as this

model is concerned, the acceleration factor never improved convergence.

If one were to plot the number of iterations necessary for convergence

as a function of the damping or acceleration factor for each normaliza-

tion and each ordering, the function in all cases would be "U" shaped.

For small damping factors the number of iterations is large. As the damp-

ing factor increases the number decreases, and then sharply increases.

The optimum value of the damping function varies as a function of the

normalization and the ordering, but it was never found to be greater than 1,
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The variables which were renormalized to produce convergence were the

variables for the index of hours worked per week, the index of hourly wages,

and the number of wage and salary workers. The two normalizations which

produced convergence also made the most economical sense. The difference

between the two successful normalizations were not great in terms of

economics. For the equations which were renormalized, there was no dis-

tinct dependent variable. Both of the successful normalizations made

economic sense. However, if a slight modification was made in this normali-

zation the process would diverge immediately. For instance, solving equa-

tion five for variable thirteen and equation thirteen for variable five

made the process diverge. But this normalization made little economic

sense, for it explained gross national product as a function solely of

imports. Thus for this model the only normalizations converged were the

normalizations which made economic sense.

From the results of solving this model a few generalizations can be

made about an algorithm for producing convergence with the Gauss-Seidel

iterative method. First the system should be normalized in the manner

which makes the most economic sense. Any ordering may then be choosen,

but a damping factor of approximately .7 should be used. If the process

does not converge then a new normalization should be tried. If a normali-

zation does not converge, it diverges immediately, so that it is immediately

obvious whether the normalization produces convergence. Without using a

damping factor one would have to attempt many orderings before it would

be clear that it was the normalization and not the ordering which was

causing the process to diverge.

If the model is to be solved many times, it is profitable to search
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for an efficient ordering, since the rate of convergence between different

orderings with a given normalization is great. The minimum number of

iterations which the optimum ordering required to converge was the same

for both normalizations. This implies that once a normalization has been

found which converges it is not necessary to search for other normalizations

in order to speed up convergence. The rate of convergence is a function

chiefly of the ordering. There is a pay off between the amount of time

spend searching for a optimum ordering and the amount of time which this

ordering will save. The more times the model is to be solved, the more

profitable it is to search for an optimum ordering. Eventually there may

be an algorithm for optimum ordering, but there does not seem to be any

correlation between the optimum orderings found in the solution of this

model.
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