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Abstract

This paper investigates the question of how much information firms can
acquire about the demand for their product when they learn from experience
(i.e., from data about past sales and prices). The main issues are whether
firms will eventually learn everything about the demand curve and how learning
considerations affect the pricing decisions of firms. It is shown that even
when the demand is deterministic, strong conditions are required, such as
continuity and quasi-concavity of the profit-function, to guarantee that a

monopoly will eventually learn all the relevant information about demand.

JEL Classification: 026

Key words: Learning by experimentation, adjustment process, Bayesian
updating, price-experimentation.





Introduction

In almost all the existing theories of market pricing it is assumed that firms

know their demand curve. This is true in the theory of monopoly-pricing as

well as in most theories of oligopoly pricing. it is such a well-accepted

assumption that most economists do not even bother to justify it. Yet one

wonder how firms do acquire the knowledge about their demand curve. In

practice firms often conduct market surveys. These give some idea about the

profitability of a given market. For instance, they inform the seller about

what characteristics of the good consumers like best. They also produce

estimates of volume of sales at a given price. However, these surveys do not

reveal the entire demand curve to the firm. At best, they allow the firm to

find one point on the demand curve.

An alternative source of information for firms is data on current and past

sales at the prices set by firms today and in previous periods . Such data is

more or less informative depending on the stability of demand over time and

mainly on the pricing-rule followed by firms. For example, if the firm never

(or rarely) moves its price then the history of past prices and output will

provide a good estimate of the elasticity of demand at one price. Electric

utilities, for example, follow price rules that typically involve small

price-variations so that the numerous existing econometric studies of U.S.

residencial electricity demand (see Bohi [1981] for a survey) at best provide

information about price-elasticity at one point on the demand curve. They

generally do not provide information about the entire demand curve.

The subject of the present paper is to determine exactly how much a firm

can learn from past data, when it sets its prices at every period so as to

maximize profits. The main issues here are: how does learning considerations

affect the firm's pricing decisions and assuming that demand remains stable

over time when will the firm stop experimenting.

The firm's learning process through time can be viewed as an adjustment



process toward some equilibrium in the absence of an auctioneer: Suppose that

the firm experiences a shock on demand. It will notice this shock, for

example, by observing that its inventories are unusually high or low. while

it may know that demand has changed in a certain direction, it may not know

exactly what the new demand looks like. It will then grope its way toward the

new equilibrium by experimenting with prices. Thus the learning problem

studied here is relevant to stability theory. There is one major difference,

however, with standard stability theory; namely that here it is costly to

experiment. The firm foregoes short-run profits by sometimes setting its

price too low or too high. If learning is costly, then it may well pay the

firm to stop learning before it knows all the relevant information about the

new demand.

As a first step toward understanding learning by experimentation, we

consider the case of a monopoly. Some of the issues arising with oligopoly

are addressed in Aghion-Espinoza- Jullien [1988]. We model the firm as

starting with an initial prior distribution over some space of demand

functions. These demand functions are assumed to be deterministic . when the

firm sets a price, it observes how much it was able to sell at that price and

uses this information to update its prior distribution using Bayes ' rule.

There are two types of firm one can consider in this context: myopic and

non-myopic firms. The myopic firms do not understand that by manipulating

2today's prices, they can gain more or less information about demand tomorrow.

They are, however, able to use data about past sales to update their priors.

We analyze both types of behavior.

The existing literature on this question comprises only a handful of

papers: Rothschild [1984]; Grossman- Kihlstrom- Mirman [1977]; McLennan

[1984]; Lazear [1986] and Alpern-Snower [1987a, b] . Most of these studies

consider examples with unknown stochastic demand functions. As a result the

analysis becomes quite involved and sometimes the underlying principles



driving some of the results are difficult to isolate. It turns out, however,

that some of the most important conclusions reached in this literature can be

easily derived in the following example with deterministic demand.

A monopolist produces a non-storable good at zero unit cost and sells in a

market composed of two types of consumers: those who attach a high

reservation value to the good and those who attach a low value. Each consumer

purchases at most one unit of the good every period. The reservation value of

each type of consumer are given by v. > v„ > , and the proportion of

high-value consumers is ll e [0,1]. When v, , v„ and ll are known to the firm,

but the firm cannot identify the type of the buyer, then the monopoly-price

set at each period is given by:

|P
t
-v

1
if /

i.v
1

> v
2

tP t"
v
2

if ^ v
l

< v
2

Suppose now that ll is initially unknown to the firm and that the prior

distribution of ll is the uniform distribution on [0,1]. Our example has the

simple feature that if the firm sets the initial price P-, -v
-|

it learns ii

immediatly, but if it sets P
1
-v. it does not learn anything about ii . The

firm's inference problem is as simple as it can be. It is easy to show that

even in this simple example the optimal policy for the firm may be not to

experiment to learn ll (i.e., to set the price v„ in each period). Let 6 be

the firm's discount factor and assume that the firm can sell for an infinite

number of periods. A straightforward calculus shows that the optimal pricing

policy for the firm is to set the price P -v„ for all t whenever:

(2) v
x

< v
2
(14/TF) .

3

It may well be, however, that the true proportion of high-value consumers ll is



strictly greater than v ~/v. , so that the full information monopoly-pricing

policy would be to set P -v.. for all t. The true proportion will never be

learned by the firm whenever (2) is satisfied so that the monopolist may set

the wrong price forever. This is essentially the main result obtained by

Rothschild, although he worked with stochastic demands and used two-armed

bandit theory (see Degroot [1970]) to prove his result.

Our example also yields the conclusion that a firm that takes into account

the value of information obtained from experimentation tends to set higher

prices initially than a myopic firm, who only takes into account current

expected profits in determining its pricing decision. The myopic firm

chooses

:

[P, -v, otherwhise

while the far-sighted firm chooses P-|-=v„ only if (2) is satisfied. Such a

result has been first established in a different model by

Grossman-Kihlstrom-Mirman.

Our model clearly illustrates that Rothschild's result on incomplete

learning depends on the assumption of a discrete price-grid. In other words

it is important to assume that the firm is not allowed to experiment through

small price -variations or that it cannot learn anything if it does not move

its price much. McLennan provides an interesting example where the firm can

experiment with small price variations. He shows, however, that this is not

the most efficient way of learning. It is best for the firm to engage in

price-experimentation with sufficiently large price-swings in order to learn

the most about demand. As a result, the costs of price experimentation are

bounded away from zero and McLennan shows that when the anticipated value of

information obtained from experimentation is small the firm prefers not to



experiment

.

McLennan' s result relies crucially on the stochastic nature of demand.

One is thus led to believe (incorrectly) that incomplete learning can only

arise when demand is noisy.

One of the main objectives of our paper is to show that incomplete

learning results do not necessarily depend on assumptions about the

discreteness of the price-grid or the stochastic nature of demand. Thus, we

present an example in section I where the firm can experiment and learn about

a deterministic demand with arbitrarily small changes in prices, in which the

firm will almost surely stop experimenting before it knows all the relevant

information about demand. Section II then addresses the general question of

what structure of deterministic demand functions leads to results of

incomplete learning. This is a first attempt at setting out a general theory

about price-experimentation by monopolists. Most of the existing literature

only looks at specific examples of demand functions. This section attempts to

go further by looking at a general class of deterministic demand functions.

Another objective of our paper is to convince the reader of the usefulness

of our simplifying assumption that the firm faces a deterministic demand.

This greatly increases our ability to analyze problems of learning by

experimentation. Thus, in the example analyzed in section I we can get an

almost complete analytic solution. We can characterise the learning process

and study the adjustment process of the firm overtime. Alpern-Snower and

Reyniers [ 1987a, b,c] have adopted the same approach and have thus been able to

find exact solutions to the firm's optimal adjustment process in different

models

.



I .An example of learning through price experimentation wi th deterministic

demand .

We shall consider a market where all consumers purchase at most one unit

each period and have the same reservation value, v. The firm does not know v

initially and given any price it sets, it will either serve the entire market

and learn that v is greater than its price, or it will not serve any customer

and learn that v is less than its price.

We shall consider two types of firms: myopic and non-myopic price setters.

The former learn from experience but do not understand that today's

experiment can be manipulated so that to acquire more or less information

tomorrow. The latter are aware of the effect of today's pricing decision on

tomorrow's value of information.

Assume that the consumers' reservation value v can be any number in the

interval [0,1]. Consumers purchase at most one unit every period and do not

behave strategically (i.e., they buy whenever P < v) . The firm produces the

good at a unit cost c-0 and has a discount factor 8 E (0,1). The monopolist's

prior distribution on v is assumed to be uniform on [0,1].

We begin with the decision problem faced by a non-mvopic monopolist: for

any pair (x,y) where < x < y < 1, we denote V,.(x,y) the maximum expected

intertemporal profits when the firm's initial information is that v is uniform

on [x,y] . The optimization behavior of the non-myopic firm can be described

as follows: at time t=0 , it chooses some price P
n

e [0,1] - I,.. Since all

consumers are identical, there are only two possible outcomes: either the

firm serves the entire market at price P n (we denote this by p. -1, where p is

the volume of sales at time t-0) , or the firm does not sell to anyone (this is

denoted y. -0). If p. -1, the monopolist can update his information about v to

v € [0,P_] - I. . Similarly, if p. -=0 , the monopolist's information becomes v e

[Pq,1] - I,. Now, the optimal choice of the initial price P_ made by a



non-myopic monopolist is the solution to the following maximization program:

poV r
fn

m-Ki-P )P0+5(i-P ).v
5
(P ,i)^.P .v

5
(o,P )]

Thus, the characterization of the optimal price schedule followed by a

non-myopic firm involves essentially the study of the valuation function V. .

This is the main difference with the case of a myopic firm. The latter simply

chooses P_ to maximize:

max Pr(/i°-l/P
n
).P -(1-P )P

P e[0,l]

As in most dynamic programming problems, it is useful to define V, as the

solution to a Bellman equation. This equation will enable us to derive

important properties of this valuation function and to characterize the

learning process followed by the firm.

Proposition 1: \' (x,y) is the unique bounded solution of the following

Bellman equation:

(B) V(x,y) - max _l_((y . z ) z + s . (y-z)V(z ,y) + 8 . (z-x)V(x , z)

}

ze[x,y] y x

Proof: Suppose that the monopolist starts with the information that v is

uniformly distributed on [x,y] . When he sets the first-period price, ze[x,y]

,

he will know at the end of the period either that ve[x,z] or that vefz.y], and

his expected profits will be:

jr(z,x,y) - z.(^|) + SCyT^Vz.y) + 5(fr^VX ' z)

Now, V (x,y) is the maximum of jr(z,x,y) over ze[x,y] . This shows that V,.

is a solution to the Bellman equation (B) . Next, we show that V- is actually

the unique bounded solution of this equation. V,.(x,y) is bounded since it can

be written as an infinite sum: 25 .7r (x,y), where < n (x,y) < 1 for all t



and all pairs (x,y). (*\(x,y) is the maximum expected profit at time t given

the prior information at time 0: v e [x,y].)

2
Let Bj-. denote the space of bounded functions on [ , 1 ] . B„ is a Banach

space for the uniform norm
|

.
| defined by:

|f| - sup
9
|f(x)| < » for all f e B„

°xe[0,l]

Next, consider the following mapping II:

n:B
Q

>B
Q

v >n(v)

where

:

(1) n(V)(x,y)- max { ^ z+ £^V(z ,y)+,5^V(x , z) )J _ r ,
y-x y-x ,J/ y-x

-max gv (x,y,z) .

We know that V. e B« is a solution of the Bellman equation (B) (i.e., a fixed

point of the mapping II) . The following lemma establishes that such a fixed

point is unique on B
n

.

Lemma: II is a contraction mapping on B„.

Proof of the lemma: Let V and V belong to Bn , and

zv (x,y)
= arg max e (x,y,z).

ze[x,y]

We have

:

|n(V)(x,y)-n(V')(x,y)|-|g
v
(x,y,z

v (x,y))-gv
,(x,y,z

v
,(x,y))|

^ gv
(^.y-z

v (^.y))-gv ,
(x,y,z

v
(x,y))

(whenever g. (x,y,z (x,y)) > e ,(x,y,z ,(x,y)), which we can assume w.l.o.g.)



Thus:
z (x,y) -x

|n(V)(x,y)-n(V')(x,y)|< M-5^ [V(x,z
v
(x,y))-V'(x,z

v
(x,y))]

y-zv(x,y)
+ —y^ [V(z

v
(x,y),y)-V'(z

v
(x,y),y)]}

z (x,y)-x+y-z (x,y)
< 5 |

V-V
|
.[— ]

1 'co l y - x '

< 6 . IV - V I .
'

' 00

Since 5 < 1, II is a contraction mapping on B^, which proves the lemma. Now,

given that B
n

is a Banach space, II has a unique fixed point on B„ , namely V..

This complete the proof of Proposition 1.

QED

V. as the unique fixed point of II can be approximated arbitrarily closely

by using the fact that:

V,-lim n
n
(f)

(where: 1) f is any element of B n ; 2) II is the n-iterate of II; 3) the limit

is taken w. r . t the
| .

| norm on B„
.

)

Using such an iteration procedure we have been able through simulations to map

V,.(x,l) as a function of x e [0,1]. The figures below represent V (x,l) for

three different values of S

.

Insert Figure 1 about here,

Corollary: V,(x,y) is homogeneous of degree 1, convex and increasing in x and

y-

Proof: Given that V- is the unique fixed point on B
n

of the contraction

mapping II defined by (1) above (Proposition 1), it suffices, in order to

proove this corollary, to show that for all V e B
n

where V is homogeneous of

degree 1 and convex, that II (V) inherits the same properties. So, let V verify



these properties:

(a) II CV) is homogeneous of degree one

.

n(V)(Ax,Ay)- max {^fy z + S ^j V(z,Ay)
ze[Ax.Ay] u ' w y

+
* ify^T

V(Ax
'
z))

(

max {
£l£i Az' + ,5 ^'v(Az'.Ay)

r i y-x y-z ^

+ S -±-f V(Ax.Az'))

- A.II(v) (x,y) , by homogeneity of degree 1 of V.

(b) IKV) is convex

.

Using the fact that any z e [x,y] can be written as z-(y-x)q+x, where q e

[0,1], we can express n(V) as :

n(V)(x,y) - max (h(q,x,y) - (1 -q)
. ( (y-x)q+x)

q
+ fi(l-q)V((y-x)q+x,y)

+ Sq.V(x, (y-x)q+x) )

.

Given that V e B
n

is convex, and that (x,y) - (y-x)q+x defines a linear

2
mapping on [0,1] for each q e [0,1], we have:

(a) for each qe[0,l], h(q,x,y) is convex in x and y, and

(b) for each (x,y), h(q,x,y) is continuous in q.

Thus, II(V) is the upper envelope of a continuous family of convex mappings so

that II(V) must also be convex in x and y.

The fact that V, is increasing is elementary.

QED

Proposition 1 and its corollary provide us with the main analytical tools

for solving our problem. To see how powerful these tools are, it is

instructive to contrast the case of a non-myopic firm with the myopic case.

We know that a myopic price setter chooses his initial price P„ so as to

maximize his short-run expected profit: (l-P
n
)P

n , i.e., he chooses P - 1/2.

*
Then if p. -1 , i.e., if the firm sells at price P_ , it will learn that v e

[1/2,1]— I, . In this case the myopic firm will choose P, so as to maximize:

10



n(P
1
,I

1
) - Pr^-l / P

:
and vel ) . P

- Pr(v>P
:

/ veI
1
-[l/2,l]).P

1

- 2(1-P
1
)P

1
.

Therefore, when /i -1 (i.e., v > 1/2), the myopic firm will again choose its

it-

optimal price P. equal to 1/2. But this price is uninformative since we

already know that v is greater than 1/2. This means that a myopic monopolist

who sells at time t - will set P - 1/2 for all t > 1. In other word, it

stops experimenting from period one on.

What happens if the monopolist is non-myopic? Would it stop experimenting

once it is known that v > 1/2 (or more generally, by homogeneity of degree

one, when v e [x,y] with x/y > 1/2)? This question, among others, can be

answered by making use of Proposition 1 and its corollary.

Proposition 2: For 6 e (0,1), let x. - 1/(2-5), then
o

(a) V
5
(x,l) - x/1-5 if and only if x G [x

g
,l).

In other words , whenever x > x. , the optimal policy for a non-myopic

monopolist whose prior information is v 6 [x,l] is to play P - x forever and

not to learn anything more on v. However, for < x < x, , the non-myopic

monopolist will optimally set its first-period price P„ strictly above x.

(b) v
£
(0,l) > M

5
(0,1) , where

M, (0,1) - , . , , ..
—j-r is the maximum expected intertemporal profit of a

myopic monopolist with prior information v e [0,1].

Proof: Let W, (x) - \' (x,l) for all x e [0,1]. (By homogeneity of degree one

we have: V
£
(x,y)-yW (x/y) for all < x < y < 1.)

(a) Let z be the smallest x such that W (y) - y/l-S for all ye[x,l].

Then, from the Bellman equation (B) , we must have:

11



w (z)- max
r
^(y(l-y)+5(l-y)w

fi
(y) + 5(y-z)yW

5 (|))
ye [ z , 1

]

y

l . ... n £(i-y)y
,

5(y-z)z . „, s
- "^..i^ty^-y)' i-I

X + -r^- »

= mf goo-
ye [ z , 1

]

ye [ z , 1

]

since z/y > z and y > z and by definition of z. The first order condition for

the above maximization is:

i n , r r\ l+6~z
1 - 2y + Sz -

, i.e., y - —j—

Now, y>z <=> z < -s

—

r - x, ,

<C -

so, for z > x, , we must have:
o

* z
y - arg max G(y) - z , i.e., W^Cz) - G(z) - ^7$ .

This proves that V(x,l) - x/1-6" is the solution of the Bellman equation (B) on

the set (xe[ , 1 1
/x>x r ) , and that x r is less than or equal to the smallest x

such that Vp(y,l) - y/1-5 for all y e [x,l]. Since we know from Proposition 1

that V is the unique solution of this Bellman equation on [0,1], we

necessarily have

:

V.(x,l) - t—y f° r all * e [x, ,1], and

V-(x.'l) * -=,—r for x < x r , x close to x r .

i -

Insert Figure 2 about here

But since V.. is convex (corollary) , there cannot be any other x < x, such

that V-(x.l) = x/1-5 .(See Figure 2 above.)

This establishes (a)

.

(b) Take the case of a myopic monopolist with prior information: v e

[0,1]. We know that such a monopolist will choose to set the price P„- 1/2 at

time t-0 . And, if the firm sells at that price , it learns that v e [1/2,1].

But then, our firm sets P - 1/2 forever, i.e.:

vv2.i> --45-

.

In the other case, v e [0,1/2], the monopolist faces the same problem as

if v e [0,1], by homogeneity of degree one. Thus, the maximum intertemporal

12



profit he can expect is:

M
f
(0,1/2) - \ M

6
(0,1) .

We have

:

M
5
(0,1) - | ( | + 5M

5
(i,l)) + \ «M

{
(0.|)

=> M
fi

(0,l) -
(4 . 5)(1 . 6)

•

In the non-myopic case we have the following inequality:

v
5
(0,l) > \ +

f
v
5

(I ,1) + | v
5
(o,

I )

where the RHS represents the non-myopic firm's profit when P„-l/2 . By

homogeneity we have:

V°- \ > -§^(o,i).

For 5 > 0, 1/2 is strictly less than x, - 1/(2-5). Therefore, from

Proposition 2(a) and from the convexity of V :

v ( i i) > mV 2 '

L)
1-5

'

Therefore

:

i ' e -' V ' 1 ' > (4-5K1-5)
- M

5
( °- 1} - QED

Thus a non-myopic firm continues experimenting, unless its information

about v is such that v e [x r ,ll. Notice that when 5-0 this corresponds to
o

the myopic solution and when 5-1, the firm experiments until it has all the

information about demand.

An important consequence of Proposition 2 (the main result of this

section), is that unless 5-1, the non-myopic firm (and a fortiori the myopic

firm) never ends up with perfect information about demand. As a result it

cannot be sure that it is setting the best possible price. Let us denote

(P
t (v )) the sequence of prices played by the monopolist when the true

reservation value is v and its prior information is v e [0,1].

13



Theorem 1

:

(a) Except when the true value v is zero, the sequence (P (v) ) is

eventually non-decreasing.

(b) Except when the true value is zero, the nested sequence of

information sets I - [v ,v ] will never converge to the singleton (v). The

lenght t(I ) will remain bounded away from zero as t -» +« .

Part (b) of the theorem is represented in the diagram below:

Insert Figure 3 about here.

Although the sequence (P,_) may sometime converge to the true value v - v^
,

the monopolist's information converges to I - [v,v], where v > v ; and the

monopolist does not know that he is setting the correct price.

Proof:

(b) Suppose that the true reservation value v is strictly positive, and

suppose that the sequence of information sets (I
r )

(where I„ - [0,1])

converges to the singleton (v) . Then, for t >T (T large enough), I_-[v v
]

must be such that: v /v > x_ » 1/2-5. But then, by homogeneity of degree one

of the valuation function V and from proposition 2(a), we know that the

monopolist will set P - v for all t > T. This implies that I
r
= IT for all t

> T, a contradiction to the assumption that I -*{v) .

(a) Assume that v ¥ and suppose that (a) is not satisfied for some

price sequence P (v) . Then we could always extract a subsequence of P

decreasing and bounded below by v (if P <v for some t, then necessarily

P -,>P and P would not be decreasing!). Without loss of generality, we can

assume that the whole sequence (P ) is decreasing for t large enough. The

sequence should converge from above to some accumulation point w>v>0 . This

means in particular that for t large enough, the price P , set at time t+1

? close Lo the previous price P which is also the upper

14
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bound of the information set of the monopolist at time t+1: I ,-[v,P ].

However, the following lemma exclude that P _ be too close to P :

Lemma: There exists a uniform bound k r < 1 such that for all xe[0,x,l, the

optimal initial price P
f)
(x) played by the monopolist whose prior information

is that v e [x,l] satisfies: Pq(x) < k,

.

The proof of this lemma is technical and can be found in the appendix.

However, the intuition is simple: By choosing the initial price Pn( x )

arbitrarily close to 1, the monopolist loses a lot in terms of his short-run

expexted profits P
n
(l-P

n
)/(l-x) . On the other hand, he does not gain much in

terms of information if it turns out that Pn
> v (p -0). In this case, his

information set becomes [x,P
n ]

- I., which is almost as large as the previous

I„ - [x,l]. The gain in terms of information (learning) and also in terms of

the future expected profits is, however, substantial if P~ < v (n -1). But

this case can only occur with a very small probability when P„ is arbitrarily

close to 1.

Now the proof of (a) is immediate: Suppose that the effective sequence of

prices (P ) is eventually decreasing (e.g., for t>T) . Then, either the

sequence of information sets I «-[v_,P ] is such that vT/P ^ x, for some t.

In this case (P
r ) would become stationary at v i.e., non-decreasing, a

contadiction. Or we have v /P < x r for all t, in which case the lemma-it o

applies so that, by homogeneity of our problem, we get:

P
t
< k^.sup I - kr.P

t _ 1
, for all t > T.

But this is impossible, since we know that (P ) cannot be decreasing (for t>T)

without being uniformly bounded below by v>0

.

QED

We conclude this section with a few remarks .

1) We have shown, part (a) of the theorem, that except when the true
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value v is zero, the sequence of prices (i.e., the optimal intertemporal

pricing policy when v is the true value) is eventually non-decreasing. This

property is mainly a consequence of the fact that .it .i_s never optimal (even

for a non-myopic monopolist) .to choose the price P at any period t, too close

to the upper bound of the information set I at that time; we must have

instead: P < k , . sup I , where k , < 1 . The intuition is that by setting the

price too close to the upper bound, the monopolist faces too high a risk of

not selling anything.

2) To characterise the pricing path P (v) further, we need to make

additional assumptions. For example, we are unable to obtain the result that

the price is decreasing at first and eventually constant, as in Lazear [1986],

without making additional assumptions on the prior information set v e [v,v].

In fact, we can prove that if v e [0,1] the price sequence may sometimes be

increasing. This follows straightforwardly from the proposition below:

Proposition 3: The optimal initial price P„ set by the monopolist whose prior

information is v e [0,1] satisfies the inequality:

P < *8

The proof can be found in the appendix.

Whenever v > P~ the next price, P, , will be stricly greater than P„ (see

Proposition 2(a)). Thus, prices may actually be increasing. The reason why

Lazear obtains a decreasing sequence of prices is that consumers purchase only

once

.

3) Experimentation is costly because the firm discounts the future (<5<1)

and as 6 tends to 1, x,. tends to 1 , so that in the limit the firm only stops

experimemting when it knows the exact value of v. Now, S can be interpreted

as a measure of the frequency of price offers within a given period of time.

Then one may ask what prevents the firm from making an arbitrarily large
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number of price offers in a given time interval. Several informal arguments

can be given, which explain why the interval between two price offers is not

arbitrarily small. First, the flow of demand may be irregular: for example,

consumers may purchase the good only on Saturdays (or for some goods, only

every Christmas). Second, demand is usually stochastic. Then the firm may

have to keep its price fixed for a while in order to separate the random

component from the deterministic component. More generally, whenever demand

is stochastic, the firm's inference problem is harder and it takes time to

learn expected revenue at any given price.
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II. Continuous demand functions :

The model developed in Section I is special in at leat one important

respect: the demand function is discontinuous. Here we consider continuous

demand functions and ask whether continuity is a sufficient condition to

achieve complete learning of the monopoly-price in the limit. With a

continuous demand function the monopolist can learn about the demand function

without incurring too high experimentation costs by keeping price-variations

small. This was not possible in the examples analyzed so far. Consequently

one may conjecture .first, that since experimentation costs can be arbitrarily

small with a continuous demand, the firm would only want to stop experimenting

when it has learned the monopoly-price. Second, since experimentation only

stops when the monopoly-price is attained one may believe that the firm will

eventually learn the monopoly-price.

To illustrate the first point, consider the following modification of the

demand function defined in section I: instead of having all consumers

purchase one unit when p < v, suppose that consumers buy q - min { 1 , 1 1

'
)

units when p < v/m (see Figure 4) . (We assume that m is known to the firm but

that the firm's prior beliefs over v are given by the uniform distribution

over [0,1] .)

Insert Figure U about here,

It is straightforward to show that under the modified demand curve,

complete learning is the only equilibrium outcome. The difference with the

discontinuous demand case is that the cost of local experimentation can be

made arbitrarily small (if the firm varies its price slightly above some

price at which q-1 , it loses at worst only a small fraction of demand,

whereas in the discontinuous case it could lose the entire market)

.

Therefore, it is always profitable for the firm to keep on experimenting until
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it reaches a price at which the derivative of the prof it- function is zero.

That is, until it reaches a local optimum. It turns out that in the above

example the profit function is concave so that the firm only stops

experimenting when it learns the monopoly-price.

In the above example, the key point is that the firm continues

experimenting unless it is sure that the derivative of the profit function is

zero. For more general spaces of continuous demand functions the firm will

follow the same learning rule provided the profit function is known to be

sufficiently smooth . This is established in the theorem below:

Let n(P,0) denote the one-shot profit function where 8 is some unknown

2parameter. We assume that II(.,0) is C in P and that Tl(.,8) and its

derivative with respect to P (denoted n.(P,fl)) are measurable in 8. Finally,

let IL,(P,0) denote the second derivative of U(?,8) with respect to P and let

H denote the information set of the monopolist at time t+1

.

Theorem 2: Assume that n...(P,0) is locally uniformly bounded for all P; that

is, for all P there exists a > and a neighborhood V(P) such that |II,,(g,£)|

< a for all g G V(P), uniformly on 8 e H .

Then, at each period t+1 the firm either keeps on experimenting by setting

P
t+l*

P
t '

or P
t

is such that V |n
i
(P

t'
fi)l / H

t ) " °-

The proof of Theorem 2 can be found in the appendix. Here we provide a sketch

of the proof:

Sketch of the proof: The intuition of the proof is the following:

Suppose that the slope II, (P 8) of the profit function II at P is non-zero

with positive probability given information H (i.e., E„(|II, (P .,0)1 / H ) > 0.

Then, by experimenting with a new price P - P . close enough to P but
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different from P the monopolist can obtain a very good approximation of the

slope II, (P ,6) and in particular he can learn the sign of this slope: This, in

turn, will enable him to choose a price P „ next period such that: P
f + n > P

r

if IL (P J) > and P _ < P if IT, (P 6) < 0. The assumption that the second

partial derivative II,,(P,0) is uniformly bounded around P guarantees that

profit IT(P ~,0) cannot change too rapidly as P r+ o moves away from P ; in

particular the monopolist can always choose P..,- so as t0 make sure that his

short-run expected profits at this point are strictly larger than II(P ,0) :

E(II(P
2 ,0)

l

p
t+ i"

p
>
H
t

) > n(P ,5). Now, by taking P-P
t+1

arbitrarily close to

P , the monopolist will reduce the short-run loss on his expected profits

down to zero because II is continuous in P. But at the same time he will get a

better estimate of the slope n, (P ,0) and this can only increase his expected

profit at time t+2. Therefore, local experimentation around P is more

profitable for the monopolist than charging the uninformative price P

forever.

An important feature of the demand function represented in Figure 4 is

that there is only one isolated price at which the derivative of the

profit- function is zero, namely the full- information monopoly-price. This

feature must be preserved in more general spaces of continuous demand

functions, in order to establish that experimentation only stops when the

monopoly-price is attained. To illustrate this point we will present an

example, where the profit function has a zero derivative at two isolated

prices and where the firm may decide to stop experimenting even though it

knows that it has not yet found the full- information monopoly-price.

In this example, the firm's profit- function, II(P) , is assumed to take the

following form:

fg(P) for P 6 [0,v] U[v+A, + »)
n(P) " |f(P,v) for P <= [v,v+A]

; A >
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where f(v,v)-g(v) and f (v+A, v)-g(v+A) ; furthermore, max g(p) - 1 and the

maximum is reached at P-l ; also, max f(P,v) - 1+A, where X > 0.

Figure 5 below represents IT ( P ) :

Insert Figure 5 about here.

Suppose first that the firm knows everything about its profit function. Then

it is clear that the firm will choose the optimal price in [v,v+A] and make

total intertemporal profits of (l+A)/l-£. But when the firm is uncertain

about the exact value of v we show that it may decide to always set the price

P-l, even though it knows that this is not the full- information

monopoly-price .

Let the prior distribution over v be uniform over the interval [v,v] where

1 < v < v. Initially the firm can either set P-l or choose some price P e

[v,v+A] . When the firm sets P e [v,v+A] the maximum intertemporal profits

are less than or equal to:

(4.1) Prob(Pe[v,v+A])(l+A) + Prob(Pe[v,v+A] )g(P) +
S

[]
+

&

X)

The above expression is obtained by assuming first that if P 6 [v,v+A] the

firm attains the maximum profits, 1+A , and second, that whatever happens in

the first period the firm ends up knowing everything about its profit function

in all subsequent periods.

Since v is uniformly distributed on [v,v] , we have:

Prob(P€[v,v+A])< A/(v-v).

Thus we obtain the following upper bound:

(4.2) g(p).[l-A/(v-v)] + A.(l+A)/(v-v) + S.(l+X)/(1-S)
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Assuming that g(P) ^ g(v) for all P e[v,v+A], we obtain that whenever,

(4.3) jiy > g(y).[l-A/(v-y)] + A.(l+A)/(v-y) + 8 . (1+A)/(1 - 6 )

the firm will never choose P e[v,v+A]. That is, it will stop experimenting

and set the price P-=l , even though it knows that this is not the

full- information monopoly-price.

Whether or not the firm will decide to play safe and set P-l forever

depends on the degree of prior uncertainty about the monopoly-price (measured

by the ratio A/(v-v) ) ; on the potential gains of experimentation (measured by

A) and finally, on the potential cost of experimentation (measured by g(v)).

In the above example small price variations are not sufficient to learn

about the full information monopoly-price. Once the firm has reached the

price P=l , it cannot learn about the optimal price without engaging in large

price experimentations. Thus it cannot learn about the prof it- function by

incurring only arbitrarily small experimentation costs. This brings us back

to the example developed in the introduction: because expected learning costs

are large the firm prefers to stop experimenting before it knows all the

relevant information about demand.

To summarize our discussion in this section, we have shown that continuity

of the profit function is not a sufficient condition to obtain complete

learning in the limit. The profit-function must be known to be both

continuous and quasi -concave . The firm will stop experimenting when it has

learned the full-information monopoly-price only if these two conditions are

satisfied.

So far, all we have established is that provided the profit- function is

continuous and quasi-concave the firm will not stop experimenting before it
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has reached the monopoly-price. This does not imply that the learning process

will eventually converge to the full- information monopoly-price. It is

conceivable that although the firm never stops experimenting the price

sequence generated by the learning process converges to an accumulation point

which is not the full- information monopoly-price. We conjecture, however,

that if the firm's learning strategy is optimal (and if the profit function is

sufficiently smooth) such an outcome can be ruled out. Intuitively, if the

price sequence converges to an accumulation point which is not the

monopoly-price, then the firm will eventually know that the slope of the

profit- function at that point is different from zero. This information ought

to induce the firm to move away from that point so that the only possible

accumulation point must be the monopoly-price. We tried, without success, to

provide a formal proof of convergence based on the above intuition. The

difficulty in proving convergence arises from the possibility that the firm

may be able to acquire most of its information about the profit- function by

experimenting forever in a small neighborhood, so that the price sequence

never converges to the monopoly-price. We have not been able to rule out such

an outcome.
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Ill

.

Conclusion .

We have found two reasons for which it may not be in the firm's interest

to continue learning until it has all the relevant information about demand:

discontinuities in the demand curve and/or non-concavities in the

profit-function. In both cases the firm cannot avoid incurring

experimentation costs that may be larger than the expected benefits from

experimentation. It is then in the firm's interest to stop learning even

though it does not possess all the relevant information about demand. Under

those circumstances, the firm will generally end up setting a price different

from the full- information monopoly-price. Such incomplete learning results

are important since they suggest that existing theories of monopoly pricing

cannot be viewed as representations of a firm's pricing behavior once this

firm's learning process has settled down. The long-run equilibrium outcome

cannot be separated from the history of price experiments, and from the firm's

initial prior information. In other words, whenever learning is incomplete in

equilibrium, we have a situation where the long-run equilibrium is

his torv- dependent .

Another conclusion of our analysis is that it is not necessary to assume

that demand is stochastic to obtain incomplete learning results. In fact,

randomness of the demand curve by itself does not imply that the firm will

stop learning before it has all the relevant information about demand.

Undoubtedly, though, the firm's inference problem becomes harder if demand is

random: firstly, the firm may have to set the same price for many periods

before it can infer the value of expected profits at this price with

sufficient accuracy, using the law of large numbers. The stochastic nature of

demand increases the experimentation time necessary to acquire any given

amount of information. Secondly, what makes the learning problem particularly

difficult to analyze when the firm faces a stochastic demand is the following
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observation: under a deterministic demand the firm's choice problem at any

period is one of deciding between staying at an uninformative price forever or

experimenting (and then pick the optimal experimentation price) ;
when the

firm faces a stochastic demand there may not always be such an uninformative

price. In particular, by setting the same price forever, the firm may still

be able to learn about demand over time. As a result, the firm's problem is

no longer one of deciding between stopping to experiment or continuing to

experiment. (For a detailed discussion of the stochastic case, see Jullien

[1988] .)

We hope that the methodology developed in this paper will be useful in

studying a number of interesting extensions. Remaining in the context of a

monopoly, one may ask what the consequences are of allowing consumers to adopt

a strategic behavior in order to influence the firm's inferences about demand?

Another interesting question is experimentation with both quantities and

prices. When a firm experiences a shock on demand, should it change the price

and keeps its volume of sales fixed, or else keep the price fixed and adjust

output, or instead use a combination of price and quantity changes? More

generally, when the firm does not know the demand the question arises whether

it should produce to order or determine its output first and then sell

whatever it is able to sell (up to capacity) . This involves a detailed study

of production technologies.

Another natural extension is to investigate the same type of learning

problem in an oligopolistic context, where several competing firms face

uncertainty about demand. A first step in that direction is taken by

Aghion-Espinosa-Jullien [1988], which analyzes how learning considerations

affect the equilibrium prices in a dynamic duopoly game.
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Footnotes

Alternatively it could experiment with quantities. Quantity experimentation

is investigated by Alpern- Snower [1987a, b]. In their model when the firm

overproduces it learns exactly by how much it has overproduced, whereas if it

underproduces it does not know exactly by how much it has underproduced. This

type of information acquisition is a case of what Alpern and Snower call

"high- low" search. (For other applications of the "high- low" search approach,

see Reyniers [ 1987a ,b , c ].

)

2
A myopic firm can be viewed as a simple representation of a sequence of

short-lived firms, each one having access to the data about past firms'

pricing decisions and sales.

3
The expected net present value of profits when the firm sets P-i-v-i is

, 2v S v
n.
'1 2(1-5) 2v

1
(l-6)

v
2When it sets I\ "V_ it is simply: n„ - =

—

= .
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4
It can be shown, however, that the Grossman-Kihlstrom-Mirman result is not

robust. Consider the following generalization of our example: There are now

four types of buyers with reservations values v >v„>v->v, and the proportions

of each type are given by jj.. ,/x„ ,/i_ ,fi, . There are two possible demand

functions that the firm can face: In state 1 the proportions are given by

(H
1
,H

2
,H

3
,H ) - (2/3,0,1/3,0), in state 2 they are given by (0,2/3,0,1/3). Let

a be the prior probability of state 1 and assume that 2v„/3 > av.+(l-a) 2v-/3

and that v„ > av, . Then one can show that for a given small a, if the

discount factor is large enough the non-myopic firm will set a lower initial

price than a myopic firm. For details, see Aghion-Bolton-Jullien [1987].

Lazear [1986] looks at basically the same model, except that consumers are

assumed to purchase the good only once. If the price is too high today they

may decide to wait until tomorrow before purchasing. Once they buy, however,

they drop out of the market.

Our main results can actually be established in the more general case of a

continuous density distribution f (v) . See appendix.
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Appendix

Proof of Theorem 2 :

Let P be such that E„ ( I IL (P ,6) I / H ) > , and let V(P ) denote
t 6 ' 1 t ' t t

the neighborhood of P where
|

II (P,6)| < a for all 6 e H

Step 1 ; For all P c V(P ) , and for all 6 e H :

n
1
(P

t
,e) -

n(p,e) - n(P
t
,e)

p^p

p-p

i.e., II. (P ,6) can be arbitrarily approximated by the slope

n(P,e) - n(p ,e)

d(P) = — as P moves closer to P
P-P t

Proof: FI being c , we have:

r?

n(p,9) - n(p .e) n
1
(q,e)dq

and

:

n^q.e) - n
1
(P

t
,6) = n

11
(r,e)dr

t

Now for q r V(P ) , q > P

n
1
(q,e) - n

1
(P

t
,e)

|
s a dr = a(q-P )

Therefore, if P > P , and P c V(P ) , we must have:

(i) n(P
t
,e) &

)

fn
1
(P

t
,e) + o(q-P

t
)]dq

= n
i
(P

t
,6)-(P-P

t
) + a

(P-P )

and similarly:
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(2) n(p,e) - n(p e) > [n (p ,e) - o(q-p )]dq

= n
1
(p

j

.,e)-(p-P
t

) - a

(p-P
t

)

(1) and (2) suffice to establish Step 1 in the case P > P, The

proof is identical when P < P

Step 2 : Suppose that E (II (P ,0)|H ) = , so that a myopic mono-
1 t t

polist would stop experimenting at P Then 3K > and

u > such that, for P close enough to P

Pr(d(P) > KJH ) > u .

Proof : From Step 1, we know that for P e V(P ) :

P-P

(3) d(p) ^ n
1
(P

t
,e) - a

But by assumption, H (P ,6) is non-zero with positive probability,

given information H . In particular, JI. (P ,0) is strictly

positive with positive probability, otherwise E (H . (P ,0)|H ) would

be different from zero, which we assumed away in this Step 2. This

means that we can find L > and u > such that:

(A) Pr(n (P
t
,6) > L|H

t
) > u .

From (3) and (4) it turns out that we can always choose P close

enough to P
t

Pr(d(P) > L/2|H ) > V .

It suffices now to take K = L/2 in order to complete the proof. Q

Step 3: Under the assumption of Step 2, for P = P , close enough
c— v t+1

to P but P = P , there exist F > and a new price
t t

P
t+2

= P
t+2

(P) E V(P
t

) SUCh that:

E
c (n(p e) Ih and p) s n(p ,e) + f .

t+2 t t

Proof : Let e be a positive number smaller than K : < c < K
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p-p

For P = P , close enough to P , a can be made smaller
t+1 6

t 2

than E , so that by Step 1:

n (P ,6) > d(P) - e .

Now, for any q £ V(P ) , we have:

n(q,e) s n(P
t
,e) + (d(P)-e)(q-P

t
)

- a

(q-P
t
)'

Let P . £ V(P ) be defined as follows
t+2 t

• P = p + ^Zh£ if <^z£<r
t+2 t a a

P „ = P + r
t+2 t

p = p
*t + 2 t

where r = sup (q-P )

qcV(P
t

)

.. d(P)-c
%if > r

otherwise,

We have

:

0.1
n(P

t+2
,e) > n(P

t
,e) + if d(p)-e >

, .

f
d(P)-e,

where T = mm(r, )

and n(P
t+2

,e) s n(P
t
,e) if d(P) < E

E(n(P
t + 2

,e)|H
t

and P) i Pr (d (P) >e) •
[ n (P

t
, 6) + -y—

]

+ Pr(d(p)<c).n(P ,e)

a.' t
> n(P

t
,e) + Pr(d(p)>c)

We know from Step 2 that:

Pr(d(P)>K) > p .

Given that z < K , we necessarily have: Pr(d(P)>c) > y

2
ax

This establishes Step 3, with F = u —s— > . D
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Now the proof of Theorem 2 goes as follows:

Either E (II, (P ,9) H ) is different from zero, in which case even aBit t

myopic monopolist would keep on experimenting at time t+1 (a fortiori,

would the non-myopic monopolist do so)

,

or E (II (P ,8)|H ) = ; in which case, by experimenting through

P = P , different from P but close enough to P , the monopolist
t+1 t

b
t

v

can obtain an expected intertemporal profit II (P|H ) , where, from

Step 3:

n
6
(p|H

t
) * n(p,e) + -^j (H(p

t
,e) + f) .

Now, by continuity of II , we have: lim H(P,6) = H(P ,6) , so that:

P -P
C

t

n(P .6)

lim n.(p|H ) £ -^ +
6^ ' t' ~ 1-6 1-6

t

i 6F
= n.(pJh ) +

5
Vit'V 1-6 •

Therefore, given that 6 > , the monopolist is better off experimenting

locally around P than charging this uninf ormative price forever.

This concludes the proof. Q

Proof of Lemma :

There exists a uniform bound k. such that for all x t [0,x r ]

6 o

the optimal initial price p (x) played by the monopolist whose prior

information is that v e [x,l] verifies:

P (x) i k .

o 6

Proof : Let x E [0,xJ and suppose that the optimal initial price

p (x) £ [x ,1] . Then we know that V(p ,1) = p /1-6 so that:
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(1-p )p
(1-x) V(x,l) =

{ _l
°

+ 6(p
o
-x)V(x,p

o
)

and, using V(x,p ) < V(x,l) ,

o

(1 " P o
)p

o
V(x,l) <

(l-6)(l-6p
o
-(l-6)x)

Since x < x r and V(x,l) > V(o,l) £ —

—

7———— (Proposition 3), the
(4-6; (l-o;

price p must verify:r o

(1 -p
o

} P o
> lh [ 2=6" 6p

o
] ° r

2 6 1
>

P
o

" 4=6 P
o

+
(4-6) (2-6)

= g(p
o

} '
lt ±S straightforward to

verify that for all 6 < 1 , g(x) < and g(l) > . Thus, there exists

1 > k. > x. , such that:
6

P
o

e [k
6
,l] => g(p

o
) > .

Therefore, if the optimal price p is larger than x. , it must be

strictly less than k.

The lemma is proved. Q

Proof of Proposition 3 :

First step : The optimal initial price p verifies:

P
o

S X
6

=
2^ *

Proof: Suppose that p > —

—

- . We have
o 2-0

(1): V.(0,1) = max {P(l-P) + 6 (l-P)V. (P, 1) + 6P V.(0,P)} .

6
Pe[0,l]

6 £

The f.o.c. corresponding to this maximization are given by:

6P 6(1-P )

p

(we use the fact that V.(Pn ,l) = -

—

T , since P. > -—r , by hypothesis).
(J l-o 2-0
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The above f.o.c. are rewritten as follows:

1-2P

f<V =
-I=T

+ 26P V
6
(0,1) =

° '

S ° f(P }
=

° '

f ° r P > ~6 '

"

and only if V (0,1) > -ry-.—rr . But, since P > -—- , we know that
o I

\

1— 6 ) U / _ o

V
6
(0,1) = P (l-P ) + 6(1-P ) £;+ «pSv

6
(0.1)

=> V (0,1) = ^— = g(P
n ) .

6
(1-6Pq >(l-6)

It is straightforward to compute that for P >

1 + /wT
.
g'(P n ) <

Therefore, since x, = -—- < , we have:
6 2-6

1 + /l^6

8(V < S(X
6

}
=

(4-6)(l-6)
That is, V

6
(0,1) <

(
,_ 6 ; (1 _ 6) <2TL=6) '

a contradiction.

Step 1 is proved. Q

Second step: P„ < xL
6

Proof : We know, from Step 1 above, that P n < X . Now suppose that
6

P n = x, . We would have:
U o

V 0) = (1 " oir) ^77 + <5d "

> W
fi

(0) =

2-6

1

2-6' (2-6) (1-6)
( 2 _ 6 )

2

1

2
(2-6) -6 (4-6) (1-6)

M (0,1) , i.e., the

myopic intertemporal profit; but this is impossible by Proposition 3. This

completes the proof. Q
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Extending Model II to the case where the reservation value v

is distributed according to a general density f (v) on [0,1]

Here we generalize our treatment of Model II by assuming that the

prior information of the monopolist on the reservation value v at time

t=l is that v is distributed on [0,1] according to a density f , not

necessarily uniform, but such that

< f < f(v) < f , for all v'e [0,1] .

(We avoid that some part of the interval [0,1] be unreached by the

distribution and that Pr(v=v ) > for some v ; i.e., we avoid in

particular the case where v can only take a finite number of values, and

in which the incomplete learning result established in Section III doesn't

hold any more.)

Let F be the cumulative distribution function corresponding to

density f . If the monopolist, starting from the information:

v c I = [0,1] and the c.d.f. F , ends up after t periods with the

information: v c I = [x,y] , then his posterior on [x,y] at time t

will be given by the c.d.f.:

v (v^
F(P)-F(x) . .

F
xy

(P) - F(y)-F(x) '

f ° r P £ [x ' y]
'

Let V (x,y) be the maximum intertemporal expected profit of the
o

monopolist when he starts from the information v z [x,y] with c.d.f.

F
xy

Lemma 1: V is the unique bounded solution of the Bellman eauation:
6

(B): V(x,y) = max
pc[x,y]

F(y)-F(p) . ,,
F(y)-F(x) (P + C' V (P>y>)

F(p)-F(x) ... ..
+

F(y)-F(x)
6 VU ' P)]

•

36



The proof is identical to the one done in the uniform distribution

case,

Corollary ; V. is continuous and increasing in x and y

Proof of Corollary : Here again the proof is quite similar to the one done

in the uniform distribution case: We know by lemma 1 that V is the

2
unique fixed point on the Banach space B (bounded functions on [0,1] )

of the contraction mapping Jl defined by (B) . Therefore, it suffices to

show that whenever V is continuous and increasing in x and y , 11 (V)

inherits the same properties.

Let X = F(x) , Y = F(y) , P = F(p) , and Q c [0,1] such that:

P = (Y-X)Q + X . We have:

n(V) = max [(1-Q)[F
_1

((Y-X)Q+X) + 6V(F
_1

((Y-X)Q+X),y)
U>>; Qe[0,1]

+ Q6V(X,F
-1

((Y-X)Q+X)] = a(V,F,x,y,Q) .

For each Q c [0,1] , (x,y) *—} (Y-X)Q+X is increasing in x and y , and

continuous. Given that F is continuous and increasing, and that V also

is continuous and increasing in x and y by assumption, the mapping

(x,y)l—> a(V,F,x,y,Q) inherits the same property for all Q , and so does

H(V) = max a(V,F,. ,. ,Q) .

Qe[0,l]

This completes the proof, rj

f xLemma 2: Let x x = -—7-7^—FT ; then V(x,y) = -r1-^ is the solution of the
<5 f+f(l-6) '

v '" 1-6

Bellman equation (B) on the set:

D = {(x,y)
I

y/x > x } .

x
6

(Therefore, from Lemma 1, V (x,y) =
'

for *~ > y ,)
1-6 x 6
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Remark: In the uniform case, we have f = f = 1 , so that: x
6 2-6

(Section II)

Proof of Lemma 2 : Let V(x,y) = -—- and let us calculate:
1-6

max
pe[x,y] L

F(y)-F(p) p F(p)-F(x)
_ ,

.—„ . . • —-"*— + " "7 \ ;—

r

-
• 6

F(y)-F(x) 1-6 F(y)-F(x) 1-6

max G(p)

Pdx.y]

We have: G' (p) -
(i- 6 )

(

F ( y )-F(x))
(F(y)-F(p)-f (p) (p-6x) ) .

But : F(y)-F(p)-f(p)(p-6x) < f (y-p) - f (p-6x)

< f y - [f + f (l-6)]x , Vp c [x,y] .

So, for x > —rr- y = x. • y , G' (p) < for all p c [x,y] so that
i + r { l-o j 6

the maximum is obtained for p = x . But G(x) =
"

. This establishes

the lemma.

Lemma k : 3 k < 1 such that x < x -y => p (x,y) < k «y , where p (x,y)
6 6 16 1

is the optimal price played by the monopolist in period 1 when he starts

from the information: v e [x,y]

Proof of Lemma A : Suppose x g x «y and p = p (x,y) > k -y , for all
6 11 6

k < 1 . Let's take (w.l.o.g.) k > x . (This is consistent with the
o 6 6

inequality k < 1 since x < 1 .)
6 6

P
l

Since: p
1

> k^
• y > x^-y , we have: V x(P

1
»y) = ~

F(y)-F(p ) p F(p )-F(x)
Th£n: V

6
(x ' y) =

F(y)-F(x) • TT +
F(y)-F(x) '

6 ' \^'*1 ) '

Now, since V (x,y) > V, (x,p.) , we must have:
o 6 1

V
6
(x,y).[F(y)-(l-6)F(x)-6F(

Pl )] < (F(y)-F( Pl )) • y^ .
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The one-shot monopoly profit starting from the information: v c [0,y] is:

F(y)-F(p) I
maX

¥(v) P "
maX

Fv" (y_p)p

P c[0,y]
ny> pe[O fy]

y

2 — • y .

4f

f

=> V
6
(x,y) > V

6
(0,y) S -py ~ .

Af

So we must have:

f

[(l-6)(F(y)-F(x))+6(F(y)-F(p ))] — y < (F(y)-F(p))p .

Af

Using x < x.-y and letting d = f/f < 1 , we get as a necessary condi-

tion:

d
2 P

l
P

l
P

l

f- -[(l-Od-x
6

) + 6(1-^)] < (1--1) -A
.

P
l

P
l

The RHS is when — = 1 ; the LHS is strictly positive when — = 1

y y

Pi
Therefore 3 k < 1 such that — < k„ . Q.E.D. D

6 y 6

Once we have these last two lemmas, the theorem stated in Section III

and proved so far in the uniform case can immediately be generalized to the

distributions f (v) where < f i f(v) < f , It suffices to repeat the

proofs of steps a and b, Section III.
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V (*.!)

Figure

A hump-shaped V„(x,l)
, as in Figure 2, is impossible.
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