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Introduction

Heat transfer deals with the rate of heat transfer between
different bodies. While thermodynamics deals with the magnitude of
heat exchanged in a process. Heat transfer is necessary to
determine the time required for a process or alternatively the size
of a surface necessary to achieve a certain total rate of heat
transfer.

Heat transfer analysis permits a calculation of the heat loss
from a building surface to the surroundings for a given building
size, window area and wall design, e.g. the level of insulation in
the wall cavity. The comfort conditions for occupants in a room is
determined by a balance of heat transfer from the person to the air
surrounding him or her as well as the heat transfer to the walls of
the interior. The size and cost of a heat exchanger is also
determined by considering the heat transfer between the £luid
streams in the exchanger.

In other fields, heat transfer plays a key role as well. The
design of integrated microprocessors which contain very closely
spaced elements, each with a finite amount of heat generation, is
limited by the requirement for adegquate cooling so that the
operating temperature of the electronic components is not
exceeded. Reentry of the space shuttle in the earth's atmosphere
must be carefully programmed so that temperature extremes due to
air friction is confined to the insulating tiles on the shuttle's
surface.

Modes of Heat Transfer

Following thermodynamics, heat transfer is that energy
transfer which takes place between two bodies by wvirtue of a
temperature difference between the bodies. From the second law
considerations it can be demonstrated that there is always a net
positive energy transfer from the body at a high temperature to a
second body at a lower temperature. Following the definition of
heat, there are only two physical mechanisms for heat transfer:
(1) electromagnetic waves produced by virtue of the temperature of
a body, referred to as thermal radiation heat transfer and (2)
atomic or molecular motion in a medium between the bodies ex-
changing energy, referred to as conduction heat transfer.

Sometimes conduction heat transfer takes place during the
change of phase and is referred to as boiling or condensation heat
transfer. Conduction heat transfer can also take place in the
presence of fluid motion, which is called convection heat transfer.

The rate of heat transfer between two bodies is proportional




to the temperature difference between the bodies and in some cases
the temperature level of the bodies as well. In many instances the
heat transfer process is analogous to the rate of transfer which
appears in other fields. The analogy between heat transfer and
electrical current flow will be used to illustrate some of the
simpler heat transfer processes. Similarly, it can be shown that
the rate of transfer of mass in an evaporation process follows a
process very similar to that for heat transfer.

Conduction Heat Transfer

In a homogenous body which experiences a temperature gradient
the rate of heat transfer due to microscopic motions is conduction
heat transfer. In a gas the gas molecules in the higher
temperature portion of the gas will have a higher kinetic energy.
As the molecules of the gas randomly move through the gas wvolume
there is a net energy transfer from the high temperature portion to
the low temperature zones. In a solid, the energy transfer from
high to low temperature may be due to the migration of electrons or
the vibration of the molecular bonds.

Viewed as a macroscopic phenomena, the rate of heat transfer
by conduction represented by the symbol g or @ is found to be
directly proportional to the product of the local temperature
gradient and the cross-sectional area available for heat transfer,

g < -AVT (1)

In the case of one-dimensional heat transfer normal to a plane
slab, figure 1, the conduction heat transfer can be given by
Fourier’s Equation,

dar
= ~ka—
q (2)

The constant k is known as the thermal conductivity. g has
the dimensions of BTU/hr or Watts and k has
the dimensions of BTU/hr-ft °F or W/m °C.

The thermal conductivity defined by
equation 2 is a thermophysical property of
the material. If the composition and
thermodynamic state is known then the thermal
conductivity can be found. Table 1 lists
the thermal conductivity of common

Figure 1 One Dimen-
sional Conduction



Table 1
Thermal Conductivity of
Common Materials

k(BTU/hr ft °F

Solids
Copper ' 219
Aluminum 119
Steel 25
Brick, common 0.2 - 0.1
Concrete 0.5 - 0.8
Glass 0.5
Glass fiber insulation .03
Ice 1.3
Plastic 0.1
Wood 0.1 - 0.2

Licuids
Ammonia 0.3
Refrigerant-12 0.04
Light 0il 0.08
Water 0.34
Mercury 5

Gases
Air,dry 0.015
Carbon Dioxide 0.009
Helium 0.09
Hydrogen 0.11
Water Vapor (Steanm) 0.015 (at 212°F)
Refrigerant-11 0.005

1.73 k (W/m °C) = 1.0 (BTU/hr ft °F)




solids, ligquids and gases at normal temper-
atures. Note that these values span many
orders of magnitude with electrically

conductors having the highest thermal con- T T2
ductivity and high molecular weight gases A
generally having the lowest thermal conduc- ﬂ//
tiVitYo q

Consider a slab with a steady conduction
heat transfer across it in the x direction,
fig. 2, with the temperature equal to T, and
T, at the surfaces corresponding to x equal
to 0 and L, respectively. Then q is a Figure 2 Conduction
constant and equation 2 can be integrated to Through a Plane Wall
give,

(3)

For this case the temperature varies linearly across the width of
the slab. One can consider an analogy between the solution for
steady conduction and for steady D.C. electric current flow, Ohm’s
Law,

I-= (4)

The rate of heat transfer g is analogous to the current flow I,
the potential difference AV is analogous to AT and the balance of
equation 3 is analogous to the resistance. The term thermal
resistance is used; for eqn. 3 the thermal resistance is L/kA.

Consider the case of steady heat transfer through a composite
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Figure 3 Steady State Heat Transfer Through a Composite Wall
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wall as shown in figure 3. Each element of the wall has the same
heat transfer rate g through it and for each an equation similar to
equation 3 can be written. At steady state with no change in.
internal energy with time, no work, and no mass flows through each
of the elements, the rate of heat transfer into and out of each
wall element must be the same. For the wall board,

q = ?(Tl“""z) (5)

whb

This can be rewritten as,

L
L, T,=4q

(6)

wb

For the insulation

L
,T,=4q

(7)

Similar equations can be written for the plywood, T, - T, and

and the siding, T, - T,. When these equations are summed up the
intermediate temperatures T,, T, and T, cancel and the resulting
equation becomes

L L L L
+ + + (8)
kA kKA, kA ka

whb i D -4

T-T =gq

or

(9)
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The electrical analogy for this case is resisters in series as
shown in figure 4.
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Figure 4 Electric Analogy to Steady State Heat Transfer

Then the overall solution can be easily written as,

g AT
2R (10}

which is identical to egquation 9.

For a planar wall, the cross sectional area of each element is the
same so that equation 9 can be rewritten as
@E‘”E)A
L+L+L+L (11)
ka kA, kA kA
wb i pel &

q:

Each of the terms in the denominator is sometimes referred to as
the R-value of that material. Note the R-value is independent of the
surface area A while the thermal resistance R, includes the surface area.
For the plywood, a typical R-value for a one inch thickness is

L 1/12 BTU !
= =0.8—m——— (12)
k 0.1 hr ft? °F

If the insulation is three and one half inches thick, a typical 2
by 4 construction,

L _ 3.5/12 _ BTU !

o 220t 9P
k.  .028 hr ft °F (13)

For the composite wall in figure 3, the R-value of the insulation
dominates all of the terms in equation 11.

Convection Heat Transfer Introduction




In a typical wall construc- Temp T inside
tion, as shown in figure 3, the
temperature on the inside wall T T2
surface, T,, and the outside siding
surface T, are not generally known.
Rather the interior room air tem-
perature, T,, and the exterior air T4
temperature, T,, are the known ' T3 15
quantities. Consider a wintertime

condition, when the building is at ’ Te
a higher temperature then the

exterior air. The temperature

through the built-up wall X
continuously de- Figure 5 Temperature Distribution

creases from the inside wall at T, yith Convection at the Surfaces

to the outside surface at T,. This

is shown in figure 5. The outside

surface temperature T, is higher than the exterior air temperature T..
In the air layer close to the building surface the air is in motion
parallel to the surface. There is heat transfer by conduction from the
building surface through this air layer. Because there is also energy
transfer by the motion of the fluid the temperature through the air
layer does not vary linearly. Rather, there is a large temperature
gradient near the surface which decreases further from the surface until
the temperature reaches the constant air temperature T,. The layer over
which the temperature change occurs is thin, typically one quarter of an
inch or less.

The process of conduction heat transfer through the air combined
with energy transfer by fluid motion is called convection heat transfer.
The rate of heat transfer is proportional to the surface area and the
temperature difference between the surface and the uniform air tempera-
ture outside of the thin surface or boundary layver,

g=A (Ts—Te) (14)

The expression is changed to an equality and in the process a new
gquantity, h, the heat transfer coefficient is defined,
q=hA(T -

surface fluid) (15)

where h has the units of BTU/hr ft’ °F or w/m’ °C. Equation 15 is of no
use until some way to calculate h is established.

Generally, the heat transfer coefficient, h, is a function of the
fluid properties, the fluid velocity, the surface geometry and sometimes
the temperature level. A more detailed discussion of convection will be
given later. For now it is sufficient to observe that h increases as
the air velocity increases and it increases with fluids of higher
thermal conductivity.
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There are two general forms of convection. When the air motion is
set up by buoyancy effects due to the applied temperature difference
between the surface and the fluid, e.g. the air flow over a hot
‘radiator’, the flow is natural or free convection. When the flow is
due to an external source, e.g. the wind, a fan or by the motion of the
surface, the flow is forced convection.

Rohsenow has presented a table which gives good estimates of the
order of magnitude of h for convection heat transfer as well as boiling
and condensation. It is reproduced in table 2.

Table 2
Convection Heat Transger Coefficients
BTU/hr ft° °F

Gases Natural Convection ......<«ecee.. 0.5 - 5
Gases Forced Convection ..cc.cecccecsces 2 = 50
Liquids Forced Convection .....ccceee 30 - 1000
Ligquid Metals ..ccceeeccacccceascns 1,000 - 50,000
Boiling Ligquids ....... cecesesescns 200 - 50,000
Condensation cessessssesesces s oo 500 - 5,000

Rohsenow W.M. and Choi H., Heat, Mass, and Momentum Transfer
Prentice-~Hall, 1961.

1 BTU/hr £t °F = 5.68 W/m®> °C

Now returning to the concept of thermal resistance, from equation 15 the
equivalent thermal resistance, R, for convective heat transfer is (1/ha).

EXAMPLE

Consider a single glazed window. What
is the increase in the energy efficiency if
the glass is made of plastic with k = 0.1
BTU/hr £t °F instead of glass with a k¥ = 0.5
BTU/hr £t °F? Assume that the radiation heat

transfer remains the same. L
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SOLUTION

In this case convection heat transfer from the inside air at
T, to the glass surface acts in series with conduction through the
glass and convection to the outside air. The equivalent electrical

]

T
3. AAA T1 AAA T2 AAA Te

1/na() (L/kAde  (1/hA)e

Figure 7 Electrical Analogy

circuit is shown on figure 7 and the steady state heat transfer,
neglecting radiation, becomes

(1)

Using table 2 the magnitudes of h, and h, are

1.1, BTU -
h, 1 hr £t °F

For the glass, assuming it is 1/8 inch thick,

Changing to plastic decreases k,Z to 0.1 and increases L/kg to 1/10
but it will only change the overall value‘of d, given by equation

16 by less than 10 percent.
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The overall heat transfer for composite systems such as figure
3 or figure 6, represented by equation 9 and 16, respectively is
sometimes rewritten in terms of an overall heat transfer
coefficient U defined as

g="UA (Ti—Te) (17)

Although U has the same units as h, U can involve a combination of
conduction and convection heat transfer and is not physically
meaningful although it may be helpful for estimate purposes. A
number of handbocks like the ASHRAE Handboock of Fundamentals list
values of U for typical built up wall and roof construction. These
values of U include convection heat transfer on the inside and
outside for an assumed wind velocity and interior air circulation
conditions.

Cyvlindrical Geometry

Besides plane walls, the T2
other conduction geometry

which is of interest is
cylindrical geometry. In
tubes carrying fluid in an
air conditioner there 1is
radial heat transfer from the
interior fluid through the T1
wall to the exterior £fluid.
In this case the heat trans-
fer at any radius r within
the tube material is a
constant given by,

dr
= -k2nrz—
a = (18) I 2
where zZz is the axial length '
of the tube. This may be r 1

integrated to vield,
k(T —T2)2nz Figure 8 Cylindrical Geometry
1

q = PO SV A —
1] =2 (19)
rl
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and can be approximated by a planar form,

I

(20)

which is accurate within 5 percent for r,/r, < 2 when A is evaluated
at the midplane of the tube, i.e. 2mn z (r, + r,) / 2 and t is r,-r,.

Two Dimensional Heat Transfer

Te

he

plywood 0

Stud Insulation L

wallboard  /

T interior

Figure 9

Most walls are not uniform across their entire surface area.
Wood framing using 2 by 4’s has studs spaced at regular intervals
in the wall cavity, fig 9. Clearly the heat transfer through the
studs is higher than the heat transfer through an equivalent cross-
sectional area containing insulation.

The heat transfer through the wall cavity is due to two

parallel conduction paths, one through the studs and the other
through the insulation. The electrical analogy of this, in one

limit, is shown in figure 10 with the insulation and the studs in

parallel.




12
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Figure 10 Limiting Case for
Small Lateral Resistance to Heat Transfer in Sheathing
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Since the heat transfer through the two elements are summed,

. T | (mem)

q

and defining an equivalent resistance,

(%:-7)

q o ——— e
( L]

ka ,

equiv

then the equivalent resistance becomes,

It is important to note that
this approximation for the two-
dimensional case represents one
limiting case, the temperature T,
on the inside of the wall board
and the temperature T, on the
inside of the plywood are uniform
over the cross-section. In the
actual case the heat flow may be
uniform at the inside surface but
it preferentially flows through

11

22 I N 2 D O 2
kA , kA, kA
equiv ins stud_

(21)

(22)

(23)

Stud

4,
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Figure 11
Heat Flow

the studs because they have a much higher conductivity than the

insulation as shown on figure 11.

accommodate this heat flow by conduction

There will be lateral heat flow
in the wall board and the plywood in the y direction.

To
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there must be a temperature difference in the y direction in the
wall board and the plywood. This acts as an additional resistance
which will reduce the heat transfer through the stud.

The solution shown in figure 10 is only valid when the lateral
resistance are small, i.e. the y direction conductivity of the wall
board and the plywood approaches infinity. If on the other hand
the lateral resistance are very large, i.e. the lateral conduct-
ivity of the wallboard and the plywood approaches zero, then a
better model is two separate parallel heat flow paths from T, to T,
shown in fig. 12.

Stud : | Ilnsu}aﬁon

l |
I

q9 | ging

Figure 12 Limiting Case of Small Lateral Conductivity

The heat transfer through the studs is

(Ti—T ) A
e, F-5
d, =
1 L L L 1 (24)
—_— = +H = H = +
h, k k k h
i wb F ] D e
and through the insulation,
(Tl. —'_r'e) A,
q;, =
1 L L L 1 (25)
— ] — — -+ — + —_
h k k k h
i whb i P e

The total heat transfer rate is the sum of equations 24 and 25.
The true value of the two dimensional heat transfer lies between
these two limiting cases of very small lateral conductivity and
very large lateral conductivity.




