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Transient Heat Transfer

Conditions for Uniform Temperature

When the temperature of the
interior changes, the building’s
structure may be sufficiently massive
to provide significant thermal storage.
However, if the structure is very thick

it may require a substantial time Te b To h Te
interval before the temperature change
is felt throughout the structure. —T "X

Consider the case of a plane
homogenocus slab of thickness 2L. The v
and z dimensions are large compared to
I. so that the heat transfer can be
assumed to be one dimensional, in the x
direction only. Initially the slab is Figure 13
at a uniform temperature T, equal to the
exterior air temperature. At time zero
the air temperature suddenly increases to a new temperature level
T.,. Both sides of the slab are in contact with the air and both
sides have convective heat transfer coefficient h. At short times,
-the surface temperature of the slab will increase due to the heat
transfer from the air. Some of the energy transferred to the slab
will be used to raise the internal energy of the material near the
surface. The balance of the heat transfer will be transferred to
the next layer inside the slab where the same process occurs. The
temperature distribution within he slab at some intermediate time
is shown in figure 14. Right at the surface x=L where the slab
temperature is T, the heat transfer by convection must be equal to
the heat transfer by conduction since a
surface layer of zero thickness has a
negligible energy change 4E/dt because Te
it has negligible mass. At the surface A

we can write, —*’///ﬁ

dr Tc X To
—) = hA(T;Ts) (26) R i R
x=L

dx

An upper estimate of the temperature
difference between the surface and the
centerline can be obtained as,

dar
T -T, > L(——-—) (27)
d" x=L

Figure 14
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from equation 26,

The term hl/k which is dimensionless is known as the Biot number.
When the Biot number is small, about 1/6 or less, the temperature

T Te
A hL/k<1/6
Ts
— .,
Te

X To

m’------ .............

-+t 5T, -
Figure 15
hL
T -T_ > —E)(Te—rs) (28)

difference between the slab surface and the centerline is small
compared to that between the slab surface, T,, and the new air
temperature, T,. For this case, illustrated in figure 15, it is
reasonable to assume that the temperature of the slab is uniform
over its entire width. The slab temperature T only varies with
time. The energy equation becomes,

:—f =g=-ha(r-r) (29)

where A is the entire surface area of the slab which is in contact
with air at T,. When there isn’t any change of phase and the
energy change is proportional to McAT, where M is the total mass
of the slab, equation 29 becomes,
dar
— = -ha (7-
Mc at (T Te) (30)

Since T, is a constant this can be rearranged to read,
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d (T—Te) _ ha

= -4t
iT—Tei Mc (31)

with the initial condition for the slab that
at £=0 T = TO (32)

The solution of equation 31 is

-7, = (r,-T) e@(—%) (33)
or
T-T_ = (TO—TG) exp[ —%J (34)

where T is the thermal time constant of the slab with convective
heat transfer coefficient h and
Mc

T ha (35)

Example
A two inch thick steel structural beam has natural convection

heat transfer over one surface, the opposite side is insulated.
Find its time constant.

Solution

First it must be determined if the steel can be assumed
uniform in temperature across its width. Since only one side has
convective heat transfer, referring to figure 13, L in this case
should be the full width of the steel beam. The Biot number is

z(iJ
L _ {12) 1 . (36)

where h is estimated for natural convection from table 2. The
assumption of uniform temperature is clearly justified. Note that
if we were considering a two inch thick concrete section with a
conductivity of about 1 BTU/hr £t °F the Biot number would be 1/3
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and the concrete could not be assumed to be uniform in temperature.
The thermal time constant for the steel beam is,
. a 400(0.1)125
T = ...__S = pe = pCL = = 3.5 hr; (37)
ha ha h 2

The time constant is a function of the steel properties and the
heat transfer coefficient at its surface.
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Non-Uniform Temperatures

When the Biot number is much larger than 1/6 there is a
substantial temperature difference across the width of a body as
its temperature is changing with time. The solution of this case
is more involved mathematically. Standard cases are given in any
heat transfer textbook. The uniform temperature solution which
was discussed previously can not be used in this case; such a
solution may significantly overpredict the total heat transfer
over a given period of time.

Convection Heat Transfer

Convective heat transfer is conduction though a gas or
liquid in the presence of fluid motion. In these notes an
introduction to the physics governing convection will be given
along with some results for several different conditions.

delta ™ A

=

A

Ts L

Ta

A

> [ b

Darker Elements : T — Ts

Figure 1
Fluid Flow Over a Heated Flat Plate

Consider the case of air at a uniform temperature T, blown
by a fan along a flat surface which is heated to a uniform
temperature T,, Figure 16. The element of air closest to the
heated surface has a temperature increase as it starts to move up
the plate. Elements further away, at a larger y coordinate still
are at T,. As the element becomes hotter it moves up and is
replaced with another element at T, and the process is repeated.
At any location the temperature remains constant with time and
there is a steady heat transfer for the surface to the air. As
the air continues up the plate the elements further from the
plate start to increase in temperature.
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The maximum y distance at which the thermal effects are
£ felt, at any location x, will be specified as 5. ' At any =
P location the conduction from the plate to the fluid can be

calculated as

_ ar
g=k, (—-} (38)
ay/ o
This can be approximated in terms of & as
Taking a control volume over the plates surface as shown in
Figure 17, the energy equation gives,
‘_—_—.—_—.——_—.—
delta
T A
|
|
| Ts L
Ta :
| v X
|
I N ) B
Y
Figure 17 Control Volume for Energy Equation
é: 1
kA«T—T) Lkz(T—T)
q - a 5 2 - a F- a (39)
3 >
TS_Ta
q= (houf:_hin) = PV 6ch 2 (40)

We can estimate the distance & by equating g given by Egqn. 39
written over the area Lz' and q given by Eqn. 40:
T—T)

a

k sz ~ pV &zc -(——-i— (41)
a ) » 2

Solving for 3,

: This is only an approximation, to be more exact in

equation 39, & varies with the distance x.
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kL \*%

o _
S = Ve (42)

d can now be eliminated by substituting this expression for &
into

Egn. 39,
g= kaA(T—séT—") ~ (‘Z'S—Ta) Ak i:;" g (43)
From the definition of the heat transfer coefficient,
B= 3 Tj—ra ) % (ovz)” %: % ah

Egqn. 44 indicates that the heat transfer coefficient increases
with the fluid velocity V. As more fluid passes over the plate
per unit time, there is a lower average temperature increase.

Put another way, as the velocity increases the elements in Figure
16 further from the plate don’t heat up and 3 decreases. The
conduction rate then increases because the temperature gradient
(T,-T,) /3 increases. Similarly, when a fluid with a higher
density and specific heat is used & is smaller and g and h
increase. Finally, as the fluid conductivity is increased, h
increases.

To achieve an exact answer the viscosity of the fluid must
also be considered. The velocity, n, is the fluid property which
governing the resistance force acting on a thin plate as it is
pulled through a fluid at a constant velocity in a direction
parallel to the plate length. The viscosity has units of 1lb /h-
rft or kg/ms. Introducing the viscosity into Eqn. 44 and rear-
ranging, there results,

% ¥
VL C R
pel k

hL _
k
a

hL./k,, a non-dimensional heat transfer coefficient is known as
the Nusselt number. pVL/u is the Reynolds number, Re, and c,n/ka
is the Prandtl number, Pr.

In general, the results for forced convection are given as

hL

a
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For flow over a flat plate at uniform temperature the exact
solution is,
.hL - % ‘,ﬁ

a

Using air properties at room temperature h can be found as

0.5
A= o.71{l’) (48)
L
while for water,
0.5
h=12.7 (:Y] (49)
L

In this form V is in ft/sec and L is in ft. Note, water gives a
much higher heat transfer coefficient than air because it has a
much higher thermal conductivity as well as a higher density and
specific heat.

Turbulent Flow

At low velocity, the fluid flows in very smooth paths about
parallel to the plate surface. As the velocity is increased a
point is reached where the fluid motion is much more chaotic
characterized by eddies in the flow near the plate surface. This
is termed turbulent flow. Turbulent flow over a flat plate is
found to occur when the Reynolds number p Vx/p exceeds 300, 000.
x is used to indicate the distance from the leading edge; the
front of the flat plate can have laminar flow while the rear
experiences turbulent flow. The distinction between laminar and
turbulent flow is important because the eddies in the turbulent
flow tend to bring fluid at the ambient temperature T, much
closer to the heated plate surface. In effect the eddles reduce
the distance & for conduction heat transfer and markedly in-
crease the heat transfer coefficient.

The correlations for turbulent flow over a flat plate is of
the same form as the laminar flow heat with different coeffi-
cients, for turbulent flow Re = pVL/u > 320,000
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0.8
= 0.037 (-@E) (Pz)* (50)

hL
k; H

For air at room temperature

for VL > 50 ft?/sec

h=0.55 v°8,r0°2 (51)

For water

for VL > 3.9 ft?/sec

h=21.2 v°-8,1°2 (52)

Flow Inside Tubes

The other important flow geometry is gas or liquid flow
inside tubes. A similar development exists for the convective
heat transfer with the exception that h is defined based on the
mean temperature T, of the fluid within the tube at the location
in question. For a
section within the tube of axial length between x and x+Ax,

_ a
B = nb ox (T,-T,) (53)

s M

where T, is the mean fluid temperature at x.

Almost all practical cases of tube flow, the flow is turbu-~-
lent. Exceptions are flows through very small tube diameters or
the flow of viscous fluids such as oil. For turbulent tube flow,
the heat transfer coefficient is given as

0.8
BD _ 5.023 (EE) (pr)°-4 (54)
k n

For air at room temperature, the relationship becomes,

vo-8
h = 0.34D0.2 (55)
while for water we get,
vo-8
h =13 (56)

DO.Z
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where V is given in ft/sec and D is in feet.

Natural or Free Convection

In natural convection the fluid motion is solely due to
buoyancy effects caused by the heating or cooling process of the
fluid. Natural convection flow over vertical flat plates have
similar physical considerations and analogous expressions to
those used for forced convection, see Figure 16 and Eqn. 44 or
46. However, in this case the fluid velocity V is not set by
external fans or by the motion of the heated body.

delta ™

Ts Ts>Ta
Heated

Ta
At Rest

>

-

Figure 3 Fluid elements inside and outside the heated laver

We can make an estimate of V for free convection by consid-
ering a simplified case shown in Figure 18. A vertical heated
plate at temperature T, is surrounded by air at a temperature T,.
Air near the plate surface has a temperature close to T.. The
density of air decreases as its temperature increase. A fluid
element of volume Vo far from the plate at T,, position 2 in Fig-
ure 18 is at rest because it’s weight pgrg 1s balanced by the
difference in the air pressure between its upper and lower
surfaces. The fluid element of air at position 1 with the same
volume V, has a smaller weight, p,V g because it is heated and has
a lower density. But the element at position 1 has the same
pressure acting on it as the element at position 2.
Thus, the difference between the weight at position 2 and 1 represent
the net upward force exerted on the element 1 which causes it to
accelerate. That net force acting over the distance L is the work
done on the fluid elements which results in an increase in its kinetic
energy, neglecting any viscous resistance to the fluid flow. At the
bottom of the plate the velocity and kinetic energy are zero. VvV, is
the velocity due to the buoyancy efforts.




25

2 2
MVB - pl VO VB
2 (57)

W= FL = (0,V,g-p,V,9) L =

Simplifying Egqn. 57,

<p2—pJgL - v, (58)
o 2

The density change for air can be found from the ideal gas relation-
ship

S
o= — (59)

and the change in the density becomes,

dp =._;>dTHRT.___dT
P RT? P T (60)
and,
Ap _ AT
o - (61)
V, can be estimated from Egn. 58 as
2(T -7 \gL)°-5
v, = [_j_i__il__) (62)
T

Using V, in the Reynolds number it can be seen that the Reynolds
number is proportional to the temperature difference and the plate
length,

VoL

2
" ) = (-7 )5 (63)

el - |

The heat transfer coefficient should follow the earlier form, Egn. 46
with Re given by Eqgqn. 63.

' The exact expression for natural convection on a vertical plate
in air at room temperature is

r
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for AT L° < 1ooo F ft3,

e o 2]
L .

for AT L® > 1000°F £t3,

= 0.21 (Am)* (65)

»
!

Natural Convection in Enclosed Spaces

In an open wall cavity between interior and exterior walls air
circulation will take place from the hot to the cold wall. The air
will rise along the hot wall move horizontally to the cold wall at the
upper end of the wall cavity (and at other vertical locations as
well). The warm air will then flow down the cold wall. This process
will result in energy transfer from the hot to the cold wall. The
overall heat transfer can be represented by a heat transfer coeffi-
cient defined in terms of the two wall temperatures,

g=hA ( hot wa11 Teold wall) (66)

Figure 19 shows measured results for eight foot high walls. h,
is a function of the spacing between the walls and ©®, the temperature
difference from the hot to the cold wall. At a small spacing and/or a
small temperature difference the buoyancy effects are minimal and h_

is s1mp1y the ratio of air conductivity to wall spacing. As the
spacing is increased, h, reaches a constant, typically a spacing
between 1/2 and 3/4 inch is optimum. Radiation heat transfer across
the cavity must be added to the convection. If there is infiltration
of outside air into the cavity the energy transfer may be increased
considerably.

Radiation Heat Transfer

Thermal radiation along with conduction are the two fundamental
mechanisms of heat transfer. Bodies, such as the sun, emit electro-
magnetic energy by virtue of their temperature level. The electromag-
netic energy is exchanged between bodies at different temperatures
giving rise to a net heat transfer.

For heat transfer by radiation the electromagnetic energy gener-
ally falls in the visible range, with wavelengths from 0.4 to 0.7 am,
the near infrared, from 0.7 to 25um in wavelength or the far infrared
from 25 to 1000 um. Electromagnetlc radiation in other wavelengths
such as X-Rays, and Radio waves is not thermally induced and will be
excluded from consideration.

A black body is a body which absorbs all of the radiation inci-
dent on its surface over all wavelengths of importance for heat
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transfer. The absorbed energy represents an energy transfer to the
black body which can contribute to the internal emnergy increase or it
may be transferred through the body by one or more forms of heat
transfer.

For a black body at a uniform temperature T, the rate of radia-
tion heat transfer emitted by the body and leaving the surface, over
all wavelengths, is given as

g = AoT* (67)

r emitted

where T is the absolute temperature and ¢ is the Stefan-Boltzmann
constant, which has the value 0.17 x 10® BTU/hr ft2°R* or
5.7 x 10® W/m? °K*. Because of the non-linear nature of the expres-
sion, radiation becomes progressively more important at higher temper-
atures although there is considerable radiative heat transfer between
bodies at room temperature.

The black body radiation is emitted over a range of wavelengths.
The emitted energy at a single wavelength 1, d..;s can be defined so
that

qr smitted = j; qzel dA (68)

Figure 20 shows the distribution of d.; @s a function of wavelength
for black bodies at three temperature ievels. For solar radiation,
the sun has an effective black body temperature near 10,400 °R, a
majority of the emitted energy is in the visible wavelengths and the
balance of the energy is in the near infrared below 3um. In contrast,
the energy emitted by a black body at room temperature falls in the
infrared wavelength range from 8um to 40um. For any black body at
temperature T eighty percent of the total black body emissions occurs
when the product of the wavelength and the absolute temperature, AT,
is between 4000 (um) (°R) and 17,000 (um) (*R). One half of the total
radiation is emitted at wavelengths equal to or below the value of AT
equal to 7400 (pm) (°R).






