
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2011-053 December 22, 2011

Structuring Unreliable Radio Networks
Keren Censor-Hillel, Seth Gilbert, Fabian Kuhn,
Nancy Lynch, and Calvin Newport

Structuring Unreliable Radio Networks

Keren Censor-Hillel∗ Seth Gilbert† Fabian Kuhn‡ Nancy Lynch§ Calvin Newport¶

March 29, 2011

Abstract

In this paper we study the problem of building a connected dominating set with constant degree
(CCDS) in the dual graph radio network model [5, 10, 11]. This model includes two types of links:
reliable, which always deliver messages, and unreliable, which sometimes fail to deliver messages.
Real networks compensate for this differing quality by deploying low-layer detection protocols to filter
unreliable from reliable links. With this in mind, we begin by presenting an algorithm that solves the
CCDS problem in the dual graph model under the assumption that every process u is provided a local
link detector set consisting of every neighbor connected to u by a reliable link. The algorithm solves the
CCDS problem in O(∆ log2 n

b + log3 n) rounds, with high probability, where ∆ is the maximum degree
in the reliable link graph, n is the network size, and b is an upper bound in bits on the message size. The
algorithm works by first building a Maximal Independent Set (MIS) in log3 n time, and then leveraging
the local topology knowledge to efficiently connect nearby MIS processes. A natural follow up question
is whether the link detector must be perfectly reliable to solve the CCDS problem. With this in mind, we
first describe an algorithm that builds a CCDS in O(∆polylog(n)) time under the assumption of O(1)
unreliable links included in each link detector set. We then prove this algorithm to be (almost) tight by
showing that the possible inclusion of only a single unreliable link in each process’s local link detector
set is sufficient to require Ω(∆) rounds to solve the CCDS problem, regardless of message size. We
conclude by discussing how to apply our algorithm in the setting where the topology of reliable and
unreliable links can change over time.

∗MIT CSAIL, ckeren@csail.mit.edu
†National University of Singapore, seth.gilbert@comp.nus.edu.sg
‡University of Lugano, fabian.kuhn@usi.ch
§MIT CSAIL, lynch@csail.mit.edu
¶MIT CSAIL, cnewport@csail.mit.edu

1

1 Introduction

In this paper we study the problem of constructing a connected dominating set with constant degree (CCDS)
in a radio network. The CCDS problem is important in this setting as it provides a routing backbone that
can be used to efficiently move information through the network [16, 19]. In more detail, we study this
problem in the dual graph network model, which describes static ad hoc radio networks. The dual graph
model, previously studied in [5, 10, 11], includes two types of links: reliable, which in the absence of
collisions always deliver messages, and unreliable, which sometimes fail to deliver messages. This model
was inspired by the observation that in real radio network deployments unreliable links are an unavoidable
(and much cursed) feature; c.f., [2, 3, 6–8, 17, 18, 20]. To mitigate the difficulties introduced by such links,
most modern ad hoc radio network deployments use low-level link detector protocols (e.g., [3, 6–8, 20]) or
sometimes even specialized hardware (e.g., [2]) that attempt to isolate reliable from unreliable links. We
capture this strategy in our model with the new link detector formalism, which provides each process u, at
the beginning of each execution, a set of ids that represent an estimate of which neighbors are reliable (i.e.,
connected to u by a reliable link).

Using this formalism, we are able to explore two important questions: (1) How can we leverage the
link detection information commonly assumed in practice to build efficient solutions to the CCDS problem?
(2) How reliable must these link detectors be for their information to be useful? Our answers potentially
extend beyond the realm of theoretical interest and into the realm of practice, where the optimal use of link
detection is considered an open problem.

Results. In this paper, we study the τ -complete link detector, 0 ≤ τ ≤ n. A τ -complete link detector,
for a given process u, contains the id of every reliable neighbor of u and potentially up to τ additional
ids. In other words, τ bounds the number of classification mistakes made by the detector, with 0-complete
indicating perfect knowledge of reliable neighbors.1 Notice, however, that assuming a 0-complete link
detector is different than assuming a network with only reliable edges: the completeness of the link detector
only describes the quality of your knowledge about the network topology, you still must grapple with the
uncertainty caused by the presence of unreliable edges.

As mentioned, practical network deployments seek to accurately filter reliable from unreliable links; i.e.,
implement a 0-complete link detector [3, 6–8, 20]. With this in mind, in Section 5 we describe a random-
ized upper bound that uses a 0-complete link detector to construct a CCDS. In more detail, the algorithm
constructs a CCDS in O(∆ log2 n

b + log3 n) rounds, with high probability, where ∆ is the maximum degree
in the reliable link graph, b is an upper bound in bits on the message size, and n is the network size. For
reasonably large messages (b = Ω(∆)), this algorithm terminates in polylogarthmic time. The algorithm
works by first building a Maximal Independent Set (MIS) in O(log3 n) rounds (the algorithm for which is
presented separately, in Section 4), and then leverages the link detector information to execute a novel path
finding procedure to identify paths to nearby MIS processes.

A natural follow-up question is whether such accuracy in our link detector is necessary. In other words,
can we find efficient solutions to the CCDS problem for some τ > 0? To answer this question, we start by
describing, in Section 6, an upper bound that solves the CCDS problem in O(∆polylog(n)) rounds, given
a τ -complete detector for any τ = O(1). We then prove in Section 7 that this bound is (almost) tight by
showing that with a 1-complete link detector, every algorithm that solves the CCDS problem, requires Ω(∆)
rounds, regardless of message size. This bound not only defines a separation with the τ = 0 case, but also
defines a separation with the classic radio network model, which assumes only reliable links. Concurrent

1Notice, these detectors never misclassify reliable neighbors as unreliable. In practice, we suspect such misclassifications would
not effect our algorithms’ correctness, provided that the correctly classified reliable edges still describe a connected graph. We omit
this variant for the sake of concision.

1

work has identified a CCDS algorithm for the classic model that uses no topology knowledge and requires
only O(polylog(n)) rounds [1].

We conclude by discussing, in Section 8, how to apply our algorithm in the setting where the topology
of reliable and unreliable links can change over time, and.

Related Work. The dual graph model was introduced in [5], where it was called the dynamic fault model,
and then later studied in [10, 11] under its current name. These papers show, among other results, that the
canonical problem of multihop broadcast is strictly harder in the presence of unreliable links. There are
some similarities between the dual graph model and the quasi-unit disk graph model [14], which includes a
gray zone distance at which two nodes in a radio network may or may not have a link. Unlike the dual graph
model, however, the quasi-unit disk graph model features uncertainty only in the definition of the topology;
once the links have been decided, they behave reliably.

The CCDS problem, along with related coordination problems, have been extensively studied in general
graph models (see [13] for a good overview). In the context of radio networks without unreliable links (what
we call the classic radio network model), [19] describes an O(n) time CCDS algorithm, and [16] describes
an O(log2 n) time algorithm. The latter algorithm, however, requires that processes know their multihop
local neighborhoods so they can construct collision-free broadcast schedules. In our model, for a process to
learn its (h+1)-hop neighborhood (of reliable links) would require Ω(∆h) time, and even then the broadcast
schedules constructed in [16] could be thwarted by unreliable links causing collisions. As with our paper,
both [19] and [16] assume synchronous starts (i.e., processes start during the same round). Concurrent work
has identified aO(polylog(n))-time CCDS solution in the classic radio network model without synchronous
starts [1].

The MIS problem, which we use as a step in our construction of a CCDS, was studied in the classic
radio network model without synchronous starts in [12], which provides a O(log6 n) time solution. This
was later improved in [15] to O(log2 n). The MIS algorithm presented in the main body of this paper
requires O(log3 n) rounds, and it assumes synchronous starts and a 0-complete link detector. In Section 9,
however, we describe a minor variation to the algorithm that works in the same running time in the classic
radio network model, without synchronous starts or any topology information. This algorithm is a factor of
O(log n) slower than the result of [15], but trades this decreased speed for increased simplicity in both the
algorithm description and proof structure.

2 Model

Fix some n > 2. We define a network (G,G′) to consist of two undirected graphs, G = (V,E) and
G′ = (V,E′), where V is a set of n wireless nodes and E ⊆ E′. We assume G is connected. For each
u ∈ V , we use the notation NG(u) to describe the neighbors of u in E, and the notation NG′(u) to describe
the neighbors of u in E′. Let ∆ be the maximum size of NG over all nodes and ∆′ be the maximum size of
NG′ over all nodes. To simplify notation we assume in this paper that ∆ = ω(log n). We assume that each
node in V is embedded in a two-dimensional plane, and use dist(u, v) to denote the distance between nodes
u and v in the plane. We assume there exists a constant distance d ≥ 1 = O(1), such that for all u, v ∈ V
where dist(u, v) ≤ 1, (u, v) ∈ E, and for all (u′, v′) ∈ E′, dist(u′, v′) ≤ d. Notice, this is a generalization
of the unit disk graph model that now captures the (potentially) large gray zone of unpredictable connectivity
observed in real wireless networks.

We next define an algorithm A to be a collection of n processes. An execution of an algorithm A on
network (G,G′) first fixes some bijection proc from processes of A to V . This bijection represents the
assignment of processes to graph nodes. We assume an adversary controls the definition of proc. We also
assume that each process in A has a unique identifier from the range 1 to n. We use the notation id(v),

2

v ∈ V , with respect to an execution, to indicate the unique identifier of proc(v). For simplicity, throughout
this paper we sometimes use the notation process u, for some u ∈ V , to refer to proc(u) in the execution in
question. We also sometimes use the notation process i, for some i ∈ [n], to refer to the process with id i.

An execution proceeds in synchronous rounds, 1, 2, . . . , with all nodes starting in the first round. At
the beginning of each round, r, every node v decides whether or not to send a message, as indicated by
its process, proc(v). Next, the adversary chooses a reach set of edges that consists of E and some subset,
potentially empty, of edges in E′ but not E. This set describes the links that will behave reliably in this
round.2 Let Bv,r be the set of nodes that broadcast in round r and are connected to v by an edge in the reach
set for this round. The messages received by v depend on the size of Bv,r. If node v broadcasts in r then
it receives only its own message. If node v does not broadcast and |Bv,r| = 1, then it receives the message
sent by the single broadcaster in Bv,r. Otherwise, it receives ⊥; i.e., we assume no collision detection.

In the following we sometimes use the notation [i], for positive integer i, to indicate the sequence
{1, ..., i}. Furthermore, we use the notation w.h.p. (i.e., with high probability) to indicate a probability
at least 1 − 1

nc , for some positive constant c. For simplicity we omit the specific constants used in our
proofs, and assume only that they are large enough such that the union bounds applied to our various w.h.p.
results produce a final probability that is also at least 1− 1

n .

Link Detectors. As described in the introduction, real wireless network deployments compensate for
unreliability by using low-level protocols and special hardware to differentiate reliable from unreliable links.
Because these link detection strategies often make use of information not described in our network model
(e.g., properties of the received physical layer signal) we introduce the link detector formalism to capture
the functionality of these services.

In more detail, this formalism provides each process proc(u) a link detector set Lu ⊆ [n]. The set is an
estimate of which neighbors are connected to u by a reliable link. In this paper we study the τ -complete
link detector, 0 ≤ τ ≤ n. In more detail, we say a link detector set Lu is τ -complete if and only if
Lu = {id(v) : v ∈ NG(u)} ∪Wu, where Wu ⊆ {id(w) : w ∈ V \ NG(u)}, and |Wu| ≤ τ . That is,
the detector contains the id of every neighbor of u connected by a reliable link, plus up to an additional τ
additional neighbors. This makes τ a bound on the number of links that are mistakenly classified as reliable.

3 Problem Definitions

We define the maximal independent set and constant-bounded connected dominating set problems. In both
definitions, we reference the graph H = (V,EH), defined with respect to a specific execution, where V is
the vertex set from G and G′, and EH is the edge set consisting of every edge (u, v) such that: u ∈ Lv and
v ∈ Lu (that is, u and v are in each others’ link detector sets). Notice, for a τ -complete link detector, for
any value of τ , G is a subgraph of H , and for τ = 0, H = G.

Maximal Independent Set. A maximal independent set (MIS) algorithm has every process eventually
output a 0 or a 1, where a 1 indicates the process is in the MIS, and a 0 indicates it is not. We say an
execution of an MIS algorithm has solved the MIS problem by round r, if and only if the following three
conditions hold: (1) [Termination] every process outputs 0 or 1 by the end of round r; (2) [Independence]

2This behavior might seem to constrain the adversary, as it requires reliability to be symmetric. In practice, however, this
restriction has no noticable effect. In more detail, the only way to learn about the reliability of a directed link (u, v) is for proc(u)
to broadcast and proc(v) to receive (as broadcasters receive only their own messages). Therefore, even if the adversary could
specify differing reliabilty on (u, v) versus (v, u), only the reliability of one of these directions could be assessed in any given
round.

3

if processes u and v both output 1, then (u, v) /∈ E; and (3) [Maximality] if process u outputs 0, then there
exists a process v such that v outputs 1 and (u, v) ∈ EH .

Constant-Bounded Connected Dominating Set. A constant-bounded connected dominating set (CCDS)
algorithm has every process eventually output a 0 or a 1, where a 1 indicates the process is in the CCDS, and
a 0 indicates it is not. We say an execution of a CCDS algorithm has solved the CCDS problem by round r,
if and only if the following four conditions hold: (1) [Termination] every process outputs 0 or 1 by the end
of round r; (2) [Connectivity] the set of processes that output 1 is connected in H; (3) [Domination] if a
process u outputs 0, then there exists a process v such that v outputs 1 and (u, v) ∈ EH ; and (4) [Constant-
Bounded] there exists a constant δ, such that for every process u, no more than δ neighbors of u inG′ output
1.

4 Maximal Independent Set Algorithm

In this section, we present an algorithm that solves the MIS problem inO(log3 n) rounds, w.h.p. We assume
the processes have access to a 0-complete link detector and that the message size is b = Ω(log n) bits.
In Section 5, we use this algorithm as a subroutine in our solution to the CCDS problem. Recall that
having a 0-complete link detector is not equivalent to having a network model with only reliable edges. The
completeness of the link detector describes the quality of your information about the topology, it does not
eliminate the negative impact of unreliable edges. In particular, as highlighted by the proofs in this section
and the next, one of the main difficulties presented by unreliable edges is that their unpredictable behavior
can thwart standard contention reduction techniques, such as the exponentially increase of broadcasting
probability.

Algorithm Description. The algorithm has processes discard messages received from a process not in its
link detector set. Therefore, in the following description, when we say that a process receives a message,
we mean to imply that it is a message sent from a neighbor in E. Each process u maintains a set Mu of MIS
process ids (initially empty). The execution is divided into `E = Θ(log n) groups of consecutive rounds that
we call epochs, and which we index 1, . . . , `E . At the beginning of each epoch i, each process u declares
itself active if and only if its MIS set Mu does not include its own id or the id of a process in its link detector
set. Only active processes will participate in the epoch.

In more detail, the epoch is divided into dlog ne competition phases each of length `P = Θ(log n),
followed by a single announcement phase of the same length. During the first competition phase, in each
round, each active process broadcasts a contender message, labeled with its id, with probability 1/n. If an
active process u receives a contender message from another process, process u is knocked out: it sets its
status to non-active and does no further broadcasting during this epoch. At each successive competition
phase, the remaining active processes double their broadcast probabilities. In the second competition phase
they broadcast with 2/n, in the third 4/n, and so on, up to probability 1/2 in the final competition phase.

An active process u that makes it through all dlog ne competition phases without being knocked out,
adds itself to the MIS set by outputting 1, adding its own id to Mu, and broadcasting an MIS message
labeled with its id, with probability 1/2, in every round of the announcement phase. Every process v that
receives an MIS message from a process u adds u to its MIS set Mv.

Correctness Proof. As with the MIS solutions presented in [12, 15], which are proved for the standard
radio model where G = G′, we begin by covering the plane with an overlay of disks of radius 1/2, arranged
on an hexagonal lattice to minimize overlap. We index the disks: D1, (Notice, because our graph is
connected, no more than n disks are required to cover all occupied portions of the plane.) Also following [12,

4

15], we use the notation Eri to reference the disk of radius r centered at disk Di. We introduce the new
notation Ir to reference the maximum number of overlay disks that can intersect a disk of radius r. The
following fact concerning this overlay, also used in [12, 15], will prove useful:

Fact 4.1. For any c = O(1): Ic = O(1).

In the following, let Pi(r) =
∑

u∈Ai(r)
p(u, r), where Ai(r) is the set of active processes in Di at the

beginning of the epoch that contains round r, and p(u, r) is the broadcast probability of process u in round
r. The following standard probability facts will prove useful:

Fact 4.2. 1. For any p ≤ 1/2: (1− p) ≥ (1/4)p.

2. For any p > 0: (1− p) < e−p.

We continue with an important lemma that bounds the broadcast probability in the network.

Lemma 4.3. Fix some epoch. During every round r of this epoch, and every disk index i: Pi(r) ≤ 1, w.h.p.

Proof. Fix some disk Di. We begin by bounding the probability thatDi is the first disk to have its broadcast
sum (Pi) exceed 1. For Pi to exceed 1, there must be some round r, such that r is the first round in which
Di’s broadcast probability is greater than 1. Round r must be the first round of a competition phase, as these
are the only rounds in which processes increase their broadcast probabilities. Furthermore, r cannot be the
first round of the first competition phase, as the broadcast sum of the first phase can never exceed 1, as it
has each process broadcasting with probability 1/n. Combining these observations with fact that broadcast
probabilities double between each phase, it follows: there exists a full competition phase before r, such that
during every round r′ of this preceding phase: 1/2 ≤ Pi(r′) ≤ 1. Furthermore, by assumption, r was the
first round in which any disk exceeds a broadcast sum of 1, so we also know that for all disks j 6= i, during
every round r′ of this preceding competition phase, Pj(r′) ≤ 1.

We will now use these two observations to prove that there is a high probability that a single pro-
cess in Di broadcasts alone among nearby disks, and therefore knocks out all other active processes in
Di: reducing its broadcast probability to 1/2 for the remainder of the epoch. To start, fix any round r′

of the phase preceding r. Let p1 be the probability of a single process broadcasting in Di during this
round. Using Fact 4.2 and our our bounds on disk broadcast sums from above, we can bound p1 as follows:
First, note that p1 =

∑
u∈Ai(r′)

(
p(u, r′)

∏
v∈Ai(r′),v 6=u(1− p(v, r′))

)
, which is greater than or equal to∑

u∈Ai(r′)

(
p(u, r′)

∏
v∈Ai(r′),v 6=u

1
4

p(v,r′)
)
≥ 1

2 · 1
4 .

Next, letDj be a disk that contains aG′ neighbor of a node inDi, and let probability p2 be the probability
that no process inDj broadcasts in r′. By the same approach used above, we can bound p2 =

∏
u∈Aj(r′)(1−

p(u, r′)), which we know is greater than or equal to:
∏
u∈Aj(r′)

1
4

p(u,r′) ≥ 1
4 . Let γ = Id+1/2 describe the

total number of disks potentially containing G′ neighbors of nodes in Di (recall that d = O(1) is the
maximum distance at which a G′ edge exists), and let p3 be the probability that a single process in Di

broadcasts in r′, and this message is received by all processes in Di (an event we call an uncontested
broadcast). We know: p3 ≥ p1p

γ
2 = 1

2 · 1
4

(γ+1) = (1
4)γ+1.5. (Notice, by Fact 4.1, γ = O(1), therefore p3 is

also constant.)
To conclude the proof, we note that the probability that we fail to achieve an uncontested broadcasts

in Di in all `P rounds of this phase is no more than (1 − p3)`P . By Fact 4.2 this is less than e−p3`P .
For sufficiently large constant factors in our definition of `P , this evaluates to 1

nc , with a sufficiently large
constant c that we retain high probability even after we perform a union bound over allO(n) occupied disks.
The result, is that w.h.p no disk is the first to exceed 1 during this epoch.

5

The following lemma leverages the observation that if the broadcast probability in the system is low
(as established by Lemma 4.3), then a process about to enter the MIS will have a good probability of
both knocking out its G neighbors and announcing to them its new status, during the Θ(log n) round final
competition phase and subsequent announcement phase.

Lemma 4.4. (Independence) For every pair of nodes u and v, (u, v) ∈ E, it is not the case that both output
1, w.h.p.

Proof. Fix any epoch in which neither u nor v has yet output 1. Such an epoch must exist in any execution
where u and v proceed to both output 1. Assume that Lemma 4.3 holds in this epoch. Under this assumption,
we will show that with high probability, either neither process joins the MIS in this epoch, or one process
joins and the other outputs 0. Assume that at least one process makes it through the final competition phase
(otherwise, we are done). Without loss of generality, assume this is u. Process u broadcasts in this phase
with probability p1 = 1/2. Let Di be the disk containing u, and let p2 be the probability that no process
other than u in a disk intersecting Ed+1.5

i broadcasts in r. (This is sufficient to ensure that v would receive
any message sent by u, as Ed+1.5

i contains all G′ neighbors of v.) Under the assumption that Lemma 4.3

holds, we can use Fact 4.2 in a similar manner as in Lemma 4.3 to bound p2 ≥ 1
4

γ′ , where γ′ = Id+1.5. Let
p3 be the probability that v receives a message from u during this final competition phase, and is therefore
knocked out and does not join the MIS. We combine p1 and p2 to yield p3 ≥ 1

2 · 14
γ′ . (By Fact 4.1, γ′ = O(1),

therefore p3 is also constant.) We note that u fails to knock v in all `P rounds of the phase with probability
no more than (1 − p3)`P . By Fact 4.2 this is less than e−p3`P . For sufficiently large constant factors in our
definition of `P , this evaluates to 1

nc , for any constant c. We can use the same argument to show that u fails
deliver its MIS message to v during the subsequent announcement phase with a similarly low probability.
For sufficiently large constant factors in our definition of `P , these probabilities are small enough to retain
high probability even after we perform a union bound over all O(n2) pairs of processes and all O(log n)
epochs, combined with a union bound establishing that Lemma 4.3 holds in each epoch.

This next lemma leverages the observation that a process u, in each epoch, either joins the MIS or
is knocked out by a G neighbor v. If the latter occurs, due to the low amount of contention provided
by Lemma 4.3, v has a constant probability of knocking out all of its G neighbors, and then continuing
uncontested to join the MIS and announce this to u. Over Θ(log n) epochs, therefore, u will either output 1
or 0, w.h.p.

Lemma 4.5. (Termination) By the end of the last epoch, every process has outputted 0 or 1, w.h.p.

Proof. Assume Lemma 4.3 holds in all `E = Θ(log n) epochs. Fix some process u that starts some epoch
active. During this epoch, either u is knocked our it survives and joins the MIS. If it joins the MIS we
are done, so we will consider the case where it is knocked out. Let v be the process that knocks out u.
Because v knocked out u, we know it broadcasts at least once during this epoch. We will now bound the
probability that this broadcast is received by all processes in v’s 1-hop neighborhood in G. Let Di be the
disk containing v. Let p1 be the probability that v broadcasts alone in Ed+1.5

i during the round in which
it broadcasts. (Notice this range is large enough to include v’s 1-hop neighbors in G and these neighnors’
1-hop neighbors in G′, which are potential sources of contention.) Using Fact 4.2 in a similar manner to the
previous lemma, we can bound p1 ≥ 1

4

γ′ , where γ′ = Id+1.5.
Assume this event occurs: If v is the only process broadcastingEd+1.5

i then its message must be received
by every process in its 1-hop neighborhood in G. With these processes now knocked out, v will continue
on, uncontested, to join the MIS in this epoch.

Now let us return to u. Using the same argument applied in Lemma 4.4 to show that some process u
would have its message received by aG neighbor during the final competition phase, w.h.p., we observe that

6

the process u in this proof will receive an announcement message from v during the announcement phase,
w.h.p. Let us call this high probability p2. On receiving this message, u outputs 0.

We have shown, therefore, that in each epoch, u outputs 0 or 1 with probability at least p3 = p1p2 =
O(1). Therefore, the probability that u fails to output 0 or 1 at the end of all `E = Θ(log n) epochs is
no more than (1 − p3)`E . By Fact 4.2 this is less than e−p3`E . For sufficiently large constant factors in
our definition of `E , this evaluates to 1

nc , with a sufficiently large constant c that we retain high probability
even after we perform a union bound over all O(n) processes, and a union bound with the probability that
Lemma 4.3 holds in all Θ(log n) epochs.

Theorem 4.6. Using 0-complete link detectors, our MIS algorithm generates an execution that solves the
MIS problem in O(log3 n) rounds, w.h.p.

Proof. By definition, the algorithm requiresO(log3 n) rounds: O(log n) epochs each consisting ofO(log n)
phases each of length O(log n). To satisfy termination, we note that by Lemma 4.5, every process outputs
0 or 1 by the end of the algorithm, w.h.p. To satisfy independence, we note that by Lemma 4.4, no two
processes who are neighbors in E both output 1, w.h.p. And finally, to satisfy maximality, we note that
by the definition of the algorithm, a process does not output 0 unless it receives an MIS message from a
neighbor in E, and any process that sends an MIS message, outputs 1. To achieve our final high probability
we simply use a union bound to combine the two high probability results from above.

This corollary about the density of the resulting MIS follows from the definition of independence which
allows no more than a single MIS node in any disk.

Corollary 4.7. Fix an execution in which the MIS algorithm solves the MIS problem. For any process u and
distance r, there are no more than Ir MIS processes within distance r of u.

5 Constant-Bounded Connected Dominating Set Algorithm

In this section, we present an algorithm that solves the CCDS problem inO(∆ log2 n
b +log3 n) rounds, w.h.p.,

where b is the bound on message size in bits. This algorithm uses the MIS algorithm from Section 4 as a
subroutine. As in that previous section, we assume that b = Ω(log n). Without loss of generality, we also
assume that b = O(∆ log n) (as our algorithm never sends messages of any larger size). Finally, we assume
that processes are provided a 0-complete link detector.

At a high-level, the algorithm proceeds in two phases. First, it has processes build an MIS, placing each
MIS node in the CCDS. Next, it connects all MIS nodes within 3 hops in G with a path consisting of CCDS
nodes. Standard techniques show that the resulting structure satisfies the definition of a CCDS. The core
technical novelty of the algorithm is its efficient method for discovering and connecting nearby MIS nodes.
In more detail, the simple approach would be to have each MIS node give each of its neighbors a chance
to explore whether it is on a path to a nearby MIS node. This would require, however, O(∆) explorations.
This is too slow given that there are only O(1) nearby MIS nodes to be discovered (a property that follows
from Corollary 4.7, which bounds the density of our MIS). The algorithm presented here, by contrast, makes
use of a banned list process to ensure that an MIS node only gives a neighbor a chance to explore if that
neighbor is on the path to a nearby MIS node that has not yet been discovered. This reduces the required
number of explorations from O(∆) to O(1). The O(∆ log2 n

b) term in the running time describes the time
required to for an MIS node to communicate its banned list to its neighbors. For large message size (i.e.,
large b), this is fast, and the time to build the MIS and explore dominates the time complexity. For small
message size, however, this banned list communication time dominates the time complexity and yields an
algorithm no faster than the simple approach of giving each neighbor a chance to explore.

7

For clarity, we start by presenting and proving the correctness of the subroutines before moving on to
the main algorithm.

Subroutine Descriptions. We start by describing the two subroutines used by our CCDS algorithm. The
first subroutine, bounded-broadcast, is used to broadcast a message to a process’s G neighbors, given a
known bound on contention for this message. The second subroutine, directed-decay, assumes an MIS and
that each MIS process has a subset of its covered neighbors wanting to send it a message. The subroutine
efficiently delivers at least one message to each MIS process.
bounded-broadcast(δ,m): This subroutine, when called by a process u with messagem, attempts to deliver
m to u’s G neighbors.

The subroutine works as follows: A process calling bounded-broadcast(δ,m) broadcasts m with proba-
bility 1/2 for `BB(δ) = Θ(2δ log n) consecutive rounds.

directed-decay(〈m1,m2, ...〉): This subroutine assumes that the processes have already solved the MIS
problem. We will use the terminology covered processes to describe the processes that are not in the MIS.
It also assumes that all processes call the subroutine during the same round. Covered processes pass the
subroutine a vector containing the messages they want to attempt to send—at most one message per neigh-
boring MIS process. We assume each message is labeled with the id of its destination. All other processes
pass an empty vector to the subroutine. The subroutine attempts to ensure that for every covered process v
with a message to send to MIS neighbor u, u will receive at least one message from one of its neighbors
with a message to send to u.

The subroutine works as follows: The subroutine divides time into dlog ne phases of length `DD =
Θ(log n), each associated with an exponentially increasing broadcast probability, starting with 1/n and
ending with 1/2. Every covered process with a message to send simulates a unique covered process for
each of its messages. Initially all simulated covered processes are active. If a simulated covered process
with a message starts a phase active, it broadcasts its message with the corresponding probability during
every round of the phase. If a process has multiple simulated processes broadcast during the same round, it
combines the messages. (No process has more than a constant number of neighbors in the MIS, therefore
these messages are of size O(log n) bits, matching our assumption that b = Ω(log n).) At the end of each
phase, every MIS process that received a message during the phase runs bounded-broadcast(d+2,m) to send
its neighbors a stop order, m, labeled with its id. On receiving a stop order from its message’s destination, a
simulated covered process sets its status to non-active for the remainder of the subroutine.

Lemma 5.1. Assume process u calls bounded-broadcast(δ,m), and that during every round of the subrou-
tine, no more than δ other processes within distance d + 1 of u are running the subroutine concurrently. It
follows that u delivers m to all of its G neighbors, w.h.p.

Proof. Let p1 be the probability that u broadcasts alone among all processes within distance d + 1 during
some round of the subroutine. (Notice, if this event occurs, u succeeds in delivering its message to its G
neighbors.) We can bound this probability as: p1 ≥ 1/2(1 − 1/2)δ = (1/2)δ+1. Using Fact 4.2, we note
that the probability that u fails to succeed in broadcasting alone in all `BB(δ) rounds of the subroutine with
probability no greater than (1 − p1)`BB(δ) ≤ e−p1`BB(δ). For any constant c, we can use sufficiently large
constant factors in our definition of `BB(δ) to ensure this probability is no greater than 1

nc , as needed.

Lemma 5.2. Assume that in some round after the processes have solved the MIS problem, they run the
directed-decay subroutine. It follows that by the end of the subroutine, for every covered process v that has
a message to send to MIS neighbor u, u will receive at least one message intended for it from a neighboring
covered process, w.h.p.

8

Proof. To simplify notation, round n up to the nearest power of 2, and number the phases of directed decay
from 1 to log n. For concision, we will drop the term “simulated” when discussing the behavior of simulated
processes, and treat each like an independent process.

In each phase i, active processes broadcast with probability 1
2log n−i+1 . For a given MIS process u, we

use the notation covered set to refer to the set of processes with a message to send to u. We say a given
MIS processes’ covered set is completed if all processes in the set have received a stop order from the MIS
process.

We proceed with induction on the phase number. The inductive hypothesis assumes that by the first
round of phase i, all MIS processes with covered sets larger than 2logn−i+1 have completed their set.

The base case (i = 1) follows from the model definition: no process has more than n neighbors in G.
To prove the step, assume the hypothesis holds for some phase i ∈ [1, log n − 1]: we will prove that

it holds for phase i + 1, w.h.p. Let u be an MIS process that has not completed its covered set by the end
of phase i, and has a covered set S, s.t., 2logn−i ≤ |S| ≤ 2logn−i+1. During this phase, processes in S
broadcast with probability p1 = 1

2log n−i . Let p2 be the probability that a single process in S broadcasts in
some round of this phase. Using the same techniques as in Lemma 4.3, combined with our bounds on the
size of S, we can bound this probability as: p2 ≥

∑
v∈S p1

∏
w∈S,w 6=v(1− p1) ≥ 1

8 .
Assume that some process v ∈ S broadcasts alone. We now calculate the probability that no other

G′ neighbor of u broadcasts during this round—therefore allowing u to receive v’s message. Only MIS
processes within distance d + 1 of u can have covered subsets that include processes within range of u
(recall that d = O(1) is the maximum distance at which a G′ edge exists). By Corollary 4.7, there exists
at most Id+1 = O(1) MIS processes within distance d + 1 of u. By our inductive hypothesis, the sum of
broadcast probabilities in each of the covered subsets associated with these MIS processes is also constant.
Therefore, for each such subset, the probability that no process broadcasts in a given round is also constant.
Combining, we have a constant number of potentially interfering covered subsets, each with a constant
probability of not interfering. The probability of no interference is therefore constant. Let p3 denote this
constant probability of no interference, and p4 denote the probability that u receives a message. We can
bound p4 ≥ p2p3 = O(1). Using Fact 4.2, we note that the probability that u fails to receive a message
in all `DD rounds of this phase is no more than (1 − p4)`DD ≤ e−p4`DD . For any constant c, we can use
sufficiently large constant factors in our definition of `DD to ensure that this probability evaluates to no more
than 1

nc ,
At this stage, u has received a message from its covered set. The inductive hypothesis, however, re-

quires that u also now successfully delivers a stop order to its covered set, using bounded-broadcast(δDD).
By Lemma 5.1, u will succeed in delivering its stop order so long as no more than δDD other processes
within G′ range of u’s covered set are executing the subroutine concurrently. As argued above, only MIS
processes within distance d + 1 of u are potentially within interference range of u’s covered set. For
δDD ≥ Id+1 = O(1), bounded-broadcast(δDD) successfully delivers the start order w.h.p. By a series
of O(n) union bounds, we show that every MIS process completes its covered set during the appropriate
phase of the subroutine, w.h.p.

The induction establishes that at the beginning of the final phase (phase log n), all covered sets of size
greater than 2 have completed. For the small covered sets that remain in the final phase, the same argument
used above for the earlier stages of the induction holds. For each such covered set, in every round, there is
a constant probability of delivering a message to their destination. Over all `DD rounds of this phase, this
event occurs with high probability. Using a union bound, we combine this result with the high probability
that bounded-broadcast(δDD), called at the end of this final phase, successfully delivers the stop orders.

Main Algorithm Description. Having described our subroutines we continue by describing the main
CCDS algorithm that makes use of these subroutines. Our algorithm begins with the processes executing

9

the MIS algorithm from Section 4. We assume every process not in the MIS knows the ids of the MIS
processes that neighbor it in G (the algorithm in Section 4 provides this information). After building the
MIS, the algorithm adds every MIS process to the CCDS, then attempts to discover, and add to CCDS, a
constant-length path between every pair of MIS processes that are within 3 hops in G.

At a high-level, this path-finding procedure works as follows: Each MIS process u maintains a banned
list, initially set to contain its id and the id of the processes in its link detector set (i.e., its neighbors in
G). Throughout the path-finding procedure, process u will add to its banned list Bu the MIS processes
that it discovers as well as the G neighbors of these discovered processes. When a given MIS process asks
its neighbors to a nominate a nearby process to explore (i.e., to see if its connected to an MIS), it uses
this banned list to prevent exploration of processes that lead to already discovered MIS processes. In other
words, an MIS process will ask processes to report any neighbors that are not already in its banned list.

We divide the search procedure into search epochs. During the first phase of each epoch, process u will
transmit its banned list to its neighbors using bounded-broadcast. The time required to do this depends on
b: this is the source of the ∆/b term in the final time complexity.

During the second phase, process u asks its reliable neighbors to use directed-decay to nominate one of
their reliable neighbors for further exploration (recall, “reliable neighbor” refers to a neighbor connected by
a reliable link). The restriction for such a nomination, however, is that the nominated process cannot be in
the banned list. Notice, these nominations require that each process knows its set of reliable neighbors: this
is where the assumption of 0-complete link detectors proves useful. By the definition of the banned list, any
such nominated process must either be an MIS process that u does not know about, or be a neighbor of an
MIS process that u does not know about. In both cases, we find a new MIS process within 3 hops if such an
MIS process exists.

In the third phase, bounded broadcast is used to talk to the nominated process, find out if it is in the MIS,
or if it is a neighbor of a process in the MIS, and then transmit the necessary new information to u to add to
its banned list.

This path finding process, which ensures that u never explores a path that leads to an MIS process
it already knows, is what provides our efficient running time (as long as the message size is large). If
we instead had u explore every reliable neighbor, and in turn had these neighbors explore each of their
neighbors, the running time would be O(∆polylog(n)), regardless of the message size.

We continue by describing the details of this path finding procedure: Each MIS process maintains a
banned list Bu and a delivered banned list Du. Bu is initially set to u’s link detector set and Du is empty.
Each non-MIS process v maintains a replica banned list Bv

u and a primary replica banned list P vu , both
initially empty, for each MIS process u that neighbors it in G. The algorithm proceeds by dividing groups
of consecutive rounds into `SE = O(1) search epochs. Each search epoch is divided into 3 search phases,
which we describe below.

Phase 1: Each MIS process u divides Bu \ Du into messages of size b − log n bits, where b is the
maximum message size. It then includes its own id with each message so recipients know its source. Process
u sends these messages to its non-MIS neighbors using bounded-broadcast(δ,m), with δ = Id+1 = O(1).
Let process v be a non-MIS process that neighbors u in G. This process adds the values received from u to
Bv
u. If this is the first search epoch, it also adds these values to P vu . At the end of the phase, u setsDu = Bu.

The phase is of a fixed length, long enough for the maximum number of calls to bounded-broadcast that
might need to be made. As will be clear by the description of subsequent phases, the set Bu \ Du never
contains more than ∆ ids, therefore we can bound the number of calls by O(∆ logn

b).

Total Length: O(∆ log2 n
b) rounds.

Phase 2: Let Nu be the subset of processes that neighbor MIS process u in G, where each v ∈ Nu has a
neighbor w in its link detector set such that w /∈ Bv

u. We say w is the neighbor nominated for u by v. To do
so, the processes run directed-decay to report their nominations to their neighbor MIS processes. With high

10

probability, each MIS process u will hear from one process in Nu, if the set is non-empty. The fixed length
of this process is number of rounds required to run directed-decay.

Total Length: O(log2 n) rounds.
Phase 3: Let u be an MIS process that heard from a process v ∈ Nu during the previous phase. Let w

be the process nominated for u by v. During this phase, u will initiate an exploration of w. In more detail,
using bounded-broadcast, with the same parameters as phase 1, u tells v that it has been selected. Next v
uses bounded-broadcast with these same parameters to tell w that it wants to find out more about it. If w is
in the MIS, it sends u its neighbor set. If w is not in the MIS, it chooses a neighbor x that is in the MIS,
and sends to u the id of x and Pwx (i.e., x’s neighbor set). Finally, v uses bounded-broadcast to pass this
information along to u, which adds the new values to its banned set, Bu. Process v and w add themselves to
CCDS by outputting 1 if they have not already done so. The fixed length of this phase is set to the number of
rounds required for the maximum number of calls that might need to be made to bounded-broadcast, which,
as in phase 1, is bounded as O(∆ logn

b).

Total Length: O(∆ log2 n
b) rounds.

The total running time for the MIS algorithm is O(log3 n) rounds, and the time required to run O(1)
search epochs is O(max{∆ log2 n

b , log2n}). Combined this provides our final running time of O(∆ log2 n
b +

log3n) rounds.
We conclude with our main theorem:

Theorem 5.3. Using 0-complete link detectors, our CCDS algorithm generates an execution that solves the
CCDS problem in O(∆ log2 n

b + log3 n) rounds, w.h.p.

Proof. Our CCDS algorithm first constructs an MIS using the algorithm presented in 4. It then executes
`SE search epochs, each consisting of three phases. The MIS algorithm and the search epoch phases are of
fixed length, so the running time of the algorithm follows directly from its definition.

For the remainder of the proof, assume that the MIS algorithm called by the CCDS algorithm solves
the MIS problem, and that all O(n) calls to bounded-broadcast and directed-decay during the search epochs
satisfy the guarantees of Lemmas 5.1 and 5.2. By a union bound, these assumptions hold w.h.p.

Useful Notation. We begin by defining some useful notation: (a) We say a process v is covered by an
MIS process u if v and u are neighbors in G. (b) we say an MIS process u has discovered an MIS process
v (u 6= v) if u learned about v and v’s G neighbors during phase 3 of a search epoch; (c) we say an MIS
process u is connected to an MIS process v (u 6= v) if there exists a path in the CCDS of length 6 hops or
less between u and v in G; and (d) we define Uu, for MIS process u, to be the set of MIS processes (not
including u) that are within 3 hops of u and that are not connected to u.

Useful Claims. Our goal will be to show that this set Uu becomes empty by the end of the algorithm.
To aid this task, we define the following useful claims:

Claim 1: If MIS process u discovers MIS process v, then by the end of the same search epoch it adds a
path of length no more than 3 hops between u and v to the CCDS.

Proof. This claim follows from the definition of the algorithm.
Claim 2: Let u be an MIS process. Assume that during phase 2 of some search epoch at least one

process covered by u has a neighbor to nominate to u. It follows that u will discover a new MIS process
during this epoch.

Proof. Let u′ be the process covered by u assumed by the claim. Assume u′ is nominating a neighbor v′

for u. By definition of the algorithm, v′ is not in the banned set Bu for this epoch. It follows that either v′ is
an MIS process that has not been discovered by u, or none of the MIS neighbors of v′ have been discovered
by u. At least one such u′ succeeds in its call to directed decay. In either case, u discovers a MIS process
during phase 3 of this epoch.

11

Main Proof Argument. By repeated application of Claim 2, it follows that u will keep discovering
processes within 3 hops until its neighbors run out of nominations for u. There are two things to note here:
first, banned sets are monotonically increasing, so once a process runs out of nominations it will never again
have nominations; second, by Corollary 4.7, we know there are no more than I3d = O(1) MIS processes
within 3 hops of u, so if we set `SE = I3d, we have enough search epochs to reach the point where we run
out of nominations.

We will now consider the set Uu of processes that are in the MIS, are within 3 hops of u, but are still
undiscovered by u after the point where its neighbors have run out of nominations. Our goal is to show that
a constant length path in the CCDS between u and these processes will exist by the end of algorithm. We
first note that every process v ∈ Uu must be exactly 3 hops from u: if some v was within 2 hops, it would
have been nominated by its common neighbor with u until discovered. Let u, u′, v′, v be a 3 hop path from
u to some v ∈ Uu. Because we assume that no neighbor of u has nominations for u at this point, v′ must
be in the banned set Bu—otherwise, u′ could nominate it. By the definition of the algorithm, it follows that
that u must have previously discovered some MIS process w such that w neighbors v′. This, in turn, puts
MIS process w within 2 hops of v, on the path w, v′, v. As we argued above, however, any MIS processes
within 2 hops will eventually discover each other. It follows that by the end of the algorithm w will discover
v.

We now have a path from u to w and from w to v. By claim 1, because each path was from a discovery,
each is of length 3 hops or less. We can combine these two paths to get a single path, of length 6 hops or
less, from u to v.

Assuming our assumptions from the beginning of the proof hold, which occurs w.h.p., we have shown
that the algorithm constructs a CCDS consisting of all MIS processes, plus a constant-length path between
every pair of MIS processes within 3-hops. By the standard argument (See section 2.6.1 of [9]), this yields
a valid CCDS. We are left to show that the CCDS is constant-bounded. To prove this, fix a process u. By
Corollary 4.7, there are only a constant number of MIS processes within 1 hop of u in G′. We must also
bound, however, the CCDS processes added by connecting nearby MIS processes with a path. Consider
every pair of MIS processes (v, w) such that v discovered w and added a path of length 2 or 3 to the CCDS.
If v and w are both more than distance 4d from u, then neither v, w, nor any process on their connecting
path are within 1 hop of u. By Corollary 4.7, there are at most x = I4d = O(1) MIS processes within
distance 4d of u, and therefore at most x2 = O(1) pairs of MIS processes, each contributing no more than
4 processes to the CCDS, for a total of no more than 4x2 = O(1) CCDS processes within 1 hop of u, as
needed.

6 Upper Bound for Incomplete Link Detectors

In the previous section, we described an algorithm that can solve the CCDS problem with a 0-complete link
detector. In this section we answer the natural follow-up question of whether we can still the problem with
an incomplete link detector (i.e., a τ -complete link detector for some τ > 0). In more detail, we describe
an algorithm that solves the problem in O(∆polylog(n)) rounds, when combined with a τ -complete link
detector for any τ = O(1).3 Notice, this represents a clear separation from the algorithm for 0-complete
detectors, which for sufficiently large messages can solve the CCDS problem in O(polylog(n)) rounds. In
the next section, we will show this gap is fundamental.

The algorithm follows the same strategy as the CCDS algorithm presented in Section 5—i.e., build a
dominating structure then connect nearby dominating processes—but differs in its details. To start, notice

3Solving the problem for larger τ remains an open problem, though our intuition is that the problem will become impossible
once the τ grows larger than the bound on neighboring CCDS processes allowed by the constant-bounded condition of the CCDS
problem.

12

that the MIS we get in Section 4 guarantees the maximality condition only in H . For τ > 0, however,
H \G can be non-empty: potentially resulting in a process that is far from any other MIS process in terms
of G edges. Such an event would thwart attempts to connect nearby MIS process—i.e., the strategy used in
Section 5—as a lack of a short path in G can prevent communication between two such processes.

To compensate for this unreliability, we instead use a procedure that sequentially executes τ+1 iterations
of the MIS algorithm from Section 4. A process that outputs 1 in any of these iterations does not participate
in subsequent iterations. To ensure that the maximality of each iteration is defined for H , we also have
processes label their messages with their local link detector sets. A process u receiving a message from
process v will keep the message if and only if v ∈ Lu and u ∈ Lv (i.e., the two processes are connected in
H). This procedure provides the following useful properties:

Lemma 6.1. Using a τ -complete link detectors, for any τ = O(1), the above procedure requires O(log3 n)
rounds, and w.h.p. it satisfies that (a) every process either outputs 1 or has a G neighbor that outputs 1; and
(b) there are no more than O(1) processes that output 1 within G′ range of any process.

Proof. The number of rounds is easily derived: we run the O(log3 n) time procedure of Section 4, τ +
1 = O(1) times. Theorem 4.6, when combined with our above modification to the MIS algorithm that
has processes discard messages from non-H neighbors, proves that a single iteration of our modified MIS
algorithm satisfies maximality in H . For a process to never output 0 in the iterated procedure, it has to
receive τ + 1 such MIS messages from an H neighbor, one in each iteration. These must be sent by distinct
processes, since a process that outputs 1 in some iteration does not participate in the subsequent iterations.
It follows that if a process outputs 0 for the entire iterated procedure, then it has τ + 1 neighbors in H that
outputted 1. Since we are using a τ -complete link detector, at most τ of these neighbors can be in H \ G,
implying that this process must have at leastG neighbor that outputs 1: providing property (a) of our lemma.

To prove (b), we can apply the same argument as in Corollary 4.7. In more detail, we know, w.h.p., that
each iteration of the MIS has at most one process per disk (in the disk overlay used in Section 4) output 1.
Over τ + 1 iterations, therefore, no more τ + 1 = O(1) processes output 1 in each disk. Finally, because
there are at most a constant number of disks within G′ range of any process, there are at most a constant
number of processes that output 1 within G′ of any process.

Given the structure obtained by our iterated procedure, we can now build a CCDS. As in our previous
algorithm, we want each process that outputs 1 in the procedure to connect to all other such processes that
output 1 and are within 3 hops in G. Property (a) of Lemma 6.1 promises that this will create a connected
dominating set. To satisfy the constant-bounded property of the CCDS definition, we rely on property (b).
We are left, therefore, to connect nearby processes that output 1. The CCDS algorithm of Section 5, which
uses a banned list approach to make this process more efficient, does not work in this setting.4 This is
not surprising, of course, as the lower bound from Section 7 establishes that no efficient solution can work
for τ > 0. We replace this banned list approach with something much simpler (and slower): each of the
processes that outputted 1 dedicates time for each of its link detector neighbors to announce its id and master,
using the bounded broadcast subroutines of Section 5. Call this phase 1. In phase 2, each of these processes
gets another turn, this time announcing everything it learned in the previous phase. After these two phases,
each process that output 1 knows about every other such process that is within 3 hops in G, and a path in H .
(It might also learn about a constant number of such processes connected in H but not G.) This is sufficient
to build the CCDS structure. With O(∆) link detector neighbors, each requiring O(polylog(n)) rounds for
each of their two phases, the total running time is: O(∆polylog(n)). We formalize this below:

Theorem 6.2. Using τ -complete link detectors, for any τ = O(1), the CCDS algorithm described above
generates an execution that solves the CCDS problem in O(∆polylog(n)) rounds, w.h.p.

4In this setting, with τ > 0, it may be possible, for example, that the banned list of an MIS node includes a neighbor in H \G.
This neighbor will therefore not be nominated, even though it might be on the path to a nearby MIS process.

13

7 Lower Bound

In Section 6, we described an algorithm that solved the CCDS problem in O(∆polylog(n)) rounds, given a
τ -complete detector, for τ > 0. In this section we show the bound to be nearly tight by proving that even
with a 1-complete link detectors, constructing a CCDS requires Ω(∆) rounds. This bound holds regardless
of message size. Formally:

Theorem 7.1. LetA be a randomized CCDS algorithm such thatA combined with a 1-complete link detec-
tor guarantees, w.h.p., to generate an execution that solves the CCDS problem in f1(∆, n) rounds, where ∆
is the maximum degree in G and n is the network size. It follows that f1(∆, n) = Ω(∆).

Our proof strategy is to reduce an easily boundable game to the CCDS problem. This reduction requires
a pair of transformations.

First Transformation. The first transformation is from a CCDS algorithm to a solution to the β-double
hitting game, which is defined as follows: There are two players, A and B, represented by the synchronous
probabilistic automata PA and PB . At the beginning of the game, an adversary chooses two target values
tA, tB ∈ [β]. It then provides tB as input to PA and tA as input to PB . The automata execute in rounds.
In each round each automaton can output a guess from [β]. Notice, however, other than the inputs provided
by the adversary at the beginning of the execution, these automata have no communication with each other.
That is, their executions unfold independently. The players solve the game when either PA outputs tA or
PB outputs tB .

We continue with the transformation lemma:

Lemma 7.2. LetA be a CCDS algorithm such thatA, combined with a 1-complete link detector, guarantees,
w.h.p., to generate an execution that solves the CCDS problem in f1(∆, n) rounds, where ∆ is the maximum
degree inG and n is the network size. We can construct a pair of probabilistic automata (PA,PB) that solve
the β-double hitting game in f2(β, n) = f1(β, n) +O(1) rounds, w.h.p., where β is any positive integer.

Proof. Notice, with this transformation we shift from the world of radio network algorithms to the world of
abstract games, where players are represented by probabilistic automata. We maintain n as a parameter in
the running time function, however, so we can specify “w.h.p.” in a consistent manner.

Our transformation requires that we construct two player automata,PA andPB , given a CCDS algorithm
A. Our strategy is to design our player automata to cooperatively simulate an execution of A running on
a dual graph network of size 2β, where G consists of two cliques, each of size β, that are connected by a
single link, andG′ is fully connected. Call the two cliques in this networkA andB. Automata PA simulates
processes 1 to β assigned to nodes in clique A, and PB simulates processes β+ 1 to 2β assigned to nodes in
clique B. Thus we have 2β processes total, each assigned a unique id from [2β], as required by our network
model.

In this simulation, we want the two target ids, tA and tB from the hitting game to correspond to the ids
of the processes assigned to the endpoints of the link connecting the two cliques (which we will call the
bridge). To do so, we must be careful about how we simulate the 1-complete link detectors used by the
broadcast algorithm. In more detail, we have PA give each of its simulated processes a link detector set
consisting of the set [β] and the id tB +β, and we have PB give its simulated processes the set consisting of
{β+1, ..., 2β} and the id tA. It follows, that each player is simulating their processes receiving a 1-complete
link detector set that is compatible with a process assignment that has process tA (in clique A) and tB + β
(in clique B) as the endpoints of the bridge.

We have each of the two player automata simulate each round of the CCDS algorithm as follows: if two
or more simulated processes broadcast, or no simulated process broadcasts, then all processes simulated by

14

the automata receive ⊥. Notice, here we leverage the fact that we are in the dual graph model. Assume, for
example, that tA and one other process, i, broadcast in clique A. In the classic radio network model, tA’s
message would be received by process tB +β because i is not connected to tB +β. In the dual graph model,
however, the adversary can choose in this round to deliver a message on i’s G′ edge to tB + β, causing a
collision with tA’s message.

On the other hand, if only one simulated process broadcasts, then all processes simulated by that au-
tomata receive the message, and the automata makes a guess at the end of the round. The guessing works as
follows: if process i simulated by PA broadcasts alone in a simulated round, A guesses i during this round
of the game, and if j simulated by PB broadcasts alone, B guesses j − β.

Finally, if the simulated processes in clique A (resp. B) terminate (i.e., they have all outputted 0 or 1),
then PA (resp. PB), halts its simulation and guesses i (resp. i − β), for each simulated process i from its
clique that output 1. Because players can only output one value per round, but multiple simulated processes
from a clique might join the CCDS, completing this guessing might require multiple rounds. Due to the
constant-bounded property of the CCDS, however, no more than O(1) rounds will be needed to complete
this guessing.

To conclude this proof, we must now show that this simulation strategy solves the double hitting game.
We first notice that the simulations conducted by PA and PB will remain valid so long as there is no
communication required between the cliques. By our model definition, the only scenario in which a message
must pass between the cliques is if process tA or tB + β (i.e., the processes at the endpoints of the bridge)
broadcasts alone. In this case, however, the player responsible for the solo broadcaster would guess its
target, solving the double hitting game.

We now consider the case where the algorithm terminates without communication between the cliques.
Assume that the execution under consideration solves the CCDS problem (an event that occurs, by assump-
tion, w.h.p.). Consider the graph H used in the definition of the CCDS problem. In our simulated network,
this graph matches G: i.e., cliques A and B connected by a single bridge link. By the domination and
connectivity properties of the CCDS problem, the endpoints of this bridge must be included in the CCDS.
The processes corresponding to these endpoints are tA and tB + β. Therefore, when the respective players
in the double hitting game output the guesses corresponding to their CCDS processes, they will output their
targets, solving the game.

Second Transformation. Our next transformation is from the β-double hitting game to the β-single hitting
game, which is defined the same as double hitting game, except there is now only one player and target. That
is, the adversary chooses a value from [β], and then the synchronous probabilistic automata PA,B guesses
one value per round until it guesses the target value. In the proof of our main theorem statement, we will
show that the single hitting game is easily bounded. Note the reason we require a non-trivial transformation
from the double hitting game to the single hitting game is because the exchange of input values at the
beginning of the double hitting game, allows for subtle cooperative strategies that prevent us from just using
one of the automata PA or PB as our solution to the single player variant. We detail this transformation with
the following lemma:

Lemma 7.3. Let (PA,PB) be a pair of automata that solve the β-double hitting game in f2(β, n) rounds,
w.h.p., for any positive integer β. We can construct a probabilistic automata PA,B that solves the β-single
hitting game in f3(β, n) = f2(2β, n) rounds, w.h.p., also for any positive integer β.

Proof. We are given a pair of automata PA and PB that solve the 2β-double hitting game in f2(2β, n)
rounds, w.h.p. Unwinding the definition of the problem we get the following: for every pair of targets
tA, tB ∈ [2β], PA and PB will solve the double hitting game for these targets in no more than f2(2β, n)
rounds, w.h.p.

15

Let us now unwind even more: if we run PA with target tA and input tB , and run PB with target tB
and input tA, at least one of these two automata will output their target in f2(2β, n) rounds, w.h.p. To make
this argument we must proceed carefully. Recall, we define w.h.p. to be 1 − 1

nc for some constant c that is
sufficiently large for our needs. In this case, assume it is at least of size 2. Let pA be the probability that
PA fails to output tA in f2(2β, n) rounds given input tB . And let pB be the probability that PB fails to
output tB in f2(2β, n) rounds given input tA. Notice, these two probabilities are independent as the player
automata execute independently once provided their respective inputs. By our assumption that at least one
player succeeds with high probability, we know pApB ≤ 1

nc . To satisfy this inequality, at least one of these
probabilities is no larger than 1

nc/2 . The player automata with this probability therefore solves the game fast,
when run with (tA, tB), with probability at least 1− 1

nc/2 , which still qualifies as “w.h.p.” Call this automata
the “winner” for this pair of targets (if both output in the required time with the required probability, default
to call automata PA as the winner).

With this in mind, we can calculate a (2β × 2β)-sized table, where each position (x, y) contains either
A or B depending on which corresponding automata is the winner for targets tA = x and tB = y. (Notice,
this table is not something constructed by PA,B , it is instead something that can be calculated offline to help
construct PA,B .) By a simple counting argument, there must exist either: (a) a column with at least β A’s;
or (b) a row with a least β B’s.

For the remainder of this construction, assume we find some column y such that this column contains at
least β A’s. The case for a row with β B’s is symmetric. Given this column y, we know that there is a subset
Sy ⊂ [2β] of size β, such that if we run PA with target tA ∈ Sy and input tB = y, it will output the target
in f3(2β, n) rounds, w.h.p. (e.g., we can define Sy to be the first β rows in column y that contain A.) Let ψ
be bijection from Sy to [β].

We now define PA,B as follows: have the automata simulate PA being passed input y. If the simulated
PA outputs a guess x in a round, and x ∈ Sy, PA,B outputs ψ(x).

We now argue that PA,B solves the β-single hitting game. Let tA,B ∈ [β] be the target chosen for PA,B
at the beginning of some execution of the single hitting game. By definition, there exists an x ∈ Sy such
that ψ(x) = tA,B . By the definition of our table, we know PA will output target tA = x, given input
tB = y, in f2(2β, n) rounds, w.h.p. It follows that PA,B simulating PA with this input will therefore output
ψ(x) = tA,B in this same time with this same high probability, as needed.

Main Proof. We can now pull together these pieces to prove Theorem 7.1:

Proof (of Theorem 7.1). Starting with the CCDS algorithm A provided by the theorem statement, we apply
Lemmas 7.2 and 7.3, to produce a solution to the β-single hitting game that solves the game in f3(β, n)
rounds. We next note that the β-single hitting game, which requires a player to identify an arbitrary element
from among β elements, requires Ω(β) rounds to solve w.h.p. (We formalize this intuitive probability
fact as part of the proof for our lower bound on randomized broadcast, presented in [10].) This yields:
f3(β, n) = Ω(β). Finally, substituting the running time functions generated by our transformations, we get:
f3(β, n) = f2(2β, n) = f1(2β, n) +O(1). It follows from our bound on f3 that f1(2β, n) +O(1) = Ω(β).
There exists a graph in which ∆ = 2β, and therefore f1(∆, n) = Ω(∆), as needed.

8 Dynamic Link Detectors

For clarity, this paper considers building a CCDS as a one-shot problem: processes are provided a static
estimate of their reliable neighbors, formalized as a link detector set, and then attempt to build the desired
structure as quickly as possible. In long-lived wireless networks, however, link status is not necessarily

16

stable. It is possible for a link that has behaved reliably for a long period to suddenly degrade into unre-
liability (this could happen, for example, due to a change in the multipath environment). We can capture
this setting with a dynamic definition of link detector as a service that provides a set to each process at the
beginning of every round (a definition more aligned with the classic failure detector formalism [4]). We say
a dynamic link detector stabilizes at some round r, if in every execuction its output matches the definition
of the corresponding static link detector at r and never again changes in future rounds.

Given the efficiency of our CCDS solution (at least, under the assumption of large messages), a simple
approach to dealing with changing link detector output is to rerun the CCDS algorithm every δCDS =
Ω(∆ log2 n

b + log3 n) rounds. Call this the continuous CCDS algorithm. We can assume that when we
rerun the algorithm, processes wait to change their outputs until the very end of the algorithm, so they can
transition from the old CDS to the new CCDS all at once. We say that the continuous CCDS algorithm
solves the CCDS problem by some round r, if for any round r′ ≥ r, the output solves the CCDS problem,
w.h.p. The following theorem follows directly:

Theorem 8.1. In any execution of the continuous CCDS algorithm with a 0-complete dynamic link detector
that stabilizes by round r, the algorithm solves the CCDS problem by round r + 2δCDS .

It remains an interesting open question to explore the dynamic case in more detail. For example, we
might want to redefine what it means to solve problems like MIS and CCDS, with respect to the current
output of the link detector. We might also want to design efficient repair protocols that can fix breaks in the
structure in a localized fashion.

9 An MIS Algorithm for Asynchronous Starts and No Topology Knowledge

The model considered in this paper assumes that all processes start during the same round. In this section,
we sketch a collection of small changes that allows our MIS algorithm from Section 4 to work in a model
where processes wake up during different rounds, and have only local knowledge of the round number. This
matches the wake up assumptions of previous studies of the MIS problem in the classic radio network model;
e.g., [12, 15]. Furthermore, we also show that if deployed in the classic radio network model, our algorithm
requires no topology information. It follows that our O(log3 n) time solution is directly comparable to the
O(log2 n) time solution of [15]. We detail this comparison later in this section.

Changes to Algorithm. If processes wake up asynchronously, they cannot start competition phases and
epochs at the same time, therefore the epochs and phases of different processes might not be aligned. It is
possible, for example, that when a process wakes up, some neighbors might already have been active for
a while and they might already be part of the MIS or close to joining the MIS. A new process should not
be able to knock out a neighbor that would soon join the MIS otherwise, and so on. With this in mind, we
follow the example of [15], and add an additional listening phase of Θ(log2 n) rounds at the beginning of
each epoch.5 During the listening phase, the sending probability of a process is 0. If a process receives a
message from a neighbor during the listening phase, it is knocked out and starts a new epoch, which begins
with a brand new listening phase. The other obvious change we must make is that once a process joins the
MIS, it must continue to broadcast and announce this information with probability 1/2 for the remainder of
the execution (e.g., to inform processes that might potentially wake up much later).

5It would be sufficient to only add the listening phase to the first epoch, but since each epoch requires Θ(log2 n) rounds anyway,
for simplicity, we can afford to add the listening phase to each epoch.

17

Proof Modifications. We provide slightly modified versions of Lemmas 4.3 and 4.4 to compensate for
asynchronous starts, and, in the case where G = G′, no topology information. As before, we will only show
individual high probability bounds and assume that we choose all constants large enough so that we can do
all the necessary union bounds to get an overall high probability bound. This is possible because the number
of considered time slots, processes, and disks is at most polynomial in n. For these modified proofs, we
also assume that there are global round numbers starting when the first process wakes up. The global round
numbers are only used to refer to specific time slots in the analysis, and they are unknown to the processes
themselves.

Lemma 9.1. In every round r, for every disk Di: Pi(r) < 2, w.h.p.

Proof. We proceed by induction on r. Clearly, Pi(1) = 0 and thus the lemma holds for r = 1. Suppose
that the lemma holds up to round r − 1 and for contradiction, assume that Pi(r) ≥ 2. Consider the interval
[r − `P , r − 1] of `P = Θ(log n) rounds preceding round r. For every process u in Di that has a positive
broadcast probability pu in round r, either pu = 1/n and u started to compete during the considered `P
rounds or the broadcast probability of u is at least pu/2 throughout the considered interval. Hence, for all
r′ ∈ [r − `P , r − 1], we have Pi(r′) ≥ (2 − n · 1/n)/2 = 1/2. By the induction hypothesis, we also have
Pi(r′) < 2 for all r′ ∈ [r − `P , r − 1]. By also applying the induction hypothesis for all the nearby circles,
because Pi(r′) ∈ [1/2, 2) for all such r′, the probability of exactly one process sending in Di, and no other
node sending among all the G′ neighbors of processes in Di in round r′ is a constant bounded away from
0. The details of this argument are analogous to the one used in the proof of Lemma 4.3. Therefore, if we
choose `P ≥ c log n for a large enough constant c, during the interval [r − `P , r − 1], some process in Di

succeeds in knocking out all the other nodes in Di, in which case we clearly get Pi(r) < 2.

Lemma 9.2. (Independence) For every pair of processes u and v, (u, v) ∈ E, it is not the case that both
output 1, w.h.p.

Proof Sketch. The argument is analogous to the one used in the proof of Lemma 4.4. W.l.o.g., assume that
u decides to join the MIS at time ru and that v decides to join the MIS at some time rv ≤ ru. Let us
first assume that ru − rv ≥ `P = Θ(log n). In that case, process u is in the announcement phase for at
least `P rounds while v is awake and still competing. Because by Lemma 9.1, Pi(r) ≤ 2 for all i and
r, the probability that u knocks out v is a constant bounded away from 0 in each of these `P rounds. If
ru − rv < `P , there are `P rounds prior to rv in which both compete with broadcast probabilities at least
1/4. By again applying Lemma 9.1 for the `P rounds and nearby circles, in each of these rounds, one of the
two processes knocks out the other one with constant probability bounded away from 0. In both cases, this
implies that if `P ≥ c log n for a large enough constant c, w.h.p. either u or v is knocked out before both of
them start the announcement phase.

Lemma 9.3. (Termination) If processes have 0-complete link detectors, or if G = G′, each process outputs
0 or 1 after starting at most O(log n) epochs, w.h.p.

Proof Sketch. In both cases assumed the lemma statement, a process u can only be knocked out by a G
neighbor v. In a given epoch, therefore, either u joins the MIS (at which point, we are done) or it is knocked
out by G neighbor v. We can apply the same argument as in Lemma 4.5 (applied now with Lemma 9.1
instead of Lemma 4.3), to show that with constant probability: v’s messages knocks all of v’s G neighbors
back to a listening phase, allowing v to join the MIS, at which point, also with constant probability, u
receives v’s MIS announcement and therefore outputs 0. Hence, the probability that u does not output 0 or
1 after starting O(log n) epochs is sufficiently small to provided the needed high probability.

To account for asynchronous starts, we must slightly modify our notation such that saying an algorithm
solves the MIS problem in f(n) rounds, means that every process outputs 0 or 1 within f(n) rounds of

18

waking up. With this in mind, combining the argument from our original Theorem 4.6 with our modified
lemmas, we get our final theorem statement:

Theorem 9.4. Assuming asynchronous starts and either 0-complete link detectors or G = G′, our modified
MIS algorithm generates an execution that solves the MIS problem in O(log3 n) rounds, w.h.p.

Comparison to Existing MIS Algorithms. By the above theorem, our modified MIS algorithm works
in the the classic radio network model (i.e., G = G′) with asynchronous starts. It guarantees each process
to output 0 or 1 within O(log3 n) rounds of waking up. The algorithm is inspired by the O(log2 n) round
solution from [15]. We differ from [15] in that we trade speed for simplicity. That is, by running a factor
of O(log n) slower, we can eliminate a phase from the structure used in [15], simplifying the algorithm and
proof structure.

10 Future Work

This work motivates a collection of related open problems. For example, our CCDS algorithm for the 0-
complete link detector setting requires large messages to terminate fast. It remains open whether this is
fundamental, or if there exist fast solutions for the small message case. It is also interesting to consider
whether there exist CCDS algorithms for non-constant τ . Finally, our τ -complete link detector formalism is
only one possible definition from many different approaches to defining this style of service. We leave the
exploration of different definitions as additional future work.

References
[1] Personal Communication with Johannes Schneider, ETH Zurich, Jan. 2011.

[2] M. Abusubaih. A New Approach for Interference Measurement in 802.11 WLANs. In Proceedings of the International
Symposium on Personal Indoor and Mobile Radio Communications, 2010.

[3] D. Aguayo, J. Bicket, S. Biswas, R. Morris, B. Chambers, and D. De Couto. MIT Roofnet. In Proceedings of the
International Conference on Mobile Computing and Networking, 2003.

[4] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the ACM,
43(2):225–267, 1996.

[5] A. Clementi, A. Monti, and R. Silvestri. Round robin is optimal for fault-tolerant broadcasting on wireless networks.
Journal of Parallel Distributed Computing, 64:89–96, 2004.

[6] D. De Couto, D. Aguayo, J. Bicket, and R. Morris. A High-Throughput Path Metric for Multi-Hop Wireless Routing.
Wireless Networks, 11(4):419–434, 2005.

[7] D. De Couto, D. Aguayo, B. Chambers, and R. Morris. Performance of Multihop Wireless Networks: Shortest Path is Not
Enough. ACM SIGCOMM Computer Communication Review, 33(1):83–88, 2003.

[8] K. Kim and K. Shin. On Accurate Measurement of Link Quality in Multi-Hop Wireless Mesh Networks. In Proceedings of
the Annual International Conference on Mobile Computing and Networking, 2006.

[9] F. Kuhn. The Price of Locality: Exploring the Complexity of Distributed Coordination Primitives. PhD thesis, ETH Zurich,
2005.

[10] F. Kuhn, N. Lynch, and C. Newport. Brief Announcement: Hardness of Broadcasting in Wireless Networks with Unreliable
Communication. In Proceedings of the International Symposium on Principles of Distributed Computing, 2009.

[11] F. Kuhn, N. Lynch, C. Newport, R. Oshman, and A. Richa. Broadcasting in Unreliable Radio Networks. In Proceedings of
the International Symposium on Principles of Distributed Computing, 2010.

[12] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Initializing Newly Deployed Ad Hoc and Sensor Networks. In Proceedings of
the Annual International Conference on Mobile Computing and Networking, 2004.

[13] F. Kuhn and R. Wattenhofer. Constant-Time Distributed Dominating Set Approximation. Distributed Computing,
17(4):303–310, 2005.

19

[14] F. Kuhn and A. Zollinger. Ad-Hoc Networks Beyond Unit Disk Graphs. In Proceedings of the Workshop on the Foundations
of Mobile Computing, 2003.

[15] T. Moscibroda and R. Wattenhofer. Maximal independent sets in radio networks. In Proceedings of the International
Symposium on Principles of Distributed Computing, 2005.

[16] S. Parthasarathy and R. Gandhi. Distributed Algorithms for Coloring and Domination in Wireless Ad Hoc Networks. In
Proceedings of the Conference on the Foundations of Software Technology and Theoretical Computer Science, 2005.

[17] K. Ramachandran, I. Sheriff, E. Belding, and K. Almeroth. Routing Stability in Static Wireless Mesh Networks. Passive and
Active Network Measurement, pages 73–82, 2007.

[18] K. Srinivasan, M. Kazandjieva, S. Agarwal, and P. Levis. The β-Factor: Measuring Wireless Link Burstiness. In
Proceedings of the Conference on Embedded Networked Sensor System, 2008.

[19] P. Wan, K. Alzoubi, and O. Frieder. Distributed Construction of Connected Dominating Sets in Wireless Ad Hoc Networks.
In Proceedings of the IEEE Conference on Computer Communnications, 2002.

[20] M. Yarvis, W. Conner, L. Krishnamurthy, J. Chhabra, B. Elliott, and A. Mainwaring. Real-World Experiences with an
Interactive Ad Hoc Sensor Network. In Proceedings of the International Conference of Parallel Processing, 2002.

20

