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Today’s Topics
Today’s Topics

• What are Heuristics? 
• The Origin and Analogy of Simulated Annealing 
• The Simulated Annealing Algorithm 
• An Example: The Terrestrial Planet Finder Mission

• Sample Results 
• Ways to Tailor the Simulated Algorithm 
• Summary 
• References 
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What is a Heuristic?
What is a Heuristic?

• A Heuristic is simply a rule of thumb that hopefully will find a good 
answer. 

•	 Why use a Heuristic? 
–	 Heuristics are typically used to solve complex (large, nonlinear, nonconvex 

(ie. contain many local minima)) multivariate combinatorial optimization 
problems that are difficult to solve to optimality. 

•	 Unlike gradient-based methods (such as the simplex algorithm) in a 
convex trade space, heuristics are NOT guaranteed to find the true 
global optimal solution in a single objective problem, but should find 
many good solutions (the mathematician's answer vs. the engineer’s 
answer) 

•	 Heuristics are good at dealing with local optima without getting stuck in 
them while searching for the global optimum. 

•	 Reference: 
–	 Schulz, A.S., “Metaheuristics,” 15.057 Systems Optimization Course Notes, MIT, 

1999. 
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Types of Heuristics
Types of Heuristics

• Heuristics Often Incorporate Randomization 

• 2 Special Cases of Heuristics 
– Construction Methods 

• Must first find a feasible solution and then improve it. 
– Improvement Methods 

• Start with a feasible solution and just try to improve it. 

• 3 Most Common Heuristic Techniques 
– Genetic Algorithms 
– Simulated Annealing 
– Tabu Search 
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Origin of Simulated Annealing (SA)
Origin of Simulated Annealing (SA)

•	 Definition:  A heuristic technique that mathematically

mirrors the cooling of a material to a state of minimum

energy.


•	 Origin:  Applying the field of Statistical Mechanics to the

field of Combinatorial Optimization (1983)


•	 Draws an analogy between the cooling of a metal and the

solving of an optimization problem.


•	 Original Paper Introducing the Concept

–	 Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P., “Optimization by 

Simulated Annealing,” Science, Volume 220, Number 4598, 13 
May 1983, pp. 671-680. 
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The Analogy
The Analogy

•	 Statistical Mechanics:  The behavior of systems with 
many degrees of freedom in thermal equilibrium at a finite 
temperature. 

•	 Combinatorial Optimization:  Finding the minimum of a 
given function depending on many parameters. 

•	 Analogy:  If a liquid material (ie. metal) cools and anneals 
too quickly, then the material will solidify into a sub-optimal 
configuration. If the liquid material cools slowly, the 
crystals within the material will solidify optimally into a state 
of minimum energy (ie. ground state). 
–	 This ground state corresponds to the minimum of the cost function 

in an optimization problem. 
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4 Key Ingredients for Simulated Annealing
4 Key Ingredients for Simulated Annealing
((Kirkpatrick et al, 1983)
Kirkpatrick et al, 1983)

•	 A concise description of a configuration (ie. architecture) of

the system (Design Vector).


•	 A random generator of rearrangements of the elements in

a configuration (Neighborhoods).


•	 A quantitative objective function containing the trade-offs

that have to be made (Simulation Model and Output

Metric(s)).


• An annealing schedule of the temperatures and the length

of times for which the system is to be evolved.
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The SA Algorithm
The SA Algorithm
•	 Terminology: 

–	 Γ = Design Vector (ie. Design Architecture) 
–	 E = System Energy (ie. Objective Function Value) 
–	 T = System Temperature 
–	 ∆ = Difference in System Energy Between Two Design Vectors 

•	 The Simulated Annealing Algorithm

1) Choose a random Γ , select the initial system temperature, and outline the cooling
i

 (ie. annealing) schedule


2) Evaluate E(Γ ) using your simulation model
i


3) Perturb Γ  to obtain a neighboring Design Vector (Γi+1)
i


4) Evaluate E(Γi+1) using your simulation model

5) If E(Γi+1)< E(Γ ), Γi+1 is the new current solution
i

6) If E(Γi+1)> E(Γ ), then accept Γi+1 as the new current solution with a probability e(- ∆/T)
i


 where ∆ = E(Γi+1) - E(Γ ).
i

7) Reduce the system temperature according to the cooling schedule.

8) Terminate the algorithm.


•	 TPF Example:  We will walk through each of the 8 steps. 
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Terrestrial Planet Finder (TPF)
Terrestrial Planet Finder (TPF)
•	 Mission Statement:  “To study all aspects of planets ranging from their 

formation and development in disks of dust and gas around newly forming 
stars to the presence and features of those planets orbiting the nearest stars. 
Specifically, to conduct a search for Earth-like planets in star systems located 
within 15 parsecs of our solar system.” 

•	 Primary Mission:  To detect Earth-like planets around nearby stars, especially those 
in the habitable zone where liquid water is likely to exist 

–	 Bracewell Nulling interferometer 

•	 Secondary Mission: To characterize
 approximately 50 of these Earth-like planets 

–	 Medium spectroscopy (50 planets) 
–	 Detailed spectroscopy (5 planets) 

•	 To image astrophysical structures to within
 milli-arcsecond angular resolution
 (Michelson interferometer) requires longer baselines 

•	 http://tpf.jpl.nasa.gov/ 
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Mathematical Formulation of the TPF Design ProblemMathematical Formulation of the TPF Design Problem

TPF Design Vector: G = [γ1 γ 2 γ 3 γ 4 ] • 640 unique TPF mission 
Variable Allowable Values architecturesHeliocentric Orbital Altitude (AU) 1.0, 1.5, 2.0, 2.5, 3.0,γ1 

3.5, 4.0, 4.5, 5.0, 5.5 • Complete enumeration
Collector Connectivity/Geometry SCI-1D, SCI-2D, SSI­
γ2 

1D, SSI-2D determines accuracy# Collector Apertures 4, 6, 8, 10γ3 

Diameter of Collector Apertures(m) 1, 2, 3, 4γ4 • MDO methods limited to the 
Original Optimization Formulation evaluation of 48 design 

5 
∑ F y ( )  vectors (7.5% of the full-G


:Objective Min
y=1 factorial trade space)

5 
∑ ? y ( )G

y=1
 Where 

:sConstraint toSubject 
y = year in the mission

Isolation 2.5 ≤ θ r ≤ milli20 - arcsec 
Φ= cost 

O ≤ 10−6 

Ψ= number of “images”
Integrity


Surveying SNR ≥ 5 θr= angular resolution

pySpectroscoMed. SNR ≥ 10 Ω= null depth

pySpectroscoDeep SNR ≥ 25
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SA Step 1 – Starting Out
SA Step 1 – Starting Out

•	 2 Methods to Select the Initial Design Vector Γi 
–	 Select a random point (ie. random design architecture) in the trade 

space 
–	 Select a known point in the trade space (ie. a design architecture 

which has already been studied/demonstrated) 

•	 Typically, a random Design Vector is used to begin the SA

algorithm (Exception: Construction Problem with few

known feasible solutions).


•	 After a “good” solution(s) has been found, this can be used

as the starting point for a new run of the SA algorithm to try

and find an even better solution (Assumption: You have

now found the most favorable portion of the trade space).
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SA Step 2 -SA Step 2 - EvaluateEvaluate EE((ΓΓ ) Using Your
) Using Yourii
Simulation ModelSimulation Model

Design Vector 

Operations 

Systems 
GINA 

Spacecraft
 Bus/Payload 

Aperture 
Configuration

Environment 

Dynamics, Optics, 
Control, & Structures 

Metrics 

Orbit 1 AU 
Interferometer Type SCI-1D 
Number of Apertures 4 
Size of Apertures 4 m 

Total Cost $902M 
Total # of Images 1273 
Cost/Image $709K 
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SA Step 3 - PerturbSA Step 3 - Perturb ΓΓ  To Obtain a Neighboring
To Obtain a Neighboringii

Design Vector (Design Vector (ΓΓi+1i+1))

•	 What is a Neighbor? 
– Γ2 is a neighbor of Γ1 if Γ2 can be obtained from a modification of Γ1. 

•	 Neighborhood Degrees of Freedom (DOF) 
–	 The number of parameters that can vary between Γ1 and Γ2 for 

which they may still be considered neighbors. 

•	 Neighbor Example: 
G1	= [ SCIAU1 m4ap41D- ] G = [ SCIAU1 2m4ap1D- ] DOF = 1
2 

•	 The perturbation to a neighbor is usually done

randomly.
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SA Step 4 -SA Step 4 - EvaluateEvaluate EE((ΓΓi+1i+1) Using Your) Using Your
Simulation ModelSimulation Model

Design Vector 

Operations 

Systems 
GINA 

Spacecraft
 Bus/Payload 

Aperture 
Configuration

Environment 

Dynamics, Optics, 
Control, & Structures 

Metrics 

Orbit 1 AU 
Interferometer Type SCI-1D 
Number of Apertures 4 
Size of Apertures 2 m 

Total Cost $769M 
Total # of Images 769 
Cost/Image $1000K 
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SA Steps 5 & 6 – Accepting a New
SA Steps 5 & 6 – Accepting a New
Current Solution
Current Solution

•	 The system energy E(Γ) (ie. the Objective Function) is a

quantitative measure of the “goodness” of a complex system.


•	 The current solution is the baseline design architecture from

which we explore the trade space. It is the design vector we

perturb to find a new neighbor.


• If E(Γi+1)< E(Γ ), Γi+1 is the new current solution.i

• If E(Γi+1)> E(Γ ), then accept Γi+1 as the new current solution withi

a probability e(- ∆/T) where ∆ = E(Γi+1) - E(Γ ).
i

• e(- ∆/T) is called the Boltzman Factor 

•	 This is known as the Metropolis Step 
–	 Metropolis,N., A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, "Equation 

of State Calculations by Fast Computing Machines", J. Chem. Phys.,21, 6, 
1087-1092, 1953. 
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SA Steps 5 & 6 – Accepting a New
SA Steps 5 & 6 – Accepting a New
Current Solution Cont’d
Current Solution Cont’d

•	 Why move to a worse current solution?

– To  avoid getting trapped in a local optimum.


•	 Local Optimum

–	 A solution is locally optimal if there is no neighbor who has a better 

objective function value. 

•	 Global Optimum

–	 A solution is globally optimal if there is no other solution in the 

entire feasible trade space that has a better objective function 
value. 

–	 Note: We are only talking about single objective problems. 
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Current Solution Cont’d
Current Solution Cont’d
SA Steps 5 & 6 – Accepting a NewSA Steps 5 & 6 – Accepting a New

• Local Optima vs. the Global Optimum


• Example 
– f(x) = cos(14.5x – 0.3) + (x + 0.2)x 
– Min[f(x)] 

Global Optimum Local Optima 
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SA Steps 5 & 6 – Accepting a New
SA Steps 5 & 6 – Accepting a New
Current Solution Cont’d
Current Solution Cont’d

•	 Local Optima vs. the Global Optimum Example

•	 Min [cos(14.5x – 0.3) + (x + 0.2)x]


 Subject to  -2.2 ≥ x ≥ -3


Global Optimum 

Local Optimum 

Potential 
Neighbors 

Gradient 

Gradient 

Simulated Annealing 
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Current Solution Cont’d
Current Solution Cont’d
SA Steps 5 & 6 – Accepting a NewSA Steps 5 & 6 – Accepting a New

•	 Can there be a difference between the current solution and

the best solution?


Simulated Annealing Algorithm Exploration of the TPF Trade Space - DOF=3 
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SA Steps 5 & 6 – Accepting a New
SA Steps 5 & 6 – Accepting a New
Current Solution Cont’d
Current Solution Cont’d

•	 Returning to the TPF Example 
–	 E(Γ 1) = $709K 
–	 E(Γ 2) = $1000K 

• If E(Γ i+1)< E(Γ i), Γ i+1 is the new current solution. 
–	 Not the Case: 

• $1000K > $709K 
• E(Γ 2) > E(Γ 1) 
• Therefore Γ 1 remains the current solution. 

•	 But if E(Γ i+1)> E(Γ i), then accept Γ i+1 as the new current

solution with a probability  ∆ − 
 

T	 Prob e 


(	 (where =∆ GE i + 1 )− GE ) i 
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SA Steps 5 & 6 – Accepting a New
SA Steps 5 & 6 – Accepting a New
Current Solution Cont’d
Current Solution Cont’d

•	 ∆ = E(Γi+1) - E(Γ )i
•	 ∆ = $1000K - $709K = $291K 
•	 How does the system temperature come into play? 
•	 The probability of moving to a worse solution = e(- ∆/T)


– As T → ∞, Probability(moving to a worse solution ) → 1

– As T → 0, Probability(moving to a worse solution ) → 0


•	 To = 1000 Treduce = 0.95 
•	 The probability with which we move to this worse solution with the hope of escaping a 

possible local minimum decreases over time, and is a function of how many iterations we 
have executed (ie. How cool the system is. Remember the thermodynamic analogy.). 

Iteration # T Prob e(-∆/T) 

1 950 0.74 

10 599 0.62 

20 358 0.44 

30 215 0.26 

40 129 0.10 

50 77 0.02 
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SA Steps 5 & 6 – Accepting a New
SA Steps 5 & 6 – Accepting a New
Current Solution Cont’d
Current Solution Cont’d

• Another Key Point

– The larger the difference ∆ in system energy between 

the two neighbors, the lower the probability of moving to 
that neighbor. 

T = 215 

Iteration #30 

$1600K 

∆ 

0.0006 

Prob e(-∆/T) 

T = 215 $800K 0.024 

T = 215 $400K 0.16 

T = 215 $200K 0.39 

T = 215 $100K 0.63 

T = 215 $50K 0.79 
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SA Step 7 – Reducing System Temperature
SA Step 7 – Reducing System Temperature

•	 The initial system temperature is typically large – on the 
order of magnitude of the expected range of the objective 
function. 

•	 Two Most Common Cooling Schedules

–	 Explore several perturbations at a given temperature, then reduce 

the temperature to a predetermined value, and repeat. 
–	 Reduce the temperature between each perturbation, but by a 

smaller amount. 

•	 Creating a cooling schedule is more of an art than a 
science, and may involve trial and error. 
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SA Step 8 - Terminating the SA Algorithm
SA Step 8 - Terminating the SA Algorithm

•	 How do you terminate the simulated annealing

algorithm?

–	Depends upon the cooling/annealing schedule.


•	 If spending multiple iterations at each

temperature, terminate algorithm when T=0.


•	 If spending only one iteration at each temperature:

–	 If a new “best solution” is not found after a given number of


iterations, then terminate the algorithm.

–	 Set upper bound on the total number of iterations allowed. 

Terminate the algorithm when this upper bound is reached. This 
should correspond ~ T=0. 

–	 Manually terminate the algorithm. 
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Review of the SA Algorithm
Review of the SA Algorithm
•	 Terminology: 

–	 Γ = Design Vector (ie. Design Architecture) 
–	 E = System Energy (ie. Objective Function Value) 
–	 T = System Temperature 
–	 ∆ = Difference in System Energy Between Two Design Vectors 

•	 The Simulated Annealing Algorithm

1) Choose a random Γ , select the initial system temperature, and outline the
i
cooling (ie. annealing) schedule.

2) Evaluate E(Γ ) using your simulation model
i


3) Perturb Γ  to obtain a neighboring Design Vector (Γi+1)
i


4) Evaluate E(Γi+1) using your simulation model

5) If E(Γi+1)< E(Γ ), Γi+1 is the new current solution
i


6) If E(Γi+1)> E(Γ ), then accept Γi+1 as the new current solution with a
i
probability e(- ∆/T)


 where ∆ = E(Γi+1) - E(Γ ).
i

7) Reduce the system temperature according to the cooling schedule.

8) Terminate the algorithm.
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SA Results on TPF Trade SpaceSA Results on TPF Trade Space
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•	 SA Algorithm finds most cost effective families of design architectures

after evaluating only a small fraction of the global trade space.


•	 Simulated Annealing has been successfully applied to very large

combinatorial optimization problems where the total number of

variables may range into the tens of thousands.

–	 The Traveling Salesman Problem 
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Performance
Performance
Degrees of Freedom (DOF) and SADegrees of Freedom (DOF) and SA

•	 Objective: “What DOF allows simulated annealing to 
search the DSS trade space most efficiently and why?” 

•	 Recall Neighborhood Definition:
G1	= [ SCIAU1 m4ap41D- ] G = [ SCIAU1 2m4ap1D- ] DOF = 1
2 

DOF=1 	 DOF=3  DOF=5

Initial Initial	 Initial 

$ 

Solution 

Optimal 
Solution 

Optimal 
Solution 

$
 

Solution 

Optimal 
Solution 

$
 

Solution 

Performance	 Performance Performance 

© Massachusetts Institute of Technology – Dr. Cyrus D. Jilla & Prof. Olivier de Weck 
Engineering Systems Division and Dept. of Aeronautics & Astronautics 

27 



Degrees of Freedom (DOF) and SADegrees of Freedom (DOF) and SA
Performance
Performance
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•	 Observations:

–	 Setting DOF=2 appears to yield the most efficient exploration of 

the TPF trade space. 
–	 DOF=Min. →  Overly constrictive neighborhood 
–	 DOF=Max. → Degenerates to a random search 
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Degrees of Freedom (DOF) and SA
Degrees of Freedom (DOF) and SA
Performance
Performance

Simulated Annealing Algorithm Exploration of the TPF Trade Space - DOF=1 Simulated Annealing Algorithm Exploration of the TPF Trade Space - DOF=2 
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Simulated Annealing Lecture Summary
Simulated Annealing Lecture Summary

•	 Originated from statistical mechanics. Analogous to

the cooling of a material to a state of minimum energy.


•	 8-Step Algorithm 

•	 Terrestrial Planet Finder (TPF) Mission Example


•	 There are many items one may tailor within the

algorithm to affect its performance (initial system

temp, cooling schedule, DOF within a neighborhood,

etc.)


•	 The simulated annealing algorithm, like other heuristic

techniques, is NOT guaranteed to find the global

optimum; but it should find several good solutions.
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