

Multidisciplinary System Design Optimization

Genetic Algorithms (II) Tabu Search

10 March 2004

Lecture 11 Olivier de Weck

Today's Topics

- More on Fitness Function Assignment
- Mutation
- Constraint implementation in GAs
- Multiobjective optimization with GAs
- Tabu Search
- Selection of Optimization Algorithms

Mesd Fitness Function Mapping (I)

- Objective Function measures how individuals
 perform in the problem domain
- Raw measure of fitness usually only used as intermediate stage in determining relative performance of individuals in a GA

Transform objective function value into a measure of relative fitness:

- f: objective function
- g: transformation
- F: relative Fitness (>= 0)

F(x) = g(f(x))

Mesd Fitness Function Mapping (II)

 $f \mapsto F$ Mapping always necessary for minimization (smaller objective value = higher fitness)

Often fitness function value corresponds to the number of offspring which an individual will likely produce.

E.g. Proportional fitness assignment

Fitness of i-th individual = individuals raw performance relative to the whole population

 N_{ind} Population size x_i Phenotypic value of "i"

Mesd Fitness Function Mapping (III)

How to account for negative objective function values ?

Linear transformation with offset: F(x) = af(x) + b

Scale factor: *a*>0 for maximizing, *a*<0 for minimizing Offset: *b* ensures non-negative fitness values

Power law scaling: $F(x) = f(x)^{k}$

k: exponent (power) can be changed during execution

Tuning Knob: "SP" - selective pressure = degree of bias towards towards fittest

$$F(x_i) = 2 - SP + 2(SP - 1)\frac{x_i - 1}{N_{ind} - 1}$$

 x_i = position of i-th individual in ordered population

16 888

Mutation(I)

(no) too little mutation leads to an impoverished genetic pool with increasing number of generations

dilemma

Too much mutation decreases convergence rate and undermines fitness-based selection bias

What is mutation? ... a genetic operator

- Modifies chromosomes to restore diversity
- Permit random changes in a member of a population

Examples:

- with probability 1/20 randomly flip a single bit of a solution from 0 to 1 or 1 to 0
- probability of mutation often called "mutation rate", expressing the probability P_m that a bit is changed

Example with Mutation

Improved population fitness with 1% mutation rate

Original gen.	5th gen.	10th gen.
1 0 0 1 1	1 1 0 1 1	1 1 1 1 1
0 1 0 0 0	1 0 1 1 1	1 1 1 1 1
0 0 0 0 1	1 1 1 1 1	1 1 0 1 1
0 0 0 0 0	0 1 1 1 0	1 1 1 1 1
1 1 0 1 1	1 1 1 1 1	1 1 1 1 1
Avg. Fitness	Avg. Fitness	Avg. Fitness
2.6	4.8	4.9

Example without Mutation

Stagnant population with 0% mutation rate

Mesd

Mutation(II)

Example:

Before mutation:01011100(After mutation:01010100(

- Mutation rate can be variable (usually gradually decreasing with increasing number of generations)
- Mutation rate is an important "tuning knob" for a GA

<u>Average</u> performance of individuals in a population is expected to increase, as good individuals are preserved and bred and less fit individuals die out.

Constraints in GA

Essentially three options:

- Implement implicitely in coding/decoding scheme
- Penalize objective function for constraint violation
- Selection operator: only select valid solutions for mating

Mesd Encoding/Decoding Scheme

Penalty Approach (I)

Usually some calculation is necessary to verify if
 a constraint is met or not, e.g. stresses, power output...

Solution: Penalize the fitness of solutions that violate constraints

$$S(x_i) = F(x_i) - P(x_i)$$

Fixed Penalty for Constraint Violation

Mese Penalty Approach (II)

16.888 ESD.77

Fixed penalty provides no ranking of the degree of constraint violation - introduce variable penalty

- What is the right "balance" between objective function and penalty constraints ?
- Usually requires some amount of trial-and-error, tuning
- Usually amount of penalty varies during optimization
- Intially: small penalty = large search space
- Late: large penalty = focus on good feasible solutions
- But also opportunity: Allows for relative weigthing of constraints (crash worthiness vs. fuel economy)

Selection Operator

Setting the Fitness of any of any invalid solution to zero ensures that only valid solutions are considered (selection)

 $\langle \rangle$ Caution: Can eliminate valuable solutions from gene pool

Mesd Operators: General Remarks

- 1 point crossover is one of many alternatives
- Goal of crossover: Take two parent solutions and create two children solutions
- Mutations: Flipping bits is one of many options
- Can take any neighborhood operator as in Simulated Annealing or Tabu Search
- Instead of doing random population initialization - start with a "fit" initial population
- Seed initial population with individuals known to be in the vicinity of the global optimum

Parallel GA's

GA's are very ameniable to parallelization.

Motivations: - faster computation (parallel CPU's)

- attack larger problems
- introduce structure and geographic location

There are three classes of parallel GA's:

- Global GA's
- Migration GA's
- Diffusion GA's

Main differences lie in :

- population structure
- method of selecting individuals for reproduction

- GA Farmer node initializes and holds entire population
- Interesting when objective function evaluation expensive
- Typically implemented as a master-slave algorithm
- Balance serial-parallel tasks to minimize bottlenecks
- Issue of synchronous/asynchronous operation

Does NOT operate globally on a single population

Each node represents a subgroup relatively isolated from each other

16.888

FSO

"breeding groups"= demes

More closely mimics biological metaphor

First introduced by Grosso in 1985

Diffusion GA's

Toroidal-Mesh parallel processing network

-- Each Node (Ii,j) WHILE not finished SEQ ... Evaluate

PAR

- ... send self to neighbors
- ... receive neighbors
- ... select mate
- ... reproduce

Neighborhood, cellular or fine-grained GA

- Population is a single continuous structure, but
- Each individual is assigned a geographic location
- Breeding only allowed within a small local neighborhood
- Example: I(2,2) only breeds with I(1,2), I(2,1),I(2,3),I(3,2)

- Many engineering design problems have multiple objectives (often competing)
- Example: Maximize range, minimize fuel usage, maximize cruise speed, maximize passenger volume ...

 \neg GA's are ameniable to multi-objective problems

Typically GA's are used similar to traditional Optimizers and multiple objectives are scalarized:

- J_i j-th objective value
- $\dot{w_i}$ weight of j-th objective
- n_j j-th objective normalization

GA's can naturally deal with multiple objectives

Simple: Pareto Ranking Schemes Complicated: Mating Restrictions

Pareto optimal: Best in a tradeoff sense.

An improvement in one objective can only be achieved at the expense of at least one other objective.

\Rightarrow Which designs are pareto optimal ? (2 min)

Mese Pareto Fitness - Ranking

- Pareto ranking scheme
- Allows ranking of population without assigning preferences or weights to individual objectives

16,888

- Successive ranking and removal scheme
- Deciding on fitness of dominated solutions is more difficult.

Goldberg, David E. *Genetic Algorithms in Search, Optimization, and Machine Learning*. Addison-Wesley Professional, January 1, 1989. ISBN: 0201157675.

Objective 2

$$f_1(x_1,...,x_n) = 1 - \exp\left\{-\frac{n}{\sum_{i=1}^{n} \mathbb{E}} x_i - \frac{1}{\sqrt{n}} \right\}$$
$$f_1(x_1,...,x_n) = 1 - \exp\left\{-\frac{n}{\sum_{i=1}^{n} \mathbb{E}} x_i + \frac{1}{\sqrt{n}} \right\}$$

16.888

ESO 77

Images removed due to copyright considerations.

Good News about GA's

- GA work well on mixed discrete/continuous problems
- GA's require little information about problem
- No gradients required
- Simple to understand and set up and implement
- Can operate on various representations

- GA's are very robust
- GA's are stochastic, that is, they exploit randomness
- GA's can be easily parallelized

© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics

M esd

Bad News about GA's

- GA implementation is still an art and requires some experience
- Convergence behavior very dependent on some tuning parameters: mutation rate, crossover, population size
- Designing fitness function can be tricky

Cumbersome to take
 into account constraints

16.888

- GA's can be computationally expensive
- No clear termination criteria
- No knowledge of true global optimum

M esd

Mesd Frequent Applications of GA's

- Scheduling and Planning, Assy Sequencing
- Packing (2D and 3D)
- Travel, Path Planning, Trajectory Optimization
- Parameter Selection for Curve-Fitting
- Catalog Search
- Structural Topology Optimization
- Multidisciplinary Design Optimization (MDO)

MATLAB GA Toolbox

- Can implement GA's directly in MATLAB
- Not officially part of Optimization Toolbox
- But have user-contributed toolbox in 16.888/GA Toolbox

The

main genetic algorithm M-file is **genetic.m**;

GENETIC tries to maximize a function using a simple genetic algorithm. X=GENETIC('FUN',X0,OPTIONS,VLB,VUB) uses a simple (haploid) genetic algorithm to find a maximum of the fitness function FUN (usually an M-file: FUN.M).

- GA is available in iSIGHT
- Algorithm tuning parameters can be set
- Demonstration using the Fence example.
- see Friday lab session

Compare behavior of gradient search technique versus genetic algorithms (A3)

Mesd

Tabu Search (TS)

- Attributed to Glover (1986)
- Search by avoiding points in the design space that were previously visited ("tabu")
- Accept a new "poorer" solution if it avoids a solution that was already investigated
- Intent: Avoid local minima
- Record all previous moves in a "running list" = memory
- Record recent, now forbidden moves in a "tabu" list
- First "diversification" then "intensification"
- Applied to combinatorial optimization problems
- Glover F., and Laguna M., Tabu Search, in *Modern Heuristic Techniques for Combinatorial Problems*, C.R. Reeves, editor, John Wiley & Sons, Inc, 1993
- www.tabusearch.net

Mese Tabu Search (minimization)

```
Given a feasible solution x* with objective
  function value J^*, let x := x^* with J(x) = J^*.
  Iteration:
while stopping criterion is not fulfilled do
  beqin
• select best admissible move that transforms x
  into x' with objective function value J(x')
  and add its attributes to the running list
(2) perform tabu list management: compute moves
  (or attributes) to be set tabu, i.e., update
  the tabu list
(3) perform exchanges: x := x', J(x) = J(x'); if
  J(x) < J^* then J^* := J(x), x^* := x
endif
endwhile
Result: x* is the best of all determined
  solutions, with objective function value J*.
```

© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics 16 888

Tabu Search Demo

© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics

Mlesd

Mesd Selection of Algorithms

- Linearity and smoothness of J(x) and/or of the constraints g(x), h(x)
- Type of design variables **x** (real, integer,...)
- Number of design variables *n*
- Expense of evaluating $J(\mathbf{x}) [CPU, Flops]$
- Expense of evaluating gradient of J(x)
- Number of objectives, z

Nonlinearity

Crumpled Paper Analogy to Show Nonlinearity: • Use a sheet of paper to represent the response surface of $J = f(x_1, x_2)$

 If the paper is completely "flat", with or without slope, then y is a <u>Linear</u> Function which can be represented as

y $c_0 + c_1 x_1 + c_2 x_2$

 If the paper is twisted slightly with some curvature, then it becomes a nonlinear function. Low nonlinearity like this may be approximated by a <u>Quadratic</u> function like

 $y = c_0 + c_1 x_1 + c_2 x_2 + c_3 x_1^2 + c_4 x_2^2 + c_5 x_1 x_2$

 Crumple the paper and slightly flatten it, then it becomes a "<u>very nonlinear</u>" function. Observe the irregular terrain and determine whether it is possible to approximate the irregular terrain by a simple quadratic function.

Mesd Algorithm Selection Matrix

	Linear J and g and h	Nonlinear J or g or h
Continuous, real x (all)	Simplex Barrier Methods	SQP (constrained) Newton (unconstrained)
Discrete x (at least one)	MILP (Branch-and- Bound)	GA SA, Tabu Search PSO

Golf Clubs Analogy

Gradient-Based:

SLP, SQP, MMFD, Conjugate Gradient Exterior Penalty,...

Iron Clubs

Stochastic-Based:

Simulated Annealing, Genetic Algorithms.

Wood Clubs

Heuristics-Based:

Rules-Guided Search

Hybrid Optimization Algorithms:

Use a Combination of "Clubs" to Search Optimum to Leverage the Strength of Individual Club.

Practical Optimization Strategy

Mest iSIGHT Optimization Plan Advisor

Ranking of algorithms according to their suitability to the Problem at hand

- Gradient Search Techniques
 - Efficient, repeatable, use gradient information
 - Well suited for nonlinear, continuous variables
 - Can easily get trapped at local optima
- Heuristic Techniques
 - Used for combinatorial and discrete variable problems
 - Use both a rule set and randomness
 - don't use gradient information, search broadly
 - Avoid local optima, but are expensive
- Hybrid Approaches
 - Use effective combinations of search algorithms