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V| Today’s Topics £SO

* More on Fitness Function Assignment
* Mutation

* Constraint implementation in GAs

* Multiobjective optimization with GAs

» Tabu Search

« Selection of Optimization Algorithms
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Ml&a Fitness Function Mapping (I) ESD.77

« Objective Function measures how individuals
perform in the problem domain

« Raw measure of fithess usually only used as
iIntermediate stage in determining relative
performance of individuals in a GA

Transform objective function value into a measure
of relative fitness:

f . objective function

g . transformation £ (x) -8 (f(x))

F: relative Fitness (>= 0)
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MI&a Fitness Function Mapping (Il) 3%

> F Mapping always necessary for minimization
(smaller objective value = higher fitness)

Often fitness function value corresponds to the number
of offspring which an individual will likely produce.

E.g. Proportional fitness assignment f(x)
F(xl.) = Fr
Fitness of i-th individual = af(x)
i=1

individuals raw performance relative
to the whole population
N,. Population size
x; Phenotypic value of “’
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MI&a Fitness Function Mapping (Ill) 3%

How to account for negative objective function values ?

Linear transformation with offset: F(x)=af (x)+b

Scale factor:  a>0 for maximizing, a<0 for minimizing
Offset: b ensures non-negative fitness values

k

Power law scaling:  F(x)=f(x)

k: exponent (power) can be changed during execution

Tuning Knob: “SP” - selective pressure =

degree of bias towards towards fittest

x —1 x; = position of i-th

F(x,)=2-SP+2(SP-1)— individual in ordered
Niwg =1 population
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V| Mutation(l) Jeass

(no) too little mutation leads to an impoverished
genetic pool with increasing number of generations

e

dllen@ Too much mutation decreases convergence rate

and undermines fithess-based selection bias
What is mutation? ... a genetic operator

* Modifies chromosomes to restore diversity
* Permit random changes in a member of a population

Examples: - with probability 1/20 randomly flip a single bit of
a solutionfromOto1or1to0
- probability of mutation often called “mutation rate”,
expressing the probability P, that a bit is changed
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M| su Example with Mutation ESH 31

:> Improved population fitness with 1% mutation rate

Original gen. S5th gen. 10th gen.
10011 11011 11111
01000 10111 11111
00001 11111 11011
00000 01110 11111
11011 11111 11111
Avg. Fitness Avg. Fitness Avg. Fitness
2.6 4.8 4.9
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Ml&a  Example without Mutation ESD 7T

:> Stagnant population with 0% mutation rate

Original gen. oth gen. 10th gen.
No “1”
1001 1 11{0(1 1 11|01 1
01000 1001 1 11|01 1
00|00 1 11{0{1 1 11|01 1
Can
00|00O 0100 O 11|01 1 Never
11{0(1 1 1101 1 111011 Achieve
T 11111

Avg. Fitness Avg. Fitness Avg. Fitness
2.6 3.2 40
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W esa Mutation(ll) Jeass

Example:

Before mutation: 01011100 ..~
After mutation: 01010100C °

« Mutation rate can be
variable (usually gradually
decreasing with increasing
number of generations)

* Mutation rate is an important ¢/
“tuning knob” for a GA
9 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox

Engineering Systems Division and Dept. of Aeronautics and Astronautics



M | dsa GA Convergence ES.77

: global
Typical Results optimunm
! (unknown)
Average /
Fitness ——— E—— -
r— B I - [Tttt
T S e
________ ! i \
_____ J Converged too
o fast (mutation rate
B too small?)
T

» generation

Average performance of individuals in a
population is expected to increase, as good individuals
are preserved and bred and less fit individuals die out.
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W esa Constraints in GA ESo.74

Essentially three options:

 Implement implicitely in coding/decoding scheme
* Penalize objective function for constraint violation

» Selection operator: only select valid solutions for mating
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Ml&a Encoding/Decoding Scheme ES.77

Xi - design variable

h g Radius R=2.57 [m]
01011110 10..
- e - Ensure that only “maximum” and

Radius (genotype) “minimum” variable values are

captured by coding scheme

E.g. Works well for implementing
0000000 = 1.0m (min) bounds Xx; g < X; < X;yg
17111111 = 3.0m (max) but not general constraints
such as g(x)<0, h(x)=0
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e Penalty Approach (l) ESo.31

:> Usually some calculation is necessary to verify if
a constraint is met or not, e.g. stresses, power output...

Solution: Penalize the fitness of solutions that violate constraints

A
penalty
P
§(x%)=F(x)=P(x)
- valid «——»
invalid 22" invalid
zone | ; zone

Fixed Penalty for Constraint Violation
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M e Penalty Approach (ll) ESo.31

Fixed penalty provides no ranking of the degree
of constraint violation - introduce variable penalty

A

penalty penal’[yA
P P
- valid | " valid |
TR R T S
invalid | - invalid invalid | 2°"® ! invalid
zone | . zone zone | . zone
Linear variation Stepped penalty

Other schemes: polynomial, exponential (close to SA)

> Important when constraints are hard to meet
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V| Problems with penalty ESD.77

* What is the right “balance” between objective function
and penalty constraints ?

» Usually requires some amount of trial-and-error, tuning

« Usually amount of penalty varies during optimization

* Intially: small penalty = large search space

 Late: large penalty = focus on good feasible solutions

 But also opportunity: Allows for relative weigthing of
constraints (crash worthiness vs. fuel economy)
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M | dsa Selection Operator ESD. 1

Setting the Fitness of any of any invalid
solution to zero ensures that only valid
solutions are considered (selection)

Generation n
» ranked
Generation n+1 @%@ X @ \X v X}
T Eliminated

T mate
due to poor
firtness

'
Eliminated due to
constraint violation

:> Caution: Can eliminate valuable solutions from gene pool
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Ml;n Operators: General Remarks ESD.77

17

1 point crossover is one of many alternatives

Goal of crossover: Take two parent solutions
and create two children solutions

Mutations: Flipping bits is one of many options

Can take any neighborhood operator as in
Simulated Annealing or Tabu Search

Instead of doing random population
Initialization - start with a “fit” initial population
Seed initial population with individuals known
to be in the vicinity of the global optimum
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W esa Parallel GA’s ESo.74

GA'’s are very ameniable to parallelization.

Motivations: - faster computation (parallel CPU’s)
- attack larger problems
- introduce structure and geographic location

There are three classes of parallel GA's:

e Global GA’s
* Migration GA'’s
e Diffusion GA’s

Main differences lie in :
- population structure
- method of selecting individuals for reproduction
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V| Global GA Jeass

GA Farmer

Selection
Assign Fitness

‘panmixia”

Worker 1 Worker 2 Worker N
Crossover Crossover ‘e Crossover
Mutation Mutation Mutation
Function evaluation Function evaluation Function evaluation

* GA Farmer node initializes and holds entire population

* Interesting when objective function evaluation expensive
* Typically implemented as a master-slave algorithm

« Balance serial-parallel tasks to minimize bottlenecks

* Issue of synchronous/asynchronous operation
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M | dsa Migration GA ESD77

polytypic Does NOT operate
globally on a single
population

Each node represents
a subgroup relatively
/ isolated from each other

“breeding groups”™= demes
-- Each node (Gai)

WHILE not finished More closely mimics

SEQ : .
. Selection biological metaphor
.. Reproduction
- Evaluation First introduced by Grosso
PAR .
. In 1985
.. send emigrants
.. receive immigrants
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V| Diffusion GA’s Jeass

I11 |12 ILS I14
|2 1 |2 2 |2,3 I24
I31 |32 I&S I34
I41 I42 |43 I44

Toroidal-Mesh parallel processing network

-- Each Node (Ii,j)

WHILE not finished

SEQ

.. Evaluate

PAR
.. send self to neighbors
.. receive neighbors

.. select mate

.. reproduce

Neighborhood, cellular
or fine-grained GA

* Population is a single continuous structure, but

« Each individual is assigned a geographic location

» Breeding only allowed within a small local neighborhood
« Example: 1(2,2) only breeds with 1(1,2), 1(2,1),1(2,3),1(3,2)
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M| sa Multiobjective GA’s e ss

* Many engineering design problems have multiple
objectives (often competing)

« Example: Maximize range, minimize fuel usage,
maximize cruise speed, maximize passenger volume ...

;> GA'’s are ameniable to multi-objective problems

Typically GA’s are used similar to traditional Optimizers
and multiple objectives are scalarized:

J; - j-th objective value = J
w; - weight of j-th objective Ji=aw; =
n; - ]-th objective normalization J=1 J

;> GA'’s can naturally deal with multiple objectives
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16 888

Pareto Optimality - Ranking ESD. 77

Simple: Pareto Ranking Schemes
Complicated: Mating Restrictions

Multi-Obje ctive Mlustration

(1600,$1.8B)
o
Design 4
—~ (2000,$1.5B)
215¢ o .
2 (1000,$1.3B) Design 3
. — o
é Design 5
3
O 1
2 (1400,$0.8B)
[3) o
N Design 2
&
3 (500,$0.5B)
0.5 o
Design 1
0 L L L L
0 500 1000 1500 2000

Performance (total# images)

Pareto optimal: Best Iin
a tradeoff sense.

An improvement in one
objective can only be
achieved at the expense of

at least one other objective.

> Which designs are pareto optimal ? (2 min)

23
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Vil ea

Pareto Ranking For A Minimization Problem

f>

y

\

24

Pareto Fitness - Ranking ES.77

« Pareto ranking scheme

 Allows ranking of population
without assigning preferences
or weights to individual
objectives

« Successive ranking and
removal scheme

* Deciding on fitness of

dominated solutions is more
difficult.
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M e Multiobjective GA Jesss

Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Professional, January 1, 1989. ISBN: 0201157675.
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MlIﬂ Example

Minimization 3 0 <2
S (X x )—l—expé—'n' 1. _ Lo )

Objective 1 T 8 26 Nl i

¢ 28 149

Ji(x,0x )=1—expé—aQax, +—F—=¢ U

Objective 2 (i ) 8 o6 nd f

Images removed due to copyright considerations.

16 888
ESO. 73

:> Need to think about mating restrictions in multiobj-GA
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M |sa Good News about GA’s ESoTt

27

GA work well on mixed GA's are very robust

discrete/continuous - GA'’s are stochastic,
problems that is, they exploit
GA’s require little randomness
information about + GA’s can be easily
problem parallelized

No gradients required

Simple to understand
and set up and
Implement

Can operate on various
representations
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V| ek Bad News about GA’s ESo.31

* GA implementation is
still an art and requires
some experience

« Convergence behavior
very dependent on
some tuning
parameters: mutation
rate, crossover,
population size

* Designing fitness
function can be tricky

Cumbersome to take
iInto account constraints

GA’s can be
computationally
expensive

No clear termination
criteria

No knowledge of true
global optimum
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M|I|| Frequent Applications of GA’s b

29

Scheduling and Planning, Assy Sequencing
Packing (2D and 3D)

Travel, Path Planning, Trajectory Optimization
Parameter Selection for Curve-Fitting

Catalog Search

Structural Topology Optimization
Multidisciplinary Design Optimization (MDO)
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W esa MATLAB GA Toolbox Jeass

* Can implement GA's directly in MATLAB
* Not officially part of Optimization Toolbox
 But have user-contributed toolbox in 16.888/GA Toolbox

The
main genetic algorithm M-file is genetic.m;

GENETIC tries to maximize a function using a simple genetic algorithm.
X=GENETIC('FUN',b X0,0OPTIONS,VLB,VUB) uses a simple (haploid)
genetic algorithm to find a maximum of the fitness function
FUN (usually an M-file: FUN.M).

> Demo using a simple function
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W esa GA in iSIGHT Jeass

* GA is available in iSIGHT

* Algorithm tuning parameters can be set

* Demonstration using the Fence example.
 see Friday lab session

Compare behavior of gradient search technique
versus genetic algorithms (A3)
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V1 esa Tabu Search (TS) ESD31

32

Attributed to Glover (19806)

Search by avoiding points in the design space that were
previously visited (“tabu”)

Accept a new “poorer” solution if it avoids a solution that
was already investigated

Intent: Avoid local minima

Record all previous moves in a “running list” = memory
Record recent, now forbidden moves in a “tabu’ list
First “diversification” then “intensification”

Applied to combinatorial optimization problems

Glover F., and Laguna M., Tabu Search, in Modern
Heuristic Techniques for Combinatorial Problems, C.R.
Reeves, editor, John Wiley & Sons, Inc, 1993

www.tabusearch.net
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M |sa Tabu Search (minimization)

16 888
ESO. 73

Given a feasible solution x* with objective
function value J*, let X

ITteration:

while stopping criterion is not fulfilled do
begin

select best admissible move that transforms x

into x' with objective function value J(x')

and add its attributes to the running list

(2) perform tabu list management:

(or attributes) to be set tabu,
the tabu list

(3) perform exchanges: x :=

compute moves
i.e., update

J(x) < J* then J* := J(x), xX* := X
endif
endwhile
Result:

X* 1is the best of all determined
solutions, with objective function value J*.
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W esa Tabu Search Demo ESo.74

Tabu Search Demo
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M| sa Selection of Algorithms £SO

35

Linearity and smoothness of J(x) and/or of
the constraints g(x), h(x)

Type of design variables x (real, integer,...)
Number of design variables n

Expense of evaluating J(x) — [CPU, Flops]
Expense of evaluating gradient of J(x)
Number of objectives, z
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V1l Nonlinearity B33

Crumpled Paper Analogy to Show Nonlinearity:

® Use a sheet of paper to represent the response surface of
J =f(x,, X,)

® |f the paper is completely “flat”, with or without slope, then y
is a Linear Function which can be represented as
y ¢cptc,x;*+cyx,

® |f the paper is twisted slightly with some curvature, then it becomes
a nonlinear function. Low nonlinearity like this may be approximated
by a Quadratic function like
Y = Co+C X +C Xy +CaX24C X, +C X X,

® Crumple the paper and slightly flatten it, then it becomes a “very nonlinear”
function. Observe the irregular terrain and determine whether it is possible to
approximate the irregular terrain by a simple quadratic function.
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Mléka  Algorithm Selection Matrix Lot
Linear Nonlinear
Jand gandh Jorgorh
Continuous, real |Simplex SQP
x (all) Barrier Methods | (constrained)
Newton

(unconstrained)

Discrete
X (at least one)

MILP

(Branch-and-
Bound)

GA
SA, Tabu Search
PSO

37 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox
Engineering Systems Division and Dept. of Aeronautics and Astronautics



Courtesy of Howard Lee, General Electric. Used with permission.

Golf Clubs Analogy

Gradient-Based:
SLP, SQP, MMFD, Conjugate Gradie
Exterior Penalty,...

Tron Clubs

Heuristics-Based:
Rules-Guided Search

Stochastic-Based:
Simulated Annealing,
Genetic Algorithms.

Woyy

Hybrid Optimization Algorithms:

Use a Combination of “Clubs” to Search Optimum to Leverage the
Strength of Individual Club.

Copyright © 2002-2005, GE Company Practical Engineering Optimization, Aero Engg. M.I.T., Boston, Mass. Hauhua.Lee@ge.com 3/13/2002 p.2



Courtesy of Howard Lee, General Electric. Used with permission.

Practical Optimization Strategy

Hybrid Optimization Algorithms Allow

Owti 1 Utonia to Find Better Designs in Less Time. (Fidelity: Low / High / True? )
pgm.um .................................................................................................................................................................................................... e
(Analytical @
vs. True Hybri im. Fidelity
) yb d Opt Limits
.
[ i o </ N __ ............................................... —~—
Optimum 5 g Gradient Based
Q
=
<
g Practical Optimization Strategy
“— .
5 @ FA « Obtain Near Optimum ASAP.
Qa : (Assess Uncertainty Margin By Sound
o0 Engineering Judgement)
wnn
8 » Then Search for Possible Alternative
Optimum if Time/Resource Permits.

Time (hours, days, weeks)

Copyright © 2002-2005, GE Company Practical Engineering Optimization, Aero Engg. M.I.T., Boston, Mass. Hauhua.Lee@ge.com 3/13/2002 p.1



Vl&kdiSIGHT Optimization Plan Advisor &35

Ranking

of <
algorithms
according \
to their
suitability

to the
Problem

at hand

40

Optimization Plan Advisor

[~ Adivisor Suggested Technigues (relative performance index):

[~ Advisor Suggested System Plans: —

1.000 - Sequential Quadratic Programming - NLPQL

0.385 - Mixed Integer Optimization - MOST

0.984 - Generalized Reduced Gradient - LSGRG2

0.379 - Sequential Quadratic Programrming - DOMLP

0.964 - Sequential Quadratic Programming - DOMLP (Using Approximations)
0.2962 - Exterior Penalty

0.961 - Method of Feasible Directions - CONMIN

0.961 - Modified Method of Feasible Directions

0.359 - Sequential Linear Programming

0.950 - Exterior Penalty (Using Approximations)

0.546 - Method of Feasitle Directions - CONMIN (Using Approximations)
0.946 - Modified Method of Feasible Directions {Using Approximations)
0.314 - Hooke-Jeeves Direct Search Methad

0.807 - Successive Approximation Method

0.799 - Multi-Island Genetic Algarithm

0.767 - Directed Heuristic Search

0.743 - Adaptive Simulated Annealing

PriorityRankedPlan
KnowledgeGuided
Exploitive
Explorative
PenaltyDirect

[ Problem Space Analysis:

Wurmber of Design Variables: Low (3) Analysis Type Mon-Linear =
Number of Design Constraints:  Law (1) i Bizsigr i e —— .
Type Of Parameters Real

Execution Time Per Evaluation: Low =
Magnitude of ariable “Yariance: Small (1.0}
Equality constraints: fo Understanding Of VO Relationships: ™
Discontinuous Feasible Spaces: [~ Availapility Of Simcode Gradients: [~

Apply
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V| Summary ESD.37

* Gradient Search Techniques
— Efficient, repeatable, use gradient information
— Well suited for nonlinear, continuous variables
— Can easily get trapped at local optima

* Heuristic Techniques
— Used for combinatorial and discrete variable problems
— Use both a rule set and randomness
— don’t use gradient information, search broadly
— Avoid local optima, but are expensive

* Hybrid Approaches

— Use effective combinations of search algorithms
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