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Structural Optimization

* Definition

- An automated synthesis of a mechanical component 
based on structural properties.

- A method that automatically generates a mechanical 
component design that exhibits optimal structural 
performance.
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Structural Optimization

minimize ( )
subject to ( ) 0
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BC’s are given Loads are given

How to represent the structure?        or
Which type of design variables to use?

<Q>

Typically, FEM is used.

(1) Size Optimization

(2) Shape Optimization

(3) Topology Optimization

<A>

min   compliance

s.t.     m mC

?
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Size Optimization Example

f(x) : compliance
g(x) : mass
h(x) : state equation

• Design variables (x) 
x :  thickness of each beam

• Number of design variables (ndv) 
ndv =  5

Beams   (2-Dim)

minimize ( )
subject to ( ) 0
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Shape Optimization Example

• Design variables (x) 
x :  control points of the B-spline

(position of control points)

• Number of design variables (ndv) 

ndv =  8

B-spline   (2-Dim)

minimize ( )
subject to ( ) 0

( ) 0
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f(x) : compliance
g(x) : mass
h(x) : state equation
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Topology Optimization Example

• Design variables (x) 
x :  density of each cell

(0 1)
• Number of design variables (ndv) 

ndv =  27

Cells   (2-Dim)

Domain shape is determined 

at the beginning

minimize ( )
subject to ( ) 0

( ) 0
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f(x) : compliance
g(x) : mass
h(x) : state equation
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Structural Optimization

Size optimization Shape optimization Topology optimization

- Topology is given

- Optimize boundary shape

- Shape  

Topology

- Optimize cross sections

are given

- Optimize topology
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Size Optimization

Schmit (1960) - General approach to structural optimization
- Coupling FEA & NL math. Programming

- Simplest method

- Changes dimension of the component and cross sections

- Applied to the design of truss structures

- Length of the members
- Thickness of the members

- Layout of the structure
* Unchanged

* Changed

Ndv: 10~100
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Shape Optimization

Zolesio (1981), Haug and Choi et al. (1986) – Univ. of Iowa
- A general method of shape sensitivity analysis using 

the  material derivative method & adjoint variable method 

- Design variables control the shape

- Size optimization is a special case of shape optimization

- Various approaches to represent the shape

Nodal positions

(when the FEM is used)

Basis functions B-spline
(control points)

Radius of a circle
Ellipsoid
Bezier curve
Etc…

Ndv: 10~100
1

( , , )
n

i i
i

x y z
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(1) The evolutionary method 

Xie and Steven (1993)

(2) The homogenization method

Bendsoe and Kikuchi (1988) – Univ. of Michigan

(3) Density approach 

Yang and Chuang (1994)

* cell-based approach

Topology Optimization

Ndv  > 1000
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Topology optimization

Homogenization method / Density approach

(1) Design variables: density of each cell

(2) The constitutive equation is expressed in terms of Young’s modulus

adm
iiijij ZzdzFdzz )()(

How to define the relation between the density and Young’s modulus?

E?
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Topology optimization

Homogenization method 

- Infinitely many micro cells with voids

- The porosity of this material is optimized using an optimality criterion procedure
- Each material may have different void size and orientation
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Topology optimization

Homogenization method 

- Relationship between density and elastic modulus

- Design variables : a1, a2,

1 2

11 11 12 11

22 12 22 22

12 66 12

1 2

For 2-D elastic problem,

Solid part area : (1 )

0
0

0 0
( , , )

s a a d

D D
D D

D
D D a a

* Review papers : Hassani B and Hinton E (1998)
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Artificial material

- Design variable : density 

Topology optimization

Density approach
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Materia
l cost

0 1

1

Low computational cost

Simple in its idea
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I.   Structural Optimization

II.   Integrated Structural Optimization

III. Design Space Optimization
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Integrated Structural Optimization

Motivation

1. Shape optimization
- Small number of design variables

- Smooth definite results

- Topology remains unchanged (Cannot make holes in the design domain)

2. Topology optimization
- Extremely large number of design variables

- Non smooth indefinite results

- Intermediate “densities” between void and full material

unrealistic

Integrate shape optimization and topology optimization
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On CAD-integrated structural topology and design optimization 

- N. Olhoff, M. P. Bensoe and J. Rasmussen (1991)

- Interactive CAD-based structural system for 2-D

- Topology optimization   CAD    Shape optimization

- Topology optimization :  Homogenization method (HOMOPT)

- Shape optimization       :  CAOS (Computer Aided Optimization of Shapes)

- CAD                              : Commercial CAD system AutoCAD

- The designer decides the initial shape for shape optimization

interactively with the results of the topology optimization 

Integrated Structural Optimization I 
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Integrated Topology and Shape Optimization in 
Structural Design

-M. Bremicker, M. Chirehdast, N. Kikuch and P. Y. Papalambros, (1991)

- 3-phase design process

Phase I    : Generate information about the optimum topology
Phase II   : Process and interpret the topology information
Phase III  : Create a parametric model and apply standard optimization

- ISOS (Integrated Structural Optimization System)

-Image processing scheme instead of interactive scheme 

Integrated Structural Optimization II 
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Integrating Structural Topology, Shape and Sizing
Optimization Methods

- E. Hinton, J. Sienz, S. Bulman, S. J. Lee and M. R. Ghasemi (1998)

- Interface                       :   Interactive CAD data structure
Automatic image processing

- Topology optimization :  Evolutionary method
Homogenization method

- Shape optimization       :  Mathematical programming
Genetic Algorithm

- Shape optimization / Size optimization for 2-D elastic problems

- FIDO-TK

Integrated Structural Optimization III 
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- Communications between SO and TO are not easy. 

- The designer must provide many control parameters for optimization.

The optimal solutions highly depend on the user defined parameters

- Computationally very expensive.

Less expensive integrated scheme: design space optimization

Integrated Structural Optimization
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I.   Structural Optimization

II. Integrated Structural Optimization

Structural Optimization Software

III. Design Space Optimization
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Shape Optimization Software

Cosmosworks

Optimize parts and assemblies, whether for constraints 
such as static, thermal, frequency or buckling, or for 
objectives such as mass, volume or load factors. 

Initial design Optimal design
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Topology Optimization Software

Altair OptiStruct

Topology, shape, and size optimization capabilities can 
be used to design and optimize structures to reduce 
weight and tune performance. 
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Topology Optimization Software

ANSYS

Design domain

Static Topology Optimization
Dynamic Topology Optimization
Electromagnetic Topology Optimization

Subproblem Approximation Method

First Order Method
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Design Space
Finite Element Analysis Software for engineering designers

CAE Templates – Input files for ANSYS, NASTRAN, ABAQUS are 
generated

Topology Optimization Software
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MSC. Visual Nastran FEA

Elements of lowest stress are removed gradually.

Topology Optimization Software
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Optishape

Topology Optimization Software

- Mass/Rigid Element are available in Topology Optimization.
- Any type elements are available in Shape Optimization.
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I.   Structural Optimization

II.   Integrated Structural Optimization

III. Design Space Optimization
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Design Space Optimization

- The optimum solution depends on the optimization method used.

e.g) gradient based search, GA, Simulated annealing, etc…

- But it also depends on the selection of the design variables.

(objective functions and constraints given)

<Q> - What is the proper number of design variables 

for the given problem?

- What is the proper layout of the design variables?
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Design space optimization

What is the proper length of the 
chromosome ?

1 0 1 1 1 0

1 1 1 0 1 0 1 0

0 0 1 0 1 1 0 1 0 1 1

n=6

n=8

n=11

1. Which is the best length for a given design problem?

2.   The longer, the better?
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DSO formulation

Dimension of the design vector x is to be determined.
or

The number of design variables is to be determined.

minimize ( , )
subject to ( , ) 0

( , ) 0

f n
g n
h n

x
x
x

Applications   - Topology optimization

- Plate optimization

- Eigenvalue problems

- MEMS (MicroElectroMechanical Systems) Design
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Design Space Optimization
Problem statement of design space optimization 

S {N, TN, {x1, x2, , xN}}
N  : Number of design units

TN : Topology of design units
{x1, x2, , xN} : Remaining features of design units

minimize ( )
subject to ( ) 0

( ) 0

( is fixed )

f
g

h
S

S

x
x

x
x

Conventional Optimization

minimize ( , )
subject to ( , ) 0

( , ) 0
( ) 0
( ) 0

( is variable ).

f S
g S

h S
G S
H S

S
S

x
x

x

x

Design Space Optimization

Design space improvement is achieved by 
addition of new design variable. 
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Beams B-spline Cells

x :  thickness 
of each beam

ndv =  5

x :  control points 
of the B-spline

ndv =  8

x :  density 
of each cell

ndv =  27

What is the proper no. of design variables?

Design space optimization

ndv = ? ndv = ? ndv = ?
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Design Space Optimization

BC

Load

Load

S( ) : Domain shape

,0))(;(.s.t
))(;(min

Sg
Sf

Design Space 
Topology Optimization

given),is(
0)(.s.t

)(min
g
f

Topology Optimization
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Design Space Optimization

Domain Boundary
Shape Optimization

Domain Interior
Topology Optimization

Initial shape of
the domain

Boundary variation

Domain shape 
change

(New pixels have
been created)

It is impossible to obtain sensitivities 
because addition of a design variable is 
a discreet process
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Design Continuation Method

Procedure

n
z

znn

dn
dz

zndn
d

z

Y

END

Design Variable
Convergence ?

Design Variable
Sensitivity AnalysisImprove

Design Variable

Y

N

Structural Analysis

Initial Design Space

START

Initial Design Variables

N

Design Space
Sensitivity Analysis

Design Space
Convergence ?

Improve
Design Space

d dz
dx x x dx

In order to improve design 
space, increase the number of 
design variables is increased
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Design Continuation Method

Design space change 
: Generating new design variable

xDesign variables : Feature of cells

n+1 cells

d
dx

n
n

n cells
xn+1

(n+1th cell)

xn

(nth cell) Continuation path

Some finite value of xn+1

Pivot phase

Functional is not continuous when a design variable is created.

It is impossible to obtain derivatives.
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Design Continuation Method

Pivot phase

Pivot PhaseEquivalent problem
Same design status

Same design space
(Same no of design variable)

x SNewx SOld x SNew

N=14

N=25

0
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Topology Optimization 

1)(0

,)(

,

x

MdxtoSubject

dzFMinimize

o

ii
n

o

i

E
E

Problem statement Relationship between Ei and

Ei : Intermediate Young’s modulus
Eo : Reference Young’s modulus
n : exponent

dzF ii
0,0,

Directional variation of the objective fn

······

Sensitivity Analysis
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Sensitivity Analysis

Topology Optimization (Cont’d)

dzDzdzz klijklijijij )()()()( 0,0,

adm
iiijij ZzdzFdzz )()(

State equation (variational form)

adm
ii

klijklijijijijij

ZzdzF

dzDzzzzz

0,

0,0,0, )]()()()()()([

Assume 00,z

······
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Topology Optimization (Cont’d)

adm
iijij ZdFd)()(

dDzdzF klijklijii )()( 0,0,0,

dzDz klijklij )()(' 0,0,

Adjoint equation

······

Using the symmetry of the energy bilinear form and combining 
the eqn , , and 

Because z and are identical,

Sensitivity Analysis
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Topology
Sensitivity analysis

Finite Differencing

Sensitivity analysis ( 0)

Numerical Results - Sensitivities
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Numerical Results - Sensitivities

E = 210 109 N/m2

= 0.3

b = 0.01

Isoparametric 8-node 
plane element

ith new design variable 
candidate

Topology Sensitivity analysis
New Design

Variable No.

FDM

i/ b

Analytic

i’/ b

( i’ / i

100)%

1 -116.6826 -116.6470 99.97
2 -8.5387 -8.5367 99.98
3 -1.6238 -1.6235 99.98
4 -2.3714 -2.3706 99.97
5 -3.6479 -3.6474 99.99
6 -3.9573 -3.9564 99.98
7 -3.4781 -3.4776 99.99
8 -3.2490 -3.2481 99.97
9 -3.0011 -3.0005 99.98
10 -2.7633 -2.7626 99.97
11 -2.5634 -2.5628 99.98
12 -2.2540 -2.2534 99.97
13 -2.2088 -2.2081 99.97
14 -3.5688 -3.5680 99.98
15 -5.8834 -5.8819 99.97
16 -6.7057 -6.7040 99.97
17 -5.8702 -5.8683 99.97
18 -3.7185 -3.7169 99.96
19 -2.0841 -2.0830 99.95
20 -1.1828 -1.1819 99.92
21 -1.6386 -1.6361 99.85
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Sensitivity analysis 
vs. Finite differencing

Number of function evaluation per step

Analytical sensitivity analysis (SA): 1 + 1 = 2

Finite differencing (FD): 1 + ndv

Ex) Topology optimization with ndv = 500

(1) Number of function evaluations per step

(2) Computing time (1 minutes per function evaluation, 10 steps)

SA: 2

FD: 501

SA: 2 1 10 = 20 minutes 

FD: 501 1 10 = 5010 minutes = 3 days 11.5 hours
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Optimization Scheme

Computer program structure

DSO
(Design Space Optimization)

[Step 1] Read output file from DVO.
[Step 2] Select new design variable candidates.
[Step 3] Calculate sensitivities for new design

variable candidates.
[Step 4] Select new design variables.
[Step 5] Improve design space.
[Step 6] Write input file for DVO.

DVO
(Design Variable Optimization)

DOT ANSYS

Number and topology of 
design variable control

(Outer loop)

Design variable value 
control

(Inner loop)
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Problem Statement

1)(0

)(

x

MdxtoSubject

dzFMinimize

o

ii

Design domain

Load

compliance

mass

density of cells
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Topology Optimization Results

Traditional optimization Design Space Optimization

Number of 
design variables 

(pixel)
: 30 16 = 480

Number of 
design variables 

(pixel)
30 16 = 480
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Topology Optimization Results

Number of design variables Objective function history

340 360 380 400 420 440 460 480 500
400

600

800

1000

1200

1400

1600

Domain shape optimization

Domain fixed

O
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e 
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No of design variables
0 1 2 3 4 5 6 7 8

360
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N
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Main iteration (Outer iteration)

Young’s modulus: 210 109 N/m2

Poisson’s ratio: 0.3

Maximum thickness: 0.012 m,  Minimum thickness: 0.005 m

Initial design domain size: 30 12,    Final domain area: 480 (30 16)
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Procedure

Design Variable Addition & Reduction

Y

START

N

Y
END

N

Initial Design Space

Design Variable Convergence ?

Design Variable
Sensitivity Analysis

Improve
Design Variable

Structural Analysis

Design Space
Sensitivity Analysis

Initial Design Variables

Improve Design Space 1

Reduce the number of
design variables

Design Space Convergence ?

Improve Design Space 2

Increase the number of
design variables

If i 0, then the ith
design variable is
removed from the
design set.



58 © Massachusetts Institute of Technology – Dr. Il Yong Kim

Design Variable Addition & Reduction

Bridge problem

1)(0

,)(

,

x

MdxtoSubject

dzFMinimize

o

ii

Mass constraints: 35%

SymmetricSolid

Distributed
loading

Fixed boundary condition
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Design Variable Addition & Reduction

DongJak Bridge

L

H

H
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global
minimum

* To find the minimum value * Design space optimization

DSO - discussion

* Optimization based on sensitivity analysis

ndv = 100

(No of design 
variables)

ndv = 30

ndv = 50

ndv = 80

ndv = 100

Local
minimum
obtained
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DSO based on GA

1 2 3 4
0
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Chromosome length changes as 
generations progress
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Summary
I.   Structural Optimization

- Size optimization

- Shape optimization

- Topology optimization

II. Integrated Structural Optimization
- Integration of size and shape optimization

III. Design Space Optimization
- The number of design variables is considered as a design 

variable

- Effect of adding new design variables is determined at the pivot 
phase
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