

Multidisciplinary System Design Optimization (MSDO)

Structural Optimization & Design Space Optimization

Lecture 18 April 7, 2004

II Yong Kim

I. Structural Optimization

II. Integrated Structural Optimization

III. Design Space Optimization

* **Definition**

- An automated synthesis of a mechanical component based on structural properties.

 A method that automatically generates a mechanical component design that exhibits optimal structural performance.

(3) **Topology Optimization**

16.888 ESD.77

• Design variables (x)

x: thickness of each beam

f(x) : compliance
g(x) : mass
h(x) : state equation

Number of design variables (ndv)

ndv = 5

Mest Shape Optimization Example

• Design variables (x)

x : control points of the B-spline (position of control points)

Number of design variables (ndv)

ndv = 8

f(x) : compliance
g(x) : mass
h(x) : state equation

16,888

Mest Topology Optimization Example

• Design variables (x)

x : density of each cell

(0 ≤ ρ ≤ **1)**

Number of design variables (ndv)

ndv = 27

f(x) : compliance
g(x) : mass
h(x) : state equation

Structural Optimization

Size Optimization

- Simplest method
- Changes dimension of the component and cross sections
- Applied to the design of truss structures

Schmit (1960)

- General approach to structural optimization
- Coupling FEA & NL math. Programming

* Changed

- Length of the members
- Thickness of the members
- * Unchanged
 - Layout of the structure

Ndv: 10~100

Shape Optimization

- Design variables control the shape
- Size optimization is a special case of shape optimization
- Various approaches to represent the shape

Zolesio (1981), Haug and Choi et al. (1986) - Univ. of Iowa

- A general method of shape sensitivity analysis using the material derivative method & adjoint variable method

Nodal positions (when the FEM is used)

Basis functions $\sum_{i=1}^{n} \alpha_{i} \phi_{i}(x, y, z)$

Radius of a circle Ellipsoid Bezier curve Etc...

© Massachusetts Institute of Technology – Dr. Il Yong Kim

Topology Optimization

(1) The evolutionary method

Xie and Steven (1993)

(2) The homogenization method

Bendsoe and Kikuchi (1988) - Univ. of Michigan

(3) Density approach

Yang and Chuang (1994)

* cell-based approach

Ndv > 1000

Topology optimization

Homogenization method / Density approach

- (1) Design variables: density of each cell
- (2) The constitutive equation is expressed in terms of Young's modulus

$$\int_{\Omega} \sigma^{ij}(z) \varepsilon^{ij}(\bar{z}) d\Omega = \int_{\Gamma} F^{i} \bar{z}^{i} d\Gamma \qquad \forall \bar{z} \in Z_{adm}$$

How to define the relation between the density and Young's modulus?

ho ? E

Homogenization method

- Infinitely many micro cells with voids
- The porosity of this material is optimized using an optimality criterion procedure
- Each material may have different void size and orientation

Topology optimization

Homogenization method

- Relationship between density and elastic modulus
- Design variables : a_1 , a_2 , θ

For 2-D elastic problem, Solid part area : $\Omega_s = \int_{\Omega} (1 - a_1 a_2) d\Omega$ $\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{cases} = \begin{bmatrix} D_{11} & D_{12} & 0 \\ D_{12} & D_{22} & 0 \\ 0 & 0 & D_{66} \end{bmatrix} \begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{12} \end{cases}$ $D = D(a_1, a_2, \theta)$

* Review papers : Hassani B and Hinton E (1998)

Topology optimization

Density approach

Artificial material

- Design variable : density

Low computational cost

Simple in its idea

 $E = \rho^n E_o , \qquad 0 \le \rho \le 1$

I. Structural Optimization

II. Integrated Structural Optimization

III. Design Space Optimization

Motivation

1. Shape optimization

- Small number of design variables
- Smooth definite results
- Topology remains unchanged (Cannot make holes in the design domain)

2. Topology optimization

- Extremely large number of design variables
- Non smooth indefinite results
- Intermediate "densities" between void and full material
 - \Rightarrow unrealistic

\rightarrow Integrate shape optimization and topology optimization

Mest Integrated Structural Optimization I

On CAD-integrated structural topology and design optimization

- N. Olhoff, M. P. Bensoe and J. Rasmussen (1991)
- Interactive CAD-based structural system for 2-D
- Topology optimization \Rightarrow CAD \Rightarrow Shape optimization
- Topology optimization : Homogenization method (HOMOPT)
- Shape optimization : CAOS (Computer Aided Optimization of Shapes)
- CAD : Commercial CAD system AutoCAD
- The designer decides the initial shape for shape optimization interactively with the results of the topology optimization

Integrated Topology and Shape Optimization in Structural Design

-M. Bremicker, M. Chirehdast, N. Kikuch and P. Y. Papalambros, (1991)

- 3-phase design process
 - Phase I : Generate information about the optimum topology
 - **Phase II** : **Process and interpret the topology information**
 - Phase III : Create a parametric model and apply standard optimization
- ISOS (Integrated Structural Optimization System)

-Image processing scheme instead of interactive scheme

Mest Integrated Structural Optimization III

Integrating Structural Topology, Shape and Sizing Optimization Methods

- E. Hinton, J. Sienz, S. Bulman, S. J. Lee and M. R. Ghasemi (1998)
- Interface : Interactive CAD data structure Automatic image processing
- Topology optimization : Evolutionary method Homogenization method
- Shape optimization : Mathematical programming Genetic Algorithm
- Shape optimization / Size optimization for 2-D elastic problems
- FIDO-TK

- Communications between SO and TO are not easy.
- The designer must provide many control parameters for optimization.
 - \Rightarrow The optimal solutions highly depend on the user defined parameters
- Computationally very expensive.
- → Less expensive integrated scheme: design space optimization

I. Structural Optimization

II. Integrated Structural Optimization → Structural Optimization Software

III. Design Space Optimization

Cosmosworks

Optimize parts and assemblies, whether for constraints such as static, thermal, frequency or buckling, or for objectives such as mass, volume or load factors.

Altair OptiStruct

Topology, shape, and size optimization capabilities can be used to design and optimize structures to reduce weight and tune performance.

ANSYS

Static Topology Optimization Dynamic Topology Optimization Electromagnetic Topology Optimization

Subproblem Approximation Method

First Order Method

Design domain

16.888

FS0 77

Design Space

Finite Element Analysis Software for engineering designers CAE Templates – Input files for ANSYS, NASTRAN, ABAQUS are generated

MSC. Visual Nastran FEA

Elements of lowest stress are removed gradually.

Optishape

- Mass/Rigid Element are available in Topology Optimization.
- Any type elements are available in Shape Optimization.

I. Structural Optimization

II. Integrated Structural Optimization

III. Design Space Optimization

- The optimum solution depends on the optimization method used.
 e.g) gradient based search, GA, Simulated annealing, etc...
- But it also depends on the selection of the design variables.
 (objective functions and constraints given)
- <Q> What is the proper number of design variables for the given problem?
 - What is the proper layout of the design variables?

1. Which is the best length for a given design problem?

2. The longer, the better?

Design space optimization

DSO formulation

minimize
$$f(\mathbf{x}, n)$$

subject to $g(\mathbf{x}, n) \leq 0$
 $h(\mathbf{x}, n) = 0$

Dimension of the design vector **x** is to be determined. or

The number of design variables is to be determined.

Applications

- Topology optimization
- Plate optimization
- Eigenvalue problems
- MEMS (MicroElectroMechanical Systems) Design

Mesd Design Space Optimization

Problem statement of design space optimization

Conventional Optimization minimize $f(\mathbf{x})$ subject to $g(\mathbf{x}) \leq 0$ $h(\mathbf{x}) = 0$ $\mathbf{x} \in S$ (S is fixed)

$S{\equiv}\{N, T_N, \{x_1, x_2, ..., x_N\}\}$

 $\label{eq:nonlinear} \begin{array}{l} N & : \mbox{ Number of design units} \\ T_N & : \mbox{ Topology of design units} \\ \{x_1, \, x_2, \dots, \, x_N\} & : \mbox{ Remaining features of design units} \end{array}$

Design Space Optimization minimize $f(\mathbf{x}, S)$ subject to $g(\mathbf{x}, S) \leq 0$ $h(\mathbf{x}, S) = 0$ $G(S) \leq 0$ H(S) = 0 $\mathbf{x} \in S$ (S is variable).

Design space improvement is achieved by addition of new design variable.

What is the proper no. of design variables?

Topology Optimization				
min	<i>f</i> (p)			
s.t.	$g(\rho) \leq 0$			
(Ω is given),				

Design Space Topology Optimization				
min s.t.	$f(\rho; S(\Omega))$ $g(\rho; S(\Omega)) \le 0,$			

 $S(\Omega)$: Domain shape

Domain Interior Topology Optimization

Initial shape of the domain

Boundary variation

Domain shape change (New pixels have been created)

It is impossible to obtain sensitivities because addition of a design variable is a discreet process

Mesd Design Continuation Method

16.888

ESD 77

Design space change

: Generating new design variable

Functional is not continuous when a design variable is created.

 \Rightarrow It is impossible to obtain derivatives.

Pivot phase

Topology Optimization

Problem statement

Relationship between \textbf{E}_i and ρ

$$\begin{array}{ll} \text{Minimize} & \int_{\Gamma} F^{i} z^{i} d\Gamma, \\ \text{Subject to} & \int_{\Omega} \rho(x) d\Omega \leq M_{o}, \\ & 0 \leq \rho(x) \leq 1 \end{array}$$

$$\frac{E_i}{E_o} = \rho^n$$

E_i : Intermediate Young's modulusE_o : Reference Young's modulusn : exponent

Directional variation of the objective fn

$$\psi'_{+,\rho\to 0} = \int_{\Gamma} F^{i} z^{i'}_{+,\rho\to 0} d\Gamma \qquad \dots \qquad (1)$$

Topology Optimization (Cont'd)

State equation (variational form)

$$\begin{split} \int_{\Omega} \sigma^{ij}(z) \varepsilon^{ij}(\bar{z}) d\Omega &= \int_{\Gamma} F^{i} \bar{z}^{i} d\Gamma \qquad \forall \bar{z} \in Z_{adm} \\ & \Longrightarrow \qquad \int_{\Omega} [\sigma^{ij}(z'_{+,\rho\to 0}) \varepsilon^{ij}(\bar{z}) + \sigma^{ij}(z) \varepsilon^{ij}(\bar{z}'_{+,\rho\to 0}) + \varepsilon^{ij}(z) D^{ijkl'}_{+,\rho\to 0} \varepsilon^{kl}(\bar{z})] d\Omega \\ & = \int_{\Gamma} F^{i} \bar{z}^{i'}_{+,\rho\to 0} d\Gamma \qquad \forall \bar{z} \in Z_{adm} \end{split}$$

Assume $\overline{z}'_{+,\rho \to 0} = 0$

$$\square \int_{\Omega} \sigma^{ij}(z'_{+,\rho\to 0}) \varepsilon^{ij}(\bar{z}) d\Omega = -\int_{\Omega} \varepsilon^{ij}(z) D^{ijkl'}_{+,\rho\to 0} \varepsilon^{kl}(\bar{z}) d\Omega \quad \dots 2$$

Sensitivity Analysis

Topology Optimization (Cont'd)

Adjoint equation

$$\int_{\Omega} \sigma^{ij}(\lambda) \varepsilon^{ij}(\overline{\lambda}) d\Omega = \int_{\Gamma} F^i \overline{\lambda} d\Omega \qquad \forall \overline{\lambda} \in Z_{adm} \qquad \dots 3$$

Using the symmetry of the energy bilinear form and combining the eqn $\textcircled{0},\,\textcircled{0}$, and 3

$$\psi'_{+,\rho\to 0} = \int_{\Gamma} F^{i} z^{i'}_{+,\rho\to 0} d\Gamma = -\int_{\Omega} \varepsilon^{ij}(z) D^{ijkl'}_{+,\rho\to 0} \varepsilon^{kl}(\lambda) d\Omega$$

Because z and λ are identical,

$$\psi'_{+,\rho\to 0} = -\int_{\Omega} \varepsilon^{ij}(z) D^{ijkl'}_{+,\rho\to 0} \varepsilon^{kl}(z) d\Omega$$

Numerical Results - Sensitivities

Topology
 Sensitivity analysis

Finite Differencing

Mest Numerical Results - Sensitivities

Topology Sensitivity analysis

$E = 210 \times 10^9 \text{ N/m}^2$	New Design	FDM	Analytic	$(\Psi_i')/\Delta \Psi_i$
v = 0.3	Variable No.	$\Delta \Psi_i / \delta b$	Ψ _i '/δb	×100)%
h = 0.01	1	-116.6826	-116.6470	99.97
$\Delta D = 0.01$	2	-8.5387	-8.5367	99.98
<section-header></section-header>	3	-1.6238	-1.6235	99.98
	4	-2.3714	-2.3706	99.97
	5	-3.6479	-3.6474	99.99
	6	-3.9573	-3.9564	99.98
	7	-3.4781	-3.4776	99.99
	8	-3.2490	-3.2481	99.97
	9	-3.0011	-3.0005	99.98
	10	-2.7633	-2.7626	99.97
	11	-2.5634	-2.5628	99.98
	12	-2.2540	-2.2534	99.97
	13	-2.2088	-2.2081	99.97
	14	-3.5688	-3.5680	99.98
	15	-5.8834	-5.8819	99.97
	16	-6.7057	-6.7040	99.97
	17	-5.8702	-5.8683	99.97
	18	-3.7185	-3.7169	99.96
	19	-2.0841	-2.0830	99.95
	20	-1.1828	-1.1819	99.92
	21	-1.6386	-1.6361	99.85

Sensitivity analysis vs. Finite differencing

Number of function evaluation per step

Analytical sensitivity analysis (SA): 1 + 1 = 2

Finite differencing (FD): 1 + ndv

Ex) Topology optimization with ndv = 500

- (1) Number of function evaluations per step
 - **SA: 2**
 - FD: 501
- (2) Computing time (1 minutes per function evaluation, 10 steps)

SA: 2 × 1 × 10 = 20 minutes FD: 501 × 1 × 10 = 5010 minutes = 3 days 11.5 hours

Computer program structure

Mest Topology Optimization Results

Traditional optimization

Design Space Optimization

Number of design variables (pixel) ≤ 30×16 = 480

Mest Topology Optimization Results

Initial design domain size: 30×12, Final domain area: 480 (30×16)

Number of design variables

Objective function history

Young's modulus: 210×10⁹ N/m²

Poisson's ratio: 0.3

Maximum thickness: 0.012 m, Minimum thickness: 0.005 m

© Massachusetts Institute of Technology – Dr. II Yong Kim

$$\begin{split} Minimize & \int_{\Gamma} F^{i} z^{i} d\Gamma, \\ Subject \ to & \int_{\Omega} \rho(x) d\Omega \leq M_{o}, \\ & 0 \leq \rho(x) \leq 1 \end{split}$$

Fixed boundary condition

Mass constraints: 35%

Mest Design Variable Addition & Reduction

DongJak Bridge

DSO based on GA

Chromosome length changes as generations progress

I. Structural Optimization

- Size optimization
- Shape optimization
- Topology optimization

II. Integrated Structural Optimization

- Integration of size and shape optimization

III. Design Space Optimization

- The number of design variables is considered as a design variable
- Effect of adding new design variables is determined at the pivot phase

References

- 1) M. O. Bendsoe and N. Kikuchi, "Generating optimal topologies in structural design using a homogenization method," comp. Meth. Appl. Mech. Engng, Vol. 71, pp. 197-224, 1988
- 2) R. J. Yang and C. H. Chuang, "Optimal topology design using linear programming," Comp. Struct., Vol. 52 (2), pp.265-275, 1994
- 3) Y.M. Xie and G. P. Steven, "A simple evolutionary procedure for structural optimization," Comput. And Struct., Vol. 49, pp. 885-896, 1993
- 4) B.Hassani and E. Hinton, "A review of homogenization and topology optimization I homogenization theory for media with periodic structure," Comput. Mech., Vol. 69 (6), pp. 707-717, 1998
- N. Olhoff et al., "On Cad-integrated structural topology and design optimization," Computer Meth. In Appl. Mech. Engng., Vol. 89, pp.259-279, 1991
- 6) M. Bremicker, M. Chirehdast, N. Kikuch and P. Y. Papalambros, "Integrated Topology and Shape Optimization in Structural Design," Mech. Struct. & Mach., Vol. 19 (4), pp.551-587, 1991
- 7) E. Hinton et al., "Integrating Structural Topology, Shape and Sizing optimization Methods," Computational Mechanics, New Trends and Applications, Barcelona, Spain, 1998.
- 8) E. Ramm, K. Maute and S. Schwarz, "Adaptive Topology and Shape Optimization," Computational Mechanics, New Trends and Applications, Barcelona, Spain, 1998
- 9) II Yong Kim and Byung Man Kwak, "Design Space Optimization Using a Numerical Design Continuation Method," International Journal for Numerical Methods in Engineering, Vol. 53, pp. 1979-2002, 2002..