

Multidisciplinary System Design Optimization (MSDO)

Structural Optimization & Design Space Optimization

Lecture 18April 7, 2004

Il Yong Kim

I. Structural Optimization

II. Integrated Structural Optimization

III. Design Space Optimization

*** Definition**

- **An automated synthesis of a mechanical component based on structural properties.**

- A method that automatically generates a mechanical component design that exhibits optimal structural performance.

(3) Topology Optimization

16,888 ESO 71

• **Design variables (x)**

x : thickness of each beam

*f***(x) : compliance** *g***(x) : mass** *h***(x) : state equation**

• **Number of design variables (ndv)**

ndv = 5

M esd **Shape Optimization Example**

• **Design variables (x)**

x : control points of the B-spline (position of control points)

• **Number of design variables (ndv)**

ndv = 8

*f***(x) : compliance** *g***(x) : mass** *h***(x) : state equation**

MI Topology Optimization Example 16,888 **ESO 77**

• **Design variables (x)**

x : density of each cell

 $(0 \le \rho \le 1)$

• **Number of design variables (ndv)**

ndv = 27

*f***(x) : compliance** *g***(x) : mass** *h***(x) : state equation**

Structural Optimization

Size Optimization

- Simplest method
- Changes dimension of the component and cross sections
- Applied to the design of truss structures

- Schmit (1960) General approach to structural optimization
	- Coupling FEA & NL math. Programming

* Changed

- Length of the members
- Thickness of the members
- * Unchanged
	- Layout of the structure

Ndv: 10~100

Shape Optimization

- Design variables control the shape
- Size optimization is a special case of shape optimization
- Various approaches to represent the shape

Zolesio (1981), Haug and Choi et al. (1986) – Univ. of Iowa

- A general method of shape sensitivity analysis using the material derivative method & adjoint variable method

Nodal positions *(when the FEM is used)*

Basis functions1 $\sum \alpha_i \phi_i(x, y, z)$ *n* $\sum \alpha_i \phi_i(x,y,z)$ *i*

Radius of a circle**Ellipsoid** Bezier curveEtc…

Topology Optimization

(1) The evolutionary method

Xie and Steven (1993)

(2) The homogenization method

Bendsoe and Kikuchi (1988) – Univ. of Michigan

(3) Density approach

Yang and Chuang (1994)

*** cell-based approach**

Ndv > 1000

Homogenization method / Density approach

- **(1) Design variables: density of each cell**
- **(2) The constitutive equation is expressed in terms of Young's modulus**

$$
\int_{\Omega} \sigma^{ij}(z) \varepsilon^{ij}(\bar{z}) d\Omega = \int_{\Gamma} F^{i} \bar{z}^{i} d\Gamma \qquad \forall \bar{z} \in Z_{adm}
$$

How to define the relation between the density and Young's modulus?

U ? *E*

Homogenization method

- Infinitely many micro cells with voids
- The porosity of this material is optimized using an optimality criterion procedure
- Each material may have different void size and orientation

Topology optimization

Homogenization method

- Relationship between density and elastic modulus
- Design variables : a₁, a₂, θ

Solid part area : $\Omega_s = \int_{\Omega} (1 - a_1 a_2) d$ 11 | 11 12 12 11 11 22 $\left(\begin{array}{ccc} - & - & - \\ - & 2 & - \end{array} \right)$ 22 12 | \vee $D = D(a_1, a_2, \theta)$ For 2-D elastic problem, $\rm 0$ $\rm 0$ $0\qquad 0$ $D_{\scriptscriptstyle 11}$ D D_{12} *D D* σ_{11} | D_{11} D_{12} | ϵ_{1} σ_{22} \geq \mid D_{12} D_{22} \mid \mid \leq \mid $\begin{Bmatrix} \sigma_{11} \ \sigma_{22} \ \sigma_{12} \end{Bmatrix} = \begin{bmatrix} D_{11} & D_{12} & 0 \ D_{12} & D_{22} & 0 \ 0 & 0 & D_{66} \end{bmatrix} \begin{Bmatrix} \varepsilon_{11} \ \varepsilon_{22} \ \varepsilon_{12} \end{Bmatrix}$ $\Omega_{_S} = \int_{\Omega} (1 - a_{\rm l} a_{\rm 2}) d\Omega$

***** Review papers : Hassani B and Hinton E (1998)

Topology optimization

Density approach

Artificial material

- Design variable : density

Low computational cost

Simple in its idea

 $E = \rho^n E_o \; , \qquad 0 \leq \rho \leq 1$

I. Structural Optimization

II. Integrated Structural Optimization

III. Design Space Optimization

❖ Motivation

1. Shape optimization

- **- Small number of design variables**
- **- Smooth definite results**
- **- Topology remains unchanged (Cannot make holes in the design domain)**

2. Topology optimization

- **- Extremely large number of design variables**
- **- Non smooth indefinite results**
- **- Intermediate "densities" between void and full material**
	- **unrealistic**

Æ **Integrate shape optimization and topology optimization**

M esd **Integrated Structural Optimization I**

On CAD-integrated structural topology and design optimization

- **- N. Olhoff, M. P. Bensoe and J. Rasmussen (1991)**
- **- Interactive CAD-based structural system for 2-D**
- **- Topology optimization CAD Shape optimization**
- **- Topology optimization : Homogenization method (HOMOPT)**
- **- Shape optimization : CAOS (Computer Aided Optimization of Shapes)**
- **- CAD : Commercial CAD system AutoCAD**
- **- The designer decides the initial shape for shape optimization interactively with the results of the topology optimization**

Integrated Topology and Shape Optimization in Structural Design

-**M. Bremicker, M. Chirehdast, N. Kikuch and P. Y. Papalambros, (1991)**

- **- 3-phase design process**
- **Phase I : Generate information about the optimum topology**
- **Phase II : Process and interpret the topology information**
- **Phase III : Create a parametric model and apply standard optimization**
- **- ISOS (Integrated Structural Optimization System)**

-Image processing scheme instead of interactive scheme

Integrating Structural Topology, Shape and Sizing Optimization Methods

- **- E. Hinton, J. Sienz, S. Bulman, S. J. Lee and M. R. Ghasemi (1998)**
- **-2 Interactive CAD data structure Automatic image processing**
- **- Topology optimization : Evolutionary method Homogenization method**
- **- Shape optimization : Mathematical programming Genetic Algorithm**
- **- Shape optimization / Size optimization for 2-D elastic problems**
- **- FIDO-TK**

- Communications between SO and TO are not easy.
- The designer must provide many control parameters for optimization.
	- \Rightarrow The optimal solutions highly depend on the user defined parameters
- Computationally very expensive.
- \rightarrow Less expensive integrated scheme: design space optimization

I. Structural Optimization

II. Integrated Structural Optimization → Structural Optimization Software

III. Design Space Optimization

$\frac{1}{2}$ **Cosmosworks**

Optimize parts and assemblies, whether for constraints such as static, thermal, frequency or buckling, or for objectives such as mass, volume or load factors.

Altair OptiStruct

Topology, shape, and size optimization capabilities can be used to design and optimize structures to reduce weight and tune performance.

$\frac{1}{2}$ **ANSYS**

Static Topology Optimization Dynamic Topology Optimization Electromagnetic Topology Optimization

Subproblem Approximation Method

First Order Method

16,888 **ESO 77**

Design Space

Finite Element Analysis Software for engineering designers CAE Templates – Input files for ANSYS, NASTRAN, ABAQUS are generated

MSC. Visual Nastran FEA

Elements of lowest stress are removed gradually.

Optishape

- **- Mass/Rigid Element are available in Topology Optimization.**
- **- Any type elements are available in Shape Optimization.**

I. Structural Optimization

II. Integrated Structural Optimization

III. Design Space Optimization

- **The optimum solution depends on the optimization method used. e.g) gradient based search, GA, Simulated annealing, etc…**
- **But it also depends on the selection of the design variables. (objective functions and constraints given)**
- **<Q> What is the proper number of design variables for the given problem?**
	- **What is the proper layout of the design variables?**

1. Which is the best length for a given design problem?

2. The longer, the better?

Design space optimization

DSO formulation

minimize
$$
f(\mathbf{x}, n)
$$

subject to $g(\mathbf{x}, n) \le 0$
 $h(\mathbf{x}, n) = 0$

Dimension of the design vector **^x** is to be determined. or

The number of design variables is to be determined.

- **Applications - Topology optimization**
	- **- Plate optimization**
	- **- Eigenvalue problems**
	- **- MEMS (MicroElectroMechanical Systems) Design**

M *esd* **Design Space Optimization**

Problem statement of design space optimization

minimize $f(\mathbf{x})$ subject to $g(\mathbf{x}) \leq 0$ $h(\mathbf{x}) = 0$ $(S \text{ is fixed})$ $\mathbf{x} \in S$ Conventional Optimization

$S={N, T_{N}, {x_1, x_2,..., x_N}}$

N : Number of design units ${\sf T}_{\sf N}$: Topology of design units $\{x_1, x_2,..., x_N\}$: Remaining features of design units

minimize $f(\mathbf{x}, S)$ subject to $g(\mathbf{x}, S) \leq 0$ $h(\mathbf{x}, S) = 0$ $G(S) \ \leq \ 0$ $H(S) = 0$ (S is variable). $\mathbf{x} \in S$ Design Space Optimization

Design space improvement is achieved by addition of new design variable.

MEsd What is the proper no. of design variables? 16,888
ESO,77

 $S(\Omega)$: Domain shape

Domain InteriorTopology Optimization

Initial shape of the domain

Boundary variation

Domain shape change (New pixels have been created)

It is impossible to obtain sensitivities because addition of a design variable is a discreet process

M_{est} **Design Continuation Method**

$\mathcal{L}_{\mathcal{S}^{\text{in}}_{\text{out}}}^{\text{in}}$ **Design space change**

: Generating new design variable

Functional is not continuous when a design variable is created.

 \Rightarrow It is impossible to obtain derivatives.

Pivot phase

Topology Optimization

Problem statement

Relationship between E_i and p

Minimize
$$
\int_{\Gamma} F^i z^i d\Gamma
$$
,
Subject to $\int_{\Omega} \rho(x) d\Omega \le M_o$,
 $0 \le \rho(x) \le 1$

$$
\frac{E_i}{E_o} = \rho^n
$$

E_i : Intermediate Young's modulus E_o : Reference Young's modulus n : exponent

Directional variation of the objective fn

$$
\psi'_{+,\rho\to 0} = \int_{\Gamma} F^{i} z^{i'}_{+,\rho\to 0} d\Gamma \qquad \qquad \cdots \qquad \qquad \text{or} \qquad
$$

Sensitivity Analysis

Topology Optimization (Cont'd)

State equation (variational form)

 $\int_{\Omega} \sigma^{ij}(z) \varepsilon^{ij}(\overline{z}) d\Omega = \int_{\Gamma} F^{i} \overline{z}^{i} d\Gamma$ $\forall \overline{z} \in Z_{\text{adm}}$ $\int_{\Gamma} F^{i} \overline{z}^{i} + P_{\rho \to 0} d\Gamma$ $\forall \overline{z} \in$ $\int_{\Omega} [\sigma^{ij}(z_{+,\rho\to 0}')\varepsilon^{ij}(\overline{z}) + \sigma^{ij}(z)\varepsilon^{ij}(\overline{z}_{+,\rho\to 0}') + \varepsilon^{ij}(z)D^{ijkl}{}_{+,\rho\to 0}\varepsilon^{kl}(\overline{z})]d\Omega$ c $=\int_{\Gamma} F^{\prime} \overline{z}^{\prime}$ +, $\rho \rightarrow 0$ $d\Gamma$ $\qquad \forall \overline{z} \in Z_{\text{adm}}$ c $\begin{split} \big[\sigma^{ij}(z',_{+,\rho\to 0}')\varepsilon^{ij}(\bar{z}) + \sigma^{ij}(z)\varepsilon^{ij}(\bar{z}'_{+,\rho\to 0}) + \varepsilon^{ij}(z)D^{ijkl}_{\quad \ \ +,\rho\to 0}\varepsilon^{kl}(\bar{z})\big]d\bar{z} \end{split}$ $F^{i} \overline{z}^{i}$ _{+,p→0} $d\Gamma$ $\forall \overline{z} \in Z$

Assume $\overline{z}_{+,\rho \to 0}^{\prime} = 0$

$$
\Box \int_{\Omega} \sigma^{ij} (z'_{+,\rho \to 0}) \varepsilon^{ij} (\overline{z}) d\Omega = - \int_{\Omega} \varepsilon^{ij} (z) D^{ijkl} \Big|_{+, \rho \to 0} \varepsilon^{kl} (\overline{z}) d\Omega \quad \cdots \quad \textcircled{2}
$$

Sensitivity Analysis

Topology Optimization (Cont'd)

Adjoint equation

$$
\int_{\Omega} \sigma^{ij}(\lambda) \varepsilon^{ij}(\overline{\lambda}) d\Omega = \int_{\Gamma} F^{i} \overline{\lambda} d\Omega \qquad \forall \overline{\lambda} \in Z_{adm} \qquad \dots \qquad
$$

Using the symmetry of the energy bilinear form and combining the eqn \mathbb{O}, \mathbb{O} , and \mathbb{O}

$$
\psi'_{+,\rho\to 0} = \int_{\Gamma} F^{i} z^{i'}_{+,\rho\to 0} d\Gamma = -\int_{\Omega} \varepsilon^{ij}(z) D^{ijkl'}_{+,\rho\to 0} \varepsilon^{kl}(\lambda) d\Omega
$$

Because z and λ are identical,

$$
\psi'_{+,\rho\to 0} = -\int_{\Omega} \varepsilon^{ij}(z) D^{ijkl'}_{+,\rho\to 0} \varepsilon^{kl}(z) d\Omega
$$

Numerical Results - Sensitivities

 Topology Sensitivity analysis

Finite Differencing

M esd **Numerical Results - Sensitivities**

Topology Sensitivity analysis

Sensitivity analysis vs. Finite differencing

Number of function evaluation per step

Analytical sensitivity analysis (SA): 1 + 1 = 2 Finite differencing (FD): 1 + ndv

Ex) Topology optimization with ndv = 500

- **(1) Number of function evaluations per step**
	- **SA: 2**

FD: 501

(2) Computing time (1 minutes per function evaluation, 10 steps)

SA: $2 \times 1 \times 10 = 20$ minutes

FD: 501 ^u **1** ^u **10 = 5010 minutes = 3 days 11.5 hours**

$\frac{1}{2}$ **Computer program structure**

Topology Optimization Results

Traditional optimization Design Space Optimization

Number of design variables (pixel) d **30**u**16 = 480**

Mesd Topology Optimization Results 16,888 ESO 77

Initial design domain size: 30×12 , Final domain area: 480 (30 $\times16$)

Young's modulus: 210×10⁹ N/m²

Poisson's ratio: 0.3

Maximum thickness: 0.012 m, Minimum thickness: 0.005 m

© Massachusetts Institute of Technology – Dr. Il Yong Kim

16,888 ESO.77

Minimize
$$
\int_{\Gamma} F^i z^i d\Gamma
$$
,
Subject to $\int_{\Omega} \rho(x) d\Omega \le M_o$,
 $0 \le \rho(x) \le 1$

Fixed boundary condition

Mass constraints: 35%

Design Variable Addition & Reduction 16.888
ESD.77

DongJak Bridge

DSO based on GA

Chromosome length changes as generations progress

I. Structural Optimization

- -Size optimization
- -Shape optimization
- -Topology optimization

II. Integrated Structural Optimization

-Integration of size and shape optimization

III. Design Space Optimization

- - The number of design variables is considered as a design variable
- - Effect of adding new design variables is determined at the pivot phase

References

- 1) M. O. Bendsoe and N. Kikuchi, "Generating optimal topologies in structural design using a homogenization method," comp. Meth. Appl. Mech. Engng, Vol. 71, pp. 197-224, 1988
- 2) R. J. Yang and C. H. Chuang, "Optimal topology design using linear programming," Comp. Struct., Vol. 52 (2), pp.265-275, 1994
- 3) Y.M. Xie and G. P. Steven, "A simple evolutionary procedure for structural optimization," Comput. And Struct., Vol. 49, pp. 885-896, 1993
- 4) B.Hassani and E. Hinton, "A review of homogenization and topology optimization I homogenization theory for media with periodic structure," Comput. Mech., Vol. 69 (6), pp. 707-717, 1998
- 5) N. Olhoff et al., "On Cad-integrated structural topology and design optimization," Computer Meth. In Appl. Mech. Engng., Vol. 89, pp.259-279, 1991
- 6) M. Bremicker, M. Chirehdast, N. Kikuch and P. Y. Papalambros, "Integrated Topology and Shape Optimization in Structural Design," Mech. Struct. & Mach., Vol. 19 (4), pp.551-587, 1991
- 7) E. Hinton et al., "Integrating Structural Topology, Shape and Sizing optimization Methods," Computational Mechanics, New Trends and Applications, Barcelona, Spain, 1998.
- 8) E. Ramm, K. Maute and S. Schwarz, "Adaptive Topology and Shape Optimization," Computational Mechanics, New Trends and Applications, Barcelona, Spain, 1998
- 9) Il Yong Kim and Byung Man Kwak, "Design Space Optimization Using a Numerical Design Continuation Method," International Journal for Numerical Methods in Engineering, Vol. 53, pp. 1979-2002, 2002..