

1

Multidisciplinary System Design Optimization (MSDO) Design Space Exploration Lecture 5 18 February 2004

Karen Willcox

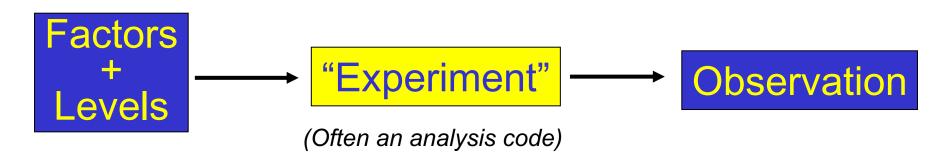
Today's Topics

- Design of Experiments Overview
- Full Factorial Design
- Parameter Study
- One at a Time
- Latin Hypercubes
- Orthogonal Arrays
- Effects
- DoE Paper Airplane Experiment

M esd

Design of Experiments

- A collection of statistical techniques providing a systematic way to sample the design space
- Useful when tackling a new problem for which you know very little about the design space.
- Study the effects of multiple input variables on one or more output parameters
- Often used before setting up a formal optimization problem
 - Identify key drivers among potential design variables
 - Identify appropriate design variable ranges
 - Identify achievable objective function values
- Often, DOE is used in the context of **robust design**. Today we will just talk about it for design space exploration.



4

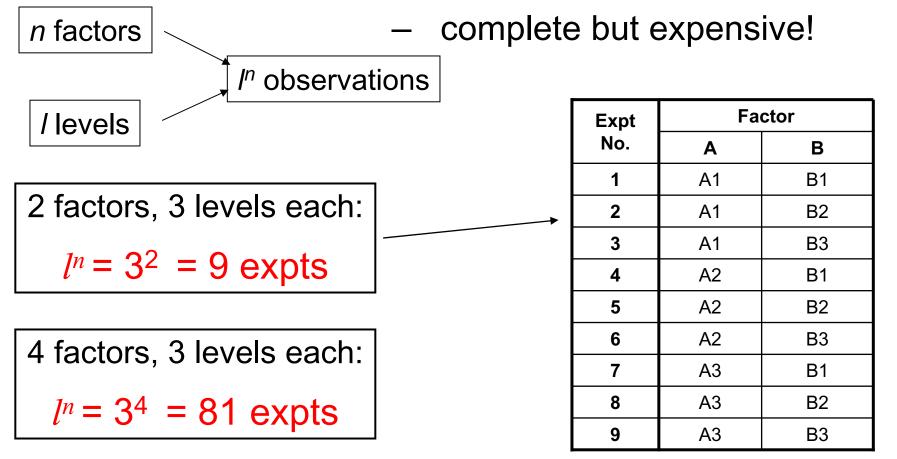
Design variables = **factors** Values of design variables = **levels** *Noise factors* = variables over which we have no control *e.g.* manufacturing variation in blade thickness *Control factors* = variables we can control *e.g.* nominal blade thickness Outputs = **observations** (= objective functions)

M lesd

Matrix Experiments

- Each row of the matrix corresponds to one experiment.
- Each column of the matrix corresponds to one factor.
- Each experiment corresponds to a different combination of factor levels and provides one observation.

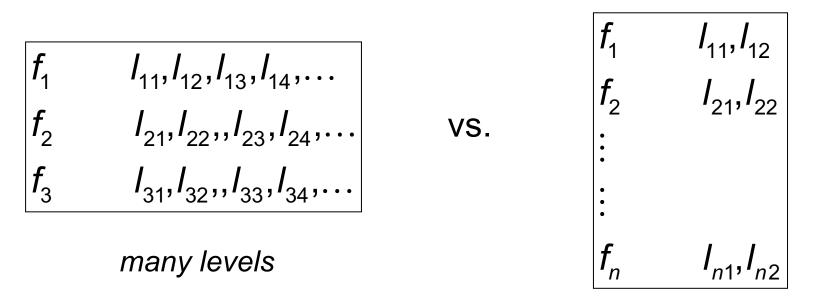
Expt No.	Factor A	Factor B	Observation
1	A1	B1	η ₁
2	A1	B2	η_2
3	A2	B1	η_3
4	A2	B2	η_4


Here, we have two factors, each of which can take two levels.

M esd

Full-Factorial Experiment

- Specify levels for each factor
- Evaluate outputs at every combination of values


Mesd Fractional Factorial Experiments

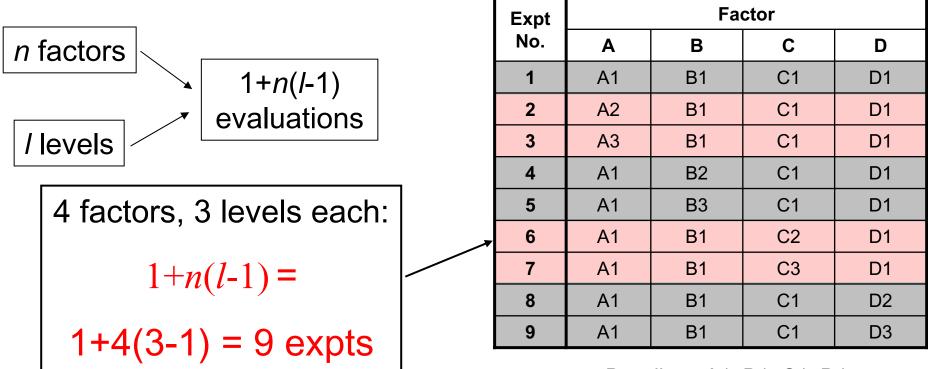
- Due to the combinatorial explosion, we cannot usually perform a full factorial experiment
- So instead we consider just *some* of the possible combinations
- Questions:
 - How many experiments do I need?
 - Which combination of levels should I choose?
- Need to balance experimental cost with design space coverage

Initially, it may be useful to look at a large number of factors superficially rather than a small number of factors in detail:

many factors

Mesd

DoE Techniques Overview


TECHNIQUE	COMMENT	EXPENSE (<i>I=#</i> levels, <i>n=#</i> factors)
Full factorial design	Evaluates all possible designs.	<i>Iⁿ - g</i> rows exponentially with number of factors
Orthogonal arrays	Don't always seem to work - interactions?	Moderate – depends on which array
One at a time	Order of factors?	1+ <i>n(I</i> -1) - cheap
Latin hypercubes	Not reproducible, poor coverage if divisions are large.	/-cheap
Parameter study	Captures no interactions.	1+ <i>n(I</i> -1) - cheap

M esd

Parameter Study

- Specify levels for each factor
- Change one factor at a time, all others at base level
- Consider each factor at every level

Baseline : A1, B1, C1, D1

11

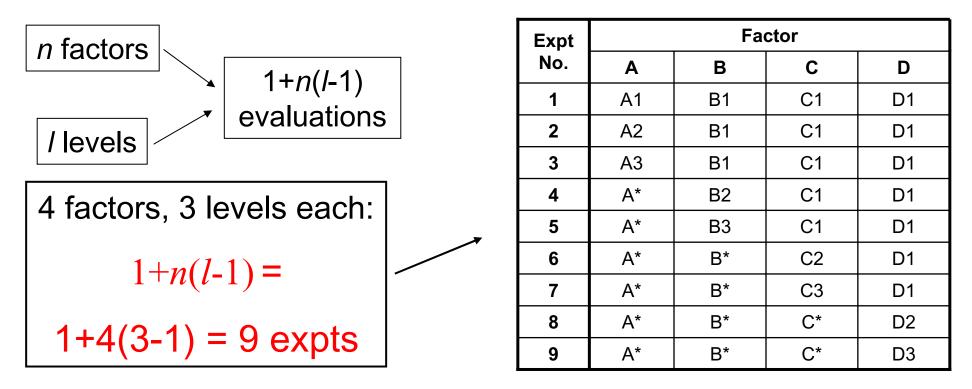
Parameter Study

• Select the best result for each factor

Expt		Observation			
No.	Α	В	С	D	Observation
1	A1	B1	C1	D1	η_1
2	A2	B1	C1	D1	η_2
3	A3	B1	C1	D1	η_3
4	A1	B2	C1	D1	η_4
5	A1	B3	C1	D1	η_5
6	A1	B1	C2	D1	η_6
7	A1	B1	C3	D1	η ₇
8	A1	B1	C1	D2	η ₈
9	A1	B1	C1	D3	η ₉

- 1. Compare η_1 , η_2 , $\eta_3 \Rightarrow A^*$
- 2. Compare η_1 , η_4 , η_5 $\Rightarrow B^*$
- 3. Compare η_1 , η_6 , η_7 $\Rightarrow C^*$
- 4. Compare η_1 , η_8 , η_9 $\Rightarrow D^*$

"Best design" is A*,B*,C*,D*


• Does not capture interaction between variables

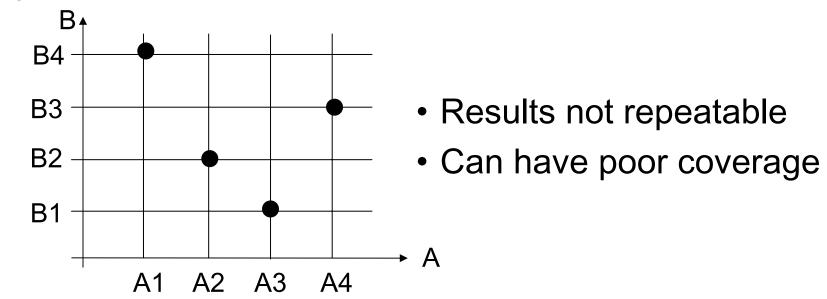
M esd

One At a Time

- Change first factor, all others at base value
- If output is improved, keep new level for that factor
- Move on to next factor and repeat

Result depends on order of factors

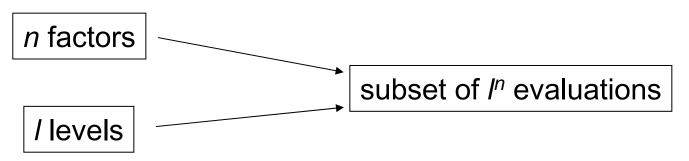
Mesd Parameter Study vs. One at a Time


- Parameter study:
 - Chances are you will not actually evaluate the "best design" as part of your original experiment
 - "Best design" is chosen by extrapolating each factor's behavior, but interactions are not considered
- One at a Time:
 - The "best design" is a member of your matrix experiment
 - Some interactions are captured, even though the result depends on the order of the factors

Mlesd

Latin Hypercubes

- Divide design space uniformly into / divisions for each factor
- Combine levels randomly
 - specify / points
 - use each level of a factor only once
- e.g. two factors, four levels each:



Mlesd

Orthogonal Arrays

- Specify levels for each factor
- Use arrays to choose a subset of the fullfactorial experiment
- Subset selected to maintain orthogonality between factors

- Does not capture all interactions, but is efficient
- Experiment is balanced

Orthogonal Arrays

	Expt		Factor	
	No.	Α	В	С
	1	A1	B1	C1
	2	A1	B2	C2
	3	A2	B1	C2
	4	A2	B2	C1
			(2^{3})	
$L_4(2^3)$				
	xpts		2 leve	`3 fa

Mlesd

Orthogonality

Notice that for any pair of columns, all combinations of factor levels occur and they occur an equal number of times.

This is the **balancing property**.

In general, the balancing property is sufficient for orthogonality.

There is a formal statistical definition of orthogonality, but we will not go into it here.

Expt		Factor		
No.	Α	В	С	D
1	A1	B1	C1	D1
2	A1	B2	C2	D2
3	A1	B3	C3	D3
4	A2	B1	C2	D3
5	A2	B2	C3	D1
6	A2	B3	C1	D2
7	A3	B1	C3	D2
8	A3	B2	C1	D3
9	A3	B3	C2	D1

All of the combinations (1-1, 1-2, 1-3, 2-1, 2-2, 2-3, 3-1, 3-2, 3-3) occur once for each pair of columns.

 $L_{q}(3^{4})$

Mesd

Once the experiments have been performed, the results can be used to calculate effects.

The *effect* of a factor is the change in the response as the level of the factor is changed.

- Main effects: averaged individual measures of effects of factors
- Interaction effects: the effect of a factor depends on the level of another factor

Often, the effect is determined for a change from a minus level (-) to a plus level (+) (2-level experiments).

M esd

Consider the following experiment:

- We are studying the effect of three factors on the price of an aircraft
- The factors are the number of seats, range and aircraft manufacturer
- Each factor can take two levels:

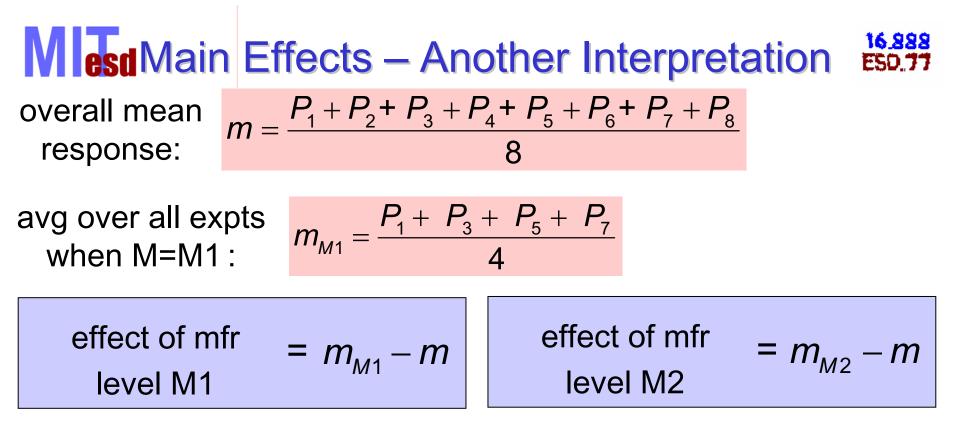
Factor 1: Seats	100 <s1<150< th=""><th>150<s2<200< th=""></s2<200<></th></s1<150<>	150 <s2<200< th=""></s2<200<>
Factor 2: Range (nm)	2000 <r1<2800< td=""><td>2800<r2<3500< td=""></r2<3500<></td></r1<2800<>	2800 <r2<3500< td=""></r2<3500<>
Factor 3: Manufacturer	M1=Boeing	M2=Airbus

Main Effects

Exp		Seats	Range	Mfr	Price
No	•	(S)	(R)	(M)	(observation)
1		S1	R1	M1	P ₁
2		S1	R1	M2	P ₂
3		S1	R2	M1	P ₃
4		S1	R2	M2	P ₄
5		S2	R1	M1	P ₅
6		S2	R1	M2	P_6
7		S2	R2	M1	P ₇
8		S2	R2	M2	P ₈

L₈(2³) (full factorial design)

The **main effect** of a factor is the effect of that factor on the output averaged across the levels of other factors.


M esd

Main Effects

Question: what is the main effect of manufacturer? *i.e.* from our experiments, can we predict how the price is affected by whether Boeing or Airbus makes the aircraft?

Expt No.	Seats	Range	Mfr (M)	Price					
	(S)	(R)	(M)	(observation)					
1	S1	R1	M1	P ₁	<pre>expts 1 and 2 differ only</pre>				
2	S1	R1	M2	P ₂	∫ in the manufacturer				
3	S1	R2	M1	P ₃					
4	S1	R2	M2	P ₄					
5	S2	R1	M1	P ₅					
6	S2	R1	M2	P ₆					
7	S2	R2	M1	P ₇					
8	S2	R2	M2	P ₈					
($\frac{(P_2 - P_1) + (P_4 - P_3) + (P_6 - P_5) + (P_8 - P_7)}{4} = \text{main effect of manufacturer}$								

Effect of factor level can be defined for multiple levels

$$\begin{array}{rcl} \text{main effect} \\ \text{of mfr} \end{array} = m_{M2} - m_{M1} \end{array}$$

Main effect of factor is defined as difference between two levels

NOTE: The main effect should be interpreted individually **only** if the variable does not appear to interact with other variables

Main Effect Example

Expt	Aircraft	Seats	Range	Mfr	Price
No.		(S)	(R)	(M)	(\$M)
1	717	S1	R1	M1	24.0
2	A318-100	S1	R1	M2	29.3
3	737-700	S1	R2	M1	33.0
4	A319-100	S1	R2	M2	35.0
5	737-900	S2	R1	M1	43.7
6	A321-200	S2	R1	M2	48.0
7	737-800	S2	R2	M1	39.1
8	A320-200	S2	R2	M2	38.0

100 <s1<150< th=""><th>150<s2<200< th=""></s2<200<></th></s1<150<>	150 <s2<200< th=""></s2<200<>
2000 <r1<2800< td=""><td>2800<r2<3500< td=""></r2<3500<></td></r1<2800<>	2800 <r2<3500< td=""></r2<3500<>
M1=Boeing	M2=Airbus

Seats/Range data: Boeing Quick Looks Price data: Aircraft Value News Airline Monitor, May 2001 issue

Main Effect Example

overall mean price = 1/8*(24.0+29.3+33.0+35.0+43.7+48.0+39.1+38.0) = 36.26

mean of experiments with M1 = 1/4*(24.0+33.0+43.7+39.1)

= 34.95

mean of experiments with M2 = $1/4^{*}(29.3+35.0+48.0+38.0)$

= 37.58

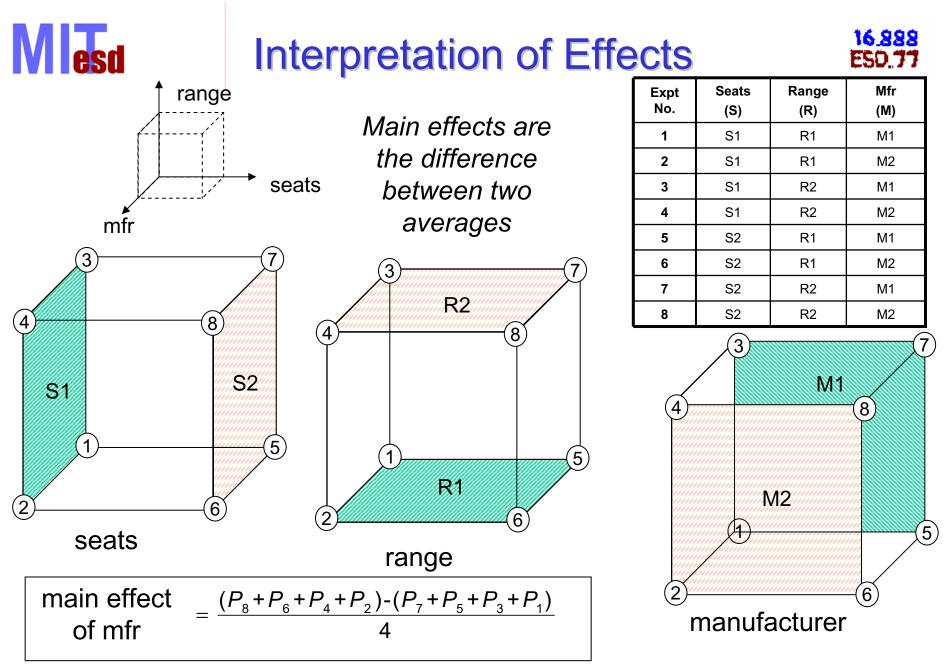
Main effect of Boeing (M1) = 34.95 - 36.26 = -1.3Main effect of Airbus (M2) = 37.58 - 36.26 = 1.3Main effect of manufacturer = 37.58 - 34.95 = 2.6

Interpretation?

Mlesd

Interaction Effects

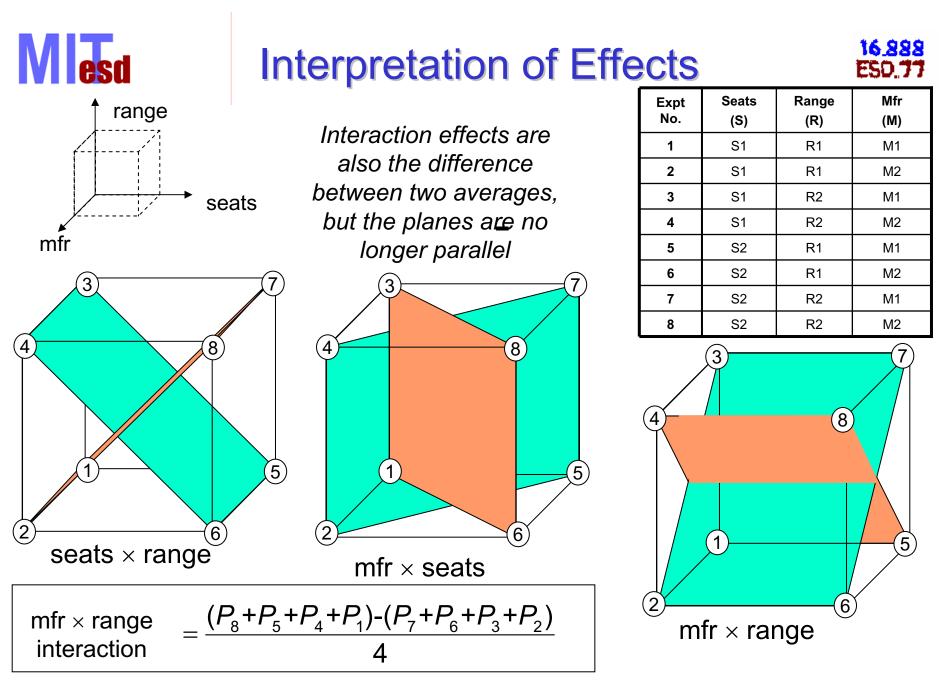
We can also measure interaction effects between factors.


Answers the question: does the effect of a factor depend on the level of another factor?

e.g. Does the effect of manufacturer depend on whether we consider shorter range or longer range aircraft?

The interaction between manufacturer and range is defined as half the difference between the average manufacturer effect with range 2 and the average manufacturer effect with range 1.

mfr × range	avg mfr effect _	avg mfr effect
interaction =	_with range 2	with range 1
IIILEIACIOII	2	



© Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics

Adapted from Fig 10.2 Box, Hunter & Hunter

27

[©] Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics

Adapted from Fig 10.2 Box, Hunter & Hunter

28

Design Experiment

Objective: Maximize Airplane Glide Distance

Design Variables: Weight Distribution Stabilizer Orientation Nose Length Wing Angle

Three levels for each design variable.

Experiment courtesy of Prof. Eppinger

Design Experiment

Full factorial design : 3^4 =81 experiments We will use an L₉(3^4) orthogonal array:

Expt	Weight	Stabilizer	Nose	Wing
No.	Α	В	С	D
1	A1	B1	C1	D1
2	A1	B2	C2	D2
3	A1	B3	C3	D3
4	A2	B1	C2	D3
5	A2	B2	C3	D1
6	A2	B3	C1	D2
7	A3	B1	C3	D2
8	A3	B2	C1	D3
9	A3	B3	C2	D1

Design Experiment

Things to think about ...

Given just 9 out of a possible 81 experiments, can we predict the optimal airplane?

Do some design variables seem to have a larger effect on the objective than others (sensitivity)?

Are there other factors affecting the results (noise)?

References

- Phadke, : *Quality Engineering Using Robust Design*, Prentice Hall, 1995
- Box, G.; Hunter, W. and Hunter, J.: *Statistics for Experimenters*, John Wiley & Sons, 1978.