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Today’s TopicsToday’s Topics

• Sensitivity Analysis
– effect of changing design variables
– effect of changing parameters
– effect of changing constraints

• Gradient calculation methods
– Analytical and Symbolic
– Finite difference
– Adjoint methods
– Automatic differentiation
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Standard Problem Definition Standard Problem Definition 
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For now, we consider a single objective function, J(x).
There are n design variables, and a total of m
constraints (m=m1+m2).
The bounds are known as side constraints.
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Sensitivity AnalysisSensitivity Analysis

• Sensitivity analysis is a key capability aside from the
optimization algorithms we discussed.

• Sensitivity analysis is key to understanding which 
design variables, constraints, and parameters are 
important drivers for the optimum solution x*.

• The process is NOT finished once a solution x* has 
been found. A sensitivity analysis is part of post-
processing.

• Sensitivity/Gradient information is also needed by:
– gradient search algorithms
– isoperformance/goal programming
– robust design
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Sensitivity AnalysisSensitivity Analysis

• How sensitive is the “optimal” solution J* to
changes or perturbations of the design 
variables x*?

• How sensitive is the “optimal” solution x* to
changes  in the constraints g(x), h(x) and
fixed parameters p ?
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Sensitivity Analysis: AircraftSensitivity Analysis: Aircraft

Questions for aircraft design:

How does my solution change if I
• change the cruise altitude?
• change the cruise speed?
• change the range?
• change material properties?
• relax the constraint on payload?
• ...
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Sensitivity AnalysisSensitivity Analysis

Questions for spacecraft design:

How does my solution change if I
• change the orbital altitude?
• change the transmission frequency?
• change the specific impulse of the propellant?
• change launch vehicle?
• Change desired mission lifetime?
• ...



8 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox
Engineering Systems Division and Dept. of Aeronautics and Astronautics

Gradient Vector Gradient Vector –– single objectivesingle objective

“How does the objective function J
value change as we change elements
of the design vector x?”
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Geometry of Gradient vector (2D)Geometry of Gradient vector (2D)
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Geometry of Gradient vector (3D)Geometry of Gradient vector (3D)
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Taylor Series ExpansionTaylor Series Expansion
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Taylor Series Expansion of Objective Function
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Jacobian Matrix Jacobian Matrix –– multiple objectivesmultiple objectives

If there is more than one objective function, i.e.
if we have a gradient vector for each Ji, arrange them
columnwise and get Jacobian matrix:
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NormalizationNormalization

In order to compare sensitivities from different
design variables in terms of their relative sensitivity
it is necessary to normalize:
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Normalized sensitivity captures
relative sensitivity

~ % change in objective per
% change in design variable

Important for comparing effect between design variables 
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Example: Dairy Farm ProblemExample: Dairy Farm Problem

With respect to which 
design variable is the 

objective most sensitive?

“Dairy Farm” sample problem

L

R N

L – Length = 100 [m]
N - # of cows = 10
R – Radius = 50 [m]

fence

22

2 2
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Parameters:
f=100$/m
n=2000$/cow
m=2$/liter

xo

Assume that we are not at the optimal point x* !

COW COW

COW
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Dairy Farm SensitivityDairy Farm Sensitivity

• Compute objective at xo

• Then compute raw sensitivities

• Normalize

• Show graphically (optional)
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Realistic Example: SpacecraftRealistic Example: Spacecraft
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What are the design variables that are “drivers”
of system performance ?
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Graphical RepresentationGraphical Representation
Graphical Representation of
Jacobian evaluated at design
xo, normalized for comparison.
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J1: RMMS WFE most sensitive to:
Ru - upper wheel speed limit [RPM]
Sst - star tracker noise 1 [asec]
K_rISO - isolator joint stiffness [Nm/rad]
K_zpet - deploy petal stiffness [N/m]

J2: RSS LOS most sensitive to:
Ud - dynamic wheel imbalance [gcm2]
K_rISO - isolator joint stiffness [Nm/rad]
zeta - proportional damping ratio [-]
Mgs - guide star magnitude [mag]
Kcf - FSM controller gain [-]
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Analytical SensitivitiesAnalytical Sensitivities

If the objective function is known in closed form,
we can often compute the gradient vector(s) in closed
form (analytically, symbolically):

Example: 1 2 1 2
1 2

1
,J x x x x

x x

2
1 1 2

2
2 1 2

1
1

1
1

J

x x x
J

J

x x x

Example

x1 = x2 =1

J(1,1)=3

0
(1,1)

0
J

Minimum

Analytical Gradient:

For complex systems analytical gradients are rarely available
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Symbolic DifferentiationSymbolic Differentiation

• Use symbolic mathematics programs
• E.g. Matlab,Maple, Mathematica

EDU» syms x1 x2
EDU» J=x1+x2+1/(x1*x2);
EDU» dJdx1=diff(J,x1)
dJdx1 =1-1/x1^2/x2
EDU» dJdx2=diff(J,x2)
dJdx2 = 1-1/x1/x2^2

construct a symbolic object

difference operator
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Finite Differences (I)Finite Differences (I)

Taylor Series expansion

Neglect second order and H.O.T.
Solve for gradient vector
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Finite Differences (II)Finite Differences (II)
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Finite Differencing (III)Finite Differencing (III)

Take Taylor expansion backwards at ox x
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Finite Difference OverviewFinite Difference Overview
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Errors of Finite DifferencingErrors of Finite Differencing
Caution: - Finite Differencing always has errors

- very dependent on perturbation size
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Perturbation Size Perturbation Size x Choicex Choice

• Error Analysis

• Significant digits (Barton 1992)

• Machine Precision

• Trial and Error – typical value ~ 0.1-1%

1/ 2

Ax f - Forward difference
1/3

Ax f - Central difference

(Gill et al. 1981)

ox

theoretical function

computed
values

~ x

A

10 q
k kx xStep size

at k-th iteration
q-# of digits of machine
Precision for real numbers



26 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox
Engineering Systems Division and Dept. of Aeronautics and Astronautics

Computational Expense of FDComputational Expense of FD

Cost of a single objective function
evaluation of Ji

iF J

Cost of gradient vector finite
difference approximation for Ji
for a design vector of length n

in F J

Cost of Jacobian finite
difference approximation with 
z objective functions

iz n F J

Example: 6 objectives
30 design variables
1 sec per simcode evaluation

3 min of CPU time
for a single Jacobian
estimate - expensive !
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Automatic DifferentiationAutomatic Differentiation

• Mathematical formulas are built from a finite set of basic 
functions, e.g. sin x, cos x, exp x

• Take analysis code in C or Fortran

• Using chain rule, add statements that generate 
derivatives of the basic functions

• Tracks numerical values of derivatives, does not track 
symbolically as discussed before

• Outputs modified program = original + derivative 
capability
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Chain Rule exampleChain Rule example

( )

( )

u q s

s p t

quantity
of interest

First compute Want to take
derivatives w.r.t 
“t”

( )
ds d

p t
dt dt

Store this value numerically

Then apply chain rule

( ( )) ( )
du d d ds

q s t q s
dt dt ds dt

substitute

desired
sensitivity
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Chain Rule Coding ExampleChain Rule Coding Example

hr =  gm*eps/rho-0.5*g1*(ux*ux + vy*vy);

h_u[0] = -gm*eps/(rho*rho);

h_u[1] = -g1*ux; 

h_u[2] = -g1*vy; 

h_u[3] =  gm/rho; 

hi = (di*hr+hl)*d1; 

hi_u[0] = (di*hr+hl)*d1_u[0]

+ d1*(di_u[0]*hr+di*h_u[0]);

• compute hr
differentiate:
• wrt rho
• wrt ux
• wrt vy
• wrt eps
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Adjoint MethodsAdjoint Methods

• A way to get gradient information in a computationally 
efficient way

• Based on theory from controls
• Applied extensively in aerodynamic design and 

optimization
• For example, in aerodynamic shape design, need 

objective gradient with respect to shape parameters and
with respect to flow parameters

– Would be expensive if finite differences are used!
• Adjoint methods have allowed optimization to be used 

for complicated, high-fidelity fluids problems.
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Adjoint MethodsAdjoint Methods

Consider

where J is the cost function, w contains the N flow variables,
and F contains the n shape design variables.

( , )J J w F

At an optimum, the variation of the cost function is zero:

0
T T

J J
J w F

w F

N 1 n 1

N>>n
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Adjoint MethodsAdjoint Methods

Fluid governing equations: ( , ) 0R w F

0
R R

R w F
w F

We can append these constraints to the cost function using 
a Lagrange multiplier approach:

T

T T

T T

T T

J J R R
J

J R J R

w F w F
w F w F

w F
w w F F
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Adjoint MethodsAdjoint Methods

T T
T T

J R J R
J w F

w w F F

Choose to satisfy the adjoint equation: 
T

R J
w w

equivalent to one 
flow solve

T
T

J R
J F

F F
Then does not depend 

on the number of 
flow variables

total gradient of J
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Sensitivity AnalysisSensitivity Analysis

“How does the optimal solution change as we change 
the problem parameters?”

effect on design variables
effect on objective function
effect on constraints

Want to answer this question without having to solve the 
optimization problem again.
Two approaches: 

– use Kuhn-Tucker conditions
– use feasible directions
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ParametersParameters

Parameters p are the fixed assumptions.
How sensitive is the optimal solution x* with respect
to fixed parameters ?

Optimal solution:

x* =[ R=106.1m, L=0m, N=17 cows]T
Example:

“Dairy Farm” sample problem

L

R N

fence

Fixed parameters:

Parameters:
f=100$/m  - Cost of fence
n=2000$/cow - Cost of a single cow
m=2$/liter - Market price of milk

How does x* change as parameters
change?

Maximize Profit

COW

COW COW
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Sensitivity AnalysisSensitivity Analysis

Recall the Kuhn-Tucker conditions. Let us assume 
that we have M active constraints, which are 
contained in the vector 

*ˆ( *) ( ) 0

ˆ ( *) 0,

0,

j j
j M

j

j

J g

g j M

j M

x x

x

ˆ( )g x

For a small change in a parameter, p, we require 
that the Kuhn-Tucker conditions remain valid:

(KT conditions)
0

d
dp
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Sensitivity AnalysisSensitivity Analysis

First, let us write out the components of the first equation:

* *ˆ( ) ( ) 0j j
j M

J gx x

* *
ˆ

( ) ( ) 0, 1,...,j
j

j Mi i

gJ
i n

x x
x x

Now differentiate with respect to the parameter p using
the chain rule:

1

n
i

k i

dY Y Y x
dp p x p
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Sensitivity AnalysisSensitivity Analysis

* *
ˆ

( ) ( ) 0j
j

j Mi i

gJ
x x

x x ˆ ( *) 0jg x

differentiate wrt p:

22

1

22

ˆ

ˆ ˆ
0

n
j k

j
k j Mi k i k

j j j

j M j Mi i i

gJ x
x x x x p

g gJ
x p x p x p

1

ˆ ˆ
0

n
j j k

k k

g g x
p x p

unknowns are  and jix
p p
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Sensitivity AnalysisSensitivity Analysis
In matrix form we can write:

0
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B d
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22 ˆ j
ik j

j Mi k i k

gJ
A

x x x x
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Sensitivity AnalysisSensitivity Analysis

We solve the system to find x and , then the sensitivity 
of the objective function with respect to p can be found:

TdJ J
J

dp p
x

dJ
J p

dp
(first-order

approximation)

px x

To assess the effect of changing a different parameter, we 
only need to calculate a new RHS in the matrix system.
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Sensitivity Analysis Sensitivity Analysis -- ConstraintsConstraints
• We also need to assess when an active constraint will 

become inactive and vice versa
• An active constraint will become inactive when its 

Lagrange multiplier goes to zero:

j
j jp p

p
Find the p that makes j zero:

0j j p

j

j

p j M

This is the amount by which we can change p before the jth

constraint becomes inactive (to a first order approximation)
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Sensitivity Analysis Sensitivity Analysis -- ConstraintsConstraints
An inactive constraint will become active when gj(x)
goes to zero:

( ) ( *) ( *) 0T
j j jg g p gx x x x

Find the p that makes gj zero:

( *)

( *)
j

T
j

g
p

g

x
x x

for all j not
active at x*

• This is the amount by which we can change p before the jth

constraint becomes active (to a first order approximation)
• If we want to change p by a larger amount, then the problem 

must be solved again including the new constraint
• Only valid close to the optimum
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Lecture SummaryLecture Summary

• Sensitivity analysis
– Yields important information about the design space, 

both as the optimization is proceeding and once the 
“optimal” solution has been reached.

• Gradient calculation approaches
– Analytical and Symbolic
– Finite difference
– Automatic Differentiation
– Adjoint methods

Reading
Papalambros – Section 8.2 Computing Derivatives


