

Multidisciplinary System Design Optimization (MSDO)

Sensitivity Analysis

Lecture 81 March 2004

Olivier de WeckKaren Willcox

Today's Topics

- Sensitivity Analysis
	- –effect of changing design variables
	- –effect of changing parameters
	- –effect of changing constraints
- Gradient calculation methods
	- –Analytical and Symbolic
	- Finite difference
	- –Adjoint methods
	- Automatic differentiation

16.888

min
$$
J(\mathbf{x})
$$

\ns.t. $g_j(\mathbf{x}) \le 0$ $j = 1,..,m_1$
\n $h_k(\mathbf{x}) = 0$ $k = 1,..,m_2$
\n $x_i^e \le x_j \le x_i^u$ $i = 1,..,n$

For now, we consider a single objective function, *J(***x***)*. There are *n* design variables, and a total of *^m* constraints (*m*=*m*₁+*m*₂).

The bounds are known as **side constraints**.

M asd

4

Sensitivity Analysis

- Sensitivity analysis is a key capability aside from the optimization algorithms we discussed.
- Sensitivity analysis is key to understanding which design variables, constraints, and parameters are important drivers for the optimum solution **x***.
- The process is NOT finished once a solution x* has been found. A sensitivity analysis is part of postprocessing.
- Sensitivity/Gradient information is also needed by:
	- –gradient search algorithms
	- –isoperformance/goal programming
- © Massachusetts Institute of Technology Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics –robust design

- How sensitive is the "optimal" solution *J****** to changes or perturbations of the design variables **^x***?
- How sensitive is the "optimal" solution **x*** to changes in the constraints **g(x), h(x)** and fixed parameters **p** ?

16.888

Questions for aircraft design:

How does my solution change if I

- change the cruise altitude?
- change the cruise speed?
- change the range?
- change material properties?
- relax the constraint on payload?

 \bullet ...

Questions for spacecraft design:

How does my solution change if I

- change the orbital altitude?
- change the transmission frequency?
- change the specific impulse of the propellant?
- change launch vehicle?
- Change desired mission lifetime?

•...

 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics

9

Gradient vector points to larger values of *J*

M esdJacobian Matrix – multiple objectives 16,888

If there is more than one objective function, i.e. if we have a gradient vector for each J_i , arrange them columnwise and get Jacobian matrix:

Normalization

In order to compare sensitivities from different design variables in terms of their *relative* sensitivity it is necessary to normalize:

$$
\left.\frac{\partial J}{\partial x_i}\right|_{\mathbf{x}^{\mathbf{0}}}
$$

 \blacksquare

"raw" - unnormalized sensitivity = partial derivative evaluated at point $x_{i,o}$

Normalized sensitivity captures relative sensitivity

 \sim % change in objective per % change in design variable

Important for comparing effect between design variables

Assume that we are not at the optimal point **x*** !

Dairy Farm Sensitivity

- • Compute objective at **x o** 792 $\begin{bmatrix} \frac{\partial P}{\partial L} \\ \frac{\partial P}{\partial N} \end{bmatrix} = \begin{bmatrix} 36.6 \\ 2225.4 \end{bmatrix}$ $J(\mathbf{x}^{\circ}) = 13092$
- •Then compute raw sensitivities
- • Normalize• Show graphically (optional) $\begin{array}{|c|c|c|c|c|} \hline \partial N & B & 588.4 \end{array}$ *P R* $\begin{array}{c|c} 100 & 36.6 \\ \hline 13092 & 36.6 \end{array}$ $\begin{array}{c} \bigcap_{\mathcal{O}.\mathcal{Q}.\mathcal{Q}} \mathcal{O} \end{array}$ $\lceil 0.28 \rceil$ 10 -2225.4 | $=$ | 1.7 1.7 (\mathbf{x}°) | 13092 | | 2.25 50 $\sqrt{2.2}$ $\frac{13092}{13092}$ 588.4 *o o* $J = \frac{1}{J(\mathbf{x}^o)} \nabla J$ malize
 $\nabla \overline{J} = \frac{\mathbf{x}^{\circ}}{J(\mathbf{x}^{\circ})} \nabla J = \begin{bmatrix} \frac{100}{13092} \cdot 36.6 \\ \frac{10}{13092} \cdot 2225.4 \\ \frac{50}{13092} \cdot 588.4 \end{bmatrix} = \begin{bmatrix} 0.28 \\ 1.7 \\ 2.25 \end{bmatrix}$

Dairy Far **x x Dairy Farm Normalized Sensitivities** 0 0.5 1 1.5 2 2.5*L N R* **Design Variable**

 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics

36.6

16.888

P

 $\overline{\partial L}$

P

N

J

2225.4

Engineering Systems Division and Dept. of Aeronautics and Astronautics

Graphical Representation

Graphical Representation of Jacobian evaluated at design xº, normalized for comparison.

16,888 ESO 77

J1: RMMS WFE most sensitive to:

Ru - upper wheel speed limit [RPM] Sst - star tracker noise 1 σ [asec] K_rISO - isolator joint stiffness [Nm/rad] K_zpet - deploy petal stiffness [N/m]

J2: RSS LOS most sensitive to:

Ud - dynamic wheel imbalance [gcm2] K_rISO - isolator joint stiffness [Nm/rad] zeta - proportional damping ratio [-] Mgs - guide star magnitude [mag] Kcf - FSM controller gain [-]

 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics

M esd

Analytical Sensitivities Analytical Sensitivities

If the objective function is known in closed form, we can often compute the gradient vector(s) in closed form (analytically, symbolically): Example

For complex systems analytical gradients are rarely available

- Use symbolic mathematics programs
- E.g. Matlab,Maple, Mathematica

Finite Differences (I) '*^x ^f* Function of a single variable *f(x)*

Taylor Series expansion

$$
f(x_o + \Delta x) = f(x_o) + \Delta x f'(x_o) + \frac{\Delta x^2}{2} f''(x_o) + O(\Delta x^2)
$$

Neglect second order and H.O.T. Solve for gradient vector

Approximation to the derivative

x-'*x xo x+*'*^x*

'*x*

x

16.888

 $\Delta x > 0, \Delta x \in \mathbb{R}$

Truncation Error

$$
O(\Delta x) = \frac{\Delta x}{2} f^{(0)}(\zeta)
$$

$$
x_o \le \zeta \le x_o + \Delta x
$$

16.888 *Nesd* **Finite Differencing (III)**

Take Taylor expansion backwards at $x_{o} - \Delta x$

$$
f(x_o + \Delta x) = f(x_o) + \Delta x f'(x_o) + \frac{\Delta x^2}{2} f''(x_o) + O(\Delta x^2)
$$
 (1)

$$
f(x_o - \Delta x) = f(x_o) - \Delta x f'(x_o) + \frac{\Delta x^2}{2} f''(x_o) + O(\Delta x^2)
$$
 (2)

(1)-(2) and solve again for derivative

$$
f'(x_o) \approx \frac{f(x_o + \Delta x) - f(x_o - \Delta x)}{2\Delta x} \quad f''(x_o) \approx \frac{f(x_o + \Delta x) - 2f(x_o) + f(x_o - \Delta x)}{\Delta x^2}
$$

M esd Errors of Finite Differencing Errors of Finite Differencing

Caution: - Finite Differencing always has errors very dependent on perturbation size

Perturbation Size Ax Choice

• Error Analysis (Gill et al. 1981)

 $\Delta x \approx (\varepsilon_A / |f|)^{1/3}$ - Central difference

- $\Delta x \approx (\varepsilon_A / |f|)^{1/2}$ Forward difference
- Significant digits (Barton 1992)
- • Machine Precision $\alpha_k \cong x_k \cdot 10^{-q}$ $\mathsf{Step~size} \hspace{10pt} \Delta x_{_{\! k}} \cong x_{_{\! k}} \cdot 10^{-q} \qquad$ $\mathsf{q\text{-}#~of~digits~of~machine} \ \mathsf{at~k\text{-}th~iteration}$
	-
- Trial and Error typical value \sim 0.1-1%

I esd

Computational Expense of FD

Cost of a single objective function $F(J_i)$ **COST OF A SITTUE**
evaluation of J_i

 $n\cdot F\left(J_{i}\right)$

 $z \cdot n \cdot F(J_i)$

Cost of gradient vector finite difference approximation for *Ji*for a design vector of length *ⁿ*

Cost of Jacobian finitedifference approximation with z objective functions

Example: 6 objectives 30 design variables 1 sec per simcode evaluation

3 min of CPU timefor a single Jacobian estimate - expensive !

- Mathematical formulas are built from a finite set of basic functions, e.g. sin *^x*, cos *x*, exp *^x*
- Take analysis code in C or Fortran
- Using chain rule, add statements that generate derivatives of the basic functions
- Tracks numerical values of derivatives, does not track symbolically as discussed before
- Outputs modified program = original + derivative capability

Adjoint Methods

- • A way to get gradient information in a computationally efficient way
- \bullet Based on theory from controls
- \bullet Applied extensively in aerodynamic design and optimization
- \bullet For example, in aerodynamic shape design, need objective gradient with respect to shape parameters **and** with respect to flow parameters
	- Would be expensive if finite differences are used!
- \bullet Adjoint methods have allowed optimization to be used for complicated, high-fidelity fluids problems.

Adjoint Methods

Consider

 $J = J(\mathbf{w}, \mathbf{F})$

where *J* is the cost function, **^w** contains the *N* flow variables, and **F** contains the *ⁿ* shape design variables.

At an optimum, the variation of the cost function is zero:

Adjoint Methods

Fluid governing equations: $R(\mathbf{w},\mathbf{F}) = 0$

$$
\delta R = \left[\frac{\partial R}{\partial \mathbf{w}}\right] \delta \mathbf{w} + \left[\frac{\partial R}{\partial \mathbf{F}}\right] \delta \mathbf{F} = 0
$$

We can append these constraints to the cost function using a Lagrange multiplier approach:

$$
\delta J = \left[\frac{\partial J}{\partial \mathbf{w}}\right]^T \delta \mathbf{w} + \left[\frac{\partial J}{\partial \mathbf{F}}\right]^T \delta \mathbf{F} - \varphi^{\mathsf{T}} \left(\left[\frac{\partial \mathbf{R}}{\partial \mathbf{w}}\right] \delta \mathbf{w} + \left[\frac{\partial \mathbf{R}}{\partial \mathbf{F}}\right] \delta \mathbf{F}\right)
$$

$$
= \left(\left[\frac{\partial J}{\partial \mathbf{w}}\right]^T - \varphi^{\mathsf{T}} \left[\frac{\partial \mathbf{R}}{\partial \mathbf{w}}\right] \right) \delta \mathbf{w} + \left(\left[\frac{\partial J}{\partial \mathbf{F}}\right]^T - \varphi^{\mathsf{T}} \left[\frac{\partial \mathbf{R}}{\partial \mathbf{F}}\right] \right) \delta \mathbf{F}
$$

M lesd
\n
$$
\delta J = \left(\left[\frac{\partial J}{\partial w} \right]^{T} - \varphi^{T} \left[\frac{\partial R}{\partial w} \right] \right) \delta w + \left(\left[\frac{\partial J}{\partial F} \right]^{T} - \varphi^{T} \left[\frac{\partial R}{\partial F} \right] \right) \delta F
$$

Choose φ to satisfy the adjoint equation:

$$
\left[\frac{\partial \mathbf{R}}{\partial \mathbf{w}}\right]^{\mathsf{T}} \boldsymbol{\varphi} = \left[\frac{\partial \mathbf{J}}{\partial \mathbf{w}}\right]
$$

equivalent to one flow solve

Sensitivity Analysis

"How does the optimal solution change as we change the problem parameters?"

effect on design variables effect on objective function effect on constraints

Want to answer this question without having to solve the optimization problem again.

Two approaches:

- use Kuhn-Tucker conditions
- use feasible directions

Parameters

Parameters **p** are the fixed assumptions. How sensitive is the optimal solution x* with respect to fixed parameters ?

Example:

Optimal solution:

 $x^* = [$ R=106.1m, L=0m, N=17 cows]^T

Fixed parameters:

Parameters: f=100\$/m - Cost of fence n=2000\$/cow - Cost of a single cow m=2\$/liter - Market price of milk

How does x* change as parameters

Sensitivity Analysis

Recall the Kuhn-Tucker conditions. Let us assume that we have *M* active constraints, which are contained in the vector $\hat{\mathbf{g}}(\mathbf{x})$

$$
\nabla J(\mathbf{x}^*) + \sum_{j \in M} \lambda_j \nabla \hat{g}_j(\mathbf{x}^*) = 0
$$

$$
\hat{g}_j(\mathbf{x}^*) = 0, \quad j \in M
$$

$$
\lambda_j > 0, \quad j \in M
$$

For a small change in a parameter, *p*, we require that the Kuhn-Tucker conditions remain valid:

$$
\frac{d(KT\,\,conditions)}{dp} = 0
$$

of, de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics

Ml _{esd}

Sensitivity Analysis

First, let us write out the components of the first equation:

$$
\nabla J(\mathbf{x}^*) + \sum_{j \in M} \lambda_j \nabla \hat{g}_j(\mathbf{x}^*) = 0
$$

$$
\frac{\partial J}{\partial x_i}(\mathbf{x}^*) + \sum_{j \in M} \lambda_j \frac{\partial \hat{g}_j}{\partial x_i}(\mathbf{x}^*) = 0, \quad i = 1,...,n
$$

Now differentiate with respect to the parameter *p* using the chain rule:

$$
\frac{dY}{dp} = \frac{\partial Y}{\partial p} + \sum_{k=1}^{n} \frac{\partial Y}{\partial x_{i}} \frac{\partial x_{i}}{\partial p}
$$

Prof. de Weck and Prof. WillcoxEngineering Systems Division and Dept. of Aeronautics and Astronautics

16.888 **Sensitivity Analysis** esd ESO 77 In matrix form we can write: *Mn* $\begin{bmatrix} A & B \\ B^T & 0 \end{bmatrix} \begin{bmatrix} \delta \mathbf{x} \\ \delta \mathbf{A} \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix}$ *A* B | $|\delta$ **x** | c δ **x** *n* $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0$ J $\boldsymbol{\lambda}$ B' 0 $|\delta$ a δ 0 $|d$ δ *M* 2 $\lambda^2 \hat{c}$ $=\frac{\partial^2 J}{\partial x^2}+\sum \lambda_i\frac{\partial^2 J}{\partial y^2}$ *J g*²*g* $\begin{bmatrix} \frac{\partial x_1}{\partial p} \end{bmatrix}$ $\begin{bmatrix} \frac{\partial \lambda_1}{\partial p} \end{bmatrix}$ $\frac{\partial}{\partial x_i \partial x_k} + \sum_{i \in M} \lambda_i \frac{\partial}{\partial x_i \partial x_j}$ *j* $X^{}_{1}$ λ *A* $\frac{\partial}{\partial x_k}$ + $\sum_{j \in M} \lambda_j \frac{\partial}{\partial x_j \partial x_k}$ 1 $ik = \partial y \partial y$ $\left(\frac{1}{2} \right)^i$ $i^{U\lambda}$ _k $j \in M$ $U\lambda_j U\lambda_k$ $\frac{\partial V}{\partial x_2}$ $\frac{\partial \lambda_2}{\partial x}$ ˆ $\partial \hat{\bm{g}}_j$ *B x* λ \equiv 2*ij* 2 $\partial \mathsf{x}_i$ $=\begin{cases} \frac{\partial \rho}{\partial x_n} \\ \frac{\partial x_n}{\partial \rho} \end{cases}$ δ **x** $\delta \boldsymbol{\lambda}$ $=\left\{\begin{array}{c}\n\partial \rho \\
\vdots \\
\frac{\partial \lambda_M}{\partial \rho}\n\end{array}\right\}$ *p p* $2\hat{z}$ 2 $\frac{\partial^2 J}{\partial \mathsf{X}_{i} \partial \mathsf{p}} + \sum_{i \in M} \frac{\partial^2 \hat{g}}{\partial \mathsf{X}_{i} \partial \mathsf{p}}$ \widehat{O} *Jg j* :
: *c*.
. $\overline{\partial x_i \partial p}$ *i* X_i *cp* \overline{C} *z* \overline{C} *z* \overline{C} *z* \overline{C} *p* i ^{*C* P} *j* i *Ai x* λ_{\cdot} ˆ \widehat{O} *n g M*

 © Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Engineering Systems Division and Dept. of Aeronautics and Astronautics

p

p

j

d

j

p

 \widehat{O}

Sensitivity Analysis

We solve the system to find δx and $\delta \lambda$, then the sensitivity of the objective function with respect to *p* can be found:

$$
\frac{dJ}{dp} = \frac{\partial J}{\partial p} + \nabla J^T \delta \mathbf{x}
$$

$$
\Delta J \approx \frac{dJ}{dp} \Delta p
$$

(first-order)
Approximation)

 Δ **x** $\approx \delta$ **x** Δp

To assess the effect of changing a different parameter, we only need to calculate a new RHS in the matrix system.

MIesd Sensitivity Analysis - Constraints

 \bullet An active constraint will become inactive when its Lagrange multiplier goes to zero:

$$
\Delta \lambda_j = \frac{\partial \lambda_j}{\partial p} \Delta p = \delta \lambda_j \Delta p
$$

Find the Δp that makes λ_i zero:

$$
\lambda_j + \delta \lambda_j \Delta p = 0
$$

$$
\Delta p = \frac{-\lambda_j}{\delta \lambda_j} \quad j \in M
$$

This is the amount by which we can change *p* before the *j*th constraint becomes inactive (to a first order approximation)

16.888

M esd **Sensitivity Analysis - Constraints** An inactive constraint will become active when $g_i(\mathbf{x})$ goes to zero:

$$
g_j(\mathbf{x}) = g_j(\mathbf{x}^*) + \Delta p \left[\nabla g_j(\mathbf{x}^*)^T \delta \mathbf{x} \right] = 0
$$

Find the Δp that makes g_i zero:

$$
\Delta p = \frac{-g_j(\mathbf{x}^*)}{\nabla g_j(\mathbf{x}^*)^T \delta \mathbf{x}}
$$

for all *j* not active at **x***

16.888

- This is the amount by which we can change *p* before the *j*th constraint becomes active (to a first order approximation)
- If we want to change *p* by a larger amount, then the problem must be solved again including the new constraint
- Only valid close to the optimum

Lecture Summary

- Sensitivity analysis
	- Yields important information about the design space, both as the optimization is proceeding and once the "optimal" solution has been reached.
- Gradient calculation approaches
	- Analytical and Symbolic
	- Finite difference
	- Automatic Differentiation
	- Adjoint methods

Reading

Papalambros – Section 8.2 Computing Derivatives