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Introduction
— Satellite constellation design

Simulation
— Modeling
— Benchmarking
Optimization
— Single objective
» Gradient based
» Heuristic: Simulated Annealing

— Multi-objective
Conclusions and Future Research
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Motivation/Background ESD.77

Past attempts at mobile satellite communication systems have failed as there
has been an inability to match user demand with the provided capacity in a

cost-efficient manner (e.g. Iridium & Globalstar)

Two main assumptions:
 Circular orbits and a common altitude for all the satellites in

the constellation
» Uniform distribution of customer demand around the globe

Given a non-uniform market model, can the incorporation of elliptical orbits
with repeated ground tracks expand the cost-performance trade space

favorably?
Aspects of the satellite constellation design problem previously researched:

-T Kashitani (MEng Thesis, 2002, MIT)
-M. Parker (MEng Thesis, 2001, MIT)
-O. de Weck and D. Chang (AIAA 2002-1866)

12 May 2003 — Chan, Samuels, Shah, Underwood



< . . . 16.888
5t)) Market Distribution Estimation  Esb.77

Market Distribution Map

Demand Distribution Map
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lx%% Problem Formulation

- A circular LEO satellite backbone constellation designed to provide minimum capacity
global communication coverage,

 An elliptical (Molniya) satellite constellation engineered to meet high-capacity demand
at strategic locations around the globe (in particular, the United States, Europe and East

Asia).

_ min the lifecycle cost of the total hybrid satellite constellation sys.
m * the total lifecycle cost must be strictly positive
* the data rate market demand must be met at least 90% of the time
- the satellites must service 100% of the users 90% of the time

- data rate provided by the satellites >= to the demand
- all satellites must be deployable from current launch vehicles

<C [polar/walker], emin [deg], MA, ISL [0/1], h [km], Pt [W], DA [m]>

\Design Vector for Elliptical Constellations, <T [day], e [-], Np [-], Pt [W], Da [m]>
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An orthogonal array was implemented for
the elliptical constellation DOE

The recommended initial start point for the
numerical optimization of the elliptical
constellation is

Xo,.+ =[ T=1/6,6=0.6,NP=4,Pt=500,DA=3]"

In order to analyze the tradespace of the
Polar constellation backbone, a full factorial
search was conducted, the Pareto front of
non dominated solutions was then defined

The lowest cost Polar constellation was
found to have the following design vector
values

X = [C=polar,emin=5 deg,MA=QPSK,ISL=1,

h=2000,Pt=0.25,DA=0.5]"

Tradespace Exploration

16.888
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Factor

Level

Effect

T 6 159.8
T 12 131.13
T 24 -95.5
E 0 53.8

E 0.2 -13.98
E 0.4 217.93
NP 1 -262.0
NP 2 -36.85

Pt 5000 532.03
Pt 10000 1441.1
DA 1.5 315.8
DA 25.15

166.25
T

S
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» Simulation created by de Weck and Chang (2002)
» Code benchmarked against a number of existing satellite systems
» Qutputs within 20% of the benchmark’s values
» Slight modifications made to suit the broadband market demand
* # of subscribers, required data rate per user, avg. monthly usage etc...

* Orbit and constellation calculations
« Validated by plotting and visually confirming orbits

8 12 May 2003 — Chan, Samuels, Shah, Underwood



» Simulation benchmarked against Ellipso

* Ellipso

* (T =24, NP = 4, phasing of planes = 90 degrees apart)

» System benchmarked on modular basis

* Ellipso didn’t use the
same demand model,
thus a constraint
benchmark process was
not conducted.

k) Elliptical Benchmarking

16.888

ESD.77
» Elliptical satellite constellation system proposed to the FCC in 1990
System Ellipso | Simulation | Units
Module
Link Budget Antenna Gain | 12 11.93 [dBI]
EIRP 27 24.93 [dBW]
Data Rate 2.2 1.08 [Mbps]
Spacecraft Sat Mass 68 98.68 [Kg]
Sat Volume 0.0008 | 0.810 m3
Lifecycle Cost 249.6 | 290.9 [YR2002 $M]
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« Sequential Quadratic Programming (SQP)

— Simplification => number of planes integer
* Objective: minimize lifecycle cost

Initial guess: Optimal:
Period (T): 0.5 day Period (T): 0.7 day
Eccentricity (e): 0.01 Eccentricity (e): 0
# Planes (NP): 4 # Planes (NP): 4
Transmitter Power (Pt): 4000 W Transmitter Power (Pt):  3999.7 W
Antenna Diameter (DA): 3 m Antenna Diameter (DA): 1.76 m

J: $6280.5999 M J*: $6187.8559 M
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Optimal Design, x*:
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Parameters:

Period (T): 0.7 day
Eccentricity (e): 0
# Planes (NP): 4

Transmitter Power (Pt):  3999.7 W
Antenna Diameter (DA): 1.76 m

Data Rate: 1000 kbps
Step Size: 10 kbps
# Subscribers: 1000 users
Step Size: 10 users

Normalized Sensitivities of Objective with Respect
to the Design Variables
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« Simulated annealing was used

* Quite sensitive to cooling schedule and starting
conditions

* Not very repeatable
— Low confidence that global optimum was reached

» Total computational cost high

« Abandoned in favor of full-factorial evaluation of the
tradespace for the multi-objective case
— Possibly gain insight into key trends

12 May 2003 — Chan, Samuels, Shah, Underwood
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« 10° Simulated Annealing Sample Run % 10°
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 Minimum cost design tend not to have the
possibility for future growth

Try to simultaneously:
— Minimize Lifecycle Cost (LCC)
— Maximize Time Averaged Over Capacity

If $ market served > min market share
Over capacity = ..
Total capacity - Market served
Else
Over capacity = 0
End

 Min market share chosen to be 90%

14 12 May 2003 — Chan, Samuels, Shah, Underwood
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« 1280 designs evaluated
* |Interesting trends revealed

Factor Levels Units
T 1,1/12,1/3,1/4,1/5 [days]
e 0.001,0.1,0.30.4 [-]
NP 2,3,4,6 [-]
Pt 1,2,4,6 [KW]
DA 1.5,2,25,3 [m]
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Avg Over Cap [10M users]

Avg Over Cap [10M users]
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c) by NP
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Many satellites per planes
— Very high system capacity
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Pareto front with no demand restriction

1600 , , , Pareto front with % satisfied > 90
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Much smaller AOC when demand constraint is enforced
Again explore the tradespace by coloring by DV values
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e Convex Hulls

— Smallest convex polygon that contains all points
In the tradespace that have a design variable at a
particular value

— Determines regions that are ‘closed off’ when a
design choice is made
« Conditional Pareto Fronts

— Pareto optimal set of points given that a particular
design choice has been made

— When compared to the unconditioned front, can
determine key characteristics of designs on
sections of the Pareto front
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* Historic mismatch between capacity and demand

* Hybrid constellations

— First provide baseline service
— Then supplement backbone to cover high demand
— Allows for staged deployment that adjusts to an unpredictable

market

» Pareto analysis
— Y2 day period, ~0 eccentricity
— Transmitter power key to location on Pareto front

— Number of planes, antenna gain not as important

23 12 May 2003 — Chan, Samuels, Shah, Underwood
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« Coding for radiation shielding due to van Allen belts
— Current CER for satellite hardening is taken as 2-5%
increment in cost
— Can compute hardening needed using NASA model — need
to translate hardening requirement into cost increment
* Model hand-off problem
— Transfer of a ‘call’ from one satellite to another
— Not addressed in current simulation

— Key component of interconnected network satellite
simulations

 Increase the fidelity of the simulation modules with
less simplifying assumptions

 Increase fidelity of cost module

24

— Include table of available motors for the apogee and geo
transfer orbit kick motors

12 May 2003 — Chan, Samuels, Shah, Underwood
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Backup Slides
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GNP-PPP
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Sample Ground Track: T=1/2 day; e=0.5

LAT [deg]

0 50 100 150 200 250 300 350
LON [dedq]
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/ %,\1 Sensitivity Analysis:
=l Design Variables
 Compute Gradient ]
A
oT _ _
8_J —102.1317
o€ 114.5666
VJ = % =| 204.0848
oJ 0.3328
oPt | | 40.5873 |
oJ
 Normalize | ODA |
(LJ*—IOZBN
6187.8559
(Lj*114.5666
6187.8559
VJnormalized = " VJ = (Lj*204.0848
J(x*) 6187.8559
6187.8559
1.8
— |*40.5873
6187.8559
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[0.0116 ]
0
0.1319
0.0002

00118

28 12 May 2003 — Chan, Samuels, Shah, Underwood



16.888

ﬁﬂ“ Sensitivity Analysis: Parameters Esb.77
‘.-J'En,j_if

|!
e -'-:i“'
=k ar i

™

« Basic Equation

— Finite Differencing
- Data Rate

— Step Size: 10 kbps

AJ _J(p"+Ap)-J(p°)
Ap Ap

A J(p°+Ap)—J(p°) 2003.884M$—2008.7703M$

_ =—0.48863
Ap Ap 10
* # Subscribers
— Step Size: 10 users
AT _ J(p°+Ap)=J(p°) _ 2003.7966M$—2008.7703M$ _ \ \o-2-

Ap - Ap - 10
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30

Nature of Tuning
Implemented

1. Geometric progression
cooling schedule with a 15%
decrease per iteration

2. Geometric progression
cooling schedule with a 25%
decrease per iteration

3. Stepwise reduction cooling
schedule with a 25%
reduction per iteration

4. Geometric progression
cooling schedule with a 15%
decrease per iteration but with
the added constraint that the
result of each iteration has to
be better than the one
preceding it.

J*
[SM]

$5753.4
(50 runs)

$5427.9
(50 runs)

$6278.7
(50 runs)

$5800.1
(41 runs)

x*
[T, e, NP ,Pt, DA]"

[1/7,0.01,2,2918.23,2.33]"T

[1/7,0.01, 3, 1581.72,2.23]T

[1/2,0.01, 4, 4000, 3] T

[1/2,0.01, 3,3256.08,2.17] T

Simulated Annealing Tuning (l)

Improvement from
optimal SA cost of
5389 [$M]?

No, optimal cost
increased by $364
million dollars

No, optimal cost
increased by
$39 million dollars

No, optimal cost and
design vector
remained the values
they were before
optimization

No, optimal cost
increased by
$411 million dollars
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Nature of Tuning
Implemented

5. Initial Temperature is
doubled (i.e., initial
temperature changed from
6278.7 [$M] to 12557.4 [$M]

6. Initial Temperature is
halved.

(i.e., initial temp changed
from 6278.7 [$M] to 3139.4
[$M]

7. Initial design vector is
altered such that x, = [1, 0, 3,
3000, 317

8. Initial design vector was
altered such that
X, =[0.25,0.5, 5, 3000, 3]"

J*
[$M]

$6278.7
(50 runs)

$5622.7
(50 runs)

$5719.1
(50 runs)

Failed to
find a
feasible
solution

Simulated Annealing Tuning (ll)

X*
[T, e, NP ,Pt, DA]"

[1/2,0.01,4,4000,3]"

[1/2,0.01, 2, 3658.08,2.3]"

[1,0,3,3000,3]7

16.888
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Improvement from
optimal SA cost of
5389 [$M]?

No, optimal cost and
design vector
remained the values
they were before
optimization

No, optimal cost
increased by $234
million dollars

No, optimal cost
increased by $330
million dollars
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