

Multidisciplinary System Design Optimization (MSDO)

Optimization of a Hybrid Satellite Constellation System Constellation System

12 May 2003 12 May 2003

Serena Chan Niray Shah

Ayanna Samuels Jennifer Underwood

- \bullet **Introduction**
	- Satellite constellation design
- Simulation
	- **Modeling**
	- Benchmarking
- Optimization
	- Single objective
		- Gradient based
		- Heuristic: Simulated Annealing
	- –Multi-objective
- Conclusions and Future Research

Motivation/Background ESD.

Past attempts at mobile satellite communication systems have failed as there has been an inability to match user demand with the provided capacity in a cost-efficient manner (e.g. Iridium & Globalstar)

Two main assumptions:

- Circular orbits and a common altitude for all the satellites inthe constellation
- Uniform distribution of customer demand around the globe

Given a non-uniform market model, can the incorporation of elliptical orbits with repeated ground tracks expand the cost-performance trade space favorably?

Aspects of the satellite constellation design problem previously researched:

-T Kashitani (MEng Thesis, 2002, MIT)

-M. Parker (MEng Thesis, 2001, MIT)

-O. de Weck and D. Chang (AIAA 2002-1866)

Market Distribution Estimation Fights

16.888

ESD.77

 Ω

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Reduced Resolution for Simulation

Problem Formulation Problem Formulation

16.888ESD.77

• A circular LEO satellite backbone constellation designed to provide minimum capacity global communication coverage,

• An elliptical (Molniya) satellite constellation engineered to meet high-capacity demand at strategic locations around the globe (in particular, the United States, Europe and East Asia).

Single Objective J: min the lifecycle cost of the total hybrid satellite constellation sys.

Constraints

- : ***** the total lifecycle cost must be strictly positive
- ***** the data rate market demand must be met at least 90% of the time
	- **-** the satellites must service 100% of the users 90% of the time
	- **-** data rate provided by the satellites >= to the demand
	- **-** all satellites must be deployable from current launch vehicles

Design Vector for Polar Backbone Constellation:

<C [polar/walker], emin [deg], MA, ISL [0/1], h [km], Pt [W], DA [m]>

Design Vector for Elliptical Constellation: <T [day], e [-], Np [-], Pt [W], Da [m]>

Simulation Model

Tradespace Exploration ESD.77

- • An orthogonal array was implemented for the elliptical constellation DOE
- • The recommended initial start point for the numerical optimization of the elliptical constellation is

Xo_{init} =[T=1/6,e=0.6,NP=4,Pt=500,DA=3]^T

- \bullet In order to analyze the tradespace of the Polar constellation backbone, a full factorial search was conducted, the Pareto front of non dominated solutions was then defined
- • The lowest cost Polar constellation was found to have the following design vector values

 $X = [C = polar, emin = 5 deg, MA = QPSK, ISL = 1]$ h=2000,Pt=0.25,DA=0.5]T

12 May 2003 – Chan, Samuels, Shah, Underwood

Code Validation Code Validation

LEO BACKBONE :

- Simulation created by de Weck and Chang (2002)
	- Code benchmarked against a number of existing satellite systems
		- Outputs within 20% of the benchmark's values
- Slight modifications made to suit the broadband market demand
	- # of subscribers, required data rate per user, avg. monthly usage etc…

CODE VALIDATION:

- Orbit and constellation calculations
	- Validated by plotting and visually confirming orbits

Elliptical Benchmarking Elliptical Benchmarking ESD.

ELLIPTICAL CONSTELLATION :

• Simulation benchmarked against Ellipso

• Ellipso

- Elliptical satellite constellation system proposed to the FCC in 1990
- (T = 24, NP = 4, phasing of planes = 90 degrees apart)

• System benchmarked on modular basis

• Ellipso didn't use the same demand model, thus a constraint benchmark process was not conducted.

Gradient-Based Optimization ESD.

16.888

- Sequential Quadratic Programming (SQP)
	- Simplification => number of planes integer
- •Objective: minimize lifecycle cost

Initial guess: Optimal:

J: \$6280.5999 M J*: \$6187.8559 M

Sensitivity Analysis ESD.77

Optimal Design, x*:

Parameters:

Data Rate: 1000 kbps Step Size: 10 kbps # Subscribers: 1000 usersStep Size: 10 users

Heuristic Optimization

- •Simulated annealing was used
- \bullet Quite sensitive to cooling schedule and starting conditions
- Not very repeatable
	- Low confidence that global optimum was reached
- •Total computational cost high
- Abandoned in favor of full-factorial evaluation of the tradespace for the multi-objective case
	- Possibly gain insight into key trends

16.888Sample Simulated Annealing Run ESD.77

Multi-Objective Optimization ESD

- Try to simultaneously:
	- Minimize Lifecycle Cost (LCC)
	- Maximize Time Averaged Over Capacity

```
If % market served > min market share
      Over capacity = …
            Total capacity – Market served
ElseOver capacity = 0
End
```
• Min market share chosen to be 90%

Full Factorial Tradespace Full Factorial Tradespace ESD.77

- \bullet 1280 designs evaluated
- \bullet Interesting trends revealed

- • Very high average over capacity
- Seems counterintuitive that high success does not yield high average over capacity
- Look at the design trade to find an explanation

16.888

Unrestricted Pareto Front Unrestricted Pareto Front ESD.77

Restricted Pareto Front Restricted Pareto Front ESD.77

- •Much smaller AOC when demand constraint is enforced
- •Again explore the tradespace by coloring by DV values

Restricted Tradespace Restricted Tradespace ESD.77

Some Useful Visualizations ESD.7

- Convex Hulls
	- Smallest convex polygon that contains all points in the tradespace that have a design variable at a particular value
	- Determines regions that are 'closed off' when a design choice is made
- Conditional Pareto Fronts
	- Pareto optimal set of points given that a particular design choice has been made
	- When compared to the unconditioned front, can determine key characteristics of designs on sections of the Pareto front

Convex Hulls Convex Hulls

12 May 2003 – Chan, Samuels, Shah, Underwood

Conditional Pareto Fronts CONDITION

16.888

ESD.77

Conclusions and Future Work CONCLUSIONS CONCLUSIONS

- •Historic mismatch between capacity and demand
- Hybrid constellations
	- First provide baseline service
	- Then supplement backbone to cover high demand
	- Allows for staged deployment that adjusts to an unpredictable market
- Pareto analysis
	- $\frac{1}{2}$ day period, \sim 0 eccentricity
	- Transmitter power key to location on Pareto front
	- Number of planes, antenna gain not as important

Future Work Future Work

- • Coding for radiation shielding due to van Allen belts
	- Current CER for satellite hardening is taken as 2-5% increment in cost
	- Can compute hardening needed using NASA model need to translate hardening requirement into cost increment
- Model hand-off problem
	- Transfer of a 'call' from one satellite to another
	- Not addressed in current simulation
	- Key component of interconnected network satellite simulations
- Increase the fidelity of the simulation modules with less simplifying assumptions
- Increase fidelity of cost module
	- Include table of available motors for the apogee and geo transfer orbit kick motors

Backup Slides Backup Slides

12 May 2003 – Chan, Samuels, Shah, Underwood

Demand Distribution Map ESD.77

Population

Demand

Example Ground Tracks Example Ground Tracks ESD.77

Sample Ground Track: T=1/2 day; e=0.5

**Sensitivity Analysis:
Design Variables**

16.888 ESD.77

• Compute Gradient

• Normalize

7. J

\n7. J

\n8

\n8

\n
$$
\nabla J = \begin{bmatrix}\n\frac{\partial J}{\partial \overline{t}} \\
\frac{\partial J}{\partial \overline{t}} \\
\frac{\partial J}{\partial \overline{t}} \\
\frac{\partial J}{\partial \overline{t}} \\
\frac{\partial J}{\partial \overline{t}}\n\end{bmatrix} = \begin{bmatrix}\n-102.1317 \\
114.5666 \\
204.0848 \\
0.3328 \\
40.5873\n\end{bmatrix}
$$
\n8

\n10

\n
$$
\nabla J
$$

**Sensitivity Analysis: Parameters
ESD.77**

- • Basic Equation
	- –Finite Differencing
- \bullet Data Rate
	- –Step Size: 10 kbps

$$
\frac{\Delta J}{\Delta p} = \frac{J(p^o + \Delta p) - J(p^o)}{\Delta p}
$$

$$
\frac{\Delta J}{\Delta p} = \frac{J(p^o + \Delta p) - J(p^o)}{\Delta p} = \frac{2003.884M\text{ s} - 2008.7703M\text{ s}}{10} = -0.48863
$$

- # Subscribers
	- –Step Size: 10 users

$$
\frac{\Delta J}{\Delta p} = \frac{J(p^o + \Delta p) - J(p^o)}{\Delta p} = \frac{2003.7966M\text{ s} - 2008.7703M\text{ s}}{10} = -0.49737
$$

Simulated Annealing Tuning (I) ESD.77

Simulated Annealing Tuning (II)

