

Multidisciplinary System Design Optimization (MSDO)

Optimization of a Hybrid Satellite Constellation System

12 May 2003

Serena Chan

Nirav Shah

Ayanna Samuels

Jennifer Underwood

- Introduction
 - Satellite constellation design
- Simulation
 - Modeling
 - Benchmarking
- Optimization
 - Single objective
 - Gradient based
 - Heuristic: Simulated Annealing
 - Multi-objective
- Conclusions and Future Research

Motivation/Background

16.888 **ESD.77**

Past attempts at mobile satellite communication systems have failed as there has been an inability to match user demand with the provided capacity in a cost-efficient manner (e.g. Iridium & Globalstar)

Two main assumptions:

- Circular orbits and a common altitude for all the satellites in the constellation
- Uniform distribution of customer demand around the globe

Given a non-uniform market model, can the incorporation of elliptical orbits with repeated ground tracks expand the cost-performance trade space favorably?

Aspects of the satellite constellation design problem previously researched:

-T Kashitani (MEng Thesis, 2002, MIT)

-M. Parker (MEng Thesis, 2001, MIT)

-O. de Weck and D. Chang (AIAA 2002-1866)

Market Distribution Estimation

16.888

ESD.77

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Reduced Resolution for Simulation

Problem Formulation

16.888 **ESD.77**

• A circular LEO satellite backbone constellation designed to provide minimum capacity global communication coverage,

• An elliptical (Molniya) satellite constellation engineered to meet high-capacity demand at strategic locations around the globe (in particular, the United States, Europe and East Asia).

Single Objective J: min the lifecycle cost of the total hybrid satellite constellation sys.

Constraints :

- * the total lifecycle cost must be strictly positive
- * the data rate market demand must be met at least 90% of the time
 - the satellites must service 100% of the users 90% of the time
 - data rate provided by the satellites >= to the demand
 - all satellites must be deployable from current launch vehicles

Design Vector for Polar Backbone Constellation:

<C [polar/walker], emin [deg], MA, ISL [0/1], h [km], Pt [W], DA [m]>

Design Vector for Elliptical Constellation:

<T [day], e [-], Np [-], Pt [W], Da [m]>

Simulation Model

1	6.	8	88	B
E	S	D.	7	7

Tradespace Exploration

- An orthogonal array was implemented for the elliptical constellation DOE
- The recommended initial start point for the numerical optimization of the elliptical constellation is

Xo_{init} =[T=1/6,e=0.6,NP=4,Pt=500,DA=3]^T

- In order to analyze the tradespace of the Polar constellation backbone, a full factorial search was conducted, the Pareto front of non dominated solutions was then defined
- The lowest cost Polar constellation was found to have the following design vector values

X = [C=polar,emin=5 deg,MA=QPSK,ISL=1, h=2000,Pt=0.25,DA=0.5]^T

Factor	Level	Effect
T	4	-207.3
Т	6	159.8
Т	12	131.13
т	24	-95.5
E	0	53.8
E	0.2	-13.98
E	0.4	217.93
E	0.6	-515.55
NP	1	-262.0
NP	2	-36.85
NP	3	717.57
NP	4	-319.13
Pt	500	-975.78
Pt	1000	-849.5
Pt	5000	532.03
Pt	10000	1441.1
DA	1.5	315.8
DA	2.0	25.15
DA	2.5	166.25
DA	3.0	-571.0

12 May 2003 – Chan, Samuels, Shah, Underwood

Code Validation

LEO BACKBONE :

- Simulation created by de Weck and Chang (2002)
 - Code benchmarked against a number of existing satellite systems
 - Outputs within 20% of the benchmark's values
- Slight modifications made to suit the broadband market demand
 - # of subscribers, required data rate per user, avg. monthly usage etc...

CODE VALIDATION:

- Orbit and constellation calculations
 - Validated by plotting and visually confirming orbits

Elliptical Benchmarking

16.888 ESD.77

ELLIPTICAL CONSTELLATION :

Simulation benchmarked against Ellipso

- Ellipso
 - Elliptical satellite constellation system proposed to the FCC in 1990
 - (T = 24, NP = 4, phasing of planes = 90 degrees apart)
- System benchmarked on modular basis

• Ellipso didn't use the same demand model, thus a constraint benchmark process was not conducted.

System		Ellipso	Simulation	Units
Module				
Link Budget	Antenna Gain	12	11.93	[dBi]
	EIRP	27	24.93	[dBW]
	Data Rate	2.2	1.08	[Mbps]
Spacecraft	Sat Mass	68	98.68	[Kg]
	Sat Volume	0.0008	0.810	m ³
Lifecycle Cost		249.6	290.9	[YR2002 \$M]

12 May 2003 - Chan, Samuels, Shah, Underwood

Gradient-Based Optimization

- Sequential Quadratic Programming (SQP)
 - Simplification => number of planes integer
- Objective: minimize lifecycle cost

Initial guess:

Period (T):	0.5 day
Eccentricity (e):	0.01
# Planes (NP):	4
Transmitter Power (Pt):	4000 W
Antenna Diameter (DA):	3 m

J: \$6280.5999 M

Optimal:

Period (T):	0.7 day
Eccentricity (e):	0
# Planes (NP):	4
Transmitter Power (Pt):	3999.7 W
Antenna Diameter (DA):	1.76 m

J*: \$6187.8559 M

16.888

Sensitivity Analysis

Optimal Design, x*:

Period (T):	0.7 day
Eccentricity (e):	0
# Planes (NP):	4
Transmitter Power (Pt):	3999.7 W
Antenna Diameter (DA):	1.76 m

Parameters:

Data Rate: 1000 kbps Step Size: 10 kbps # Subscribers: 1000 users Step Size: 10 users

Heuristic Optimization

- Simulated annealing was used
- Quite sensitive to cooling schedule and starting conditions
- Not very repeatable
 - Low confidence that global optimum was reached
- Total computational cost high
- Abandoned in favor of full-factorial evaluation of the tradespace for the multi-objective case
 - Possibly gain insight into key trends

Sample Simulated Annealing Run ESD.77

Multi-Objective Optimization

- Try to simultaneously:
 - Minimize Lifecycle Cost (LCC)
 - Maximize Time Averaged Over Capacity

```
If % market served > min market share
    Over capacity = ...
    Total capacity - Market served
Else
    Over capacity = 0
End
```

• Min market share chosen to be 90%

16.888

FSD 77

Full Factorial Tradespace

- 1280 designs evaluated
- Interesting trends revealed

Factor	Levels	Units
Т	1,1/2,1/3,1/4,1/5	[days]
е	0.001, 0.1, 0.3 0.4	[-]
NP	2, 3, 4, 6	[-]
Pt	1, 2, 4, 6	[kW]
DA	1.5, 2, 2.5, 3	[m]

16.888

Very high average over

Unrestricted Pareto Front

 Seems counterintuitive that high success does not yield high average

capacity

 Look at the design trade to find an explanation

over capacity

16.888

16.888

Restricted Pareto Front

- Much smaller AOC when demand constraint is enforced
- Again explore the tradespace by coloring by DV values

16.888

Restricted Tradespace

16.888

Some Useful Visualizations

- Convex Hulls
 - Smallest convex polygon that contains all points in the tradespace that have a design variable at a particular value
 - Determines regions that are 'closed off' when a design choice is made
- Conditional Pareto Fronts
 - Pareto optimal set of points given that a particular design choice has been made
 - When compared to the unconditioned front, can determine key characteristics of designs on sections of the Pareto front

Convex Hulls

Conditional Pareto Fronts

16.888

Conclusions and Future Work

- Historic mismatch between capacity and demand
- Hybrid constellations
 - First provide baseline service
 - Then supplement backbone to cover high demand
 - Allows for staged deployment that adjusts to an unpredictable market
- Pareto analysis
 - $-\frac{1}{2}$ day period, ~0 eccentricity
 - Transmitter power key to location on Pareto front
 - Number of planes, antenna gain not as important

Future Work

- Coding for radiation shielding due to van Allen belts
 - Current CER for satellite hardening is taken as 2-5% increment in cost
 - Can compute hardening needed using NASA model need to translate hardening requirement into cost increment
- Model hand-off problem
 - Transfer of a 'call' from one satellite to another
 - Not addressed in current simulation
 - Key component of interconnected network satellite simulations
- Increase the fidelity of the simulation modules with less simplifying assumptions
- Increase fidelity of cost module
 - Include table of available motors for the apogee and geo transfer orbit kick motors

Backup Slides

12 May 2003 – Chan, Samuels, Shah, Underwood

Demand Distribution Map

GN	P-P	PP
----	-----	----

Population

Demand

16.888

Example Ground Tracks

Sample Ground Track: T=1/2 day; e=0.5

16.888

Sensitivity Analysis: Design Variables

16.888 ESD.77

Compute Gradient

• Normalize

$$\nabla Jnormalized = \frac{x^*}{J(x^*)} \nabla J = \begin{bmatrix} \frac{\partial J}{\partial T} \\ \frac{\partial J}{\partial \epsilon} \\ \frac{\partial J}{\partial Pt} \\ \frac{\partial J}{\partial DA} \end{bmatrix} = \begin{bmatrix} -102.1317 \\ 114.5666 \\ 204.0848 \\ 0.3328 \\ 40.5873 \end{bmatrix}$$

$$\nabla Jnormalized = \frac{x^*}{J(x^*)} \nabla J = \begin{bmatrix} \left(\frac{0.7}{6187.8559}\right)^* - 102.1317 \\ \left(\frac{0}{6187.8559}\right)^* - 102.1317 \\ \left(\frac{4}{6187.8559}\right)^* 204.0848 \\ \left(\frac{3999.7}{6187.8559}\right)^* 0.3328 \\ \left(\frac{1.8}{6187.8559}\right)^* 40.5873 \\ 12 \text{ May } 2003 - \text{Chan, Samuels, Shah, Underwood} \end{bmatrix}$$

Sensitivity Analysis: Parameters

- Basic Equation
 - Finite Differencing
- Data Rate
 - Step Size: 10 kbps

$$\frac{\Delta J}{\Delta p} = \frac{J(p^{o} + \Delta p) - J(p^{o})}{\Delta p}$$

16.888

ESD.77

$$\frac{\Delta J}{\Delta p} = \frac{J(p^{\circ} + \Delta p) - J(p^{\circ})}{\Delta p} = \frac{2003.884M\$ - 2008.7703M\$}{10} = -0.48863$$

• # Subscribers

- Step Size: 10 users

$$\frac{\Delta J}{\Delta p} = \frac{J(p^{\circ} + \Delta p) - J(p^{\circ})}{\Delta p} = \frac{2003.7966M\$ - 2008.7703M\$}{10} = -0.49737$$

Simulated Annealing Tuning (I)

Nature of Tuning Implemented	J* [\$M]	x* [T, e, NP ,Pt, DA] ^T	Improvement from optimal SA cost of 5389 [\$M]?
1. Geometric progression cooling schedule with a 15% decrease per iteration	\$5753.4 (50 runs)	[1/7, 0.01, 2, 2918.23, 2.33] ^T	No, optimal cost increased by \$364 million dollars
2. Geometric progression cooling schedule with a 25% decrease per iteration	\$5427.9 (50 runs)	[1/7, 0.01, 3, 1581.72, 2.23] ^T	No, optimal cost increased by \$39 million dollars
3. Stepwise reduction cooling schedule with a 25% reduction per iteration	\$6278.7 (50 runs)	[1/2, 0.01, 4, 4000, 3] ^T	No, optimal cost and design vector remained the values they were before optimization
4. Geometric progression cooling schedule with a 15% decrease per iteration but with the added constraint that the result of each iteration has to be better than the one preceding it.	\$5800.1 (41 runs)	[1/2, 0.01, 3, 3256.08, 2.17] ^T	No, optimal cost increased by \$411 million dollars

Simulated Annealing Tuning (II)

16.88	8
ESD.7	77

Nature of Tuning Implemented	J* [\$M]	x* [T, e, NP ,Pt, DA] ^T	Improvement from optimal SA cost of 5389 [\$M]?
5. Initial Temperature is doubled (i.e., initial temperature changed from 6278.7 [\$M] to 12557.4 [\$M]	\$6278.7 (50 runs)	[1/2, 0.01, 4 , 4000, 3] ^T	No, optimal cost and design vector remained the values they were before optimization
6. Initial Temperature is halved. (i.e., initial temp changed from 6278.7 [\$M] to 3139.4 [\$M]	\$5622.7 (50 runs)	[1/2, 0.01, 2, 3658.08, 2.3] ^T	No, optimal cost increased by \$234 million dollars
7. Initial design vector is altered such that $x_0 = [1, 0, 3, 3000, 3]^T$	\$5719.1 (50 runs)	[1, 0, 3, 3000, 3] ^T	No, optimal cost increased by \$330 million dollars
8. Initial design vector was altered such that $x_0 = [0.25, 0.5, 5, 3000, 3]^T$	Failed to find a feasible solution		