

Multi-disciplinary System Design Optimisation of a 2-Stage Compressor for Aero-Performance, Production Cost and Dynamic Stability

OUTLINE

INTRODUCTION

- Motivation for integrated design with stability
- Problem definition
- Simulation modules
- OPTIMISATION
 - Initial design space study by DOE
 - Single-objective optimisation for Pressure Ratio
 - Pareto optimisation for Surge Margin & Cost
 - Final multi-objective optimisation

CONCLUSIONS

Motivation for integrated design with stability

- Axial compressor performance measured by:
 - Pressure Ratio P_{o2}/P_{o1}
 - <u>Adiabatic efficiency</u> η
- Stability Surge margin

$$SM = \frac{PR_{NS} - PR_{Design}}{PR_{NS}}$$

Two main targets

 Performance optimisation with stability (and cost) accounted for from the start – not usually done

2) Show the potential cost benefits of surge margin reduction

Problem definition – Design Variables

Problem definition – Objectives and constraints OBJECTIVES

- Maximise Pressure Ratio
- Maximise Efficiency
- Minimise Production Cost (Manufacturing + Material Cost)

CONSTRAINTS

- Structural integrity $\sigma_{\text{blades}} < \sigma_{\text{ultimate,material}}$
 - ** Surge margin treated separately as objective & constraint **

Geometry restricted within bounds known from experience

Simulation architecture

OUTLINE

INTRODUCTION

- Motivation for integrated design with stability
- Problem definition
- Simulation modules

OPTIMISATION

- Initial design space study by DOE
- Single-objective optimisation for Pressure Ratio
- Pareto optimisation for Surge Margin & Cost
- Final multi-objective optimisation

CONCLUSIONS

COMPRESSOR DESIGN OPTIMISATION Josep M. Dorca & Vincent Perrot

EPARTMENT OF AERONAUTIED AND ASTRONAUTIES

DOE – Benchmark Point Definition

	Orthogonal Region				Sequenced region			
	A	В	С	D	E	F	G	Н
Expt #	$\boldsymbol{\beta}_{mi,R}$	$\beta_{mo,R}$	C,	Ν,	$\boldsymbol{\beta}_{mi,S}$	$\beta_{mo,S}$	C ª	N,
1	A1	B1	C1	D1	E1	F1	G3	H2
2	A1	B2	C2	D2	E1	F2	G3	H2
3	A1	B3	C3	D3	E2	F3	G1	HЗ
4	A2	B1	C2	D3	E2	F1	G2	HЗ
5	A2	B2	C3	D1	E3	F1	G3	H1
6	A2	B3	C1	D2	E3	F2	G1	H2
7	A3	B1	C3	D2	E1	F2	G1	HЗ
8	A3	B2	C1	D3	E2	F3	G2	H1
9	A3	B3	C2	D1	E3	F3	G2	H1
				Symbo	l Le	vel	Effect	Value
	Ļ		- 1	Symbo	l Le	vel	Effect	Value
	Ļ		N.8	Symbo β _{mi,R}	l Le	vel	Effect	Value 63
			N.8 0.5	Symbo β _{mi,R} β _{mo,R}	l Le A E	vel	Effect 0.71 1.06	Value 63 33
	,		N_8 C_5 Bets_reo,9	Symbo $\beta_{mi,R}$ $\beta_{mo,R}$ c_R	l Le A E	vel 32 31 21	Effect 0.71 1.06 0.65	Value 63 33 0.06
			N.S c.5 Bota na,S Bota ni,S	Symbol $\beta_{mi,R}$ $\beta_{mo,R}$ c_R N_R	l Le A E C E	vel 32 31 21 21	Effect 0.71 1.06 0.65 0.15	Value 63 33 0.06 67
			N_8 c_5 Beta_ma,9 Beta_mi,8 N_R	Symbol $\beta_{mi,R}$ $\beta_{mo,R}$ c_R N_R $\beta_{mi,S}$	l Le A E C E E	vel 32 31 21 21 23	Effect 0.71 1.06 0.65 0.15 0.10	Value 63 33 0.06 67 62
			N_S c_5 Bots_ma,S Bots_mi,S N_R c_R	Symbol $\beta_{mi,R}$ $\beta_{mo,R}$ c_R N_R $\beta_{mi,S}$ $\beta_{mo,S}$	l Le A E C E E F	vel 32 31 21 21 23 71	Effect 0.71 1.06 0.65 0.15 0.10 0.76	Value 63 33 0.06 67 62 8.66
			N_S c_5 Beta_ma,S Beta_mi,S N_R c_R Beta_ma,S	Symbol $\beta_{mi,R}$ $\beta_{mo,R}$ c_R N_R $\beta_{mi,S}$ $\beta_{mo,S}$ c_S	l Le A E C E F	vel 12 31 21 21 23 71 52	Effect 0.71 1.06 0.65 0.15 0.10 0.76 0.74	Value 63 33 0.06 67 62 8.66 0.08
			N_S c_5 Bota_rea,S Bota_rea,S N_R c_R Bota_rea,R Bota_rea,R	$\begin{array}{c} \textbf{Symbo}\\ \hline \beta_{mi,R}\\ \beta_{mo,R}\\ c_{R}\\ C_{R}\\ N_{R}\\ \beta_{mi,S}\\ \beta_{mo,S}\\ c_{S}\\ C_{S}\\ N_{S} \end{array}$	l Le A E C E F C F	vel 32 31 21 21 23 71 52 11	Effect 0.71 1.06 0.65 0.15 0.10 0.76 0.74 0.32	Value 63 33 0.06 67 62 8.66 0.08 65

- Generation of initial point for numerical optimisation
- "Quasi-orthogonal" array
 - Cumulative weighted
 effects calculated
 - Highest effects from exit metal angles – especially rotor
- Chord effects also important – they mainly affect stability

Single-Objective Gradient-Based Optimisation (SQP)

- Select Pressure Ratio as objective find the performance ceiling
- Sensitivity analysis based on this first optimisation angles dominant
- <u>Scaling</u>: $\beta_{in,rotor}$ (x 0.01), $\beta_{out,rotor}$ (x 0.01), $\beta_{in,stator}$ (x 0.01)

16.888 MSDO

May 9th 2003 - 9 of 16

Single-Objective Heuristic Optimisation (GA)

- Parametric study of the GA tuning parameters
 - <u>Mutation rate</u>: 0.04 Optimum convergence speed
 - <u>Population size</u>: 40 Higher than this brings overall fitness down
 - Generations: 40 Limited by time constraints
 - ** Better to use up iterations in more generations than more individuals **

16.888 MSDO

May 9th 2003 - 10 of 16

OUTLINE

INTRODUCTION

- Motivation for integrated design with stability
- Problem definition
- Simulation modules

OPTIMISATION

- Initial design space study by DOE
- Single-objective optimisation for Pressure Ratio
- Pareto optimisation for Surge Margin & Cost
- Final multi-objective optimisation

CONCLUSIONS

Pareto Optimisation for Surge Margin and Cost

- Pressure Ratio set at acceptable limit based on SOO results (PR > 2.4)
- Efficiency seen to not vary substantially
- Cost and Surge Margin opposing:
 - Lower cost >> Smaller, lower number of blades
 - Higher stability >> Larger, higher number of blades
- Weighted function approach towards generation of the Pareto Front

$$J = \lambda \left(\frac{SM}{SM_o}\right) + \left(1 - \lambda\right) \left(\frac{C}{C_o}\right)$$

• SQP used to minimise this objective.

Pareto Front

Final Multi-Objective Optimisation (GA)

- Attempt further improvement on Pareto solution
- Now in a very confined region of the design space small performance variations expected

•Probably global optimum – same solution after 2000+ iterations

n	After DOE		MOO	
	I	nitial values	GA MOO	-
PR	\diamond	2.317	2.406] +4%
η	\diamond	0.976	0.972	-0.41%
С	\checkmark	191.095	144.515	-24.4%
SM	(>20%	0.164	0.199	+22%

16.888 MSDO

May 9th 2003 - 14 of 16

Conclusions

- An integrated design philosophy is possible and successful
 - SOO gives a measure of the maximum machine performance
 - Pareto bi-objective approach determines the cost-stability relation
 - Final MOO produces the fully optimised solution

 Surge margin places a very hard constraint on the cost of optimalperformance machines – <u>very conservative</u>. Reduction in Surge Margin promises very significant <u>Cost Savings</u>.

COMPRESSOR DESIGN OPTIMISATION Josep M. Dorca & Vincent Perrot

Questions ?