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Motivation
• Traditional aircraft design objective: minimum GTOW

– Improved performance
– Reduced operating cost

• Does not guarantee financial viability of program
• Better aircraft program design methodology would 

take into account:
– Performance
– Development and manufacturing cost
– Demand
– Operating cost
– Market uncertainty

• Better design objective: program value (Markish)
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Objectives & Problem Setup

• Objectives:
– Create an optimization framework to consider performance and 

finance in aircraft program design
– Solve for financially optimal designs

• Program value as objective
• Deterministic solutions

• Problem setup:
– Design vector

• Number of passengers
• Aircraft range

– Objective vector: program Net Present Value (NPV)
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Net Present Value

• Metric for estimating future value of fiscal activity in 
current terms
– Based upon risk-adjusted discount rate (typically 12-20%)
– Future expected cash flows discounted to reflect opportunity 

cost of capital and perceived risk of venture
– NPV is the sum of discounted cash flows:

– Positive NPV indicates a profitable investment

• Requires cost, revenue, and demand estimates to 
calculate future income and expenses
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Financial Models

• Cost(Weight)
– Nonrecurring, recurring costs estimated by process type from 

breakdown of weights 
– Learning curve effects captured

• Price(# Seats, Range, Operating Cost)
–

– ∆LC accounts for differences in operating cost based on fuel 
burn as a percentage of overall CAROC

• Demand(# Seats, Range)
– Baseline demand & growth from empirical data by aircraft “class”
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Performance Models

• Performance models based on aircraft sizing routine 
developed by Prof. Liebeck

• Combination of many different techniques
– Aerodynamic first principles
– Empirical data
– Rules of thumb

• Calculates all necessary aircraft specifications
– GTOW, fuselage dimensions, fuel fraction, etc.

• Physical model based on DC-10 class aircraft vs. 
financial model based on 777
– Physical model re-calibrated to account for this discrepancy
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N2 Diagram
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Optimization Framework

Goal: maximize J(x) = NPV
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Design of Experiment
• DOE used several times during project to validate model 

behavior
– Identified model flaws early in optimization process

• Used “one-at-a-time” setup due to low number of design 
variables

• Chose initial design vector directly from DOE results
• Example DOE:

Experiment # # Passengers Range (nm) NPV ($B) GTOW (lbs.)
1 250 5500 17.8 352,000
2 300 5500 18.8 413,000
3 350 5500 10.1 475,000
4 400 5500 4.7 537,000
5 450 5500 5.4 600,000
6 300 6000 20.9 425,000
7 300 6500 23.1 436,000
8 300 7000 25.6 445,000
9 300 7500 28.3 452,000

Variables Objectives
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Gradient-Based Optimization

• NPV chosen for single-objective optimization
– Allowed full functionality test, as NPV depends on physical and 

financial models
• Used combination of sequential quadratic programming + 

mixed-integer optimization in iSIGHT
– Low number of inputs, outputs, and constraints
– # of passengers is a discrete variable

• Single-objective results:

NPass Range NPass Range NPV     GTOW   
300 7500 325 10,000 47.5 479,000
350 7500 550 10,000 29 787,000
250 7500 550 10,000 29 787,000

x0 x* Objectives
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Gradient-Based Optimization (2)
• Sensitivity Analysis

– Little change in NPV within individual demand bucket, large 
change between buckets

– Steady change in NPV due to range variation

• Scaling
– Unable to scale Hessian for # passengers below O(100)
– Tradeoff: integer solution desirable but not well conditioned

• Conclusions:
– Sensitivity to range => max range at optimal solution
– Design space highly sensitive to discretized demand based on 

# passengers
– Gradient search unreliable, possibly inherently poorly-scaled 

problem
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Design Space
Program NPV vs. # Passengers

(widebody aircraft / 10,000 nmi range)
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Heuristic Optimization
• Genetic algorithms are very well suited for this 

problem
– Avoids local minimums caused by discretized demand function
– More reliable convergence on global maximum (coupled with 

MOST)
• GA results:

• Improvements made to physical model after gradient-based 
optimization makes comparing the two methods difficult

• Trends are still similar

Sub-
population 

size

# of 
generations

Mutation 
rate

NPV GTOW
($B) (lbs)

10 10 1% 273 10000 29.43 512,000
10 12 1% 266 10000 29.37 500,000
12 10 1% 273 9978 29.39 511,000
10 10 10% 274 10000 29.45 514,000
5 10 1% 271 9992 29.4 508,000
10 5 1% 251 9979 29.18 474,000

x* J*

NPass Range 
(nmi)
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Multi-objective Optimization

• Second objective: minimize non-recurring cost (NRC)
– Ideal for manufacturer to reduce initial investment
– Correlated to weight in model, but not same as min. GTOW

• New objective vector:
–

– Weighted sum approach: 

• Results
– Individual objectives mutually opposed

• λ = 1 => max range
• λ = 0 => min range, min # passengers

– Discrete jumps in objective J due to design space
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Pareto Front

• Minimized NRC vs. 
maximized NPV

• Extremely sensitive 
to weighting

• Discrete “jumps” 
dictated by design 
space (# seats)

• Objectives strongly 
opposed

Non-Recurring Cost vs. Net Present Value
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Conclusions & Future Work

• Conclusions
– Successful implementation of optimization for value
– # passengers most greatly affects design solution
– Benefit of longer range aircraft outweighs costs of increased 

weight
– Heuristic algorithms better suited to this problem

• Future work
– Refinement of performance and financial models
– Stochastic demand model to account for market uncertainty
– Dynamic programming approach to allow for flexibility in the 

design process


