

A JOINT PERFORMANCE AND FINANCIAL APPROACH TO AIRCRAFT DESIGN OPTIMIZATION

16.888 Project Presentation

Ryan Peoples Todd Schuman May 9, 2003

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Agenda

- Motivation
- Objectives & problem setup
- Simulation model
 - Cost, revenue, and value
 - Sizing and performance
- Optimization framework
- Design of experiment
- Single-objective optimization
 - Gradient-based
 - Genetic algorithm
- Multi-objective optimization
- Conclusions & future work

Motivation

- Traditional aircraft design objective: minimum GTOW
 - Improved performance
 - Reduced operating cost
- Does not guarantee financial viability of program
- Better aircraft program design methodology would take into account:
 - Performance
 - Development and manufacturing cost
 - Demand
 - Operating cost
 - Market uncertainty
- Better design objective: program value (Markish)

Objectives & Problem Setup

- Objectives:
 - Create an optimization framework to consider performance and finance in aircraft program design
 - Solve for financially optimal designs
 - Program value as objective
 - Deterministic solutions
- Problem setup:
 - Design vector
 - Number of passengers
 - Aircraft range
 - Objective vector: program Net Present Value (NPV)

Net Present Value

- Metric for estimating future value of fiscal activity in current terms
 - Based upon risk-adjusted discount rate (typically 12-20%)
 - Future expected cash flows discounted to reflect opportunity cost of capital and perceived risk of venture
 - NPV is the sum of discounted cash flows:

$$NPV = \sum_{t=0}^{\infty} \frac{P_t}{\left(1+r\right)^t}$$

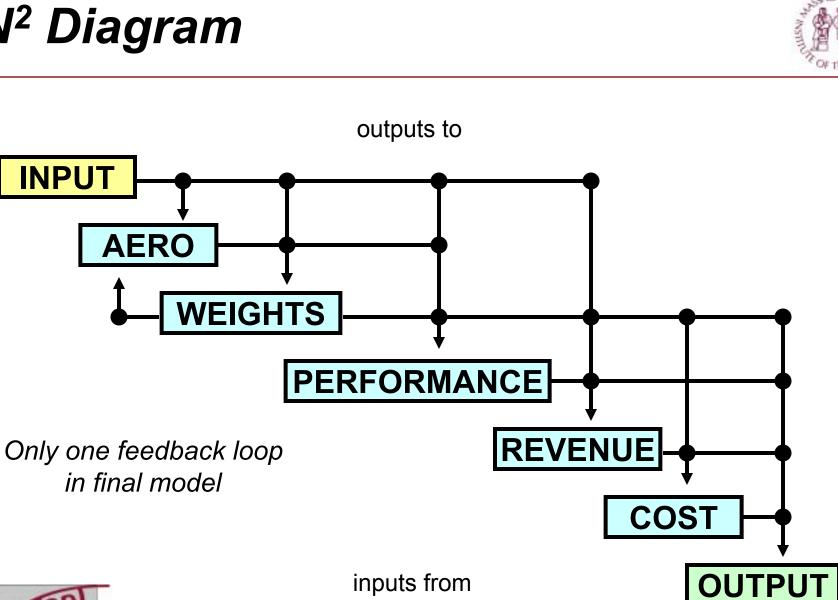
- Positive NPV indicates a profitable investment
- Requires cost, revenue, and demand estimates to calculate future income and expenses

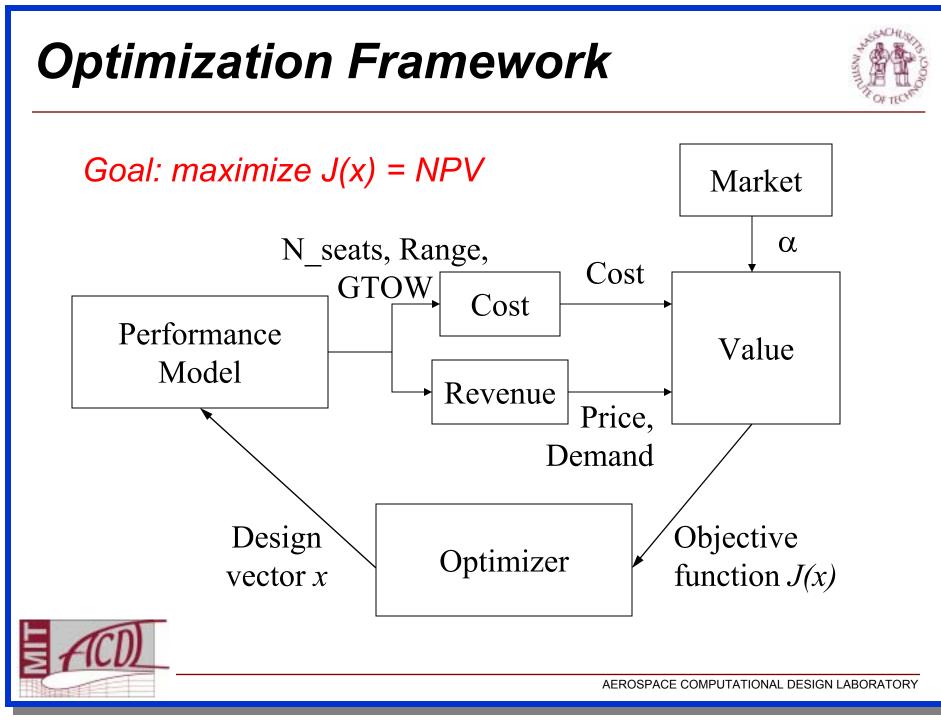
Financial Models

- Cost(Weight)
 - Nonrecurring, recurring costs estimated by process type from breakdown of weights
 - Learning curve effects captured
- Price(# Seats, Range, Operating Cost)

-
$$Price = [k_1 \times (\frac{N_seats}{N_seats_ref})^{\alpha} + k_2 \times (\frac{Range}{Range_ref})] \times Price_ref - \Delta LC$$

- ∠LC accounts for differences in operating cost based on fuel burn as a percentage of overall CAROC
- Demand(# Seats, Range)
 - Baseline demand & growth from empirical data by aircraft "class"


Performance Models



- Performance models based on aircraft sizing routine developed by Prof. Liebeck
- Combination of many different techniques
 - Aerodynamic first principles
 - Empirical data
 - Rules of thumb
- Calculates all necessary aircraft specifications
 - GTOW, fuselage dimensions, fuel fraction, etc.
- Physical model based on DC-10 class aircraft vs. financial model based on 777
 - Physical model re-calibrated to account for this discrepancy

Design of Experiment

- DOE used several times during project to validate model behavior
 - Identified model flaws early in optimization process
- Used "one-at-a-time" setup due to low number of design variables
- Chose initial design vector directly from DOE results
- Example DOE:

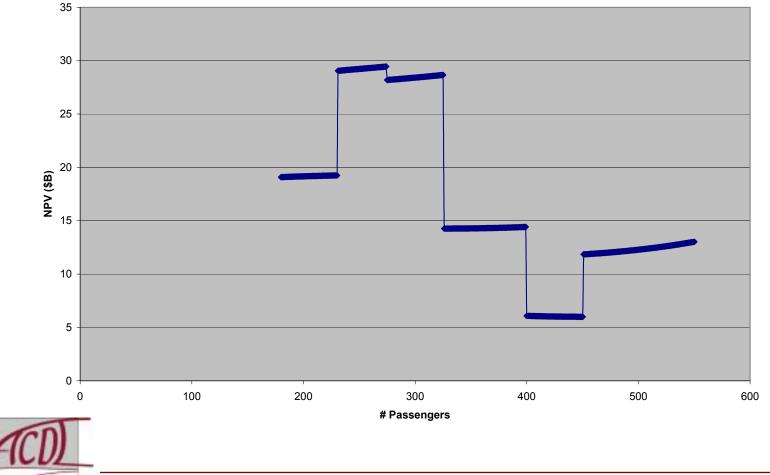
	Varial	oles	Objectives		
Experiment #	# Passengers	Range (nm)	NPV (\$B)	GTOW (lbs.)	
1	250	5500	17.8	352,000	
2	300	5500	18.8	413,000	
3	350	5500	10.1	475,000	
4	400	5500	4.7	537,000	
5	450	5500	5.4	600,000	
6	300	6000	20.9	425,000	
7	300	6500	23.1	436,000	
8	300	7000	25.6	445,000	
9	300	7500	28.3	452,000	

Gradient-Based Optimization

- NPV chosen for single-objective optimization
 - Allowed full functionality test, as NPV depends on physical and financial models
- Used combination of sequential quadratic programming + mixed-integer optimization in iSIGHT
 - Low number of inputs, outputs, and constraints
 - # of passengers is a discrete variable
- Single-objective results:

x ₀		X	*	Objectives		
NPass	Range	NPass	Range	NPV	GTOW	
300	7500	325	10,000	47.5	479,000	
350	7500	550	10,000	29	787,000	
250	7500	550	10,000	29	787,000	

Gradient-Based Optimization (2)


- Sensitivity Analysis
 - Little change in NPV within individual demand bucket, large change between buckets
 - Steady change in NPV due to range variation
- Scaling
 - Unable to scale Hessian for # passengers below O(100)
 - Tradeoff: integer solution desirable but not well conditioned
- Conclusions:
 - Sensitivity to range => max range at optimal solution
 - Design space highly sensitive to discretized demand based on # passengers
 - Gradient search unreliable, possibly inherently poorly-scaled problem

Program NPV vs. # Passengers (widebody aircraft / 10,000 nmi range)

AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Heuristic Optimization

- Genetic algorithms are very well suited for this problem
 - Avoids local minimums caused by discretized demand function
 - More reliable convergence on global maximum (coupled with MOST)
 Sub- # of Mutation x* J*
- GA results:

Sub- population size	# of generations	Mutation rate	x *		J*	
			NPass	Range	NPV	GTOW
				(nmi)	(\$B)	(lbs)
10	10	1%	273	10000	29.43	512,000
10	12	1%	266	10000	29.37	500,000
12	10	1%	273	9978	29.39	511,000
10	10	10%	274	10000	29.45	514,000
5	10	1%	271	9992	29.4	508,000
10	5	1%	251	9979	29.18	474,000

- Improvements made to physical model after gradient-based optimization makes comparing the two methods difficult
- Trends are still similar

Multi-objective Optimization

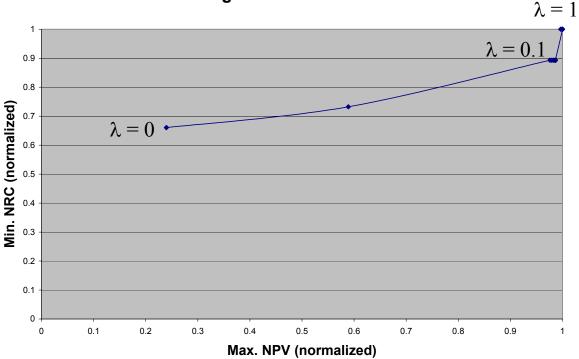
- Second objective: minimize non-recurring cost (NRC)
 - Ideal for manufacturer to reduce initial investment
 - Correlated to weight in model, but not same as min. GTOW
- New objective vector:

$$J = \begin{cases} J_1 \\ J_2 \end{cases} = \begin{cases} \max NPV \\ \min NRC \end{cases}$$

- Weighted sum approach: $J = \lambda * J_1 + (1 - \lambda) * J_2$

- Results
 - Individual objectives mutually opposed
 - $\lambda = 1 \Rightarrow \max range$
 - $\lambda = 0 \Rightarrow$ min range, min # passengers
 - Discrete jumps in objective J due to design space

AEROSPACE COMPUTATIONAL DESIGN LABORATORY


Minimized NRC vs. maximized NPV

- Extremely sensitive to weighting Discrete "jumps"
- dictated by design space (# seats)
- **Objectives strongly** opposed

Pareto Front

Conclusions & Future Work

- Conclusions
 - Successful implementation of optimization for value
 - # passengers most greatly affects design solution
 - Benefit of longer range aircraft outweighs costs of increased weight
 - Heuristic algorithms better suited to this problem
- Future work
 - Refinement of performance and financial models
 - Stochastic demand model to account for market uncertainty
 - Dynamic programming approach to allow for flexibility in the design process

