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ABSTRACT

The charactenstics and performances of a general
aviation aircraft are oplimized using a mulli-
disciplinary numerical model of the airplane, and the
ISIGHT  optimizer.  The medel consists  of
acrodynamics. structures, weight. range and propulsion
modules. It takes as inputs the aircraft geometry and
flight conditions. and outputs a range to be maximized
and a gross takeofT weight 1o be minimized.

The algorithm was validated by the Cessma [72R
Skvhawk cxample, also used as a starting point for the
gradient-based  optimizations. A single-objective
Sequential Quadratic Programming (SQP) opiimization
targeling range alone allows a 81% increase in range, at
the expense of a 65% rise in weight. A multi-objective
SQP optimization allows keeping the incrcase in range
while limiting the risc in weight to 53%. An appropriate
scaling reduces the number of iterations by a threefold
factor.

The constraints on fuselage ratio, wing bending siress
and wing aspect ratio scvercly limit the feasible range
of the design space. As a result, most designs explored
by a genetic algorithm were infeasible, so that this
heuristic technique does not yield any further
improvement.

This study could be casily extended by rcfining the
range module. Mercover, a better cxploration of the
[casible design space would be decisive to improve the
results.

1 -INTRODUCTION

With the increasing availablc computation power,
Multidisciplinary ~ System  Design  Optimization
(MSDQO) has been extensively implemenied in the
preliminary design phasc to perform oplimization of
numerical models consisting of scveral different
modules, As they include structures, aerodynamics,
propulsion and performance issues, aircrafts are ideally
suited for this kind ol study.

Our goal is to optimize the range and the gross take-off
weight of a gencral aviation aircraft. More preciscly, we
are focused on a single engine piston aircraft, taking as
a basic example the Cessna 172R Skyhawk familiar to
most flight simulator users. This leads us to put
reasonable constraints on the aircraft geometry and
performances.

First. we draw the outline of the simulation numerical
modules. and sce how they are validated. Then we
discuss the results of the single objective SQP range
oplimization, and we stress the importance of an
appropriate scaling. as wcll as the role of the
constraints.

Afterwards, we sel up a multi-island genetic algorithm
to explore new regions of the design space. This study
is followed by a multi-objective approach, and a
determination of the Parcto fromt. We finish with a
summary of the previous clements. and with a few
suggestions for further work.



2 - NOMENCLATURE

D Drag force (N)

Dp Fuselage diameter ()
Dy Blade diameter (m)

g Inequality constraint vector
h_ Cruise altitude (m)

J Objective vector

L Lift force (N)

Lp Fuselage length (m)
Ly Wing span (n’)

My Engine weight (kg)
Mg Fuel weight (kg)

Mp Payload weight (kg)

Mo Gross takeoff weight (kg)

Ng Number of engines

Np Number of passengers

% Fixed parameters vector

Py Engine power (W)

R Range (km)

re Fuselage ratio

rw Wing aspect ratio

sfe Specific fuel consumption (™)
Sw Wing area (in)

vV Cruise velocity (m)

X Design variable vector

ap Fraction of power at cruise

Ar Objective weight for the range

Aw Objective weight for the gross takeoff weight
7, Propulsive efficiency

yo, Air density at cruise

g Wing bending stress (MPa)

w Propeller rotation velocity (rpm)

Subscript
0 Cessna 172R Skyhawk value

Superscript
* Single-objective SQP optimum value

3-PROBLEM FORMULATION

3.1 Mathematical definition

The design of a general aviation aircraft is optimized
initially for maximum range R and subsequently with
the additional objective of minimum A7, For that
purpose, we modify the variables in the design vector
x=[Sw; Lu, Ls, D, V,h]": the wing area, the wing span,
the fuselage length, the fuselage diameter, the cruise
velocity and the cruise altitude. More formally, this can
be written as:

R(%.p) }
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subject to:

0<h<6000

3.2 - Bounds of design space

The bounds of the design vector were set as follows. As
we cannot consider negative area or length, we had to
set lower limits to zero. An aircraft whose fuselage
length is lower than 3 meters seems improbable. Wing
span and fuselage length are assumed to be less than 20
meters to allow the aircraft to fit easily in a standard
hangar. A fuselage diameter constrained between 1 and
4 meters seems reasonable for an aircraft of this
category. Finally, 6000 meters is the ceiling for Visual
Flight Rules. As can be seen in Table 1, these values
are compatible with the Cessna case.

Design Min X, Max
variable

Sy 0 16.2 -
Fige 0 11 20
Eg 3 8.28 20
Dy 1 1.22 4
4 0 62.78 -

h 0 2438 6000

Table 1 — Design variable boundaries

3-3 Other constraints

The upper limit constraint on the wing bending stress
0<2000 MPa set previously corresponds to the yield
strength of carbon fiber material. The fuselage ratio is
defined as:
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The lower limit allows the proportions of the aircraft to
remain reasonable: without it, it optimum aircraft would
often look like a flying cigar.

In the same way, the wing aspect ratio is defined as:
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This lower limit allows the final aircraft to differ from a
flying wing full of fuel when optimization is carried
out.

3.4 Fixed parameters

The fixed parameters and their corresponding values
are shown in Table 2 below.

Parameter | Value |Parameter | Value
B 160 bhp Dy 1.91 m
My 70 kg Ng 1
sfe 5.10¢6 My 100
m!
tp 80% Ny 2
@ 2400
rpm

Table 2 - Values of fixed parameters

4 SIMULATION MODEL

4.1 Model outline

Design
vector
Sy
Propulsion e Range
Ly module module
Lp
Aero
Dg module LD R
4 Weight My,
i module Structure
My, module
7]

Optimizer i1SIGHT ‘

Figure 1 — Simulation model

The simulation model illustrated in Figure 1 is
composed of five different parts: a propulsion module,
a range module, an aerodynamics module, a weight
module and a structures module. The simulation code
itself is a C program, and uses ASCII files to
communicate with the optimizer functions of iSIGHT.

The simulation code structure is relatively
straightforward, because it does not include any
feedback loop, as illustrated by the N* diagram in
Figure 2.

Input I

Propulsion

Weight

Structure

Aero ——s

Range —1

Output

Figure 2 — N’ diagram

Knowing the cruise altitude that is part of the design
vector, an ICAO standard atmosphere table allows us to
compute by linear interpolation the corresponding air
viscosity and air density.

4.2 Weight module

The gross takeoff weight is assumed to be the sum of
the empty weight, the fuel weight, the payload weight
and the passenger weight. As we saw it, the payload
weight and passenger numbers are fixed parameters.
Assuming that fuel is stored in the wing, the fuel weight
is estimated from the wing surface and the wing span.
Finally, the empty weight is computed from an estimate
of each of the components of the aircraft.

4.3 Structures module

In order to compute the wing bending stress, we assume
that the wing is subject to the moment due the lift force,
and to the moment due to the wing weight. If we
consider the wing spar as a hollow tube of constant
circular cross-section with a fixed thickness, we can
derive its second inertia moment:
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The wing bending stress in then determined using:
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As seen above, it is important that the wing bending
stress remains below the material yield strength.

4.4 Aerodynamics module

The aerodynamics module computes the lift to drag
ratio used by the range module. As we consider a
stationary flight at cruise, we can assume that the lift is
equal to the aircraft weight.

A great deal of attention is paid to obtain a proper
estimate of the drag, which is decomposed in wing
drag, tail drag, fusclage drag and interference drag.

4.5 Propulsion module

The implementation of this module starts by computing
the power coefficient K, and the advanced ratio K,
defined respectively as:
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Ke= 5wy
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A bilinear interpolation from a digitized efficiency
graph for a 3 bladed propeller aircraft yields then the
propulsive efficiency:

no=f(K oK)

4.6 Range module

The range module takes its input from the weight,
acrodynamics and propulsion module, and is
implemented as a classical Breguet range equation:
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4.7 Algorithm validation

The modules are tested by inputting the reference
values as listed in Tables 1 and 2, and comparing the
resulting R and My, with those of the actual Cessna
172R. The nominal Cessna values are R = 1074 km and
Mo = 1111 kg. The values obtained from our algorithm
are R = 1218 km (+13%) and Mz, = 1309 kg (+18%).
The reasonable agreement obtained indicates that
further work on optimizing the initial design can be
proceeded with,

S - DESIGN SPACE EXPLORATION

A parameter study is performed about the design point
as shown in Table 1, which are actually those of the
Cessna 172R Skyhawk. Each of the design variables is
allowed to vary about the design point and the variation
of range is observed. The results of the parameter study
are plotted in Figs. 3 to 8. The shaded region in each of
Figs. 3, 4, 6 and 7 indicates an infeasible region in
which at least one constraint is violated.

B Cessna 172R Skyhawk
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Figure 3 - Variation of Range with Wing Area

Range dependence with wing span
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Figure 4 - Variation of Range with Wing Span

Range dependence with cruise velocity
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Figure S - Variation of Range with Cruise Velocity



Range dependence with fuselage diameter
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Range dependence with fuselage length
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Figure 7 - Variation of Range with Fuselage Length

Range dependence with cruise altitude
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Figure 8 - Variation of Range with Cruise Altitude

The results indicate that to increase range towards a
maximum, wing area should be increased and fuselage
diameter reduced (Figs. 3 and 6). The other plots of
Figs. 4, 5, 7 and 8 indicate their respective design
variables as already being close to optimal.

6 SINGLE-OBJECTIVE OPTIMIZATION

6.1 Gradient Search Results

The design is optimized for maximum R using the
optimization program iSIGHT. A gradient search
technique, Sequential Quadratic Programming (SQP), is
selected. This creates a quadratic approximation to the
Lagrangian function and linear approximations to the
constraints. The quadratic problem is solved to obtain
the search direction. An update to the Lagrangian is
made upon reaching a new design point along the
search direction. This technique is widely used in
engineering applications and is presently considered to
be the best gradient-based algorithm with strong
theoretical basis. However, it does not assure the
location of a global optimum.

Using SQP, the results obtained are shown in Table 3.

Variables | Lower | Tmtial | Optimum | Upper
bound | pomtx, | x* bound

Sy 0 16.2 35.0 -

Ly 0 11 13.2 20

Ly B 8.28 5.74 20

Dy 1 1.22 1.0 4

V 0 62.78 584 o

h 0 2438 2448 6000

R 1218 1940

My, 1309 1829

c 2000 2000

Py 5 7.47 5.0

g 0.1 0.147 | 0.174

Table 3 - SQP Optimization results

It can be seen that the range obtained by SQP is an
improvement over that of the Cessna 172R. The
constraints on Dy, 0 and r,, have become active.

6.2 Sensitivity Analysis

The definition of normalized sensitivity of R with
respect to a design variable x; about an optimum design
vector x° is

Normalized Sensitivit yzjxi’i)lgﬁ
R(x Xi
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This is calculated for each of the design variables, with
finite differencing being used to calculate the derivative
term. The sensitivities with respect to each variable are
shown in Figure 9.
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Figure 9 — Normalized sensitivity at SQP optimum

It can be seen that at the present optimum, range is most
sensitive to wing span S, and fuselage length Lz

6.3 Relaxation of constraints

Initializing the SQP algorithm from the Cessna design
Xo, we relax successively the three constraints that were
active at x*, and report the results of the optimization in
Table 4.

variavies | x| x* o+25% | Dp+25% | 15425% | x
Sy 350 | 62.22 | 35.05 | 1065 -
Ly 13.2 | 17.64 | 13.25 20 20
Lp 3 5.74 10 6.45 14.34 | 20
Dy 1 1.0 1.0 0.75 1.43 4
4 0 584 | 6497 58.4 3.3 -
h 0 2448 | 4693 2448 2450 | 6000
R 1940 | 3664 2258 3905

My 1829 | 3384 1777 6925

o 2000 | 2500 2000 2000 | 2000
'y 3 5.0 5.0 5.0 3.75

rp 0.1 ] 0.174 0.1 0.116 0.1

Table 4 — Effects of relaxation of constraints

When we relax the wing bending stress constraint by
25%, we observe that the range increases by 89%, but

so does also the gross takeoff weight. In comparison, if
we relax by 25% the constraint on the fuselage
diameter, the range is only increased by 16%. The main
constraint at x* appears to be the fuselage ratio
constraint: if we relax it by 25%, the range increases by
101%. Simultaneously, the gross takeoff weight
increases by 279%, which constitutes clearly a too high
price to pay.

6.4 Single objective scaling

In order to improve the optimization process, it is
important to determine an appropriate scaling. As
beforehand, we regard the range as the only objective,
provided that the constraints are satisfied. To compute
the diagonal coefficients of the Hessian matrix of the
objective, standard finite difference formulations are
employed:

R\ R(x+d)~2R(x)*+R(xi~d)
a-xi 2\ ) &i )

From the diagonal coefficients of the Hessian at the
SQP optimum, we can set up appropriate scaling
factors, and we check their relevance by computing the
new Hessian diagonal coefficients taking scaling into
account. The results are summarized in Table 5.

Design vanable Original Hessian | Scaling Factor New Hessian
coetficient coefficient
Sy -3.05 1 -3.05
Ly -38.59 10 -0.386
Ly -79.28 10 -0.773
Dg -139.1 10 -1.378
V -1.564 1 -1.564
h 0.0136 0.1 0.0045

Table 5 — Scaling and Hessian coefficients

Except for the altitude, the scaling factors are
appropriate, as the new Hessian coefficients are of the
order of magnitude of one. The failure for the altitude
may be explained by the computation step d; , which
may not be appropriate in that case.

Starting from the Cessna design with these scaling
factors, we obtain the same SQP optimum, but the
number of iterations necessary to achieve convergence
is reduced by a threefold factor from 157 to 54.



7 SINGLE-OBJECTIVE HEURISTIC

OPTIMIZATION

Popula- x* Siglands | 10 1slands | 10 1slands | 5 islands | 5 islands
o of 5 of 5 of 10 of 5 of 5
Mutation - 0.01 0.01 0.01 0.001 0.1
1ate

Sy 35.0 | 21.03 63.39 73.68 | 38.22 | 19.61
Ly 13.2 | 10.33 15.97 16.93 | 16.48 | 10.10
Lp 5.74 3.63 14.00 17.22 4.42 3.84
Dy 1.0 2.73 1.05 1.02 1.37 3.98
v 584 | 49.10 67.49 78.78 | 57.38 | 22.61
h 2448 | 2579.5|5132.50 | 101.02 | 1089.8 | 5331.
R 1940 | 254.13 | 3821.96 | 5426.7 | 1326.0 | 3.68
(o2 2000 | 1952 1862 1959 1883 | 1741.
'y 5.0 5.08 4.02 3.89 4.67 5.20
I'r 0.174 | 0.76 0.075 0.059 0.31 1.04

Table 6 — Genetic Algorithm results

We use the standard iSIGHT multi-island genetic
algorithm to perform a heuristic optimization. The goal
of this study is to explore different regions of the design
space from the ones studied by the gradient-based
method. By running the algorithm for 40 generations,
we obtain a reasonably constrained computation time
that does not exceed an hour. We try diverse population
sizes and mutation rates, as described in Table 6. In this
table, figures indicating an infeasible design due to a
constraint violation appear in bold fonts.

Compared to the SQP optimum, the first run with 5
islands of 5 persons is quite disappointing, as the range
is only 254 km. Keeping the same mutation rate of
0.01%, if we try to increase the population size by
rising the number of islands or inhabitants per islands,
we obtain infeasible designs, although the overall range
is actually increased. If we reduce the mutation rate by
a tenfold factor, the range falls to 1326 km. And if we
increase the mutation rate by a tenfold factor, we obtain
a small range of 3.68 km.

As a conclusion, the single-objective genetic algorithm
was not able to improve the SQP optimum design. This
can be explained by the importance of constraints that
make most of the design explored by the genetic
algorithm infeasible.

8 BI-OBJECTIVE OPTIMIZATION

8.1 Bi-objective results

From now onwards, we try to maximize the range and
simultaneously to reduce the gross takeoff weight. As
both objectives are of the same order of magnitude, in
the range of a few thousands, objective scaling factors
are not necessary. We perform iSIGHT weighted sum
approach with the Sequential Quadratic Optimization
algorithm, where the overall objective is a linear
combination of range and gross takeoff weight:

J: Rm_AWW

The range maximization and gross takeoff weight
minimization are clearly conflicting objectives. Indeed,
an increase in range can easily be carried out by an
increase in fuel weight, which in return increases the
overall weight of the aircraft. Results for different
values of the weight factors are presented in Table 7.

The case 2 shows that with a proper choice of scaling
coefficients, it is possible to keep the range obtained
using the single-objective SQP algorithm, and to reduce
the gross take-off weight by 7.9%. As a result, we can
reasonably say that the multi-objective approach is
successful. The case 3 shows what happens when we
put more emphasis on the gross takeoff weight than on
the range, as it is usually done in classical acronautics
preliminary design practice. We obtain an aircraft of
1156kg and with a range of 1265km: its geometric
configuration and its performances are relatively close
to the Cessna case Xo.

Variables | x, x* | Case 1l |Case 2| Case 3
Ap - 1 2 2.50 1
Ay - 0 1 1 2
Sy 16.2 | 35.04 | 30.74 | 31.50 | 18.5
Lo 11 | 13.24 | 1239 | 12.55 | 9.62
L 828 | 575 | 5.83 |5.742| 4758
Dpg 122 | 1.0 1.0 1.0 1.0
4 62.78 | 58.37 | 61.24 | 62.36 | 63.03
h 2438 | 2445 | 2447 | 2998 | 2447
R 1074 | 1940 | 1893 | 1937 | 1265
My, 1111 | 1830 | 1655 | 1686 | 1156
o 2000 | 2000 | 2000 | 2000
Vi 7.47 5 5 5 3
o 0.147 | 0.174 | 0.172 | 0.174 | 0.21

Table 7 — Bi-objective optimization results
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8.2 Pareto front

An easy way to visualize the range-weight tradeoff is to
determine the Pareto front. The full-factorial approach
was attempted, but it was decided to restrict the study
range to a narrow region around the SQP single-
objective optimum, as specified in Table 8.

Design Min Max Number of
variable levels
Sy 30 40 5

Lo 10 20 5

L 10 13 6

Dy 0.8 4 8

4 50 70 4

h 2000 3000 4

Table 8 Parameters for full-factorial exploration

According to this table, we explore 19200 design
configurations. If we try to increase the number of
explored levels, the computation time reaches several
hours. And if we attempt to enlarge the range of the
explored region of the design space, the number of
feasible designs drops significantly. Using the current
configuration, 2544 runs are feasible.

It is obvious that the Pareto front represented on Figure
10 is not accurate, as we do not explore the whole
design space. However, it clearly exhibits the tradeoff
between a low gross takeoff weight and a high range.
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Figure 10 - Pareto front

300

9 CONCLUSIONS

Through a single objective SQP optimization, we were
able to increase the range by 59%, at the expense of a
concurrent increase in gross take-off weight. Starting
from the same initial design vector, the choice of
appropriate scaling factors accelerated the algorithm
convergence speed by a threefold factor. At the
optimum, the normalized sensitivity of the range is
greatest with respect to the wing span and the fuselage
length.

At the SQP optimum, three constraints are active, and
by releasing independently each of them, we can
achieve a significant improvement in range, while the
aircraft becomes physically meaningless. Actually,
most of the design space prescribed by the lower and
upper bounds is made of infeasible designs. This
explains the failure of the heuristic approach through a
multi-island genetic algorithm, as most of the explored
designs were infeasible.

When we carry out a multi-objective weighted sum
approach incorporating the minimization of the gross
takeoff weight, we can keep the range obtained
previously, and decrease concurrently the aircraft
weight by 7.9%. When we increase the weight of the
gross take off weight in the cumulative objective
function, this yields aircraft characteristics and
performances very similar to the reference Cessna: this
reflects well the industrial practice to put the emphasis
on weight minimization.

Future work ideally aims at improving the accuracy of
the model, which currently predicts performances of the
Cessna within a 20% error margin. A better estimate of
the aircraft gross take off weight seems especially
critical. Moreover, the constraints on the fuselage and
wing aspect ratio appear per se relatively arbitrary, as
they are set at the optimizer level. They probably
indicate that our simplistic model does not take into
account some critical physical phenomenon.

A deeper knowledge of which part of the design space
is actually feasible would also be particularly valuable.
As there are three constraints and eight design
variables, this would require an extensive study.
However, this step may allow us to set up properly the
genetic algorithm in order to explore different parts of
the design space.



