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ABSTRACT 

Preliminary ship design is currently more art than 
science, heavily dependent on highly experienced naval 
architects.  The use of genetic algorithms is proposed as 
a method for improving ship design through more 
effective exploration of the design space.  Three main 
points are advanced in this paper.  First, genetic 
algorithms (GA) are a highly effective tool for the 
exploration of large-scale, nonlinear design spaces and, 
when combined with gradient based search techniques, 
may provide a more computationally efficient means of 
identifying near optimal designs.   Second, GA methods 
may provide a high utility tool that can enhance the ship 
design process.  Third, the current design choice 
method of weighted objective measures of effectiveness 
can mask potentially useful areas of the design space.  

INTRODUCTION 

Ship design is a complex endeavor requiring the 
successful coordination of many different disciplines, 
both technical and non-technical.  Preliminary design is 
the least defined stage of the ship design process and 
seeks to define the basic payloads and ship size 
characteristics.  It begins with highly experienced 
decision makers and end-users who attempt to articulate 
their desires and the tradeoffs they are willing to allow.  
This process is more art than science as decision 
makers must select design goals without a complete 
understanding of the effect of those goals on the final 
design.  Using these goals, experienced naval architects 
work through design trades in an informal manner, 
relying primarily on their experience to guide major 
design parameters.  With several designs created in this 
manner, a selection is made by comparing estimated 
costs versus designed performance.  Once preliminary 
design has been accomplished, the more formalized 
process of iterative design can begin. 

                                                           
 
† This paper is declared a work of the U.S. Government and is not 
subject to copyright protection in the United States. 

This paper builds on previous work1 to further extend 
the use of formalized optimization methods in 
preliminary ship design.  The goal of this effort was to 
examine methods for exploring a design space currently 
explored by experienced designers using heuristics—
tacit knowledge gained through a process of trial and 
error, often over the course of years.  Selection of 
designs and design goals by experts is highly dependent 
on specific individuals involved in the process, more 
specifically, their personal and professional 
experiences.  Tools that help make the outcome of the 
preliminary design process more consistent would be 
invaluable.  These tools are meant to augment, rather 
than replace the skills of the highly experienced 
decision maker.   

An existing simulation code, the MIT Math Model, was 
selected as the modeling core.  This model is primarily 
empirical, developed to perform preliminary mono-hull 
warship design.  Both gradient search and genetic 
algorithms were wrapped around the simulation code 
core in order to explore the highly nonlinear trade-space 
associated with ship design. 

This paper provides a brief discussion of the MIT Math 
Model simulation code, followed by an initial trade-
space exploration.  Next, gradient search methods are 
used to explore the trade-space, followed by genetic 
algorithms.    The paper closes with a conclusions and 
future work section that highlights the opportunities for 
further investigation into formalized methods of 
preliminary ship design. 

MODEL IMPLEMENTATION 

The MIT Math Model (MMM) is a primarily empirical 
model, originally developed in 1975 by Graham and 
Hamly.  It is based on data obtained from frigates and 
destroyers built since the end of World War II and is 
applicable to the design of 2500 to 8500 ton mono-hull 
surface combatants using standard Navy design 
practices.  The model’s primary purpose was, and still 
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is, to serve as an educational tool for naval architects 
that is “a balance between simplicity, sophistication / 
completeness, generality, and compatibility with 
computers.”   The MMM has gone through numerous 
revisions since its original inception with the most 
recent being a conversion to MATLAB by Wolf, Riyadi 
and Sudoff1.  The MATLAB version of the MMM 
serves as the core model upon which this optimization 
work is built.   
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Equation (1) describes the optimization formulation 
mathematically.  The constraints ensure the variables 
are within acceptable bounds, the ship has sufficient 
power and size to meet requirements, the ship is stable 
at sea and that it does not go too far outside the bounds 
of the empirical model.  The key variables used within 
the ship model along with their upper and lower bounds 
are included in Tables 1 and 2.   
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As with any model, especially of a complex system, 
there is a trade between fidelity and execution time.  
Examination of a large number of solutions is highly 
desirable, especially in the case of a design space that 
contains discrete variables.  The MIT Math Model is an 
extremely efficient model, allowing very high numbers 
of “design experiments” to be executed. 

Table 1. Continuous Input Variables of the MIT 
Math Model 

Continuous Variables Min 
Value 

Max 
Value

Length (ft) 250 600 
Beam (ft) 10 75 
Cp (Prismatic Coefficient) 0.54 0.64 
Cx (Max Section Coefficient) 0.7 0.85 
Hull deck height (ft) 8 12 
Deckhouse deck height (ft) 8 12 
Fraction of min station 0 depth (ft) 1 1.5 
Fraction of min station 10 depth (ft) 1 1.5 
Fraction of min station 20 depth (ft) 1 1.5 
Bilge height (ft) 1 10 
KG margin 0.5 1 
Volume factor 3.5 5.2 
Fuel (lton) 10 600 
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Table 2. Discrete Input Variables of the MIT Math 
Model 

Discrete Variables # Options 
# of hull decks 1-4 
# of deckhouse decks 1-4 
Engine Choice 7 
Engine-Prop Configuration 4 
Generator Choice 7 
# of generators 2-4 
Payload Choice 48 
Deckhouse Material (A1,Steel)  2 
Collective Protection System T/F 

 

MODEL VALIDATION

To validate this model, an actual US frigate design, the 
FFG-7, was used.  Data was obtained for the ship from 
ASSET, a standard US Navy warship design tool, 
including ship hull dimensions, generator type and 
number, as well as other ship characteristics.  Since the 
MIT model generator choices were all more than 50% 
larger than the one used on the FFG-7, the parameters 
for the FFG-7 were entered as a new generator choice.  
The payload of the MIT model was not identical to the 
FFG-7, but major components such as a helicopter and 
large weapons were included in the validation model.  
These inputs, shown in Table 3, were entered into the 
MATLAB model; comparisons of results are shown in 
Table 4.  The largest error, range, is due to the specific 
fuel consumption calculation which assumes no 
dependence on output power thus overestimating range 
which is calculated at non-optimal specific fuel 
consumption.  The remaining errors can also be 
explained due to model simplifications and are within 
accepted tolerances for this stage of design.    

INITIAL DESIGN SPACE EXPLORATION 

Combinatorial and Design of Experiments (DOE) 
methods were utilized in order to better understand the 
ship design landscape.  As stated in the previous 
section, the efficiency of the empirical ship model 
enables large-scale exploration of the trade space.  (In 
compiled form, the model is able to check 
approximately 100 designs per second.)  First, the 
MMM was run through a thorough combinatorial 
exploration of over 6.9 million design options, 
computing 53,897 feasible designs, a ratio of about 
1:130.  The full run was completed on a personal 
computer in approximately 20 hours.      

Table 3. Model Validation Inputs for FFG-7 

Inputs (Design Vector) Value 
Length (ft) 408 
Beam (ft) 44.8 
Prismatic coefficient .6 
Maximum section coefficient .75 
Number of hull decks 2 
Number of deckhouse decks 3 
Average hull deck height (ft) 9.77 
Average deckhouse deck ht. (ft) 8.58 
Bilge height (ft) 9.5 
Engine choice 6 
Engine/propeller combination 2 
Generator choice (Data entered) 
Number of generators 4 
Fuel Weight (lton) 550 
Deckhouse mat'l (Al=1, steel=2) 2 
KG Margin 1 
Collective Protection System None 
Volume factor 3.5 
 

Table 4. Model Validation Comparisons to FFG-7 

Comparison Outputs Model  FFG-7 
Frigate 

% 
Variation 

Draft (ft) 15.91 15.69 1.40% 
Station 0 Depth (ft) 42.28 39.54 6.93% 
Station 10 Depth (ft) 29.04 30 -3.20% 
Station 20 Depth (ft) 30.96 30.86 0.32% 
Full Load Weight (lton) 3738 3935 -5.01% 
Installed Power (hp) 50004 43000 16.29% 
Ave kW Load (kW) 1244.9 1372.08 -9.27% 
Ave kW Margin Load (kW) 2749.6 3382.95 -18.72% 
kW Error 2.15% ?? (>0)  
Area Error -0.29% ?? (>0)  
Volume Error -.0.26% ?? (>0)  
Stability Measure (GM/B) .0955 .086 11.05% 
Cost ($M) 348.5   
Max Sustained Speed (kts) 31.5161 29+ ~8.68% 
Range (nm) 5628.2 ~4200 ~34.00% 

 

Given the high number of infeasible designs and the 
clustering observed in the feasible designs, it is 
apparent that there are “design feasibility islands” 
surrounded by large areas of infeasible ship designs.  
(Refer to Figure 2.)  As will become clear later in the 
report, these islands have significant impact on 
effectiveness of heuristic and formal mathematical 
optimization techniques.  It should also be noted that 
within the feasibility islands, the design landscape is 
discontinuous due to the many discrete variables such 
as engine type, engine number and combat payload. 
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Feasible areas 

As previously mentioned, gradient-based methods are 
useful for analyzing the continuous regions of a design 
space.  Given this, the problem had to be significantly 
limited to a region of the design space with continuous 
variables only.  Table 5 shows the continuous variable 
used and their bounds.  Table 6 shows the input 
variables held fixed and their assigned values.   

Sequential Quadratic Programming was used to test the 
effectiveness of gradient-based methods in exploring 
the restricted ship design space.  The optimization was 
implemented using the MATLAB ‘fmincon’ function.  

. 
Figure 2:  Visualization of the ship design space
Table 5:  Free design variables with upper and 
lower bounds. 

Design Variable Min value Max value 
ength  250 600 
eam‡ (38.5) (63.2) 
rismatic coefficient 0.54 0.64 
aximum section 0.75 0.85 

uel Weight 100 600 
 

Table 6. Fixed Design Variables 

Variable Fixed 
Value 

umber of hull decks 2 
umber of deckhouse decks 3 
verage hull deck height 9.77 
verage deckhouse deck height 8.58 
action of min depth at Sta. 0 1 
action of min depth at Sta. 10 1 
action of min depth at Sta. 20 1 
ilge height 9.5 
ngine choice 6 
ngine/propeller combination 2 
enerator choice 3 
umber of generators 4 
yload choice 48 

eckhouse mat’l (Al = 1, steel = 2) 2 
G Margin 1 
ollective Protection System 0 
olume factor 3.5 

 

                                                         
The values for Beam were determined using a length-to-beam ratio 
ounded by the constraint values. 

The FFG-7 design was chosen as the initial design 
vector.  Detailed analysis of the Hessian matrix 
indicated that scaling was an issue; thus all variables 
were scaled to O(0) using an interface between the 
optimization code and the simulation code.   Post-
scaling, the gradient optimization was very well 
behaved and was insensitive to the initial design vector, 
generating similar results regardless of starting point.  
The only problem with this method is in its inability to 
handle the model’s discrete variables.  The gradient-
based optimum is shown in Table 7  

Table 7:  Gradient-based optimum 

  Design Variables:  
 Time L L/B Cp Cx Fuel Spd

Gradient 
Optimization 2s 436 9.5 0.54 0.75 481 32.86

 

GENETIC ALGORITHMS 

As previously noted, the ship design space is highly 
nonlinear.  There are many discrete variables, such as 
engine type (power), propeller number and type and 
payload (determines combat capability).  Gradient 
methods can only handle these types of variables by 
running separate optimizations for each discrete 
variable combination or by replacing discrete variables 
with continuous approximations and then rounding to a 
discrete variable after optimization.  Performing 
separate optimizations for each set of discrete variables 
becomes extremely inefficient for large numbers of 
variables and rounding is limited by lack of a 
continuous gradient.   

Heuristic methods are able to handle both discrete and 
continuous variables, making them well suited to large, 
multidisciplinary design problems.  Genetic algorithms 
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were selected over other heuristic methods because of 
their ability to handle discrete variables easily and 
because they can be used to develop a population of 
solutions useful in multi-objective optimization.   

The Genetic Algorithm Optimization Toolbox (GAOT) 
was used as the starting point for the heuristic portion 
of the ship design space exploration.  Default settings 
utilized initially included floating point genes with a 
normalized geometric selection§.   

Mutation was performed on a specified number of 
randomly selected individuals using four different 
operators – boundary (one gene mutated to a boundary 
value), uniform (one gene uniformly mutated between 
the boundaries), non-uniform (one gene modified by a 
Gaussian distribution from is original point)**, and 
multi non-uniform (similar to non-uniform, but 
affecting all genes).  The mutation rates presented in 
this paper are defined as the number of mutations per 
generation.  

Crossover operations utilized three operators – 
arithmetic (a random interpolation between the 
parents), heuristic (an extrapolation of the vector 
formed by the two parents in the direction of the better 
parent), and simple (genes are exchanged between 
parents).  All crossover rates are defined as the number 
of crossovers, regardless of total population.  

The default mutation and crossover rates are included in 
Table 8 and Table 9. 

Table 8:  Default mutation rates 

Boundary Uniform Non- 
Unifiorm 

Muti-Non- 
Uniform 

4 4 4 6 
 

Table 9:  Default crossover rates 

Arithmetic Heuristic Simple 
2 2 2 

 

A flowchart for a basic genetic algorithm is shown 
Figure 3. 

 
                                                           
§ Normalized geometric selection is similar to a Roulette Wheel 
selection, but normalizes the fitness values geometrically. 
** The standard deviation of the Gaussian distribution is reduced over 
generations, causing the variable band to narrow from generation to 
generation.  This method is similar to cooling schedule in simulated 
annealing. 

 

Figure 3:  Flowchart of basic genetic algorithm 
(Taken from GOSET 1.03 Manual)  

Initial GA Results 

As an initial check on GA performance, a population 
size of 80 was run for 100 generations, using the default 
values (including the design space limitations) listed in 
the previous section.  The results represent the best 
design solution based on the remaining population at 
the end of the GA run and are almost identical to the 
gradient-based solution.   

A side-by-side comparison of the genetic algorithm and 
gradient based solutions is provided in Table 10.  

Table 10:  Genetic Algorithm Performance 
Compared with Gradient Search (SQP) 

  Design Variables:  
 Time L L/B Cp Cx Fuel Spd

Gradient 
Optimization 2s 436 9.5 0.54 0.75 481 32.86

Genetic 
Algorithm 62s 431 9.4 0.54 0.76 479 32.80

 

Also included in the table is computation time.  The 
genetic algorithm requires over 30 times the 
computational effort (62 sec. vs. 2 sec.) as the gradient 
search method.    Given that both algorithms produce 
valid solutions (the gradient algorithm is actually 
slightly better by 0.1%), it is reasonable to criticize the 
greater than 30x time penalty associated with the GA 
method.  However, we must keep in mind the fact that 
our problem has been simplified to analyze a 
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continuous region of the design space by holding the 
discrete design variables constant.  The gradient method 
simply does not work once the problem is scaled up to 
include all design variables and the full design space. 

GA Tuning

All heuristic methods, including genetic algorithms, 
require proper tuning to ensure a good balance between 
design solution quality and computational efficiency.  
Population size and mutation rate were investigated in 
more depth during this study.  The results of multiple 
GA runs were analyzed to produce recommended 
performance settings.  

As mentioned previously, there are 4 types of mutation 
in the GAOT implementation- boundary, uniform, non-
uniform and multi-non-uniform.   The ratio between the 
individual mutation rates is 2:2:2:3, respectively.  A 
Mutation Factor (MF) was defined that acts as a 
multiplier on this basic ratio: 

[ ]TMFarrayMutation 3222*=     (2) 

The value of MF was varied from 1 to 3.  Population 
size was also varied from 20 to 100 in increments of 20 
members.   In addition, the termination criterion was set 
up to be the minimum of 1) 100 generations or 2) 
within 0.1% of the best gradient result.  The second 
termination criterion was set to the best gradient result 
to tune the number of generations required without 
having to perform separate trials.  For each population 
size and mutation factor, five trials were performed to 
reduce the effects of randomness in the genetic 
algorithm on the results.  Table 11, Table 12, and  
Table 13 show the average results of the best value for 
the objective (speed), the computation time, and the 
number of generations respectively. 

The overall best performance in Objective Function 
value was obtained using a population size of 100 and a 
mutation factor of 2.  The optimum speed was 32.8 
knots.  While this set of tuning parameters did not have 
the fewest number of generations, nor the best time, the 
overall average across all the combinations in 
consideration of solution, time and number of 
generations makes it the ‘winner’.  Mutation factor 
seems to be the greater driver of performance.  While 
decreasing population size increases the computation 
time, a Mutation Factor of 2 resulted in near optimum 
results in all 25 runs.  Based on the results from this 
algorithm, a different mutation factor may not only take 
a longer time to calculate, but may not reach a near 
optimum.  Furthermore, a larger population size may 

further increase the performance of the GA, although 
this was not investigated.  

Table 11:  Five run average speed 

  Mutation Factor (MF) 
Pop Size 1 2 3 

20 19.67 32.84 32.76 
40 26.11 32.83 32.79 
60 32.80 32.81 26.27 
80 26.20 32.84 32.82 

100 32.80 32.83 32.84 
 

Table 12:  Five run average computational time 

  Mutation Factor (MF) 
Pop Size 1 2 3 

20 43.87 52.03 87.07 
40 36.09 45.07 62.13 
60 32.25 35.17 56.52 
80 30.62 32.93 65.47 

100 27.12 51.62 37.68 
 

Table 13:  Five run average number of generations 

 

  Mutation Factor (MF) 
Pop Size 1 2 3 

20 95.4 71.0 85.8 
40 86.0 63.4 62.2 
60 79.2 53.0 61.6 
80 82.2 50.6 70.8 

100 74.6 78.6 41.0 

Another result from this analysis was the effect of the 
mutation factor on the calculation time.  As mutation 
factor increases, the computation time also increases.  
In fact, it has a more significant impact than population 
size.  This is caused by the implementation of the 
mutations.  Mutation is performed on a set number of 
individuals in this implementation based on the 
mutation factor.  As the mutation factor increases, the 
number of mutations increases proportionally.  Since 
the algorithm only re-evaluates a particular 
chromosome if its composition has changed, this 
directly increases the number of simulation code calls.  
Therefore, the only difference caused by the population 
size is during initialization.  (All designs must be 
evaluated in the first generation.)  The absolute nature 
of the mutation factor may not be the best 
implementation, given that it is not truly a rate when 
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compared between different population sizes.  Future 
work could modify the mutation and crossover rates to 
be true rates, ensuring a change is made to a set 
proportion of the population. 

Extension of the Genetic Algorithm to Multi-
Criteria Analysis 

The genetic algorithm implementation described in the 
previous section was extended in order to evaluate four 
objectives- speed, range, combat capability, and cost.  
In keeping with standard practice in ship design, the 
first three objectives were merged into an overall 
measure of effectiveness (OMOE).  The genetic 
algorithm was then used to perform a multi-objective 
optimization of cost versus OMOE. 

The GAOT used for single objective optimization did 
not have an imbedded capability to perform multi-
objective optimization.  A toolbox called GOSET, 
developed at Purdue University, was used to perform 
this optimization.  Like the GAOT, it uses a floating 
point representation of the chromosome.  However, it is 
different in its implementation of the various genetic 
operators.  Selection is done using a roulette wheel 
approach similar to GAOT.  Crossover is performed 
using a simulated binary method where each variable of 
the two parents are increased and decreased the same 
amount on the two children such that the average value 
for the parents and children remain the same.  The 
amount of movement is based on a probability 
distribution where shorter movements are more likely.  
This form of crossover is performed on each variable in 
the two parents to create two new children.  Sixty 
percent of the population is selected for crossover. 

Mutation is done using four operators.  Each operator 
has a small percentage chance of being applied to a 
variable.  The first operator is total gene mutation 
where there is a 0.1% change of assigning a new value 
to a single randomly within the variable bounds.  The 
second operator is relative gene mutation where there is 
a 0.2% chance of multiplying a variable by a fraction 
determined from a Gaussian distribution.  The third 
operator is absolute gene mutation where there is a 
0.2% change of an amount is added to a variable based 
on a Gaussian distribution.  The fourth operator is 
similar to the first but only operates on integer 
variables.  This operator has a 0.08% chance of 
occurrence. 

Finally, to enable the genetic algorithm to better locate 
the Pareto front, two additional operators were used: 
elitism and diversity control. At each generation elitism 

causes the genetic algorithm to retain the non-
dominated designs found up to that point.  Up to 50% 
of the population set can be devoted to these “best” 
solutions.  Diversity control is also used to spread the 
solutions across the Pareto front.  Diversity control 
works by applying a fitness penalty to a design based 
on how many designs are in close proximity, ensuring 
that all designs do not cluster in one area of the Pareto 
front.   

PARETO FRONT ANALYSIS 

The four objectives (range, speed, combat capability, 
and cost) are generally considered to impact design in 
opposition to one another.  For example, for a fixed 
combat capability, increasing speed also increases cost.  
Likewise, increasing range decreases speed.  These 
effects are seen clearly in Figure 4 and 5.  As we have 
noted before, the ruggedness of the graphs indicates  the 
significant nonlinearities of the problem. 

Experienced decision-makers could perform design 
selection using information derived from  
Figures 4 and 5 if current practices generated this type 
of information.  Unfortunately, in general, this type of 
information is not presented to decision-makers. 
Furthermore, visualization and data processing becomes 
a greater challenge as we move beyond bi-objective 
problems or pair-wise comparisons of objectives.  In an 
effort to make the optimization outputs more 
manageable, an Overall Measure of Effectiveness 
(OMOE) was utilized.   

OMOE is a linear combination of three “orthogonal” 
objectives: range, speed and combat capability. 
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Figure 4. Pareto Front of Speed, Range, and 
Cost for Designs with Combat Capability at 1.
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  OMOE=.15*Range+.3*Speed+.55*CombatCap    (3) 

In order to use the above equation, the results for range 
and speed were normalized: 

Speed: [20,45] [0,1] 
Range:[1000,5000] [0,1]                      (4) 
 

Values outside the above ranges were assigned at the 
normalized distribution limits.  For example, a speed of 
15 kt. is assigned a value of 0.  Combat capability is 
reported as a normalized value by the model. 

In this case, a Pareto front has been created based on 
the Overall Measure of Effectiveness (OMOE) and 
cost.  Figure 6 shows the results of two optimization 
methods used to determine the Pareto Front- a 
combinatorial mesh (shown in blue) and a genetic 
algorithm (GA) (shown in red).  The non-dominated 
front, built from the combined data set, is shown in 
green. While there is no guarantee that the true Pareto 
front has been found, we can observe that the genetic 
algorithm performed better than the combinatorial 
mesh, finding better designs (lower cost, better OMOE) 
than the gradient based optimization algorithm in most 
cases.  This is because the GA allows design variables 
to span a greater range of the design space whereas the 
combinatorial mesh is limited to discrete points within 
the design space. Also note that the two fronts clearly 
show multiple concave regions, another indication that 
our design landscape is rugged (complex). 

Given the large range of overall ship design options in 
terms of OMOE and cost, it is important to understand 

how the design description, or design vector, changes 
with changing position along the Pareto front.  Are 
neighboring designs closely related to one another or is 
the relation between neighboring designs more random?  
The question is even more significant due to the 
unusual stair step nature of the Pareto front.  Detailed 
analysis showed “design clusters” along the front, with 
drastic changes in either cost or OMOE occurring as 
discrete variables were changed.  The discrete variables 
most responsible for these clusters were propulsion 
engine type and configuration and combat payload. 

Figure 5. Pareto Front of Speed, Combat 
Capability, and Cost for designs with Range 

Over 5000nm Figure 6. Pareto Front of OMOE vs. Cost Using 
Two Methods 

Engine types progress from diesel engines through 
LM2500 gas turbines to LM6000 gas turbines.  Within 
the engine progression, in general the number of shafts 
goes from 1 to 2, with the exception of a 2 diesel 
engine/2 shaft combination that fills an intermediate 
power void.  Figure 7 shows the area of the changes in 
propulsion.  While this paper does not allow for 
description of the individual combat payloads, in 
general as cost increases along the Pareto front, the 
combat capability measure also goes up.  There is some 
variation within the design clusters which accounts for 
some of the smaller gaps in the steps along the front.  
Overall, both trends make sense:  speed and combat 
capability increase with cost.  The conclusion is that the 
changes progress in a logical order, but through discrete 
jumps.  

 

 

 

8 



ANALYSIS OF OVERALL MEASURE OF 
EFFECTIVENESS 

We have shown how the model can be used to develop 
a Pareto front.  However, the mathematical nature of 
OMOE ensures that Pareto fronts generated with this 
method are merely one of many.  More specifically, 
designs which are on the Pareto front for one particular 
OMOE formulation may not be on a Pareto front for a 
differently  weighted OMOE.  In the case of ship 
design, for example, our intuition tells us that varying 
weights given to speed, range and combat capability in 
OMOE might significantly change the design choice.  
For example, pushing the combat capability weighting 
to zero should push designs with high speed and range 
and the minimum acceptable combat capability to the 
Pareto front.   

Logical analysis and experience with ship design and 
acquisition processes tells us that the weightings 
stakeholders place on OMOE components and their 
reasons for these choices are often not explicitly stated 
and vary widely between stakeholders. If a multi-
criteria decision is made with weighted objectives, the 
objective weights are typically assigned based on 
‘expert’ opinion, usually before any analysis has been 
performed.††  In addition, weightings also change over 
time as the stakeholders’ opinions are altered by 
interaction with others, new information, etc.  Ideally, a 
robust design should be selected: one that varies little as 
OMOE weighting changes.  A high degree of 
sensitivity to small weight changes is a warning sign.   

Because of the impact weighting factors could have on 
design choices, analysis was undertaken to gain insight 
to how OMOE affects design choices.  All factors 
                                                           
†† In an ideal case, the weightings would be influenced by an 
operational analysis based on mission requirements.  In practice, it is 
difficult to say whether this is always the case. 

(speed, range and combat capability) were normalized 
to produce individual objective function MOEs (as 
noted earlier).  That is, the design range (min, max) for 
each objective was normalized (to a value from 0-1).  
Recall that OMOE is a weighted sum of each design 
objective:   

OMOE=x*Range+y*Speed+z*CombatCap    (5) 

The weights for each MOE are varied from 0 to 1, with 
the total weight for all three factors summing to 1.  For 
example, a Speed weighting of 0.7 and Range 
weighting of 0.2 drives Combat Capability to have a 
weight of 0.1.   

Figure 7:  Engine type and shaft number based on 
cost and MOE. 

To illustrate how selection of the “best” design varies 
for each set of weightings, ship cost was constrained to 
$350M.  MOE weights were then varied for all designs 
below this cost point.  (Data from the combinatorial 
mesh was used for this portion of the analysis.‡‡)  
Design variables were normalized over the following 
ranges:  Speed (Vs) from 20 to 45 knots, Range (Eact) 
from 1000 to 5000 nautical miles (NM) (arbitrary 
threshold and goal values for speed and range).  The 
design with the highest OMOE, for the cheapest cost 
was chosen.  In Table 14, each cell contains the optimal 
design for the combination of Vs and Eact weighting 
factors.  It is notable that only 11 designs (out of 540 
non-dominated designs less than $350M) are selected 
as ‘best’ when the entire range of possible weighting 
factors is used to calculate OMOE.  Our conclusion 
from this analysis is that design choices are affected by 
the weighting factors used in the OMOE calculation 
and that OMOE overlooks many designs that might be 
preferable to the ones chosen using this method.   

Table 14. Design ID vs. Speed and Range Weights 

Spd→
Rng↓ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0  d  f    h   g 
0.1         i   
0.2  e          
0.3    c  j      
0.4 b           
0.5      k      
0.6            
0.7            
0.8            
0.9            
1 a           

 

                                                           
‡‡ Our GA implementation only considered one set of objective 
weights in producing OMOE though it is possible to scale the 
implementation to perform the optimization on any number of 
objectives. 
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Additional analysis on the impact of individual MOE 
normalization revealed that this process also 
significantly impacts the ‘optimal’ design choice. There 
are a couple of drivers for this phenomenon.  Some 
designs were eliminated because they were effectively 
identical when the goal/threshold bounds of the 
normalization procedure were taken into account.  For 
example, a range performances of 5000 NM and 6000 
NM become identical if the goal range is 5000 NM.  

To explore this impact, the OMOE analysis was 
reperformed using the minimum and maximum values 
of all designs that meet the cost constraint as the 
normalization limits.  For this analysis, the values were:  

Speed: [25.8,46.0] [0,1] 
Range:[1287,7323] [0,1]                      (6) 

 

This results in some significant changes to the selected 
designs as shown in Table 33.  Six of the designs from 
using the goal and threshold limits above were still 
present, indicated by the lower case letter designation.  
These designs, however, are at the extremities of the 
possible OMOE.  More significant is the number of 
designs that change, especially in the center region.  
The Goal/Threshold value normalization resulted in the 
design space being dominated by design “c” (Speed 
40.7kts, Range 5290nm, Combat capability .95, Cost 
$329M) while the design space min/max value 
normalization resulted in the design space being 
dominated by design “R” (Speed 40.2kts, Range 
6732nm, Combat Capability .95, Cost $333M).  The 
impact here is significant: changing the MOE 
normalization  procedure gained an increase of over 
30% in range for about 1% less speed and 1% more 
cost.  While it is a matter of opinion which design is 
indeed better, the fact that a small change in OMOE 
formulation generated a significantly different 
capability calls into question  OMOE-based design 
selection methods.  

Table 15:  Design ID vs. Speed and Range Weights, 
Without Goal and Threshold Limits. 

Spd→ 
Rng↓ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

0 b d  f    h   S 
0.1  Q     i   k  
0.2 O       T    
0.3    R        
0.4            
0.5            
0.6 N           
0.7            
0.8  M P         
0.9 L           
1            

The final issue with OMOE is its linearity.  In 
mathematical terms, OMOE (Eqn. 3), is a plane in 3-
dimensional objective-space; changes in OMOE 
represent a moving parallel plane.  Likewise, our Pareto 
front in objective space can be plotted in three 
dimensions, representing speed, range, and combat 
capability (similar to Figure 5).  The “best” design is  
the point where the moving OMOE plane initially 
intersects this Pareto front.  What our OMOE/MOE 
analysis shows is that changing weights in OMOE 
changes the intersection point with the Pareto front.  
The linear OMOE only allows us access to convex 
regions of the objective space.  This may overlook 
many potentially optimal solutions, especially when the 
objective space is very non-linear as in the ship design 
case.  

Our conclusions here may be slightly skewed because 
of the limitations of the combinatorial mesh 
optimization.  Only a few payload options were used  
and the constraints placed on other variables to run the 
combinatorial analysis in a reasonable time were also 
limiting.  Performing a multi-objective GA using four 
objectives- speed, range, combat capability and cost is a 
next logical step in analysis.  However, with more 
objectives, population size (and computation time) must 
increase to generate an  analytically defensible 
population of non-dominated designs.   

CONCLUSIONS AND RECOMMENDATIONS 
FOR FUTURE WORK 

The application of optimization tools to preliminary 
ship design offers potential for more consistent 
identification of preliminary ship designs that are well-
matched with the needs of decision makers.  A well-
defined design space is effectively explored using 
automated methods, although radically different ship 
designs cannot be expected to arise when using an 
empirically derived model.  While it is theoretically 
possible to do major topological shifts (e.g. being able 
to move from a mono-hull to a tri-maran) required for 
truly radical design optimization, the theoretical models 
and optimization techniques are still being explored.  
Experts are still needed to conceptualize and define 
radically innovative design options, barring further 
advances in artificial intelligence and topological 
optimization. 

This work has demonstrated that the heuristic nature of 
genetic algorithms is superior to gradient based 
methods for exploration of large, highly nonlinear 
design spaces.  Genetic algorithms are able to handle 
the discrete variables that are common when making 
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preliminary architectural choices for all types of 
designs.  Gradient methods, on the other hand, have 
been demonstrated to be more effective in terms of 
local exploration of continuous design spaces.  Our 
analysis shows gradient methods to be approximately 
30 times faster than a GA when exploring a continuous 
region, while also producing a slightly superior result.  
Given this performance advantage, a hybrid approach is 
recommended.  GA’s should be used for global space 
exploration and selection of discrete variables while 
gradient based methods can be applied in parallel to 
fine-tune local solutions.  This combination of methods 
in parallel has the promise of being superior to either 
method alone.   

Our work has explicitly exposed two frequently 
unacknowledged deficiencies in preliminary ship 
design processes.  The root of the problem is the need 
to match data representation with human cognitive 
limits.  Once the values of each of the three objectives 
(four, counting cost) have been calculated, how can 
they be presented in such a way as to allow a human to 
effectively process the information and then make an 
informed decision?  The need to visualize the outputs of 
the optimization process leads us to the second 
limitation of multi-objective analysis- the use of a 
weighted sum of objectives, OMOE in the case of this 
effort.  OMOE collapses three design objectives (speed, 
range and combat capability) to a single number.  
Through the process of creating an OMOE, an artificial 
reduction in complexity occurs; relationships between 
the “real” objectives that are significant factors in 
determining the overall ‘optimal’ design are hidden 
from the decision maker.   

Also, normalization across objectives is required in 
order to compose a weighted objective function, such as 
OMOE.  Methods of normalization such as the use of 
minimum and maximum observed values or goal and 
threshold values were demonstrated to generate 
different ‘optimal’ designs.  Min and max observed 
values have their benefits because they do not depend 
on “expert opinion,” but they may overweight minimal 
improvements in performance when the range of values 
is small.   

There are two potential solutions to the problem of 
OMOE.  The first involves more care and greater 
granularity in determining OMOE.  Techniques such as 
multi-attribute utility theory and concurrent design hold 
promise in this area.  Alternatively, rather than relying 
on our ability to determine the utility of various 
objectives a priori, followed by design exploration and 
selection, MDO allows the design exploration phase to 

determine the multi-objective Pareto front.  With the 
knowledge of the structure of objective space, decision 
makers can make a more informed decision and be 
more confindent in the results.   

In conclusion, a hybrid combination of genetic 
algorithms and gradient-based optimization techniques 
is recommended to augment the preliminary ship design 
process.  The OMOE method for aggregation of design 
information was proven to have questionable merit and 
alternative methods should be investigated. 
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