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ABSTRACT 

A design optimization study of the Space Shuttle 
External Fuel Tank (SSEFT) is performed using a 
model that, although simplified, captures some of the 
important aspects of the system’s attributes and 
behavior. The goal of the optimization is to determine 
the values of the geometric characteristics of the system 
that maximize the ROI of the project and the payload 
that the Shuttle orbiter can carry. The process is 
articulated in several steps. First, a preliminary design 
exploration is performed using a DOE technique. Then 
an optimization for a single objective (ROI) follows. 
Both gradient-based methods and heuristic techniques 
are applied, the results of the different methods 
compared and pros and cons for each of the techniques, 
in the context of the specific application, highlighted. 
Finally a full multi-objective analysis is conducted. 

Within the limitations of the model, the problem is 
shown to exhibit a modest coupling. ROI is particularly 
sensitive to the geometry of the cylindrical portion, 
namely length, radius and thickness as well as the 
stresses that insist on this part.  

Evidence is that a sequential quadratic programming 
algorithm outperforms a genetic algorithm both in 
execution time and results. The optimization end values 
are shown to have a good agreement with actual data. 
Finally the payload is demonstrated not to be a separate 
objective from ROI. 

Optimization is viewed not only as a method to 
determine the best design, but, equally importantly, as a 
process through which understanding the system under 
investigation and unveiling its intrinsic trade-offs. 

INTRODUCTION 

The Space Shuttle External Fuel Tank (SSEFT) is the 
largest single element and the only major non-reusable 

component of the Shuttle system. The SSEFT is 46.88 
meters long, 7.8 meters in diameter and its empty 
weight is 29,937 kg. It carries more than 2 million liters 
of cryogenic propellants that are fed to the orbiter's 
three main engines during powered flight (see Fig. 1). 
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Fig. 1: The Space Shuttle External Fuel Tank 

When the main boosters are shut down, the SSEFT is 
jettisoned, enters the Earth's atmosphere, breaks up, and 
impacts in a remote ocean area. It is not recovered. 

The SSEFT has three major components: the forward 
liquid oxygen tank, an unpressurized intertank that 
contains most of the electrical components, and the aft 
liquid hydrogen tank [1] [2] .   

A simulation model is built that even though rather 
simplified, is able to provide quantitative responses to 
complex aspects of the system, such as the stress levels 
in the structure, its resonance frequency, its 
aerodynamic drag and system cost. The model is then 
used to perform a design optimization with the goal of 
determining the tank’s geometric characteristics that 
maximize the ROI of the tank and the payload of the 
Space Shuttle for a given amount of carried fuel. 
Requirements are also put to maximum allowed stress 
levels in the structure and to the minimum natural 
frequency of the system. 

The optimization process is carried on in three main 
steps: 1) design space exploration, 2) single-objective 
optimization, 3) multi-objective optimization. The 
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optimization is eased by the use of a commercial 
optimizer package, iSIGHT v.07 Academic from 
Engineous [3] . The step-by-step approach allows not 
only the otherwise uncertain success of the optimization 
process, but also an insightful investigation of the 
existing trade-offs. 
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Fig. 3: schematic of the SSEFT In the description, a managerial perspective is taken, so 
the emphasis of the exposition is neither on the details 
of the model, nor on the underlying mathematical / 
numerical implementation. The accent is instead rather 
on the design process as a whole and on the valuable 
insights that a rigorous and scrupulous optimization 
analysis can bring and which could be key to a “better” 
product. For this reason, the depth is sometimes 
sacrificed in favor of the focus on the big picture. 

MODEL DESCRIPTION 

Overview 

The model, although with several simplifying 
assumptions, is conceived so as to provide a 
quantification of the main important system 
characteristics. It consists of more than sixty equations 
with six design variables and more than thirty 
parameters (considered fixed for the analysis in hand). 
In what follows each of the different modules is 
described succinctly. 

Model Mechanics 

The tank (see Fig. 2 for a close look) is modeled as 
composed by three main sections: a cone, a cylinder 
and a hemisphere (Fig. 3). The design variables used to 
describe the system are: 
• length of the cylinder: L 
• cylinder radius: R 
• cone height to radius ratio: h/R 
• skin thicknesses: of the cylinder (tcyl), cone (tcone) 

and hemisphere (th-sphere). 

The identified variables are used to calculate several 
characteristics of the system and of the project.  

Geometry and Weight 
Using basic geometry formulae, the volume enclosed 
by the three elements is derived as well as the volume 
of structure material. Weight of the structure is then 
inferred applying material density (material assumed 
for the calculation is Aluminum).  

Structural behavior 
Stresses are calculated as resulting from pressure of the 
gas contained in the tank, within a thin membrane 
vessel approximation. Formulas available in the 
literature are used (see, for example, [4] ). Stress factors 
are then obtained by dividing the resulting stress by the 
maximum allowable stress of the material. 

When the first natural frequency of the tank is lower 
than a certain value, the structure can be subjected to 
dangerous instability phenomena. For that reason, this 
aspect has been included in the structural model. The 
frequency is calculated assimilating the tank to a beam 
and using simple structure formulae available in the 
literature [4] .  

Cost 
In order to keep the model manageable in size, the cost 
of the task is calculated simplistically as the sum of 
material cost and the cost of the welds that connect the 
tank’s three main components. Empirical relationships 
are used that link material cost to material weight and 
skin thickness. The cost of the seams is calculated as 
the seam unit cost (known empirically) multiplied by 
seam length calculated using linear geometry. 

Aerodynamics and Payload 
The tank aerodynamic drag represents an additional 
force that adds to the Shuttle weight and contrasts the 
thrust provided by the engines. All else being equal, the 
lower the drag, the higher the payload (weight of the 
equipment for scientific research) the Space Shuttle is 
able to bring to orbit. As such, it is an important 
performance metrics of the project. A semi-empirical Fig. 2: Close view of the SSEFT 
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formula is used to compute the aerodynamic drag of the 
tank that takes into account its wetted area, the cross 
sectional area of the cylindrical section and the 
bluntness of the cone. The drag is actually calculated as 
difference from the value of a reference tank and added 
or subtracted to the related nominal payload yielding 
the actual payload.  

Project Financials 
Return On Investment (ROI) is used to evaluate the 
“health” of the project and as a main objective for the 
optimization. ROI is calculated as: 

Where P is the price the Customer is willing to pay and 
is linearly dependent on the allowable payload (the 
linear coefficient is assumed known), whilst Claunch is 
the total cost to launch the Space Shuttle, calculated as 
Ctank+Cother than tank; Cother than tank is based on existing data 
and considered a parameter for the analysis. 

THE OPTIMIZATION PROCESS 

Step0: Problem Formulation 

The optimization problem is formulated as follows: 

Select   x = [L, R, h/R, tcyl, tcone, th-sphere] 

In order to Maximize ROI(x)& Payload(x) 

subject to the following constraints:  

 

 

 

 

 

 

 

In plain English, this reads as follows. Select the values 
of the design variables in order to maximize the Return 
of Investment of the Project and the Payload, while 
ensuring that the volume of liquid that the tank is able 
to carry equals the one required (gv=1), that the stresses 

are 20% lower than the maximum stress allowable by 
the material (gcyl, gcone, gh-sphere <0.8), and that the first 
natural bending frequency exceeds a certain minimum 
required value (gvib>1). 

Step 1: Design Space Exploration 

A preliminary exploration of the design space is 
performed applying a Design of Experiment (DOE) 
technique to the model described. The goal of this 
phase is manifold: 1) to understand the degree of 
coupling of the system, 2) to evaluate how and to which 
design variables the objectives and the constraints are 
sensitive; 2) to be able to set a starting point for the 
subsequent optimization analysis.  
For each of the six factors (i.e. the design variables), 
three levels are selected to capture the curvature of the 
effect. Detail of the settings are in Tab. 1.  
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Design 
Variable 

L 
[cm] 

R 
[cm] 

tcyl 

[cm] 
tcone 

[cm] 
th-sphere 

[cm] 
h/R 

Min 2000 250 0.1 0.1 0.1 1 

Med  4000 500 0.2 0.2 0.2 2 

Max 6000 750 0.3 0.3 0.3 3 

Tab. 1: Variables Arrangement for DOE 
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Several arrays with different strength levels are tried 
from a L27 to a L243. The system, however, is found to 
be relatively uncoupled and the L27 array is found to 
offer the best accuracy vs. computational costs.  

In fig Fig. 4-Fig. 7 a selected sample of the results is 
shown. It can be noted that some of the dependencies 
are quadratic and some of them are linear. If the 
curvature were big the linearization resulting from the 
use of two levels only could lead to significant 
misinterpretations, that’s why 3 levels  

Fig. 4: Main Effect on ROI 
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The main findings of the analysis are as follows. The 
top three factors that influence the different objectives / 
constraints are (in order of importance): 1) tank radius, 
2) cylinder length and 3) cylinder thickness. As 
confirmed by the sensitivity analysis (not reported for 
brevity’s sake) the second order effects are negligible, 

so the results obtained with the orthogonal arrays have 
high significance.  

The results of the DOE are used to identify a suitable 
initial design vector for the following optimization 
phase. The final selection is shown in Tab. 2. 

Design 
Variable 

L 
[cm] 

R 
[cm] 

tcyl 

[cm] 
tcone 

[cm] 
th-sphere 

[cm] 
h/R 

Value 5000 350 1 1 1 2 
 
Object. 
Constr. 

gv gcyl gh-

sphere 
gcone gvib ROI 

[%] 
PL 

[kg] 

Value 0.72 0.53 0.61 0.53 0.93 10.3 31,506 
Fig. 5: Main Effect on Vibration Factor 

Tab. 2: Design Variables Setting and Objective / 
Constraints after DOE phase  

Step 2: Single Objective Optimization 

Multi-objective optimization is often delicate and 
complex, and implies that careful trade-off decisions be 
made along the process. Before adventuring in such an 
intricate domain, a process where the design is 
optimized for a single objective function is pursued. In 
addition to the obvious simplification that arises, this 
approach has also got the advantage to allow 
identifying the maximum possible value for the single 
most important objective, and therefore being able to 
crisply evaluate the penalty associated to the 
introduction of other objectives we want the design to 
be optimized for. As the single most important 
objective to be maximized in the design process ROI is 
selected, as it is a major business indicator. 

Fig. 6: Main Effect on Tank Volume Factor 

 

In solving the optimization problem, algorithms 
belonging to different categories are applied. In 
particular, an algorithm is chosen among the ones in the 
category of the so-called gradient-based methods, and 
one in the pool of the heuristic techniques. The 
confidence to have really identified a global optimum is 
gained through a cross comparison of the results from 
different algorithms and with different algorithm 
settings.  

Fig. 7: Main Effect on Cone Stress Factor 
During this phase the shortcomings and the advantages 
of each algorithm for the specific problem are also 
identified.  

Gradient Based Algorithm 
Gradient-based algorithms are designed to search the 
minimum or the maximum of an objective function J(x) 
using some information about its gradient. Various 
techniques and implementations are possible, with 
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different level of complexity and varying computational 
effort. The selected algorithm is a particular variant of 
Sequential Quadratic Programming (SQP), known as 
NLQPL. NLPQL solves general nonlinear 
mathematical programming problems with equality and 
inequality constraints. It assumes that all problem 
functions are continuously differentiable. The internal 
algorithm is a sequential quadratic programming (SQP) 
method. Proceeding from a quadratic approximation of 
the Lagrangian function and a linearization of the 
constraints, a quadratic sub-problem is formulated and 
solved to get a search direction. Subsequently a line 
search is performed with respect to two alternative 
merit functions and the Hessian approximation is 
updated by the BFGS-formula [5] .  

Gradient-based methods require an initial design vector 
to start the search with. The vector identified after the 
exploratory phase is used as a starting point for the 
NLPQL. Convergence is achieved very rapidly, after 99 
iterations and 72s of execution time on a Pentium 4 1.8 
GHz laptop. Results are shown in Tab. 3. 

Design 
Var. 

L  
[cm] 

R  
[cm] 

tcyl 

[cm] 
tcone 

[cm] 
th-sphere 

[cm] 
h/R 

Value 5000.8 393.35 0.745 0.860 0.750 1.593 
 
Obj. 
Constr. 

gv gcyl gh-sphere gcone gvib ROI 
[%] 

PL 
[kg] 

Value 0.91 0.8 0.8 0.8 1.04 16.37 33,251 

Tab. 3: Design Variables Setting and Objective / 
Constraints after NLPQL ROI Optimization (no 
scaling) 

Convergence histories show that all variables but one 
converged very early, coming close to the final value 
after 20 iterations (an example is shown in Fig. 8); the 

one that converged last was h/H (Fig. 9). This gives 

some evidence that ROI exhibits low sensitiveness with 
respect to h/R. 

Fig. 9: Convergence history during the optimization 
process 

Gradient-based methods are, however, prone to 
numerical errors when approximating the gradient and 
the Hessian using finite differencing. To mitigate this 
issue, scaling is introduced. The purpose of scaling is 
essentially to make the rate of change in the objective 
function, in region of interest, similar and independent 
of which design variable is considered, so that each in 
performing computation, cancellation errors can be 
avoided. In its simplest, but also most effective 
practical implementation, scaling of the design 
variables is obtained by calculating the diagonal entries 
in the Hessian matrix and, if they are greater than 100 
or lower than 0.01, dividing each design variable by the 
square root of the Hessian diagonal (for a more rigorous 
and detailed description, see [6] ). The values of the 
second derivative of the ROI with respect to the design 
variables at the optimum point are summarized in Tab. 
4. Scaling of cylinder length and cylinder radius is 
consequently performed, by defining two new variables 
as: L’=L/1000, R’=R/100 and using those, instead of 
the original ones, as design variables handled by the 
optimizer. 

Results of optimization after scaling are shown in Tab. 

5. As can be noted, values have improved significantly, 
thereby demonstrating the effectiveness of the scaling 
technique. 

Fig. 8: Convergence histories of R during the 
optimization process 
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Design 
Var. 

L  
[cm] 

R  
[cm] 

tcyl 

[cm] 
tcone 

[cm] 
th-

sphere 

[cm] 

h/R 

Value 4853.6 393.05 0.744 0.860 0.750 2.373 
 
Obj. 
Constr. 

gv gcyl gh-

sphere 
gcone gvib ROI PL 

[kg] 

Value 0.90 0.8 0.8 0.8 1.00 20.51% 34,436 

Tab. 5: Design Variables Setting and Objective / 
Constraints after NLPQL ROI Optimization after 
scaling 

Heuristic Techniques 
Several heuristic tools have evolved in the last decade 
that facilitate solving optimization problems that were 
previously difficult or impossible to solve. These tools 
include evolutionary computation, simulated annealing, 
tabu search, particle swarm, etc. In particular, 
evolutionary algorithms are stochastic search methods 
that mimic the metaphor of natural biological evolution. 
Evolutionary algorithms operate on a population of 
potential solutions applying the principle of survival of 
the fittest to produce better and better approximations to 
a solution. At each generation, a new set of 
approximations is created by the process of selecting 
individuals according to their level of fitness in the 
problem domain and breeding them together using 
operators borrowed from natural genetics. This process 
leads to the evolution of populations of individuals that 
are better suited to their environment than the 
individuals that they were created from, just as in 
natural adaptation.  

Evolutionary algorithms model natural processes, such 
as selection, recombination, mutation, migration, 
locality and neighborhood. They work on populations 
of individuals instead of single solutions. In this way 
the search is performed in a parallel manner. 

Evolutionary algorithms differ substantially from more 
traditional search and optimization methods, as 
gradient-based. The most significant differences are: 1) 
evolutionary algorithms search a population of points in 
parallel, not a single point; 2) they do not require 
derivative information or other auxiliary knowledge; 
only the objective function and corresponding fitness 
levels influence the directions of search; 3) they use 
probabilistic transition rules, not deterministic ones; 4) 
they can provide a number of potential solutions to a 
given problem and the final choice is left to the user.  

Starting with the same initial condition supplied by the 
previous DOE phase, optimization is attempted with 
one variant of evolutionary algorithms known as Multi-
island Genetic Algorithm (GA). 

Convergence proved to be very difficult to achieve in 
the particular problem under examination. A great deal 
of work has been done in selecting properly upper and 
lower bound of the design variables, population size 
and mutation rate. The algorithm is terminated not 
because of satisfaction of convergence criteria, but 
because the maximum number of iterations was 
reached: runs totaled 10,000 with an execution time of 
6180s on the same laptop used for the gradient-based 
solution, so hundredfold the NLPQL case.  
The final results are shown in Tab. 6. 

Design 
Var. 

L  
[cm] 

R  
[cm] 

tcyl 

[cm] 
tcone 

[cm] 
th-sphere 

[cm] 
h/R 

Value 4089.1 411.62 0.780 0.780 0.900 4.259 
 
Obj. 
Constr. 

gv gcyl gh-

sphere 
gcone gvib ROI Payload 

[kg] 

Value 0.90 0.8 0.8 0.8 2.06 15.28% 32,941 

Tab. 6: Design Variables Setting and Objective / 
Constraints after ROI Optimization - GA 

Analysis of convergence histories shows that the 
solution oscillates a lot between the extremes and 
struggles to converge. For typical examples, see Fig. 
10.  

Fig. 10: GA Optimization – Convergence history, 
cylinder length and cylinder radius 
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Comparison of results and conclusions of the single 
objective optimization phase 
Fig. 11 summarizes the results obtained in the various 
optimization steps. ROI is plotted for the different 
solutions as well as a graphical representation of the 
resulting SSEFT geometry. 

We note that the “best” result was achieved using a 
gradient-based method with scaling. We also note that 
h/R is the parameter that varies most from one solution 
to the other. This provides further evidence that ROI is 
very little sensitive to h/R. Since ROI is known to be 
very sensitive to R, it can be concluded that ROI is 
insensitive to the value of h, the height of the cone and 
that’s the main reason why solutions with similar ROI 
can be significantly different in shape. 

The best design is compared with the actual system to 
assess its plausibility. Dimensions such as overall 
length, diameter and weight are chosen because data are 
readily available (Fig. 13). The predicted length is 
higher than the actual by more than 25%, but diameter 
is very close (less than 10%) and weight is nearly exact. 

While the model may need some improvement, the 
results are judged to be good, considering the extreme 
simplified assumptions that are at its basis.  

Step 3: Multi-Objective Optimization 

With all the knowledge about the design space and the 
problem in hand gathered during the previous 
exploratory and single objective optimization phases, 
we can now head to the last step of analyzing the 
problem in its full complexity. As stated in the very 
beginning, the ultimate goal is to maximize the ROI of 
the SSEFT and, at the same time, the payload of Space 
Shuttle.  

Relationship between ROI and payload 
In order to understand the relationship between the two 
objectives, a Monte Carlo analysis is performed where 
values of the different design variables are selected 
randomly in a defined interval and ROI and payload 
computed. Constraint violation is allowed, but it’s 
relevance is considered minor with respect to the focus 

of our investigation. Fig. 12 shows the related plot.  

Fig. 11: Single Objective Optimization Results 
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Fig. 12: ROI – Payload relationship 
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It can be noted that the two objectives are supportive. 
Moreover, there is a linear relationship between the 
two; therefore maximization of one objective actually 
leads to the maximization of the other and the planned 
multi-objective analysis degenerates to the single 
objective optimization performed so far.  

A closer look at the constraints 
Sometimes it might be arguable whether a quantity 
should be considered as an objective or a constraint. In 
the analysis conducted up to now, for example, we have 
set the stress factors to be less or equal then 0.8, in 
order to have stress levels with a 20% safety margin Fig. 13; Comparison of obtained results to 

values of the actual system  
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with respect to the maximum allowable stress. This 
margin was set on the basis of experience and 
conservative best practice. However, it’s not sharply 
clear whether a 20% margin is too conservative, too 
risky or correct. More importantly, we don’t know how 
sensitive is ROI with respect to the stress level that we 

allow and therefore what penalty do we pay by 
pursuing a higher safety margin. It may therefore seem 
well grounded to consider stress factors no longer as 
constraints but as objectives and perform a multi-
objective analysis.  
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Traditional multi-objective analysis relies on the 
weighted sum approach, where a weight is given to 
each of the objectives, proportional to the relative 
“importance” of that objective with respect to the other 
and optimization of the weighted sum of the two is 
pursued. The formulation is certainly valuable in some 
cases, but one shortcoming is certainly the fact that the 
end result is very much sensitive to the weights that are 
selected a priori. 

In this particular case it’s deemed far more important to 
understand the trade-off between two counteracting 
objectives. By exploring the ROI-Stress level Pareto 
front, it’s in fact possible to get an understanding of 
how one objective trades against the other.  

Fig. 16: ROI - Cylinder Stress Factor Pareto 
Front 

The scaled variable version of the model is used since it 
enables a better accuracy. The constraint stress limits 
are varied in steps from 0.6 to 1 one at a time and the 
optimum ROI solution is determined by the optimizer. 
Results are presented in Fig. 14, Fig. 15, and Fig. 16. 

Fig. 14: ROI - Cone Stress Factor Pareto Front 
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Within the assumptions of the model, while ROI is 
rather insensitive to the limits we put to the stresses on 
the cone and hemisphere, it is however fairly sensitive 
to any safety margin we want to take on the cylinder 
stress level. This insight offers some leverage for 
further optimization. In essence, what it implies is that 
the ROI penalty which is paid when the cone and 
hemisphere structure are dimensioned generously is 
negligibly small. This can allow devising a policy that 
directs to increase conservatively the thickness of those 
two elements, without the need of long hours of 
engineering effort in tweaking the structure for the 
minimum thickness. The resources thus saved, can, vice 
versa, be exploited to tailor the dimensioning of the 
cylinder structure that allows the tank to sustain a 
higher level of stress without compromising safety. 

Fig. 15: ROI - Hemisphere Pareto Front 

As verification of the advantages of the above described 
line of action, a run with cone and hemisphere stress 
factors reduced to 0.7 and cylinder stress factor raised 
to 0.9 is run. Results are presented in Tab. 7. 
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Design 
Var. 

L  
[cm] 

R  
[cm] 

tcyl 

[cm] 
tcone 

[cm] 
th-sphere 

[cm] 
h/R 

Base 4089.1 411.62 0.780 0.780 0.900 4.259 

Revised 
constr. 

4865.2 393.67 0.663 0.854 0.984 2.149 

 
Obj. 
Constr. 

gv gcyl gh-

sphere 
gcone gvib ROI Payload 

[kg] 

Base 0.90 0.8 0.8 0.8 1.00 20.51% 34,436 

Revised 
Constr. 

0.90 0.9 0.7 0.7 1.00 27.37% 36,396 

Tab. 7: Design Variables Setting and Objective / 
Constraints after Constraint optimization 

 

The resulting benefit is huge: from 20.5% to 27.4% 
ROI, a 33% increase. 

This example shows that the optimization process may 
be extended further than a mere function maximization 
and that it can be utilized as a tool for resource 
allocation or, more generally, for the maximization of 
design value. 

 

CONCLUSIONS AND FURTHER WORK 

Acknowledging the limitations of the simple model of 
the SSEFT, the present work has allowed unveiling 
several aspects of this system and its characteristics that 
were not evident at the outset. 

First, ROI and payload are tightly linked and 
maximization of one objective leads to maximization of 
the other.  

Each of the objective or constraint is sensitive to only 
two or three design variables among the six, the effect 
of the others being negligible. In particular, the 
identified main objective, ROI, is dependent on three 
main design variables, all related to the cylindrical 
portion of the tank: cylinder radius, cylinder length and 
cylinder thickness.  In addition it is very sensitive to the 
cylinder stress constraints as well. 

The problem is relatively uncoupled, meaning that the 
dependency of the objective from the second, or third 
order effects between the design variables is of a minor 
importance. This makes the use of orthogonal arrays 
particularly effective in determining a proper set of 

values for the design variables that bring the resulting 
system very close to the ROI optimum. 

For the particular problem in hand and within the 
limitations of the specific algorithm implementation in 
iSIGHT, gradient based methods, and in particular 
SQP, vastly outperform a Heuristic technique such as 
Genetic Algorithm, both in the execution time (100 
times lower) and in the results (ROI about 30% more). 
SQP, however, proved to be particularly sensitive to the 
starting point vector and to the scaling of the design 
variables. If not properly set, the algorithm might 
converge to local minima or terminate prematurely. In 
both cases a suboptimal solution results. Genetic 
algorithm, on the other hand, need tuning of upper and 
lower bounds of the design variables, population size 
and mutation rate. This is essential in order to ensure 
convergence and a relatively smooth convergence 
history. 

The model built for the optimization analysis is 
relatively simple to allow the computational viability of 
the optimization process. It’s certainly amenable to 
further improvements to take into account of different 
other phenomena equally important in the design of the 
system or to improve the accuracy of current prediction 
levels. Envisaged further areas of work that can e 
enhance the quality of the results at the expense of a 
modest increase in complexity and that can be 
considered for further work are: 

• Improvement of the accuracy in the calculation of 
the tank volume. The top element is not a simple 
cone but has a sensibly different lofted shape that 
encases a higher volume, while the bottom part is 
actually more similar to a squeezed hemisphere 
with a lower contained volume. 

• Inclusion the stresses not generated by the liquid 
pressure, such as those arising from the fuel and 
equipment mass. At the same time, some model 
that takes into account the buckling of parts of the 
system may also be added. Literature is available 
on this topic [7] .  

• Improvement of the tank drag calculation, by 
introducing some elements that take into account 
the interaction with the orbiter and the boosters 

• Modeling assembly costs in addition to material 
and welding costs. 
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