
AIAA-2004-xxxx 

MULTI-DISCIPLINARY SYSTEM DESIGN OPTIMIZATION OF THE F-350 REAR 
SUSPENSION*† 

Jacob Wronski 
Master of Science Candidate 

Department of Mechanical Engineering  
MIT CADlab 

ABSTRACT 

This paper presents how a Multi-Disciplinary System 
Design Optimization (MSDO) approach can be 
implemented to optimize the performance of the F­
350 Ford truck rear suspension subsystem.  The 
MSDO approach encompasses five phases: a problem 
and system definition phase, a numerical simulation 
phase, a design space exploration phase, a single 
objective optimization phase, and a multi-objective 
optimization phase.  Each of these phases is 
presented within the specific context of the design 
and performance of the F-350 Ford truck rear 
suspension.  The suspension system was defined 
using seven design variables, twelve fixed 
parameters, six constraints and two objectives.  The 
overall objective, to maximize suspension 
performance, was measured in terms of “passenger 
comfort” which was in turn based primarily on the 
maximum acceleration experienced by the passenger 
cabin.  For multi-objective optimization, the settling 
time of the passenger cabin was added as a second 
measure of passenger comfort. Using this system 
definition, a numerical simulation of the suspension 
was created in Matlab®.  An orthogonal array was 
used to determine an initial starting point for full 
optimization.  Both gradient-based and heuristic-
based optimization techniques are employed as well 
as a weighted multi-objective technique.  The results 
of these efforts are presented and some conclusions 
are drawn. 

*
†
In Collaboration with Ford Motor Company. 
Copyright  2004 by J. Michael Gray and Jacob Wronski of the 

Massachusetts Institute of Technology.  Published by the 
American Institute of Aeronautics and Astronautics, Inc. and the 
American Society of Mechanical Engineers with permission. 

J. Michael Gray 
Master of Science Candidate 

Department of Mechanical Engineering 
MIT CIPD 

INTRODUCTION 

Motivation 

When a customer buys a vehicle, there are many 
factors he/she considers.  Among these are cost, gas 
mileage, safety, and the “smoothness” of the ride. It 
is well known that the design of the suspension 
affects all of these factors.  To illustrate, a poorly 
designed suspension may result in any of the 
following situations that directly relate to the factors 
above: a rough ride over certain road conditions, 
catastrophic failure of the axle under certain loading 
conditions, fuel inefficiency due to excess weight, 
and increased sticker price due to the use of 
unnecessarily expensive components.  A good design 
theoretically would avoid all these situations. 
However, this can be difficult to achieve in practice.   

Approach 

In an effort to reduce the difficulty associated with 
suspension design, a Multidisciplinary Design 
Optimization (MSDO) approach was used. 
Specifically, it was applied to the design of the rear 
suspension of the F-350 Ford truck.  Figure 1 shows 
the architecture of this suspension. 
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Table 1. Desi n Variables

Table 2. Parameters

able 3. Intermediate Variables

Figure 1. CAD Model of the F-350 
Rear Suspension. 

Paper Outline 

The remainder of this paper proceeds as follows. 
First, a formal definition both the system and the 
problem are presented.  Second, the numerical 
simulation of the physical system is discussed.  Next 
follows a discussion of the initial design space 
exploration process.  Fourth, the setup and results of 
single objective optimization are presented for both 
gradient-based and heuristic-based search methods. 
Next, the results from a multi-objective optimization 
technique are explored.  Finally, conclusions drawn 
from the results are mentioned with a brief discussion 
of future work. 

PROBLEM AND SYSTEM DEFINITION 

The design problem being addressed is related to the 
optimization of the performance of the F-350 Ford 
truck rear suspension.  This suspension system was 
defined in four ways.  First, it was defined by several 
design variables.  These are design characteristics 
that can be changed by the designer within certain 
bounds.  Second, it was defined by a set of fixed 
parameters.  These are those design characteristics 
that cannot be changed by the designer.  Third, 
constraints were used to define the system.  These are 
limitations that the suspension design is subject to or 
minimum performance criteria that the design must 
meet.  Finally, system objectives were defined. 
These are characteristics by which the performance 
of the suspension was measured.  Each of these four 
areas of system definition is now addressed. 

Design Variables 

The chosen design variables are all real, continuous, 
bounded numbers and are shown in Table 1.  Also, 
only the damping coefficient of the shock absorber, 
Cs, is not a geometric characteristic. These 
characteristics were chosen as design variables 
because it was felt that a suspension designer would 
have liberty to change them within certain bounds. 

The decision was also motivated by the fact that the 
design variables mostly represent the geometry of the 
suspension design, and changes in this geometry are 
an easy thing to visualize and understand.   

Fixed Parameters 

The fixed parameters for the suspension are shown in 
Table 2. These include material properties, overall 
vehicle and tire dimensions, road surface parameters 
and physical constants.  These were characteristics of 
the system that were assumed to be out of control of 
the designer.  

Table 1. Design Variables. g 
Lower/Upper Symbol Description UnitsNominal 

Value Bounds 
length of leaf spring m 1 1 <= Ls <= 1.5 Ls 

thickness of leaf spring m 0.005 .005 <= hs <= .025 hs 
width of leaf spring m 0.1 .05 <= bs <= .125 bs 

thickness of axle tube m 0.1 .05 <= ta <= .015 ta 
da outer diameter of axle tube m 0.125 .075 <= da <= .150 

bending length of axle m 0.6 0.5 <= La <= 0.7 La 

damping coefficient of Ns/m 1500 500 <= Cs <= 5000 Cs shock absorber 

Table 2. Fixed Parameters. 

Symbol Description Units Value 

E Modulus of Elasticity, steel Pa 206x109 

ωi Road bump frequency rad/s 12.57 

mc Mass of passenger cabin kg 1800 
g gravity constant m/s2 9.81 
dw diameter of the wheel meters 0.5 

u tire on cement sliding friction 
coeffient Unitless 0.6 

Ft Road bump height meters 0.1 

Kt Stiffness of Tire N/m 160000 
ρ density of steel kg/m3 7850 
Sf Stress safety factor Unitless 2 
L half length of axle meters 0.92 
mt Mass of the tire kg 18 

Constraints 

Table 3 lists the intermediate variables of the 
suspension design that were either subject to 
constraints or were needed for the calculation of the 
objectives.  Note that while the settling time, St , is 
listed here as being subject to a constraint, it is later 
treated as a second objective in the multi-objective 
optimization phase of MSDO.  There are also a 
constraint on cost, gas mileage, internal axle stress, 
and the natural frequency ratio of the mass of the 
suspension and the mass of the passenger cabin. 

2 Table 3. Intermediate or Constrained Variables. T 
Symbol Description Units Constraint 

Mass of Suspension Parts kg None ms 

Spring Stiffness N/m None Ks 



a t ve 

The Dynamic Module 

The dynamic behavior of the F-350 rear suspension 
was modeled using a 4th order quarter-car suspension 
model consisting of springs, masses, and dampers 
(see Figure 2) [1].  To simulate the road disturbance, 
a step input function, Ft, of 0.1 meters was used to 
simulate a large “bump” [2].  Critical model inputs 
are: (i) the passenger cabin and suspension mass, mc 
and ms, (ii) the leaf spring and tire stiffness, Ks and 
Kt, and (iii) the damping coefficient of the suspension 
damper, Cs. Since the damping coefficient of the tire, 
Ct, was negligible in relation to the rest of the system 
it was not included in this analysis.  The outputs of 
this model are the settling time, St, the maximum 
cabin acceleration amax, and the natural frequency 
ratio, ωratio between the two masses. 

Objectives 

Table 4 shows the objective for single objective 
optimization.  The overall objective of this 
optimization design is to maximize the passenger 
comfort inside the automobile cabin.  After careful 
consideration it was decided that passenger comfort 
would be defined in numerical terms as the vertical 
acceleration of the passenger cabin caused by the 
vehicle driving over a road bump.  The single 
objective optimization problem was to minimize this 
acceleration. 

T ble 4. Objec i Table 4. Single Optimization Objective. 
Symbol Description Units 

Minimize maximum 
Min [amax] acceleration experienced by m/s2 

passenger cabin 

In the last phase of MSDO a second objective was 
introduced, namely the settling time, St. Settling time 
is also an important measure of overall comfort in the 
passenger cabin as it represents how long the cabin 
oscillates after a road disturbance has been cleared. 
A long oscillation period may be very uncomfortable 
to the passengers inside just as high accelerations are. 
For this reason it was chosen as the second objective. 

NUMERICAL SIMULATION 

In order to use the MSDO methodology, a numerical 
simulation of the behavior of the physical system 
must be created.  This was done using the system 
definition described above to create a set of linked 
multidisciplinary modules that simulate the behavior 
of the system.  In this case, there were six modules, 
one for each of the following aspects of the design: 
the dynamics, the stiffness of the leaf spring, the axle 
internal stresses, the suspension mass, the cost, and 
the gas mileage.  Each of these modules will now be 
discussed. 
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To validate the dynamics module, the vertical 
displacement response of ms when subject to a 0.1 
meter step road disturbance, Ft, was compared to the 
results found in [1] for an identical situation.  The 
two responses matched to within about 5%. 

The Leaf Spring Stiffness Module 

The leaf spring was modeled as a steel prismatic bar 
obeying Hooke’s law [3].  The boundary conditions 
were a simple support on each end with a single 
centered point load Fs (see Figure 3).  Inputs for this 
module are the dimensions of the leaf spring, Ls, hs, 
and bs, and E, the modulus of elasticity of steel.  The 
output of this module is the leaf spring stiffness, Ks, 
which is found from the following equation: 
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system is native to I-DEAS Version 8 and is shown 
in Figure 5. This output is used in several other 
modules. 

The physical suspension is composed of a three-piece 
leaf spring and a damper attached to a hollow axle. 
To obtain the suspension mass, the I-DEAS model 
was parametrically driven using five design variables 
and one fixed parameter: (i) the leaf spring length, Ls, 
(ii) the leaf spring width, bs, (iii) the leaf spring 
thickness, hs, (iv) the shaft diameter, da, (v) the shaft 

The Axle Internal Stress Module 

The axle was modeled as tubular beam with simple 
supports at each end [3]. The passenger compartment wall thickness, ta, and (vi) the density of steel, ρ.resting on the axle was modeled as two equal and DOME™, a program that links CAD models to other symmetrically located point loads Fa (see Figure 4). simulation codes such as Matlab® and wasThe inputs for this module are the location of the developed at the MIT CADlab, was used to link thisloads from the ends of the beam, Fa, and the module to the other modules.dimension of the axle, ta and da. The output of this 
module is the maximum internal stress, Ωmax. To 
find Ωmax, the bending, shear, and torsion stresses due 
to the combination of the weight of the passenger 
cabin and the dynamic loading were calculated from 
the following equations respectively: 
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Then, using Mohr’s circle [3] and the stresses above, 
maximum internal stress of the axle, Ωmax, can be 
found from the following equation: 

Ω = max[ Z , Z ]	 (3a)
max 1 2 

2 2 
(3b)Zwhere 1 =

σ	max +


σmax +τ 2  

2  4 max
 

Zand 2 = τ +ν	 (3c)
max max 

The Suspension Mass Module 

This simple but important module is used to calculate 
the mass of the suspension, ms, based on the part 
dimensions and material densities obtained directly 
from the CAD geometry of the suspension. The 
CAD model representation of the F-350 suspension 
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C 
Figure 4. A) Rear view of truck, B) axle 
cross section, and C) front view of axle. 
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Figure 5. CAD model of F-350 
rear suspension. 

Gas Mileage Module 

The gas mileage module is a placeholder module 
based on data of other vehicles in the same class. 
Gas mileage, GM, is given by the following equation 
using the mass of the suspension, ms, as input: 

GM = 25− 075.0 ×( 4 × m ) (4)s 

This model calculates the energy consumption of the 
proposed suspension design and as such introduces 
environmental liability in this multi-disciplinary 
optimization problem. 

Cost Module 

Since the actual cost of the F-350 rear suspension 
system was not known, a simple polynomial 
expression was used to estimate a reasonable cost in 
this study.  Inputs are the masses of the car and 
suspension, mc and  ms, the bending lengths of the 
axle and leaf springs, mc and  ms, and the damping 
coefficient of the shock absorber.  The cost, C, of the 
suspension is given by: 

2 
2C = y ( m + 4 × m )+ y2 


 

1 
 + L y + L y 3 (5)1 c s 

 Cs  
3 a 4 s 

y where 1 = y2 = y3 = y = 14 

The complete numerical simulation of the suspension 
was created by the inputs and outputs of all six 
modules as shown in Figure 6. It is interesting to 
note that there are no feedback loops in the 
simulation. 

Figure 6. The Completed Simulation with Six 
Linked Modules. 

DESIGN SPACE EXPLORATION


Before beginning any rigorous optimization, an L18 
orthogonal array of seven design variables with three 
levels was used to explore the design space.  From 
this array of experiments, an initial design vector Xo, 
was chosen that had the lowest objective value, amax, 
without violating any of the constraints.  This initial 
design vector appears in the left side of Figure 7. 
Then, by calculating the diagonal entries of the 
Hessian, Xo was scaled so that all the design variables 
were roughly on the same order of magnitude.  This 
scaled design vector is shown in Figure 7 on the right 
as Xos. 
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Figure 7. The Design Vector Before 
and After Ccaling. 

SINGLE OBJECTIVE OPTIMIZATION 

Gradient-Based Search 

With the MSDO framework established and an 
initial design vector chosen, formal optimization can 
now be executed.  Initially, the Quasi-Newton, SQP 
gradient search embodied in the “fmincon” function 
in Matlab® was used to optimize the design.  The 
search was executed by starting with both the scaled 
and unscaled initial design vectors and the results are 
shown in Table 5. Matlab® reported that both runs 
converged successfully.  This means that the Karush-
Kuhn-Tucker (KKT) conditions are satisfied within 
the default tolerance of 0.001 at the optimum 
solution.  It is clear from Table 5 that although both 
runs converged to the same objective value of amax, 
J(X*), the search converged much quicker (more than 
2.5 times) when starting with the scaled initial design 
vector. 

Table 5. Effects of Scaling on J(X*) and 
Elapsed Time. 
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 Run Description J(X*) 
(m/s2) 

Elapsed 
Time (s) 

Unscaled, (Xo) 10.954 16.174 

Scaled, (Xos) 10.954 6.079 



Comparing the design vector before and after 
optimization (using the scaled initial design vector), 
several things can be noted (see Table 6).  First, La, 
remains unchanged.  This is because La only affects 
the internal stress in the axle and while it is not 
apparent now, we will see later that the constraint on 
the internal stress is not active at the optimal solution. 
Second, at the optimal solution, ta and da are near 
their upper bounds thus resulting in a bigger axle and 
heavier suspension.  This is most likely due to the 
fact that heavier suspensions result in lower cabin 
accelerations and lower internal stresses, both 
desirable effects in this case.  Of course, a heavier 
suspension also means a lower gas mileage rating. 

Heuristic-Based Search 

In addition to using a Quasi-Newton gradient search, 
two heuristic techniques were executed for 
comparison: a Simulated Annealing algorithm (SA), 
and a Genetic Algorithm (GA).  Both of these 
heuristic methods were executed in iSight® using the 
same initial scaled design vector, Xos, shown in 
Figure 7.  The results of these optimization runs are 
shown in Tables 7 and 8.  The results from the 
gradient search are also shown in these tables for 
comparison.  The SA was set to converge when the 
search resulted in five consecutive identical designs. 
Convergence for the GA was based on the number of 
generations, which was set to 50 in this case. 

We will see later that the gas mileage constraint is 
active at the optimum.  Third, hs is near its lower Table 7. The Optimum Design Vectors Obtained 

bound.  This probably due to the fact that a thinner 
Run Type Ls hs bs ta da La Cs J(X*), amax

SA, (X*) 1.49 0.62 0.90 1.50 1.48 0.50 1.32 11.040
GA, (X*) 1.47 0.61 0.93 1.50 1.50 0.57 1.32 11.038
SQP, (X*) 1.38 0.51 1.22 1.50 1.5 0.60 1.32 10.954

by All Three Search Methods. 

leaf spring will have a smaller lower stiffness thereby 
reducing passenger cabin accelerations.  Finally, amax, 
was reduced by 23%, a significant improvement.  Of 

and it represents a modest improvement over the best Table 6. Optimization Results: Design Variables & Objective 

solution foundDesign (scaled)  witLs hsh th bse ort tahogonalda Laarray.  Cs For aJ(x)=amax 

visual represenBefore Optimization1.00 atiot n of0.500 this 1.00 1.0 improv1.25emen0.600 t, F1.5 14.290 igure 8 
shows the verAfter Optimizationtical1.380 acc0.511 eler1.216ation1.500 of1.5 the0.6001.317 5410.9

course, there is no guarantee that this search found 
the globally optimal solution, but it has clearly found 
a local optimum (since the KKT conditions are met) 

passenger 
cabin, a, as a function of time, both before and after 
optimization. amax occurs after about .025 seconds at 
the peak of the first oscillation. 

Table 6. The Initial and Optimum Design Vectors. 

Run 
Type 

Ωmax 
(MPa) 

GM 
(mpg) St (s) ωratio C ($) xcmax 

(m) 
Elapsed 
Time (s) 

SA 50.21 5.23 2.49 14.80 2067.16 0.086 420 

GA 56.12 5.08 2.49 14.55 2069.19 0.083 840 

SQP 58.10 5.00 2.50 15.00 2070.00 0.092 6 

Table 8. The Constrained Module Outputs and 
Elapsed Times for the Three Search Methods. 

Looking at Table 7, it can be seen that the gradient 
search found a better solution than either of the two 

Design Ls hs bs ta da La Cs 
J(X), 
amax 

Initial, (Xos) 1.00 0.50 1.00 1.0 1.25 0.60 1.50 14.290 
Optimum, (X*) 1.38 0.51 1.22 1.50 1.50 0.60 1.32 10.954 

heuristic techniques although all three found designs 
with similar performance. The most striking 
difference between the three search methods is in the 
elapsed time. The SA took 70 times as long and the 
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Figure 8. The Vertical Acceleration of the 
Passenger Cabin Before and After Optimization. 

GA took 140 times as long as the SQP method.  It is 
clear that for at least this design problem, the gradient 
technique was both faster and more successful. 

Objective Sensitivity Analysis 

Once the optimal design vector, X*, was calculated, 
the sensitivity of the objective function with respect 
to the design variables around the optimal point was 
investigated.  
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Normalized sensitivities of the objective function 
with respect to each design variable were obtained 
using the finite difference approach. The calculated 
sensitivities are shown in Figure 9. 

It is clear from Figure 9 that the objective function 
was most sensitive to the damping coefficient of the 
shock absorber, Cs. Since the objective was to 
minimize the maximum vertical acceleration of the 
passenger cabin, amax, any increase in the damping 
coefficient would have resulted in a worse design. 
Those with knowledge of suspension design may 
have been able to anticipate this result. 

It can also be seen from Figure 9 that any increase in 
the outer diameter of the axle, da, the thickness of the 
axle tube, ta, and the length of the leaf spring, Ls, 
would improve the objective. This is to be expected 
since they all increase the weight of the suspension 
and heavier suspensions are not as sensitive to road 
conditions. However, these changes come with a 
price. Increasing the weight of the suspension also 
has some undesirable side effects.  More on this trade 
off between performance and weight will be 
highlighted later. 

From Figure 9, it can also be seen that objective 
function is insensitive to the location of the attach 
point of the passenger cabin to the axle, La, This is 
due to the fact that La, only affects the internal 
stresses of the axle and not the weight or dynamic 
properties of the suspension. 
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Figure 9. Sensitivity of J(X*  With Respect to the 
Design Variables. 

Parameter Sensitivity Analysis 

The sensitivity of the optimum design vector X* was 
investigated with respect to the following fixed 
parameters: the material density, ρ, the mass of the 
car, mc, and the car tire stiffness, Kt. A forward 
difference approximation was used to calculate δp/δX 
for each of the seven design variables.  This was 

accomplished by calculating ∆p/∆X for 14 different 
perturbation step sizes, ∆p, ranging from 0.1%-10% 
of the nominal value of each fixed parameter.  This 
data was used to determine the perturbation range 
over which the linear approximation made when 
using a finite differencing method is valid.  The best 
step size was chosen for each case and the results are 
summarized in Table 9. 

Table 9. Sensitivity of X* With Respect to 
Three of the Fixed Parameters. 

Design Variables 
Parameter ∆Ls/∆p ∆bs/∆p ∆hs/∆p ∆ta/∆p ∆da/∆p ∆La/∆p ∆Cs/∆p 

ρ (Material Density) -6.20E-04 -2.40E-06 -1.00E-06 -2.00E-07 -1.00E-05 0.0 0.0 
mc (Mass of Car) 2.00E-04 6.00E-07 0.0 0.0 0.0 0.0 7.80E-04 
Kt (Tire Stiffness) 1.50E-06 6.00E-09 0.0 0.0 0.0 0.0 0.0 

It can be seen from Table 9 that an increase in the 
material density will result in a decrease in all but 2 
of the design variables.  This is because these two 
design variables, La and Cs, are not related to the 
material density in any of the modules in the 
simulation and therefore their sensitivities with 
respect to the material densities are both zero. From 
Figure 9 it is also evident that Ls, hs, and Cs are 
sensitive to changes in the mass of the car (passenger 
cabin). This is because changes in the mass of the 
car affect the dynamic properties of the system and 
the spring dimensions and shock absorber damping 
properties must compensate.  Similarly, when Kt is 
changed, the spring dimensions must change to 
accommodate. 

Constraint Sensitivity Analysis 

Calculations revealed that three of the 6 constraints 
are active at X*. They are the lower limit on GM 
(gas mileage), and the upper limits on ωratio (natural 
frequency ratio) and St (settling time).  Notice that 
the maximum internal stress, Ωmax, is not active at the 
optimum.  The Lagrange multipliers, λ, for the active 
constraints represent the sensitivity of J(X*) to these 
constraints.  Table 10 shows the Lagrange multipliers 
for the three active constraints.  It can bee seen that 
Settling time is the most important active constraint.   

Table 10. Lagrange multipliers of the Three 
Active Constraints at X*. 

7 

Active Constraint λ 
GM (gas mileage) 1.223 
St (settling time) 7.069 

ωratio (natural frequency ratio) 1.551 



In fact, moving the minimum settling time constraint 
from a value of 2.5 to 5.0 seconds allows the 
objective function to change from 10.95 m/s2 to 6.87 
m/s2.  This significant improvement confirms the 
importance of this constraint to the minimization of 
the maximum vertical acceleration of the passenger 
cabin. For the last phase of MSDO, this constraint 
was lifted and settling time was treated as a second 
objective. 

MULTI-OBJECTIVE OPTIMIZATION Table 11. The Pareto Front Data. 

In the previous phases, the focus was on design 
optimization relative to a single objective.  Since 
maximizing passenger comfort when traveling over 
rough terrain was the overall goal, minimizing amax 
was a suitable objective.  However, another factor 
that is important to passenger comfort relating to the 
suspension is the amount of time that the passenger 
cabin continues to oscillate after the rough terrain has 
been passed. This is often called settling time. A 
suspension that optimizes overall passenger comfort 
would really take this into account in addition the 
vertical acceleration. Thus settling time, St, was 
chosen as a second objective. 

Pareto Front Creation 

To create a Pareto front for the multi-objective 
problem described above, a weighted sum approach 
was used.  The new objective has the following form: 

min[J ( X )] (6)
i 

J where i ( X ) = (1− w ) × (a ) + w × (S )i max i t 

w 
0 < wi < 1 

i +1 − wi = 1.0 

Since amax and St are positive quantities, there is no 
danger of the two canceling each other out in the 
composite objective.  In addition to the nine 
weighting factors listed in the formulation above (0.1, 
0.2, …, 0.9) , .01, .99, and .85 were also included to 
make the Pareto front more complete.  The Pareto 
front is shown in Figure 10 below.  The data is shown 
in Table 11 (all values are scaled).   
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wi amax St Ls hs bs ta da La Cs 

0.01 5.70 6.58 1.50 0.55 1.23 1.50 1.46 0.50 0.50 
0.10 5.70 6.58 1.50 0.55 1.24 1.50 1.46 0.50 0.50 
0.20 5.70 6.58 1.49 0.55 1.24 1.49 1.47 0.50 0.50 
0.30 5.70 6.58 1.50 0.55 1.24 1.49 1.48 0.50 0.50 
0.40 6.01 6.09 1.49 0.55 1.20 1.49 1.48 0.50 0.54 
0.50 7.03 4.83 1.46 0.55 1.17 1.49 1.49 0.50 0.68 
0.60 8.34 3.77 1.41 0.53 1.15 1.50 1.50 0.50 0.87 
0.70 10.09 2.84 1.41 0.53 1.15 1.50 1.50 0.50 1.16 
0.80 12.87 1.93 1.43 0.55 1.13 1.50 1.50 0.50 1.71 
0.85 15.65 1.45 1.50 0.57 1.15 1.49 1.48 0.50 2.27 
0.90 18.96 0.92 1.50 0.56 1.16 1.46 1.50 0.50 3.56 
0.99 21.68 0.66 1.45 0.57 1.05 1.50 1.50 0.50 5.00 

By looking at the Pareto front, several things can be 
noted.  First, the only design variable that undergoes 
a significant change as one moves up and down the 
Pareto front is, Cs, the damping coefficient of the 
shock absorber.  This means that this design variable 
is the one that should be adjusted to convert a 
suspension with high accelerations but short settling 
times to one with low accelerations but high settling 
times. Second, for weighting factors between .01 and 
.3, there was no change in the values of the individual 
objective functions.  This is because the damping 
coefficient, Cs, reached its lower bound of .5 (or 500 
N/m when not scaled 

From the Pareto front we can also see that initial 
design vector found by using the orthogonal array 
was close to Pareto-optimal.  Also, the design found 
using single objective optimization is also on the 
Pareto front and is close to the initial design vector. 
This may be a reason that the SQP method was so 
effective and the runtime was short.  

Figures 11 and 12 show the vertical acceleration and 
displacement of the passenger cabin for two designs: 
one generated by minimizing the settling time, St 
(shown in red), and one created by minimizing the 
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vertical acceleration, amax (shown in blue). It is clear 
that the two designs have very different behavior. 
When minimizing the settling time is the dominant 
objective, the result is a design that stops oscillating 
in less than one second after climbing the 0.1 meter 
road disturbance, but also experiences an acceleration 
of over 20 m/s2 (see Figure 11).  When minimizing 
the acceleration is the dominant objective, the result 
is a design that oscillates for more than six seconds 
but only experiences an acceleration of 5.7 m/s2 (see 
Figure 12). 
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Figure 11. The Passenger Cabin Acceleration 
as a Function of Time. 

Figure 12. The Passenger Cabin Displacement 
as a Function of Time. 
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CONCLUSIONS AND FUTURE WORK 

In this paper, an MSDO approach has been used to 
optimize the performance of the F-350 rear truck 
suspension.  Single- and multi-objective optimization 
methods were used in conjunction with a numerical 

simulation to find the design with the optimal 
performance.  It was found that heavier suspensions 
with low stiffness resulted in lower vertical cabin 
accelerations. Settling time can also be reduced by 
increasing the damping coefficient of the shock 
absorber (i.e. using a more viscous oil). However, 
this reduction comes at the expense of increased 
vertical accelerations of the passenger cabin. 

In the future, the authors hope to look closer at the 
tradeoffs between the maximum acceleration and 
other potential objectives such as cost or gas mileage. 
It is anticipated that more of the design variables will 
change significantly when making trading-offs 
between these dissimilar objectives. 

We also hope to continue to improve the fidelity of 
the numerical simulation so that it captures more of 
the behavior of the actual F-350 truck rear 
suspension.  As part of this, we hope to include more 
road conditions in addition to the 0.1 meter step 
input. 

Another area of future work involves the simulation 
linking software DOME™.  The authors foresee that 
with DOME, each module of the simulation could be 
characterized in a different software package that is 
most suitable for the particular discipline.  For 
example, an FEA software package could be used in 
to measure the stiffness of the leaf spring and the 
internal stresses in the axle more accurately than the 
simple Matlab® code used for the simulations in this 
paper.  Cost and gas mileage modules could be put 
into Excel.  Then, DOME™ could be used to 
seamlessly link all these modules together.  DOME™ 
also would make it easy for more modules to be 
added later, such as modules for noise, handling, and 
alignment. 
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