
@ MIT

massachusetts institute of technology — artificial intelligence laboratory

Feature Point Detection and Curve
Approximation for Early Processing
of Free-Hand Sketches

Tevfik Metin Sezgin

AI Technical Report 2001-009 May 2001

© 2 0 0 1 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u

Feature Point Detection and Curve

Approximation for Early Processing of

Free-Hand Sketches

by

Tevfik Metin Sezgin

Submitted to the Department of Electrical Engineering and
Computer Science in partial fulfillment of the requirements

for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2001

c© Massachusetts Institute of Technology 2001. All rights
reserved.

Certified by: Randall Davis
Department of Electrical Engineering and Computer

Science
Thesis Supervisor

Accepted by: Arthur C. Smith
Chairman, Department Committee on Graduate Students

Feature Point Detection and Curve Approximation
for Early Processing of Free-Hand Sketches

by
Tevfik Metin Sezgin

Submitted to the Department of Electrical Engineering and Computer
Science on May 23, 2001, in partial fulfillment of the requirements for

the degree of Master of Science

Abstract

Freehand sketching is both a natural and crucial part of design, yet is
unsupported by current design automation software. We are working
to combine the flexibility and ease of use of paper and pencil with the
processing power of a computer to produce a design environment that
feels as natural as paper, yet is considerably smarter. One of the most
basic steps in accomplishing this is converting the original digitized
pen strokes in the sketch into the intended geometric objects using fea-
ture point detection and approximation. We demonstrate how multiple
sources of information can be combined for feature detection in strokes
and apply this technique using two approaches to signal processing,
one using simple average based thresholding and a second using scale
space.

Thesis Supervisor: Randall Davis
Title: Department of Electrical Engineering and Computer Science

1

Acknowledgments

• I would like to thank my thesis advisor Prof. Randall Davis for
his support and guidance during my time at the AI LAB. I have
particularly appreciated his availability, patience and feedback.

• I would like to thank my parents Fatin Sezgin, Hatice Sezgin, and
my sister Zerrin Sezgin for their emotional support and encour-
agement.

• I would like to thank Ford Motor Company and sponsors of
Project Oxygen for the financial support.

• Finally I would like to thank my friends in Boston and Syra-
cuse, my officemates Mike Oltmans, Mark Foltz, and wonderful
people in our research group for their encouragement and advice
on everything from housing to random bits of wisdom on LATEX
formatting.

2

Contents

1 Introduction and Motivation 10
1.1 Sketching in the Early Design Phases 11
1.2 The sketch understanding task 13
1.3 Input . 14
1.4 Output . 14

2 Primary Issues 16
2.1 Imprecision due to freehand sketching 16
2.2 Digitization noise . 16
2.3 Extracting direction information 19

3 Feature Point Detection 22
3.1 Deriving stroke properties 22

3.1.1 Curvature . 22
3.1.2 Speed . 23

3.2 Vertex detection . 23
3.2.1 Average based filtering 24
3.2.2 Application to curvature data 25
3.2.3 Application to speed change 26

3.3 Scale space approach . 26
3.3.1 Application to curvature data 29
3.3.2 Application to speed data 36

4 Generating Hybrid Fits 44
4.1 Computing vertex certainties 45
4.2 Computing a set of hybrid fits 46
4.3 Selecting the best of the hybrid fits 47

5 Handling Curves 54
5.1 Curve detection . 54
5.2 Approximation . 54

3

6 Recognition 58
6.1 Beautification . 58
6.2 Basic Object Recognition 59
6.3 Evaluation . 59

7 Related Work 63

8 Future Work 66
8.1 Potential improvements 66
8.2 User studies . 67
8.3 Integration with other systems 69

4

List of Figures

1.1 The rough sketch of the direction reversal mechanism of
a walkman illustrating our notion of an informal sketch. 12

1.2 A complex shape. 13
1.3 The output produced by our algorithm for the sketch in

Fig. 1.1. 15

2.1 The rough sketch of the direction reversal mechanism of
a walkman illustrating our notion of an informal sketch. 17

2.2 A carefully drawn diagram. Compare to Fig. 2.1. 18
2.3 A very noisy stroke. 18
2.4 The figure illustrating all possible relative placements of

two points three pixels apart from one another. 21

3.1 A stroke that contains both curves and straight line seg-
ments illustrating what should be done in the vertex
detection phase. 23

3.2 Stroke representing a square. 23
3.3 Direction, curvature and speed graphs for the stroke in

figure 3.2 . 24
3.4 Curvature graph for the square in figure 3.2 with the

threshold dividing it into regions. 25
3.5 Speed graph for the stroke in figure 3.2 with the thresh-

old dividing it into regions. 26
3.6 At left the original sketch of a piece of metal; at right

the fit generated using only curvature data. 27
3.7 At left the speed graph for the piece; at right the fit

based on only speed data. 27
3.8 A freehand stroke. 30
3.9 The scale-space for the maxima of the absolute curvature

for the stroke in 3.8. 31

5

3.10 The plot on the left shows the drop in feature point
count for increasing σ. The plot at right shows the scale
selected by our algorithm. 33

3.11 Joint scale-space feature-count graph for the stroke in
Fig. 3.8. This plot simultaneously shows the movement
of feature points in the scale space and the drop in fea-
ture point count for increasing σ. 33

3.12 The summed error for the two lines fit to Fig. 3.10 during
scale selection for the stroke in Fig. 3.8. 35

3.13 The input stroke (on the left) and the features detected
by looking at the scale space of the curvature (on the
right). 36

3.14 A very noisy stroke. 36
3.15 Plot showing the drop in feature point count for increas-

ing σ. 37
3.16 The scale space map for the stroke in Fig. 3.14. Fig.3.17

combines this graph with the feature count graph to il-
lustrate the drop in the feature count and the scale-space
behavior. 38

3.17 Joint feature-count scale-space graph obtained for the
noisy stroke in Fig. 3.14 using curvature data. This plot
simultaneously shows the movement of feature points in
the scale space and the drop in feature point count for
increasing σ. 39

3.18 On the left is the fit obtained by the scale-space approach
using curvature data for the stroke in Fig. 3.14. This fit
has only 9 vertices. On the right, the fit generated by
the average filtering with 69 features. The vertices are
not marked to keep the figure uncluttered. 39

3.19 On the left, the fit generated by the scale-space approach
using speed data with 7 vertices, on the right the fit
obtained by average filtering on speed data for the stroke
in Fig. 3.14 with 82 vertices.. 40

3.20 The scale-space, feature-count and joint graphs for the
speed data of the stroke in Fig.3.14. 41

3.21 A stroke consisting of curved and straight segments and
the feature points detected by the scale-space based al-
gorithms we have described. The figure in the middle
shows the feature points generated using curvature data
and the one in the bottom using the speed data. 43

6

4.1 Figure illustrating how average based filtering using speed
data misses a vertex. The curvature fit detects the missed
point (along with vertices corresponding to the artifact
along the short edge of the rectangle on the left). 45

4.2 The speed data for the rectangle in Fig. 4.1. 46
4.3 The hybrid fit chosen by our algorithm, containing 5

vertices. 47
4.4 An example where the curvature data along with aver-

age based filtering misses points. The feature points are
detected using the average based filtering. As seen here,
the curvature fit missed some of the smoother corners
(the fits generated by each method are overlayed on top
of the original stroke to indicate missed vertices). 50

4.5 The series of hybrid fits generated for the complex stroke
in Fig. 4.4. The fits successively get better. 51

4.6 A shape devised to break curvature and speed based
methods at the same time. The figure in the bottom
shows the positions of the vertices intended by the user.
The one in the middle combines these vertices with straight
lines. The figure on top illustrates what the shape would
look like if the corners in this region were made smoother. 52

4.7 A stroke illustrating the kinds of strokes we drew trying
to produce a shape as in Fig. 4.6. 53

5.1 Examples of stroke approximation. Boundaries of Bézier
curves are indicated with crosses, vertices are indicated
with dots. 56

5.2 More examples of stroke approximation. 57

6.1 At left the original sketch of a piece of metal revisited,
and the final beautified output at right. 59

6.2 An overtraced oval and a line along with and the sys-
tem’s output. 60

6.3 Performance examples: Sketches of a marble dispenser
mechanism and a toggle switch. 61

6.4 More performance examples: Sketches of the direction
reversing mechanism in a tape player. 62

8.1 The stroke consisting of curved and straight segments
revisited. 67

7

8.2 The curvature data for the curved stroke example at the
scale chosen by our algorithm indexed by the point index
on the x axis, and the curvature values in the y axis. . . 68

8

List of Tables

4.1 The vertex count and least squares error of the hybrid
fits generated for the rectangle in Fig. 4.1. 47

4.2 The vertex count and least squares errors of the hybrid
fits generated for the stroke in Fig. 4.4. 48

9

Chapter 1

Introduction and
Motivation

Making sense of sketches depends crucially on the ability to capture and
interpret what hand-drawn strokes are meant to represent. We demon-
strate how multiple sources of information can be combined for feature
detection in strokes and apply this technique using two approaches to
signal processing, one using simple average based thresholding and a
second using scale space.

This chapter introduces the problem of sketch understanding and
explains why stroke approximation (i.e., approximation of free-hand
drawings with low level geometric objects) is needed. Chapter two
states some of the problems encountered while dealing with hand drawn
strokes. Chapter three illustrates how speed and curvature data can
be used for feature detection. We describe two methods for finding the
minima of speed and maxima of curvature in the presence of noise. We
also compare these two methods, focusing on tradeoffs in feature point
detection quality, algorithmic complexity and speed.

In chapters four and five we introduce a method for combining fits
generated by multiple sources of information, each using different meth-
ods for feature point detection, and describe a framework for dealing
with strokes containing curves as well as straight lines.

Next we describe how free-hand strokes can be classified as prim-
itive geometric objects via template matching, and demonstrate how
a higher level recognition system can be built using our system. We
describe how a sketch understanding system for early design stages of
mechanical systems can be built on top of the system described here.
Finally we review related work and future directions that can be taken

10

from this work.

1.1 Sketching in the Early Design Phases

Computers are used extensively in current design practice. Design au-
tomation tools are used by engineers from almost all disciplines. These
tools are especially well suited for the later phases of the design, where
the focus is more on implementation details rather than the concep-
tual aspects of the design. For example, in the domain of software
engineering, conceptual design and brainstorming is usually done on
paper, or on a white-board, while implementation is done using a soft-
ware development environment for a particular programming language
and platform. In the case of mechanical engineering, the conceptual
structure of the mechanical devices to be built are sketched on paper,
and later in the implementation phase, CAD programs are utilized for
detailed design.

These examples illustrate possible uses of sketching in the design
process, but unfortunately there is very little support for sketching,
despite its role in conveying ideas, guiding the thought process, and
serving as documentation[20].

Even crude sketches say a lot about the conceptual structure, or-
ganization, or physical description of the system being designed right
from the beginning of the design process. For example, the sketch
in Fig 1.1 (part of the direction reversing mechanism in a walkman)
contains information about the rough geometry of the mechanism. It
shows what components there are, and how they are connected.

Although sketches are an integral part of early design, when the
design process moves into digital media, sketches and diagrams are
usually left behind. The information about the rough geometry, com-
ponents and information about how components are connected are left
behind with the sketch. The designer opens a blank CAD screen and
starts building the device being designed piece by piece. We believe
some of the time and effort spent during the transition from early
design/brainstorming phase can be reduced by making it possible to
capture the sketches and diagrams in digital environment.

By capturing a sketch we mean understanding the geometry of the
components present in the sketch. For example, in Fig. 1.1 we can
identify components such as rods (represented by rectangular shapes),
pin joints and gears (represented by circles), two connections to ground
(represented by a number of parallel lines), springs, and the casing of
the mechanism. A description in terms of the geometry and position of

11

Figure 1.1: The rough sketch of the direction reversal mechanism of a
walkman illustrating our notion of an informal sketch.

the components present in a sketch is far more powerful and meaningful
than a simple bitmap image.

Sketching as a means of creating designs removes heavy dependence
on menu or toolbar based interfaces that require the user to work with
a fixed vocabulary of shapes and build more complex geometries by
combining simpler ones. For example, if the user wants to create a
complex shape as in Fig. 1.2 using a traditional CAD tool, he or she
has to go through menus, pick the right tool for drawing lines, draw the
linear parts of the shape, select the tool for specifying curves and draw
the curved regions by specifying control points. Then the positions of
the control points specifying the curve should be adjusted to achieve
the desired shape. On the other hand, the system we describe in this
thesis makes this task as simple as taking a pen and drawing the desired
shape, requiring no menu selections.

Some researchers suggested Graffiti and gestures to remedy some
of the problems associated with menu based interfaces. Unlike Graffiti
Our system allows users to draw in an unrestricted fashion. For ex-
ample, it is possible to draw a rectangle clockwise or counterclockwise,

12

or with multiple strokes. Even more generally, the system, like people,
responds to how an object looks (e.g., like a rectangle), not how it was
drawn. This is unlike Graffiti and other gesture-based systems such as
[10], and [17] where constrained pen motions like an L-shaped stroke,
or a rectangular stroke drawn in a particular fashion is used to indicate
a rectangle. This, we believe, produces a sketching interface that feels
much more natural.

Figure 1.2: A complex shape.

1.2 The sketch understanding task

The sketch understanding task itself is a very hard problem. We believe
that an intelligent online sketch understanding system should have a
combination of the following features:

• Stroke approximation and recognition: This refers to a low level
system that takes input strokes, classifies them as members of low
level geometric primitives (such as lines, ovals, polylines, curves,
as well as their combinations) and recognizes strokes that belong
to special subclasses (such as rectangles, triangles, circles).

• Ambiguity resolution: Sketches are inherently ambiguous. For
example, depending on the context, a circle may be interpreted
as a pin joint or a circular body. The ambiguity resolution mod-
ule takes the output of the stroke approximation and recognition
layer as input and resolves the ambiguities making use of domain
specific knowledge. Work in [1] describes such a system.

13

• Speech input: It is impossible to resolve all the ambiguities in a
sketch without any user input. Even humans can’t be expected
to resolve all ambiguities without any further explanations Of
course we want to do this in a minimally intrusive manner for the
users. Speech input is a natural choice for this task. The user can
verbally give more information about the sketch, or in the case
of mechanical engineering design, the user can help the system
resolve ambiguities by describing the structure or behavior of the
device in question. [13].

Above, we have itemized some of the key features that sketch un-
derstanding systems should have. This thesis describes a system for
the stroke approximation and recognition tasks mentioned above.

1.3 Input

The input to our system is an array of time-stamped pixel positions
digitized by a tablet. Having the timing data allows us to derive useful
properties of strokes such as pen’s speed and acceleration. By definition
a stroke is an array of (x, y, t) values that describe the path that the
pen traces between mouse down and mouse up events.

1.4 Output

The output of the system is a geometric primitive that approximates
the input stroke. The geometric primitives we support are lines, ovals,
polylines, curves, and complex shapes consisting of curves and poly-
lines. These primitives cover all possible shapes. Supporting a broad
range of shapes proves to be useful in complex domains such as mechan-
ical engineering sketches. Fig. 1.3 illustrates the output we produce for
the sketch in Fig. 1.1. In this figure, the input strokes are approxi-
mated by geometric primitives and some domain specific objects (e.g.,
gears, springs, connections to ground) are recognized by the higher level
recognizer we built.

14

Figure 1.3: The output produced by our algorithm for the sketch in
Fig. 1.1.

15

Chapter 2

Primary Issues

There are several problems that complicate stroke approximation and
sketch recognition process. To set the context for the discussion, we
illustrate with an example the distinction between a sketch and a dia-
gram. By a sketch we mean a crudely drawn, messy looking, freehand
diagram (as in Fig 2.1), while by diagrams we mean clean figures, care-
fully drawn (Fig 2.2). The difference in character between these two
figures produces a number of difficulties when working with sketches.

2.1 Imprecision due to freehand sketching

Geometric primitives such as circles, lines or rectangles, are typically
characterized by properties such as radii, center, height, width or vertex
positions. This is a highly idealized abstract view of these objects, and
sketching a circle of fixed radius or a line with a constant slope is in
practice beyond most people’s capability. This means we can’t depend
on uniformity in strokes for feature detection.

2.2 Digitization noise

The input to our system is a stream of points digitized by an LCD
tablet. As usual, digitization results in loss of information. Digitization-
related problems show up in two forms in the context of stroke approx-
imation:

• Pen’s physical position on the tablet, a continuous function in
time, is mapped to discrete (x, y) points in screen coordinates,

16

Figure 2.1: The rough sketch of the direction reversal mechanism of a
walkman illustrating our notion of an informal sketch.

thus there is an information loss due to digitization even if we
assume ideal conditions where the exact physical position of the
pen is assumed to be known at every moment.

• Noise due to imprecision in localizing pen position is yet another
problem. In the particular type of digitizing tablet that we were
using, straight lines could not be drawn even with a ruler, because
behavior of the capture device is unspecified when the pen posi-
tion is in between two pixels. Fortunately the noise introduced
in this fashion is only a few pixels wide for freehand sketching
for the tablet we were using. Other tablets, however, introduce
noise that is larger in magnitude. For example, one of the tablets
we tried out for evaluation picked up noise from the computer
monitor. Fig. 2.3 shows a star shaped stroke captured with this
tablet when it was very close to the monitor.

17

Figure 2.2: A carefully drawn diagram. Compare to Fig. 2.1.

Figure 2.3: A very noisy stroke.

18

2.3 Extracting direction information

Before discussing how we derive the direction1 information, we point
out some of the issues in capturing freehand strokes via digitizing
tablets.

An unwanted side effect of digitizing pen position comes up when
we try to extract the direction along the curve. There are several ways
of computing the tangent to the curve. Depending on which method
we use, the direction data we compute changes. The simplest way of
estimating the tangent at a point is to look at the relative position
changes ∆x and ∆y between consecutive data points, and approximate
the slope of the tangent between those points by ∆y/∆x. The direction
is then obtained by θ = atan(∆y, ∆x) 2. Although this sounds like a
natural way of defining the tangent and computing direction, it fails if
data points are very close to one another. For example, as illustrated
in Fig. 2.4 if we use the relative position changes between consecutive
data points to compute the direction for two points 3 pixels away from
one another, we will be able to compute only 16 distinct angles in the
(−π, π] range. The problem gets worse as the separation between the
points becomes smaller. The Phoenix system [18] tries to deal with
this problem by preprocessing the input so that consecutive points are
at least δ pixels apart from one another for some sufficiently large δ, so
that the interval (−π, π] is covered by more angles. This means some
points are discarded, resulting in loss of information.

Another problem in dealing with digitized freehand strokes is that of
noise (this problem is also present for scanned documents). The naive
approach of deriving the direction data using slopes of lines connecting
consecutive points ends up being too noisy to be informative. One
approach frequently used in dealing with this noise is smoothing the
direction data, perhaps by convolving with a Gaussian filter. Due to
lack of sufficient data points and sparseness of the data points, this
degrades the performance of corner detection by treating corners as
noise to be smoothed.

Unlike scanned drawings, in our system data points may be some
distance from one another. The stylus typically travels numerous pixels
between samplings, because while digitizing tablets have sub-millimeter
accuracy of pen placement, they are typically not sampled fast enough

1In the rest of this document, by direction we refer to the angle between the
tangent to the curve at a point and the x axis rather than the slope of the tangent
line because of the singularities in deriving slopes (for vertical lines).

2atan(y, x) : �x� → (−π, π] is a variant of arctangent function that takes the
signs of each of its arguments into account.

19

to provide a data point every time the pen moves from one pixel to the
next in a freehand sketch. During freehand sketching the stylus may
reach speeds of 12-15 inches per second. With typical tablet sampling
rates of 50Hz, the number of points sampled per inch drops down to
only 4-5 ppi and points are sampled sparsely in screen coordinates. For
example, the LCD tablet we used had an active area of 10.7x8.0 inches
and a resolution of 1024x768 pixels, so with a sampling rate of 4-5
ppi, the stylus would move 20-25 pixels between samples. This lack of
resolution compared to scanned images (that may have thousands of
points per inch) means we have to show extra care in deriving direction
information.

We chose to solve the problems above without discarding points or
using Gaussian smoothing. We compute the direction at a point by fit-
ting an orthogonal distance regression (ODR) line to a small window of
points centered at the point in question. Orthogonal distance regres-
sion finds a line that minimizes the sum of the orthogonal distances
from the points to the line (unlike linear regression, which minimizes
only the y-distance). For computational efficiency we use a discrete
approximation to the ODR that is good to 0.5 degree3. Our method
requires choosing a neighborhood size k = 2n + 1 which covers the
point in question, n preceding points and n following points. At the
end points of the stroke where the neighborhood is not well defined for
k, we use choose a smaller neighborhood to ensure that the window
defining the neighborhood doesn’t extend beyond the end points.

3Principal component analysis solves the same problem: the direction at a point
is given by the eigenvector of the largest eigenvalue of the covariance matrix for the
window of points surrounding the point in question. But this is computationally
more expensive than our ODR approximation, which is more than accurate enough
for our purposes. There are also gradient descent methods for ODR [7], but these
don’t provide any significant computational improvement.

20

Figure 2.4: The outer circle is formed by all the points that are 3
units away from the point in the center. As seen here, if we use the
relative position changes ∆x and ∆y between consecutive data points
to compute the direction, the values we will be able to compute only
16 distinct angles in the [−π, π] range.

21

Chapter 3

Feature Point Detection

This chapter illustrates how curvature and speed data can be used to
detect feature points (i.e., corners) in a stroke. We begin by describ-
ing how we derive curvature and speed data for a stroke. Later we
illustrate how we detect feature points using this data. Note that we
are not simply trying to polygonalize the input stroke. We want to
avoid representing curved portions of the input stroke via polygonal
approximations because our curved region detection method depends
on this.

3.1 Deriving stroke properties

As noted, stroke is a sequence of points along with timing information
indicating when each point was sampled. Below, we explain how we
derive curvature and speed information.

3.1.1 Curvature

Given direction data d, curvature is defined as ∂d/∂s where s is the
accumulated length of the curve from the beginning to the point of
interest. Note that curvature between points far from one another is
smaller compared to two points with the same difference in direction
that are closer together. This property of curvature makes it a more
suitable indicator of corners than simple the pointwise change in direc-
tion, as data points are not spread uniformly (e.g., they are typically
closer to one another around the corners).

22

Figure 3.1: The stroke on the left contains both curves and straight line
segments. The points we want to detect in the vertex detection phase
are indicated with large dots in the figure on the right. The beginning
and the end points are indicated with smaller dots.

3.1.2 Speed

We derive the instantaneous speed of the pen between two consecutive
points by dividing the distance pen travels by the time difference.

3.2 Vertex detection

Stroke processing starts by looking for vertices. We use the sketch in
Fig. 3.1 as a motivating example of what should be done in the vertex
detection phase. Points marked in Fig. 3.1 indicate the corners of the
stroke where the local curvature is high. Note that there are no vertices
marked on the curved portion of the stroke. During the vertex detection
process, we want to avoid picking points on the curved regions as much
as possible. Piecewise linear approximation algorithms don’t satisfy
this requirement.

Figure 3.2: Stroke representing a square.

Vertex localization is a frequent subject in the extensive literature

23

on graphics recognition (e.g., [16] compares 21 methods). Unfortu-
nately these methods produce piecewise linear approximations. Our
approach takes advantage of the interactive nature of sketching by com-
bining information from both curvature and speed data for detecting
corners while avoiding a piecewise linear approximation. For example,
the direction, curvature and speed graphs for the square in figure 3.2
are in figure 3.3. We locate vertices by looking for points along the
square where we have a local maximum in the absolute value of the
curvature1 or a minimum in the speed graph.

Although we said that the extrema in the curvature and speed data
correspond to feature points in the original stroke, it is clear that we
should not blindly compute the zero crossings of the derivative of the
data, because the data is noisy. Doing so would introduce many false
positives. In the following subsections we describe two methods that
detect feature points in presence of noise, while avoiding false positives.

0 50 100 150 200 250
−4

−3

−2

−1

0

1

2

3

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.3: Direction, curvature and speed graphs for the stroke in
figure 3.2

3.2.1 Average based filtering

False positives arise from looking at the extrema of the data at the
most detailed scale. Extrema at the most detailed scale include those
corresponding to the salient features of the data as well as those caused
by the noise in the data. We want to find the extrema due to salient
features, avoiding local extrema, while (of course) finding more than
just the single global extreme. To accomplish this, we select only the
extrema of the function above a threshold. To avoid the problems posed
by choosing a fixed threshold, we compute the threshold by computing
the mean of the data and then scaling2 it. We use this threshold to

1From this point on, we when we say curvature, we will refer to the absolute
value of the curvature data.

2This scaling factor is determined empirically. In our system we used the mean
for curvature data, and scaled the mean by 0.9 for the speed data.

24

separate the data into regions where it is above/below the threshold.
Then we select the global extrema within each region. We illustrate
how this technique – average based filtering – can be applied to vertex
detection using curvature and speed data.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.4: Curvature graph for the square in figure 3.2 with the thresh-
old dividing it into regions.

3.2.2 Application to curvature data

Figure 3.4 shows how average based filtering partitions the curvature
graph into different regions. Intuitively, the average based filtering
partitions the stroke into regions of high and low curvature. Because
we are interested in detecting the corners, we search for the maximum
of the curvature within the regions with significant curvature. Note
how this reduces, but doesn’t eliminate, the problem of false positives
introduced by noise in the captured stroke.

Although this average based filtering method performs better than
simply comparing the curvature data against a hard coded threshold,
it is not completely constant free. As we explain later, using the scale
space provides a better methodology for dealing with noisy data with-
out making a priori assumptions about the scale of relevant features.

25

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 3.5: Speed graph for the stroke in figure 3.2 with the threshold
dividing it into regions.

3.2.3 Application to speed change

Our experience is that curvature data alone rarely provides sufficient
reliability. Noise is one problem, but variety in angle changes is an-
other. Fig. 3.6 illustrates how curvature alone fit misses a vertex (at
the upper right) because the curvature around that point was too small
to be detected in the context of the other, larger curvatures. We solve
this problem by incorporating the speed data into our decision as an
independent source of guidance.

Just as we did for the curvature data, we filter out the false extrema
by average based filtering, then look for speed minima. The intuition
here is simply that pen speed drops when going around a corner in
the sketch. Fig. 3.7 shows (at left) the speed data for the sketch in
Fig. 3.6, along with the polygon drawn from the speed-detected vertices
(at right).

3.3 Scale space approach

An inherent property of real-world objects is that they exist as mean-
ingful entities over a range of scales. The classical example is a tree
branch. A tree branch is meaningful at the centimeter or meter lev-

26

Figure 3.6: At left the original sketch of a piece of metal; at right the
fit generated using only curvature data.

Figure 3.7: At left the speed graph for the piece; at right the fit based
on only speed data.

27

els. It would be absurd to measure or look at it at very small scales
where cells, molecules or atoms would make sense, or at a very large
scale where it makes sense to talk about forests and trees rather than
branches.

As humans we are good detecting features at multiple scales, but
when we use computers to interpret sampled data, we have to take
features at multiple scales into account, because digital data is degraded
by noise and digitization.

In the case of stroke approximation, there are problems posed by
noise and digitization. In addition, selecting an a priori scale has the
problem of not lending itself to different scenarios where object features
and noise may vary. There’s a need to remove the dependence of our
algorithms on preset thresholds.

A technique for dealing with features at multiple scales is to look at
the data through multiple scales. The scale space representation frame-
work introduced by Witkin [21] attempts to remove the dependence on
constant thresholds and making a priori assumptions about the data.
It provides us with a systematic framework for dealing with the kind
of data we are interested in.

The virtues of scale-space approach are twofold. First it enables
multiple interpretations of the data. These interpretations range from
descriptions with high detail to descriptions that capture only the over-
all structure of the stroke. The second virtue of having representations
of the data at multiple scales is setting the stage for selecting a scale or
a set of scales by looking at how the interpretation of the data changes
and features move in the scale space as the scale is varied.

The intuition behind scale-space representation is generating suc-
cessively higher level descriptions of a signal by convolving it with a
filter that does not introduce new feature points as the scale increases.

As a filter we use the Gaussian function, defined as:

g(s, σ) =
1

σ
√

2π
e−s2/2σ2

where σ is the smoothing parameter that controls the scale. Higher σ
means coarser scales describing the overall features of the data, while
a smaller σ corresponds to finer scales containing the details.

The Gaussian filter satisfies the restriction of not introducing new
feature points. The uniqueness of the Gaussian kernel for use in scale-
space filtering is discussed in [22] and [2].

Given a function f(x), the convolution is given by:

F (x, σ) = f(x) ∗ g(x, σ) =
∫ ∞

−∞
f(u)

1
σ
√

2π
e(x−u)2/2σ2

du

28

We use the discrete counterpart of the Gaussian function which satisfies
the property:

n∑
i=0

g(i, σ) = 1

Given a Gaussian kernel, we convolve the data using the following
scheme:

x(k,σ) =
n∑

i=0

g(i, σ)xk−�n/2+1�+i

There are several methods for handling boundary conditions when the
extent of the kernel is beyond end points. In our implementation we
assume that for k − �n/2 + 1� + i < 0 and k − �n/2 + 1� + i > n the
data is padded with zeroes on either side.

In the pattern recognition community [5], [14] and [12] apply some
of the ideas from scale space theory to similar problems. In particular
[5], and [14] apply scale-space idea to detection of corners of planar
curves and shape representation.

Scale space provides a concise representation of the behavior of the
data across scales, but doesn’t provide a generic scale selection method-
ology. There is no known task independent way of deciding which scales
are important when looking at the scale-space map for some data. On
the other hand it is possible to formulate scale selection methods by
observing the properties of the scale-space map for a given task such
as edge detection or ridge detection. In the following subsections, we
explain how we used the feature count for scale selection in shape ap-
proximation. Our goal is selecting a scale where the extrema due to
noise disappear.

3.3.1 Application to curvature data

As we did in the average based filtering, we start by deriving direction
and curvature data. Next we derive a series of functions from the
curvature data by smoothing it with Gaussian filters of increasing σ.
Then we find the zero crossings of the curvature at each scale and build
the scale-space.

Scale-space is the (x, σ)-plane where x is the dependent variable of
function f(.) [21]. We focus on how maxima of curvature move in this
2D plane as σ is varied.

Fig 3.8 shows a freehand stroke and Fig. 3.9 the scale space map cor-
responding to the features obtained using curvature data. The vertical

29

Figure 3.8: A freehand stroke.

axis in the graph is the scale index σ (increasing up). The horizontal
axis ranging from 0 to 178 indicates the indices of the feature points in
the scale space. The stroke in question contains 179 points. We detect
the feature points by finding the negative zero-crossings of the deriva-
tive of absolute value of the curvature at a particular scale. We do this
at each scale and plot the corresponding point (σ, i) for each index i
in the scale space plot. An easy way of reading this plot is by drawing
a horizontal line at a particular scale index, and then looking at the
intersection of the line with the scale-space lines. The intersections
indicate the indices of the feature points at that scale.

As seen in this graph, for small σ (bottom of the scale space graph),
many points in the stroke end up being detected as vertices because at
these scales the curvature data has many local maxima, most of which
are caused by the noise in the signal. For increasing σ, the number
of feature points decreases gradually, and for the largest scale σmax

(top of the scale space graph), we have only three feature points left,
excluding the end points.

Our goal at this stage is to choose a scale where the false positives
due to noise are filtered out and we are left with the real vertices of the
data. We want to achieve this without having any particular knowl-
edge about the noise3 and without having preset scales or constants for
handling noise.

3The only assumption we make is that the noise is smaller in magnitude than
the feature size.

30

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

350

400

Figure 3.9: The scale-space for the maxima of the absolute curvature
for the stroke in 3.8. This plot shows how the maxima move in the
scale space. The x axis is the indices of the feature points, the y axis
is the scale index.

31

The approach we take is to keep track of the number of feature
points as a function of σ and find a scale preserving the tradeoff between
choosing a fine scale where the data is too noisy and introduces many
false positives, and choosing a coarse scale where true feature points
are filtered out. For example, the stroke in Fig. 3.8, has 101 feature
points for σ = 0. On the coarsest scale, we are left with only 5 feature
points, two of which are end points. This means 4 actual feature points
are lost by the Gaussian smoothing. Because the noise in the data and
the shape described by the true feature points are at different scales, it
becomes possible to detect the corresponding ranges of scales by looking
at the feature count graph.

For this stroke, the feature count graph is given in Fig. 3.10. In
this figure, the steep drop in the number of feature points that occurs
for scale indices [0, 40] roughly corresponds to scales where the noise
disappears, and the region [85, 357] roughly corresponds to the region
where the real feature points start disappearing. Fig. 3.11 shows the
scale space behavior during this drop by combining the scale-space with
the feature-count graph. In this graph, the x, y, axis z, respectively
correspond to the feature point index [0,200], σ [0,400], and feature
count [0,120]. We read the graph as follows: given σ, we find the
corresponding location in the y axis. We move up parallel to the z axis
until we cross the first scale space line4. The z value at which we cross
the first scale space line gives the feature count at scale index σ. Now,
we draw an imaginary line parallel to the x axis. Movements along this
line correspond to different feature indices, and its intersection with the
scale space plot corresponds to indices of feature points present at scale
index σ. The steep drop in the feature count is seen in both Fig. 3.10
and Fig. 3.11.

Our experiments suggest that this phenomena (i.e., the drop) is
present in all hand drawn curves. For scale selection, we make use of
this observation. We model the feature count - scale graph by fitting
two lines and derive the scale using their intersection. Specifically, we
compute a piecewise linear approximation to the feature count - scale
graph with only two lines, one of which tries to approximate the portion
of the graph corresponding to the drop in the number of feature points
due to noise, and the other that approximates the portion of the graph
corresponding to the drop in the number of real feature points. We
then find the intersection of these lines and use its x value (i.e., the
scale index) as the scale. Thus we avoid extreme scales and choose a

4The first scale space line corresponds to the zeroth point in our stroke, and by
default it is a feature point and is plotted in the scale space plot. This remark also
applies to the last point in the stroke.

32

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

120

Figure 3.10: The plot on the left shows the drop in feature point count
for increasing σ. The plot at right shows the scale selected by our
algorithm (in both, the y axis is the feature count, x is the scale index).

0

50

100

150

2000

100

200

300

400

0

20

40

60

80

100

120

Figure 3.11: Joint scale-space feature-count graph for the stroke in
Fig. 3.8. This plot simultaneously shows the movement of feature points
in the scale space and the drop in feature point count for increasing σ.
Here the z axis is the feature count [0,120], the x axis is the feature
point index [0,200], and the y axis is the scale index [0,400].

33

scale where most of the noise is filtered out.
Fig. 3.10 illustrates the scale selection scheme via fitting two lines

l1, l2 to the feature count - scale graph. The algorithm to get the
best fit simply finds i that minimizes OD(l1, {Pj}) + OD(l2, {Pk}) for
0 ≤ j < i, i ≤ k < n. OD(l, {Pm}) is the average orthogonal distance
of the points Pm to the line l, P is the array of points in the feature
count - scale graph indexed by the scale parameter and 0 ≤ i < n
where n is the number of points in the stroke. Intuitively, we divide
the feature count - scale graph into two regions, fit an ODR line to
each region, and compute the orthogonal least squares error for each
fit. We search for the division that minimizes the sum of these errors,
and select the scale corresponding to the intersection of the lines for
which the division is optimal (i.e., has minimum error).

Interestingly enough, we have reduced the problem of stroke ap-
proximation via feature detection to fitting lines to the feature count
graph, which is similar in nature to the original problem. However, now
we know how we want to approximate the data (i.e., with two lines).
Therefore even an exhaustive search for i corresponding to the best fit
becomes feasible. As shown in Fig. 3.12 the error as a function of i
is a U shaped function. Thus, if desired, the minima of the summed
error can be found using gradient descent methods by paying special
attention to not getting stuck in the local minima. For the stroke in
Fig. 3.8, the scale index selected by our algorithm is 47.

While we try to choose a scale where most of the false maxima due
to noise are filtered out, feature points at this scale we may still contain
some false positives. The problem of false extrema in the scale space is
also mentioned in [14], where these points are filtered out by looking at
their separation from the line connecting the preceding and following
feature points. They filter these points out if the distance is less than
one pixel.

The drawback of this filtering technique is that the scale-space has
to be built differently. Instead of computing the curvature for σ = 0
and then convolving it with Gaussian filters of larger σ to obtain the
curvature data at a particular scale, they treat the stroke as a para-
metric function of a third variable s, path length along the curve. The
x and y components are expressed as parametric functions of s. At
each scale, the x and y coordinates are convolved with the appropriate
Gaussian filter and the curvature data is computed. It is only after this
step that the zero crossings of the derivative of curvature can be com-
puted for detecting feature points. The x and y components should be
convolved separately because filtering out false feature points requires
computing the distance of each feature point to the line connecting the

34

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

450

Figure 3.12: The summed error for the two lines fit to Fig. 3.10 during
scale selection for the stroke in Fig. 3.8.

preceding and following feature points, as explained above. This means
the Gaussian convolution, a costly operation, has to be performed twice
in this method, compared to a single pass in our algorithm.

Because we convolve the curvature data instead of the x and y coor-
dinates, we can’t use the method mentioned above. Instead we use an
alternate 2-step method to remove the false positives. First we check
whether there are any vertices that can be removed without increas-
ing the least squares error between the generated fit and the original
stroke points5. The second step in our method takes the generated fit,
detects consecutive collinear6 edges and combines these edges into one
by removing the vertex in between. After performing these operations,
we get the fit in Fig. 3.13.

One virtue of the scale space approach is that works extremely well
in the presence of noise. In Fig.3.14 we have a very noisy stroke. Fig-
ures 3.15 and 3.16 show the feature-count and scale-space respectively.
Fig.3.17 combines these two graphs, making it easier to see simulta-
neously what the feature count is at a particular scale, and what the

5It is also possible to relax this criteria and remove points if the increase in the
least squares error of the segment they belong to remains within some percentage
of the original error.

6The collinearity measure is determined by the task in hand. In our system,
lines intersecting with an angle of π/32 or less are considered to be collinear.

35

Figure 3.13: The input stroke (on the left) and the features detected
by looking at the scale space of the curvature (on the right).

Figure 3.14: A very noisy stroke.

scale-space behavior is in that neighborhood.
The output of the scale-space based algorithm is in Fig. 3.18. This

output contains only 9 points. For comparison purposes, the output
of the average based feature detection algorithm based on curvature is
also given in Fig. 3.18. This fit contains 69 vertices. (The vertices are
not marked for the sake of keeping the figure clean.)

3.3.2 Application to speed data

We applied the scale selection technique mentioned above on speed
data. The details of the algorithm for deriving the scale-space and
extracting the feature points are similar to that of the curvature data,
but there are some differences. For example, instead of looking for the
maxima, we look for the minima.

Fig. 3.20 has the scale-space, feature-count and joint graphs for the

36

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

Figure 3.15: This plot shows the drop in feature point count for increas-
ing σ. y axis is the feature count, and the x axis is the scale index.
Even in the presence of high noise, the behavior in the drop is the same
as it was for 3.8. Fig.3.17 combines this graph with the feature count
graph to illustrate the drop in the feature count and the scale-space
behavior.

37

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

Figure 3.16: The scale space map for the stroke in Fig. 3.14. Fig.3.17
combines this graph with the feature count graph to illustrate the drop
in the feature count and the scale-space behavior.

38

0
50

100
150

200
250

300
350

400

0

200

400

600

800

0

20

40

60

80

100

120

Figure 3.17: Joint feature-count scale-space graph obtained for the
noisy stroke in Fig. 3.14 using curvature data. This plot simultaneously
shows the movement of feature points in the scale space and the drop
in feature point count for increasing σ. Here the z axis is the feature
count [0,120], the x axis is the feature point index [0,400], and the y
axis is the scale index [0,800].

Figure 3.18: On the left is the fit obtained by the scale-space approach
using curvature data for the stroke in Fig. 3.14. This fit has only 9
vertices. On the right, the fit generated by the average filtering with
69 features. The vertices are not marked to keep the figure uncluttered.

39

Figure 3.19: On the left, the fit generated by the scale-space approach
using speed data (which has 7 vertices). On the right is the fit obtained
by average filtering on speed data for the stroke in Fig. 3.14. This fit
has 82 vertices that are not marked to keep it uncluttered.

speed data of the stroke in Fig. 3.14. As seen in these graphs, the
behavior of the scale space is similar to the behavior we observed for
the direction data. We use the same method for scale selection. In this
case, the scale index picked by our algorithm was 72. The generated
fit is in Fig. 3.19 along with the fit generated by the average based
filtering method using the speed data.

For the speed data, the fit generated by scale-space method has 7
vertices, while the one generated by the average based filtering has 82.
In general, the performance of the average based filtering method is
not as bad as this example may suggest. For example, for strokes as in
Fig.3.8, the performance of the two methods are comparable, but for
extremely noisy data as in Fig. 3.14, the scale-space approach pays off.
This remark also applies to the results obtained using curvature data.
Because the scale-space approach is computationally more costly7, us-
ing average based filtering is preferable for data that is less noisy. There
are also scenarios where only one of curvature or speed data may be
more noisy. For example, in some platforms, the system generated tim-
ing data for pen motion required to derive speed may not be precise
enough, or may be noisy. In this case, if the noise in the pen loca-
tion is not too noisy, one can use the faster average based method for
generating fits from the curvature data and the scale-space method for
deriving the speed fit. This is a choice that the user has to make based
on the accuracy of hardware used to capture the strokes, and and the
computational limitations.

We conclude by an example illustrating that our algorithm satisfies
7Computational complexity of the average based filtering is linear with the num-

ber of points where the scale space approach requires quadratic time if the scale
index is chosen to be a function of the stroke length.

40

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800
0

20

40

60

80

100

120

0

100

200

300

400
0

200

400

600

800

0

20

40

60

80

100

120

Figure 3.20: The scale-space, feature-count and joint graphs for the
speed data of the stroke in Fig.3.14. In this case, the scale selected by
our algorithm is 72.

41

the requirement mentioned at the beginning of the chapter, namely
that of avoiding piecewise linear approximations at curved portions of
the input stroke. Fig. 3.21 contains a stroke consisting of curved and
straight segments and the features points picked by the scale-space
based algorithm we described. Note that although some of the feature
points are on the curve, the piecewise linear approximation described
by these points is, by criteria we describe below, such a crude approx-
imation to the original stroke that the system will fit Bézier curves to
that segment (see section 5.1). In the future work chapter, we propose
two possible directions that can be taken to remove these false positives
if needed.

In this chapter, we have described several methods for detecting
feature points of hand-drawn strokes. Next we describe how features
detected by different methods can be combined for better performance.

42

Figure 3.21: A stroke consisting of curved and straight segments and
the feature points detected by the scale-space based algorithms we have
described. The figure in the middle shows the feature points generated
using curvature data and the one in the bottom using the speed data.

43

Chapter 4

Generating Hybrid Fits

In the previous chapter we introduced methods for vertex detection
using curvature and speed data. As we pointed out, curvature data
itself was not sufficient to detect all vertices, motivating our use of
speed data. However, using speed data alone has its shortcomings
as well. Polylines formed by a combination of very short and long
line segments can be problematic: the maximum speed reached along
the short segments may not be high enough to indicate the pen has
started traversing another edge, causing the entire short segment to be
interpreted as a corner. This problem arises frequently when drawing
thin rectangles, common in sketches of mechanical devices. Fig. 4.1
illustrates this phenomena. In this figure, the speed fit misses the upper
left corner of the rectangle because the pen failed to gain enough speed
between the endpoints of the corresponding short segment. Fig. 4.2
shows pen speed for this rectangle. The curvature fit, by contrast,
detects all corners, along with some other vertices that are artifacts
due to hand dynamics during freehand sketching.

Since, both curvature and speed data alone are insufficient for gen-
erating good fits in certain scenarios, a method to combine these two
information sources is needed. We use information from both sources,
and generate hybrid fits by combining the candidate set Fc obtained
using curvature data with the candidate set Fs obtained using speed
information, taking into account the system’s certainty that each can-
didate is a real vertex.

Hybrid fit generation occurs in three stages: computing vertex cer-
tainties, generating a set of hybrid fits, and selecting the best fit.

44

(a) Input, 63 points (b) Using curvature data, 7 ver-
tices

(c) Using speed data, 4 vertices

Figure 4.1: Average based filtering using speed data misses a vertex.
The curvature fit detects the missed point (along with vertices corre-
sponding to the artifact along the short edge of the rectangle on the
left).

4.1 Computing vertex certainties

Our certainty metric for a curvature candidate vertex vi is the scaled
magnitude of the curvature in a local neighborhood around it expressed
by |di−k −di+k|/l. Here l is the curve length between points Si−k, Si+k

and k is a small integer defining the neighborhood size around vi. The
certainty values are normalized to be within [0, 1]. The certainty metric
for a speed fit candidate vertex vi is a measure of the pen slowdown at
the point, 1−vi/vmax, where vmax is the maximum pen speed anywhere
in the vertices of the approximation.

As is traditional both of these metrics produce values in [0, 1],
though with different scales. Metrics are used only for ordering within
each set, so they need not be numerically comparable across sets. Can-
didate vertices are sorted by certainty within each fit.

45

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−4

Figure 4.2: The speed data for the rectangle in Fig. 4.1.

4.2 Computing a set of hybrid fits

The initial hybrid fit H0 is the intersection1 of Fc and Fs. A succession
of additional fits are then generated by appending to Hi the highest
scoring curvature and speed candidates not already in Hi.

To do this, on each cycle we create two new fits: H ′
i = Hi ∪ {vs}

(i.e., Hi augmented with the best remaining speed fit candidate) and
H ′′

i = Hi ∪{vd} (i.e., Hi augmented with the best remaining curvature
candidate). We use least squares error as a metric of the goodness of a
fit. The error εi is computed as the average of the sum of the squares
of the distances to the fit from each point in the stroke S:

εi =
1
|S|

∑
s∈S

ODSQ(s, Hi)

Here ODSQ stands for orthogonal distance squared, i.e., the square of
the distance from the stroke point to the relevant line segment of the
polyline defined by Hi. We compute the error for H ′

i and for H ′′
i ; the

higher scoring of these two (i.e., the one with smaller least squares error)
1The indices picked by the speed and curvature fits for a particular corner may

be off by a small offset (one or two), and this is taken into consideration when
comparing vertices in Fc and Fs so that correspondence between the fits can be
correctly identified.

46

Vertices εi

H0 4 47.247
H1 5 1.031
H2 6 0.846
H3 7 0.844

Table 4.1: The vertex count and least squares error of the hybrid fits
generated for the rectangle in Fig. 4.1.

becomes Hi+1, the next fit in the succession. This process continues
until all points in the speed and curvature fits have been used. The
result is a set of hybrid fits. Table 4.1 shows number of vertices for
each Hi and the least squares errors for the thin rectangle in Fig 4.1.
As expected, the errors decrease as the number of vertices increases.

4.3 Selecting the best of the hybrid fits

In selecting the best of the hybrid fits the problem is as usual trading
off more vertices in the fit against lower error. Here our approach is
simple: We set an error upper bound and designate as our final fit
Hf , the Hi with the fewest vertices that also has an error below the
threshold.

Figure 4.3: The hybrid fit chosen by our algorithm, containing 5 ver-
tices.

The example above is a simple one where we miss one vertex using
the speed information, and the curvature data detects all the vertices.
Our method works even if neither the speed nor the curvature fits cap-
ture all the true vertices. Our algorithm handles such cases successfully.

The stroke in Fig. 4.4 was deliberately2 drawn to include two soft
corners along with 23 sharp corners making it hard to detect the soft
corners using curvature data. It also includes many short edges that
are particularly hard to detect using the speed data alone. The fits

2It took the author several minutes to generate an example where both methods
miss vertices.

47

Vertices εi

H0 23 89.857
H1 24 14.930
H2 25 8.921
H3 26 5.691
H4 27 1.445

Table 4.2: The vertex count and least squares errors of the hybrid fits
generated for the stroke in Fig. 4.4.

generated by the curvature and speed data are in the same figure, and
they are drawn over the original stroke to emphasize the vertices missed
by each method.

The hybrid fits generated by our method are in Fig. 4.5. In this
case the hybrid fit chosen by our algorithm is H4, containing all the
corners. A summary of the relevant information for each hybrid fit is
in table 4.2.

When average based filtering is used, in order for the hybrid fit
generation to fail, the input stroke should satisfy the following criteria:

• The stroke should contain very short segments with shallow turns
and smooth corners so that the curvature fit misses the corre-
sponding vertices. In addition, these segments should be drawn
slowly, so that vertices are missed by the speed fit as well.

• There should be many sharp turns in the shape to pull the average
curvature up so that the vertices with the shallow turns are missed
in such a context.

• The shape should contain long segments drawn rather fast, so the
speed threshold is pulled up (causing the vertices to be missed).

Obviously it is very hard to satisfy all of these requirements.
Fig. 4.6 is our attempt to generate a shape that tries to satisfy the

above requirements. Note how the region intended to have shallow
turns starts looking like a smooth curve even with a little smoothing
3. We tested our system with this example tailored to break curvature
and speed based methods for the same vertices, paying special attention
to making the corners in the region of interest just smooth enough so
the whole region doesn’t look like a curve, thus our expectation from

3Obviously there is a limit on the smoothness of the corners and the length of
the edges in this region, because as the edges are made shorter and the corners
become smoother, the shape turns into a curve.

48

the algorithm remains reasonable. Fig. 4.7 shows one of our attempts
to produce such a scenario. After numerous tries, we were unable to
generate a case where the generated hybrid fit missed the vertices in
question.

49

(a) Input, 614 points

(b) Using curvature data, 29 vertices

(c) Using speed data, 24 vertices

Figure 4.4: An example where the curvature data along with average
based filtering misses points. The feature points are detected using the
average based filtering. As seen here, the curvature fit missed some of
the smoother corners (the fits generated by each method are overlayed
on top of the original stroke to indicate missed vertices).

50

(a) ε0 = 89.8576, 23 vertices (b) ε1 = 14.9301, 24 vertices

(c) ε2 = 8.9211, 25 vertices (d) ε3 = 5.6916, 26 vertices

(e) ε4 = 1.4458, 27 vertices

Figure 4.5: The series of hybrid fits generated for the complex stroke
in Fig. 4.4. The fits successively get better.

51

Figure 4.6: A shape devised to break curvature and speed based meth-
ods at the same time. The figure in the bottom shows the positions
of the vertices intended by the user. The one in the middle combines
these vertices with straight lines. The figure on top illustrates what the
shape would look like if the corners in this region were made smoother.

52

Figure 4.7: A stroke illustrating the kinds of strokes we drew trying to
produce a shape as in Fig. 4.6.

53

Chapter 5

Handling Curves

The approach described so far yields a good approximation to strokes
that consist solely of line segments, but as noted our input may include
curves as well, hence we require a means of detecting and approximating
them.

5.1 Curve detection

The feature points in the polyline approximation Hf generated at the
end of hybrid fit selection process provide a natural foundation for de-
tecting areas of curvature. We detect areas of curvature by comparing
the Euclidean distance l1 between each pair of consecutive vertices u, v
in Hf to the accumulated arc length l2 between the corresponding ver-
tices in the input S. The ratio l2/l1 is very close to 1 in the linear
regions of S, and significantly higher than 1 in curved regions.

5.2 Approximation

We detect curved regions by looking at the ratio l2/l1, and approximate
these regions with Bézier curves, defined by two end points and two
control points. Let u = Si, v = Sj , i < j be the end points of the part
of S to be approximated with a curve. We compute the control points
as:

c1 = kt̂1 + v

c2 = kt̂2 + u

54

k =
1
3

∑
i≤k<j

|Sk − Sk+1|

where t̂1 and t̂2 are the unit length tangent vectors pointing inwards
at the curve segment to be approximated. The 1/3 factor in k controls
how much we scale t̂1 and t̂2 in order to reach the control points; the
summation is simply the length of the chord between Si and Sj .1

As in fitting polylines, we want to use least squares to evaluate the
goodness of a fit, but computing orthogonal distances from each Si

in the input stroke to the Bézier curve segments would require solv-
ing a fifth degree polynomial. (Bézier curves are described by third
degree polynomials, hence computing the minimum distance from an
arbitrary point to the curve involves minimizing a sixth degree poly-
nomial, equivalent to solving a fifth degree polynomial.) A numerical
solution is both computationally expensive and heavily dependent on
the goodness of the initial guesses for roots [15], hence we resort to
an approximation. We discretize the Bézier curve using a piecewise
linear curve and compute the error for that curve. This error compu-
tation is O(n) because we impose a finite upper bound on the number
of segments used in the piecewise approximation.

If the error for the Bézier approximation is higher than our maxi-
mum error tolerance, the curve is recursively subdivided in the middle,
where middle is defined as the data point in the original stroke whose
index is midway between the indices of the two endpoints of the origi-
nal Bézier curve. New control points are computed for each half of the
curve, and the process continues until the desired precision is achieved.

The capability of our approach is shown in figures 5.1 and 5.2 by
a number of hastily-sketched strokes consisting of mixture of lines and
curves.

1The 1/3 constant was determined empirically, but works very well for freehand
sketches. As we discovered subsequently, the same constant was independently
chosen in [18].

55

Figure 5.1: Examples of stroke approximation. Boundaries of Bézier
curves are indicated with crosses, vertices are indicated with dots.

56

Figure 5.2: More examples of stroke approximation.

57

Chapter 6

Recognition

So far, we have described a system that generates a concise descrip-
tion of digital ink in terms of geometric primitives such as lines, ovals,
polylines, curves, and their combination. In a sketch understanding
system, such concise descriptions are more useful than descriptions in
terms of pixel positions traced by the pen. Now we describe how the
output of the approximation layer is further processed by beautification
and recognition layers that exploit parallelism and achieve higher level,
domain specific recognition respectively.

6.1 Beautification

Beautification refers to the adjustments made to the approximation
layer’s output, primarily to make it look as intended. We adjust the
slopes of the line segments in order to ensure the lines that were ap-
parently meant to have the same slope end up being parallel. This is
accomplished by looking for clusters of slopes in the final fit produced
by the approximation phase, using a simple sliding-window histogram.
Each line in a detected cluster is then rotated around its midpoint to
make its slope be the weighted average of the slopes in that cluster.

The (new) endpoints of these line segments are determined by the
intersections of each consecutive pair of lines. This process may result
in vertices being moved. We chose to rotate the edges about their
midpoints because this produces vertex locations that are close to those
detected, have small least square errors when measured against the
original sketch, and look right to the user. The movement of vertices as
a result of beautification is unavoidable, because requiring the vertices
to remain fixed results in an over-constrained system.

58

Figure 6.1: At left the original sketch of a piece of metal revisited, and
the final beautified output at right.

Fig. 6.1 shows the original stroke for the metal piece we had before,
and the output of the beautifier. Some examples of beautification are
also present in Fig. 6.3 and Fig. 6.4.

6.2 Basic Object Recognition

The next step in our processing is recognition of the most basic ob-
jects that can be built from the line segments and curve segments pro-
duced thus far, i.e., simple geometric objects (ovals, circles, rectangles,
squares).

Recognition of these objects is done with hand-tailored templates
that examine various simple properties. A rectangle, for example, is
recognized as a polyline with 4 segments, all of whose vertices are within
a specified distance of the center of the figure’s bounding box. A stroke
will be recognized as an oval if it has a small least squares error when
compared to an oval whose axes are given by the bounding box of the
stroke.

6.3 Evaluation

In order to evaluate our system, we wrote a higher level recognizer
that takes the geometric descriptions generated by the basic object
recognition and combines them into domain specific objects.

Higher level recognition is a difficult task. For example, in [10] a
recognition rate of 63% is noted for the user interface sketching task
despite the restricted set of low level primitives considered (in this case,
rectangles, circles, lines, and squiggly lines for text). There is no doubt
that in settings where larger sets of primitives are allowed, the per-
formance will deteriorate simply because the low level recognition will
make more errors. In this thesis, our focus is on the low level recognition
(i.e., stroke approximation), and the recognition capability described

59

Figure 6.2: An overtraced oval and a line along with and the system’s
output.

in this chapter is implemented mainly for an informal evaluation of the
stroke approximation layer as we demonstrate below.

Fig. 6.3 and Fig. 6.4 show the original input and the program’s
analysis for a variety of simple but realistic mechanical devices drawn as
freehand sketches. The last two of them are different sketches for a part
of the direction reversing mechanism for a tape player. These examples
also show some higher level domain specific recognition. Recognized
domain specific components include gears (indicated by a circle with
a cross), springs (indicated by wavy lines), and the standard fixed-
frame symbol (a collection of short parallel lines). Components that
are recognized are replaced with standard icons scaled to fit the sketch.

At this point the only evaluation is an informal comparison of the
raw sketch and the system’s approximations, determining whether the
system has selected vertices where they were drawn, fit lines and curves
accurately, and successfully recognized basic geometric objects. While
informal, this is an appropriate evaluation because the program’s goal
is to produce an analysis of the strokes that “looks like” what was
sketched.

We have also begun to deal with overtracing, one of the (many)
things that distinguishes freehand sketches from careful diagrams. Fig.
6.2 illustrates one example of the limited ability we have thus far em-
bodied in the program. We have observed that users overtrace more
often when drawing ovals and lines. We detect overtraced lines by look-
ing at the aspect ratio of the stroke’s bounding box with its length.
Overtraced ovals are handled by the low level recognition method de-
scribed previously. The ability to handle overtracing is rather limited
in the current system and a more formal approach is needed to handle
overtracing in general.

60

Figure 6.3: Performance examples: Sketches of a marble dispenser
mechanism and a toggle switch.

61

Figure 6.4: More performance examples: Sketches of the direction re-
versing mechanism in a tape player.

62

Chapter 7

Related Work

In this chapter, we will compare our system with some of the systems
that support free-hand sketching. In general, these systems lack either
one or more of the following properties that we believe a sketching
system should have:

• It should be possible to draw arbitrary shapes with a single stroke,
(i.e., without requiring the user to draw objects in pieces).

• The system should do automatic feature point detection. The
user should not have to specify vertex positions by hand

• The system should not have sketching modes for drawing different
geometric object classes (i.e., modes for drawing circles, polylines,
curves etc.).

• The sketching system should feel natural to the user.

The Phoenix sketching system [18] had some of the same motivation
as our work, but a more limited focus on interactive curve specification.
While the system provided some support for vertex detection, its focus
on curves led it to use Gaussian filters to smooth the data. While
effective for curves, Gaussians tend to treat vertices as noise to be
reduced, obscuring vertex location. As a result the user was often
required to specify the vertices manually in [18].

Work in [6] describes a system for sketching with constraints that
supports geometric recognition for simple strokes (as well as a con-
straint maintenance system and extrusion for generating solid geome-
tries). The set of primitives is more limited than ours: each stroke is
interpreted as a line, arc or as a Bézier curve. More complex shapes

63

(e.g., squares, polylines) can be formed by combinations of these prim-
itives, but only by user lifting the pen at the end of each primitive
stroke, reducing the feeling of natural sketching.

The work in [4] describes a system for generating realtime spline
curves from interactively sketched data. They focus on using knot
removal techniques to approximate strokes known to be composed only
of curves, and do not handle single strokes that contain both lines
and curves. They do not support corner detection, instead requiring
the user to specify corners and discontinuities by lifting the mouse
button, or equivalently by lifting the pen. We believe our approach of
automatically detecting the feature points provides a more natural and
convenient sketching interface.

Zeleznik [8] describes a mode-based stroke approximation system
that uses simple rules for detecting the drawing mode. The user has to
draw objects in pieces, reducing the sense of natural sketching. Switch-
ing modes is done by pressing modifier buttons in the pen or in the
keyboard. In this system, a click of the mouse followed by immediate
dragging signals that the user is drawing a line. A click followed by
a pause and then dragging of the mouse tells the system to enter the
freehand curve mode. This approach of using modifier keys or buttons
simplifies the recognition task significantly but puts extra burden on
the user side. Our system allows drawing arbitrary shapes without any
restriction on how the user draws them. There is enough information
provided by the freehand drawing to differentiate geometric shapes such
as curves, polylines, circles and lines from one another, so we believe
requiring the user to draw things in a particular fashion is unnecessary
and reduces the natural feeling of sketching. Our goal is to make com-
puters understand what the user is doing rather than requiring the user
to sketch in a way that the computer can understand.

Among the large body of work on beautification, Igarashi et al. [9]
describes a system combining beautification with constraint satisfac-
tion, focusing on exploiting features such as parallelism, perpendicu-
larity, congruence and symmetry. The system infers geometric con-
straints by comparing the input stroke with previous ones. Because
sketches are inherently ambiguous, their system generates multiple in-
terpretations corresponding to different ways of beautifying the input,
and the most plausible interpretation is chosen among these interpreta-
tions. The system is interactive, requiring the user to do the selection,
and doesn’t support curves. It is, nevertheless, more effective then our
system at beautification. However, beautification is not the main focus
of our work and is present for the purposes of completeness.

64

Among the systems described above, the works in [18] and [4] de-
scribe methods for generating very accurate approximations to strokes
that are known to be curves. The precision of these methods are several
orders of magnitude below the pixel resolution. The Bézier approxima-
tions we generate are less precise but they are sufficiently precise for
approximating free-hand curves. We believe techniques in [18] and [4]
are excessively precise for free-hand curves, and the real challenge is
detecting curved regions in a stroke as opposed to approximating those
regions down to the numeric precision of the machine on which the
system runs.

In the scale space community, the work in [14] describes a scale
space based approach to dominant point detection. They also analyze
corner interactions during the smoothing process. Our approach differs
from their work in several aspects. In this work, we utilize curvature
as well as speed data for feature point detection and we use scale space
techniques in both settings. Furthermore, as we pointed out before, we
derive the curvature scale space with single pass convolutions at each
scale. The method used for deriving the scale space in [14] is twice as
expensive compared to ours because they convolve x and y positions of
the points separately and then derive the curvature.

The work presented here overlaps to an extent with the extensive
body of work on document image analysis generally (e.g., [3]) and
graphics recognition in particular (e.g., [19]), where the task is to go
from a scanned image of, say, an engineering drawing, to a symbolic
description of that drawing.

Differences arise because sketching is a realtime, interactive process,
and we want to deal with freehand sketches, not the precise diagrams
found in engineering drawings. As a result we are not analyzing careful,
finished drawings, but are instead attempting to respond in real time
to noisy, incomplete sketches. The noise is different as well: noise in
a freehand sketch is typically not the small-magnitude randomly dis-
tributed variation common in scanned documents. In addition, infor-
mation about pen’s motion is a very useful information source available
in online sketching systems, but not in scanned drawings.

65

Chapter 8

Future Work

We see three main directions for future work: making improvements
to the current system, carrying out user studies, and integrating this
system with other systems that require stroke approximation function-
ality.

8.1 Potential improvements

One of the weaknesses of our curve detection algorithm is that it relies
on the feature point detection stage having a low false positive rate on
the curved regions, but the methods we have described do not ensure
this. Although we found the performance of curve detection to be
satisfactory empirically, it would be nice to prune out the false positives
on curved regions. We believe it is possible to filter out these false
positives by looking at how much the curvature/speed data vary within
the region of support for each feature point at the scale chosen by the
algorithm we presented.

As an example, we revisit the stroke from the feature point detection
chapter reproduced in Fig. 8.1 for convenience. The absolute value of
the curvature data at the scale selected by our algorithm is given in
Fig. 8.2. In this graph, the region corresponding to the larger of the
two curved regions in the original stroke is between indices 50 and 100.
As seen in this graph, visually detecting the local maxima in the this
region is hard, because the variation in the function is too small. Note
how little the function actually varies over the region of support for
the false maxima compared to the true ones. This property of the false
maxima is also mentioned in [14]. We believe this property of the false

66

Figure 8.1: The stroke consisting of curved and straight segments re-
visited.

positives can be used to eliminate false maxima by the choice of an
appropriate threshold.

In the scale space literature, some authors proposed scale selection
methods for computer vision tasks. In particular, in [11] and [12] Lin-
deberg describes how what he calls the normalized γ derivatives can be
used to guide the scale selection in edge and ridge detection. We plan
to explore whether this technique can be adapted for the problem of
feature point detection and curve approximation.

8.2 User studies

User studies require choosing a number of domains where users sketch
extensively and asking users to sketch naturally as they would with
pencil and paper. The studies would measure the degree to which the
system is natural i.e., supplies the feeling of freehand sketching while
still successfully interpreting the strokes.

Another interesting task would be to observe how designers’ sketch-
ing styles vary during a sketching session and how this may be used
to improve recognition by perhaps introducing sketching modes. For
example, humans naturally seem to slow down when they draw things
carefully as opposed to casually. It would be interesting to conduct
user studies to verify this observation and explore the degree to which

67

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 8.2: The curvature data for the curved stroke example at the
scale chosen by our algorithm indexed by the point index on the x axis,
and the curvature values in the y axis. Curvature between the indices
50 and 100 corresponds to the longer of the two curved regions in the
stroke.

68

one can use the time it takes to draw a stroke as an indication of how
careful and precise the user meant to be. Then, it may be possible to
define sketching modes and switch between these modes depending on
user’s behavior. Combining this idea with machine learning methods
may lead to interesting results and improvements.

8.3 Integration with other systems

We are also trying to integrate this system to other work in our group
that has focused on higher level recognition of mechanical objects [1].
This will provide the opportunity to add model-based processing of the
stroke, in which early operations like vertex localization may be usefully
guided by knowledge of the current best recognition hypothesis.

Yet another future direction would be to combine this work with
some of the learning research to enable classifying a stroke using learned
patterns rather than the template matching approach currently em-
ployed. We believe that our system may simplify stroke classification
considerably by providing the learning engine with concise representa-
tion of input strokes.

69

Bibliography

[1] Christine Alvarado. A natural sketching environment: Bringing
the computer into early stages of mechanical design. Master’s
thesis, Massachusetts Institute of Technology, 2000.

[2] J. Babaud, A. P. Witkin, M. Baudin, and R. O. Duda. Uniqueness
of the gaussian kernel for scale-space filtering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 8:26–33, 1986.

[3] H. S. Baird, H. Bunke, and K. Yamamoto. Structured document
image analysis. Springer-Verlag, Heidelberg, 1992.

[4] M. Banks and E. Cohen. Realtime spline curves from interactively
sketched data. In SIGGRAPH, Symposium on 3D Graphics, pages
99–107, 1990.

[5] A. Bentsson and J. Eklundh. Shape representation by multiscale
contour approximation. IEEE PAMI 13, p. 85–93, 1992., 1992.

[6] L. Eggli. Sketching with constraints. Master’s thesis, University
of Utah, 1994.

[7] P. Boggs et al, editor. User’s Reference Guide for ODRPACK
Version 2.01 Software for weighted Orthogonal Distance. 1992.

[8] R. Zeleznik et al. Sketch: An interface for sketching 3d scenes. In
Proceedings of SIGGRAPH’96, pages 163–170, 1996.

[9] T. Igarashi et. al. Interactive beautification: A technique for rapid
geometric design. In UIST ’97, pages 105–114, 1997.

[10] James A. Landay and Brad A. Myers. Sketching interfaces: To-
ward more human interface design. IEEE Computer, vol. 34, no.
3, March 2001, pp. 56-64.

[11] T. Lindeberg. Feature detection with automatic scale selection.

70

[12] T. Lindeberg. Edge detection and ridge detection with automatic
scale selection. ISRN KTH/NA/P–96/06–SE, 1996., 1996.

[13] Micheal Oltmans. Understanding naturally conveyed explanations
of device behavior. Master’s thesis, Massachusetts Institute of
Technology, 2000.

[14] A. Rattarangsi and R. T. Chin. Scale-based detection of corners
of planar curves. IEEE Transactionsos Pattern Analysis and Ma-
chine Intelligence, 14(4):430–339, April 1992.

[15] N. Redding. Implicit polynomials, orthogonal distance regression,
and closest point on a curve. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, pages 191–199, 2000.

[16] R. Rosin. Techniques for assessing polygonal approximations of
curves. 7th British Machine Vision Conf., Edinburgh, 1996.

[17] Dean Rubine. Specifying gestures by example. Computer Graph-
ics, 25(4):329–337, 1991.

[18] P. Schneider. Phoenix: An interactive curve design system based
on the automatic fitting of hand-sketched curves. Master’s thesis,
University of Washington, 1988.

[19] K. Tombre. Analysis of engineering drawings. In GREC 2nd in-
ternational workshop, pages 257–264, 1997.

[20] David G. Ullman, Stephen Wood, and David Craig. The impor-
tance of drawing in the mechanical design process. Computers and
Graphics, 14(2):263–274, 1990.

[21] A. Witkin. Scale space filtering. Proc. Int. Joint Conf. Artifi-
cial Intell., held at Karsruhe, West Germany, 1983, published by
Morgan-Kaufmann, Palo Alto, California, 1983.

[22] A. L. Yuille and T. A. Poggio. Scaling theorems for zero crossings.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
8:15–25, 1986.

71

