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Abstract

In a distributed model of intelligence, peer components need to com-
municate with one another. I present a system which enables two
agents connected by a thick twisted bundle of wires to bootstrap a sim-
ple communication system from observations of a shared environment.
The agents learn a large vocabulary of symbols, as well as inflections
on those symbols which allow thematic role-frames to be transmitted.
Language acquisition time is rapid and linear in the number of sym-
bols and inflections. The final communication system is robust and
performance degrades gradually in the face of problems.
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Chapter 1

Introduction

Neuroscience has postulated that the brain has many “organs” — in-
ternal subdivisions which specialize in one area. If we accept this view,
then we need some sort of mechanism to interface these components.
The design of this mechanism is limited by the hardware which the
brain is constructed out of, as well as the size of the blueprints spec-
ifying how it is built. Neurons, as hardware, are relatively slow and
imprecise devices, but they are very cheap, and it’s easy to throw a lot
of them at a problem in parallel. Our DNA is only about 1 gigabyte,
too small to encode the full complexity of interfaces between all of the
different components.

I approached this design problem from a hardware hacking point
of view, with the question, “If I were designing the human brain, how
would I build this interface?” It needs to be self-configuring, to beat
the limited blueprints problem, and it needs to learn quickly. On the
other hand, hardware is very cheap, and I can design in a domain with
a huge number of interface wires between two components.

I have developed an algorithm which, while working under restric-
tions inspired by human minds, bootstraps communications solely from
shared experience and I present it here as an existence proof and a tool
for thinking about how a brain might be composed out of indepen-
dent parts that learn to communicate with each other: it is possible
for two agents to rapidly construct a language which enables them to
communicate robustly.

Although this dissertation is about the problem primarily in a lan-
guage framework, the resultant algorithm is applicable to a much wider
domain of problems, including multi-agent robotics, chip-to-chip com-
munication, and networking protocols.



1.1 Organization of Thesis

Section 2: Problem Domain Specification and justification of the

problem domain in which my system operates.

Section 3: Algorithm Conceptual description of the communications
bootstrapping system, as well as its algorithmic implementation.
Section 4: Results Experimental results demonstrating that the sys-
tem is functional, fast, and robust.



Chapter 2

Problem Domain

In this section, I will develop the problem to be solved, along with the
motivation for choosing to structure the problem as I have.

Briefly, the system consists of two agents which must learn to talk
to one another, connected by a large twisted bundle of wires. There is
a scene presented to either one or both agents. The system is judged to
be successful when presenting arbitrary scenes to one agent consistently
results in the other agent describing the scenes correctly.

The design by which the agents are constructed is limited as well.
Agents must be constructed of simple, bidirectional components. These
components should be independently acting, and be deployed in a sim-
ply structured arrangement requiring only shallow computational pro-
cesses.

In the subsequent sections, I expand on this brief treatment:

2.1 System Model

The basis of the system is the two agents which are to learn to com-
municate with each other. There are only two agents because, in this
work, I am restricting myself to the problem of mere communication,
rather than any questions of cooperation or how to get useful work out
of the system: it is enough that information is reproduced from one to
the other. This system, however, can serve as a mechanism on which
more abstract systems that do address those questions, like Hearn’s
work[1] on the implementation of Minsky’s Society of Mind,[6] can be
instantiated.

The form of this information is a set of ordered pairs, where the first
variable in the ordered pair can vary widely, and the second variable



Comm Lines

Feature Lines

Figure 2.1: The agents labelled A and B are interconnected by comm
lines — a bundle of wires with an arbitrary and unknown permutation.
The agents also share some feature lines with the outside world, again
with unknown permutations.

is restricted to a small number of values. In the experiments which I
conducted, I thought of these sets as thematic role-frame descriptions
of the world (e.g. {(bob, subject)(jim, object)(kick, predicate)}). Tt is
important to note, however, that this is merely an interpretation of the
information being conveyed which has nothing to do with my algorithm.
In further discussion, I shall refer to the first, many-valued variable as
the symbol and the second, few-valued variable as the inflection.

The two agents are presented with this information via feature lines
— a bundle of wires with an unknown permutation, connected to the
outside world. Each feature line represents a symbol and carries an
inflection as the value on the line. If no inflection is specified, then the
feature line may be either “driven”, representing an uninflected symbol,
or “undriven”, representing a symbol not in use. A feature line may
not, however, carry more than one inflection, so any given symbol can
appear in at most one ordered pair.

The two agents are able to communicate information to each other
via a set of comm lines. There are a very large number of comm lines,
and there is an unknown permutation on them as well.!

'n the experiments I performed, a stronger limitation than unknown permuta-
tion was used: no ordering exists on the lines.
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The comm lines have four states: 1,-1,0, and X. When undriven,
the line reads as 0. Information is sent over the line by driving it to
1 or -1, and if the line is being driven to both 1 and -1, it reads as a
conflict — X.

Metaphorically, the comm lines are a nerve bundle connecting two
“organs” of the brain and the feature lines are hardware representa-
tions of perceptual features of the outside world. The actual wires in
the bundles might be arbitrarily twisted and rearranged between the
two ends of the system, so we add the unknown permutation to each
bundle to model this effect and prevent any implicit sharing of ordering
information between the agents.

Each agent can read and drive both comm and feature lines, but
agents are constrained to a synchronous schedule: each cycle of the
system has a “talk” phase and a “listen” phase. Agents can read lines
at any time, but can only drive comm lines during the talk phase and
feature lines during the listen phase. At the end of the talk phase, for
symmetry breaking purposes one agent is randomly selected to have
spoken first. The agent which spoke first can read the results of both
agents speaking in its listen phase, while the one which spoke second
reads only what the first agent spoke.

The task posed for this system, then, is for each agent to learn
how to convey the ordered pairs presented on its feature lines to the
other agent, which demonstrates its understanding by presenting those
ordered pairs on its own feature lines.

The system must learn to perform this task in an unsupervised man-
ner: while the system can be continuously monitored for performance,
to feed that information back into the system would establish an im-
plicit channel of communication between the two systems, defeating
the purpose of the exercise.

2.1.1 Encoding View

Communication in this system may be viewed more abstractly as an
encoding problem. The set of possible messages M are all sets of or-
dered pairs (A4, A2), where A; has a large range and As has a small
range, and A; appears in at most one ordered pair in the set. The sys-
tem’s problem is to find an encoding system such that any M can be
transmitted in a single clock cycle and reconstructed by the decoder.

11



M —= Encoder Decoder | — = M

Unknown
Permutation

M = (AL A2+(B1.B2)»+(C1.C2)...

Figure 2.2: The communication system viewed as an encoding problem:
the goal is to train the encoder and decoder to correctly communicate
M from input to output despite the unknown permutation between
them.

2.1.2 Experimental Specifics

In the experiments conducted here, I used a set of 10,000 comm lines,
and presented thematic role-frames on the feature lines. The symbols
of feature lines are things or actions and the inflections driven on them
are roles. So typical symbols might be Bob, Mary, or push, and
typical inflections might be subject, object, or predicate. The set
of feature lines is of undefined size — the agents have no knowledge of
what feature names or roles exist until they encounter them in practice.

The system is run with two types of steps — training cycles and test
cycles. In a training cycle, the data on the feature lines is sent to both
agents. In a test cycle, one agent is randomly selected to receive input
from the feature lines, while the other receives no input. Performance
may then be evaluated on the basis of how well the output of the agent
receiving no input matches the values on the feature lines.

2.2 Restriction on Types of Solution

I am interested not merely in solving the problem of creating a com-
munication system, but in solving it in a way inspired by the human
mind. Thus, I placed a number of restrictions on the design of the
agents, making the problem deliberately harder such that the solutions
will better elucidate the problems of intelligence. The restrictions fall
into two general categories: parsimony and robustness.

Parsimony is inspired by the tendency of evolved systems to waste
little in the way of resources, and by the limited storage space in DNA.
Thus, the agents must be constructed of simple, replicated structures
— i.e. structures which take little information to describe. These

12



A B

labmary bob eatjim  hit mary hit jim lab eat bob

place —»
subject —#
object —#
verb —#
verb —&
object —#=
place —»
subject —=

Figure 2.3: During a training cycle, the feature lines of both units are

driven. Each agent attempts to learn from the comm lines driven by
the other agent.
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A B

labmary bob eatjim  hit mary hit jim lab eat bob

place —»
subject —#
object —#
verb —#
verb -w—
object --—
place -=—
subject -&—

Figure 2.4: During a test cycle, the feature lines of one unit, say A, are
driven and the feature lines of the other unit are observed. The test is
scored by number of mistakes in B’s reproduction of A’s feature lines.
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structures should start fairly homogeneous and develop rapidly when
exposed to stimulus. Each individual element should be relatively sim-
ple and act bidirectionally — if possible, we want to learn things only
once, and not have to use different hardware for speaking and listen-
ing. This also allows us to avoid the problem of maintaining correlation
among the different paths of use of a relation.

Robustness is a restriction inspired by the limitations of neural hard-
ware: it is slow, noisy, and prone to component death, yet it operates
very reliably in biological systems. Likewise, the robustness require-
ment means we need to create reliable hardware from unreliable com-
ponents. The hardware we construct should be able to survive the
loss of components, and significant noise in the system. Thus there
should be no critical portions of the agent’s hardware: interference
or destruction of any part of the agent should not cripple its action.
Neural hardware is also very slow compared to the speed at which we
make decisions, so the hardware we build must be fast, even though its
individual component are slow. Thus computational processes should
be very shallow — chains of sequential actions should be short, and
recursion very limited. Fortunately, hardware is also very cheap, so we
are allowed to throw a lot of parallel parts at the problem.

15



Chapter 3

Algorithm

3.1 Concept

The key idea driving the system design is that sparseness makes it easy
to separate stimuli. Given the vast number of comm lines, if we assign
small subsets randomly to each symbol, then we may expect little in-
terference between symbols, and an easy analysis job for an algorithm
trying to invert the mapping — an idea which has been capitalized on
in the past, as in Mooers’ zatocoding system which organized informa-
tion by keywords encoded as punches in index cards,[7] or in Minsky’s
K-Lines theory of memory, where agents are assigned tags allowing
reconstruction of partial “states of mind”[5]

I built agents to solve this problem out of bidirectional constraints.
A bidirectional constraint is a computational device which embodies a
relation — for example, the connection between English pluralization
and linguistic features captured by the constraints in Yip and Suss-
man’s work on one-shot learning.[10] When connected between two
systems, the constraint attempts to bring the values of those systems
into a state consistent with its relation. Bidirectionality means that
the constraint mutates both systems rather than choosing one to be
brought into alignment with the other.

In building this system, I used a slightly simplified version of con-
straints, modified to make learning simple: When a constraint is stimu-
lated on both ends, it learns. When it is stimulated above some thresh-
old on one end, it asserts a compatible value at the other. When it is
not stimulated enough on either end, it is quiescent.

The agents are conceptualized as a bundle of constraint hardware,
in two parts. One family of constraints is the vocabulary of symbols:

16



there is one constraint associated with each feature line, connecting it
with a set of comm lines. The constraint begins with a small number
of comm lines that it is definitely connected to, and the assumption
that it might be also connected to any of the other comm lines. The
constraint narrows down the set of comm lines it is connected to by
intersection with the set of active comm lines each time it learns. Once
it has gone through a certain number of learning cycles, it assumes
that it has figured out the correct set. The other family of constraints
is much smaller and holds the inflections. These modulate the output
of the symbol outputs, and learn by a simple agreement algorithm.
As in Kirby’s work on language evolution,[2] the assumption that both
speaker and listener share the same intent allows the system to leverage
mutual understanding from shared observations of the external world.

This system, then, obeys the restrictions imposed by parsimony
and robustness. The system starts out with a set of bidirectional con-
straints produced by a simple homogeneous process, then specializes
them as it is exposed to information. Because we are using bidirec-
tional constraints, the same hardware translates from feature lines to
comm lines as from comm lines to feature lines. Thus, parsimony is
satisfied. Robustness is satisfied by the independence of the constraints
from one another, and the fact that information is spread evenly across
the comm lines used by any given constraint. Thus, an error in a comm
line should affect only the constraints using it, and have little effect on
them, while an error in a constraint damages only the expression of a
single symbol or inflection. Finally, the constraint system is only two
layers deep — symbols, and the inflections modulating them — and the
constraint hardware itself can be implemented very shallowly. Thus,
the robustness restriction is satisfied as well.

3.2 Implementation

I implemented the system as an algorithm which simulates the opera-
tion of bidirectional constraint hardware.

Knowledge in the system is represented by two sets of mappings:
symbol mappings and inflection mappings — these mappings are the
rendering of the constraints. An inflection mapping links a symbol
carried on a feature line to a real value between 0 and 1. A symbol
mapping links a feature line with two sets of comm lines, designated as
certain and uncertain, and includes an integer designated certainty.

These mappings are used symmetrically for production and inter-
pretation of messages. In the “talk” phase, each driven feature line

17



selects the certain comm lines associated via the symbol mapping and
drives them with the unary fraction associated with the symbol on the
feature line via the inflection mapping. In the “listen” phase, if enough
of a feature line’s associated comm lines are driven, then the feature
line is driven with any inflection mapping symbols within a fixed radius
of the unary code on that set of comm lines.

Both types of mappings are generated randomly when a feature or
inflection is first encountered, then adjusted based on observations of
the other agent’s transmissions. These adjustments take place only
if an agent spoke second; if it was the first one to speak, then its
own transmissions are on the lines as well, inextricably mixed with
the transmissions of the second agent, and this would make accurate
learning significantly more difficult.

Inflection mappings are adjusted with a very simple agreement al-
gorithm: if the received unary code is significantly different from ex-
pected, the code in the mapping is set to the received value. If a unary
code matches which should not have, then it is purged and generated
anew.

Symbol mappings are slightly more complicated. The first time an
agent hears a given symbol spoken by the other agent, it adds every
driven comm line to the wuncertain lines for that symbol. Each time
thereafter that it hears the symbol again, it intersects the driven lines
with its uncertain lines, thereby eliminating lines associated with other
symbols. After several iterations of this, it assumes that there is noth-
ing left but lines which should be associated with the symbol, adds the
uncertain lines to the certain lines, and begins to use them for commu-
nication. A few more iterations after that, it begins paring down the
certain lines the same way, so that the two agents can be assured that
they have identical mappings for the symbol.

Formal Automaton Description:

Constants:

(Note that the precise values of these constants was
arbitrarily chosen, and the behavior of the
algorithm should be insensitive to small changes.
For example, ps = 0.8 just means ‘‘a pretty good
match’’ and t. =4 means *°
see Results section for more analysis.)

r; = 0.05 (Radius of an inflection value)

ps = 0.8 (Percent stimulus required to match a symbol)

te = 4 (Threshold where wuncertain lines become certain)

tp, = 6 (Threshold to prune certain lines)

Ny = 10000 (Number of comm lines)

Nwps = 100 (Number of comm lines randomly selected for a

a few times’’ ---
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new symbol)
Wp, = 20 (Minimum number of comm lines per symbol)

Input:
talkm(F)
F is a set of (s,i), where s,i are symbols (feature
lines)
listenin (C;, F, first)
Ci, 0<i<mny, € {1,0,—1,X} (comm lines)
first is boolean, F' as for talki,

Output:
talkow:(Cs), C; as for listenin
listenoyt(F), F as for talki,

States:

Ts; is a set of x = (xs,Tc, Ty, Tn) Where z; is a symbol,
ZTe, Ty are sets of r € Nt, 0<r <Ny, and z, € Nt
initially 0

T; is a set of y = (y;,yy) where y; is a symbol
and 0 <y, <1 initially

c is a set of (I,v) where [€ N, 0 << n, and
v € {1,0,—1,X}, initially ), with the join rules
,Hu(l,-1)=(1,X), and ([, X)U(l,*) = (I,X)

f is a set of (s,i) where s,i are symbols, initially empty

talking, listening are booleans, initially false

Transitions:
talkm(F)
Effect:
talking := true
V (s,i) € F
if not dx € Ts s.t. s = s
Ty := Ty U (s,set of nyps random elements,(,0)
if not 3y € T; s.t. y; =1
T; :=T; U (i,random)
let x € Ts s.t. s = §
y €T s.t. y; =1

v € {1,-1}, VI €z s.t.
precisely |z.|*y, of the set {v;} are 1
VI Euw.
c:=cU U, v)

talkout(Cs)

Preconditions:

vV (l,v) €c

19



Ci=v
Vis.t. Vo, (lv)dc

Cir=0
talking = true
Effect:
talking := false
c:=0
listenin(C;, F, first)
Effect:
listening := true
VmeTs

if not first and 3 (s,i) € F s.t. s = mg
if m, =0

my, =1

my = {j1C; # 0}
else

My = My + 1

if m, <t.

my = my, N{j1C; # 0}
if te <mp <tp
Me 1= Me UMy
u :=$
if t, <m,
it [me N {F1C; # 0} > wn
me = me.N{jlC; # 0}
else
T, :=Ts—m
else
let z = m.N{j1C; # 0}
= {j exlCi =1}/{j € z1C; € {1, -1}
if |z| > |me| * ps
if 3 yETi s.t. |yv—’LL|<Ti
VyeT; s.t. |yp—ul<r;
foe= fU(ms,yi)
else
f = f U (ms,null)
if not first
VyeT;
if 3 (s,i) €F s.t. i=y; and A meTs s.t. mg=s
let u = [{j € mcIC; =1}/ |[{j € mc1C; € {1,-1}}
if [u—yo| >7ri/2 and {jEMNC; =X} =0
Yo 1= W
else
if 3 (s,i) € F, meTs s.t.
I(I{j € me1C; =1}/

20



{7 € mc1Cj € {1,-1}}]) —yo| < 7:
and {j € mIC; =X} =0
Yy := random
VyeT;
if 3z€(Ti—y) s.t. |zo—yo| <ri %2
T; := T; - (random € {y,z})

listenoyt(F)
Preconditions:
F=f
listening = true
Effect:
listening := false

fim0

See Appendix A for Scheme code implementing the algorithm.
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Chapter 4

Experimental Results

To test the algorithm, I used a system with an n,, of 10000 comm-lines
and a nyps of 100 random wires selected to generate a new symbol
mapping.

I trained the system for 1000 cycles, then evaluated its performance
over an additional 200 cycles. Each cycle, an example is generated and
presented to the system. In the training phase, there is an 80% chance
it will be presented to both agents and a 20% chance it will be presented
to only one (That is, 80% training cycles, 20% test cycles). During the
evaluation phase, the first 100 are presented to the first agent only,
and the second 100 are presented to the second agent only. A test is
considered successful if the input feature set is exactly reproduced by
the listening agent.

The examples input to the feature lines are thematic role frames
generated from a set of 50 nouns, 20 verbs, and 4 noun-roles. Each
example is randomly generated with 0-2 verbs assigned the “verb” role
and 2-4 nouns assigned noun-roles. No noun, verb, or noun-role can
appear more than once in an example. A typical scene, then, might be
((approach verb) (jim subject) (shovel instrument) (lab ob-
ject)), which corresponds loosely to “Jim approached the lab with the
shovel.” All told, there are more than 1.2 billion examples which can
be generated by the system, so in general an agent will never see a
given scene twice.

In a typical run of this system, after about 200 cycles most sym-
bols will have entered the shared vocabulary and can be successfully
communicated between the two agents. After about 500 cycles, the
set of inflections will have stabilized as well. In the final round of 200
tests, the success rate is usually 100%, although occasionally due to
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the stochastic nature of the algorithm, the inflections will not yet have
converged by the end of 1000 tests and consequently one or more will
not be transmitted correctly.

4.1 Convergence Time

The time needed to develop a shared vocabulary is proportional to the
number of symbols in the vocabulary. A symbol is learned when both
agents have certainty for that symbol greater than t.. An agent in-
creases certainty when it speaks second, which is determined randomly,
so we may estimate this as a Poisson process. Thus, we may calculate
the expected number of cycles, ¢, as follows:

(2tc) 00 (n—l )

_ te te—1

E(c) =2t 922t + Z " on—1
n=2t.+1

Evaluating this for t. = 4, we find an expectation of 10.187 uses of
a symbol before both certainty thresholds are reached.

For these experiments then, with an average of 3 nouns and 1 verb
per training cycle, then, we can calculate the expected number of shared
symbols S as a function of elapsed cycles ¢:

S(t) = Nnouns * (1 — P(10.187,t—2—0.8))+

Nnouns

Myerps * (1 — P(10.187,1:——0.8))

where P is the incomplete gamma function. Since this function
is linear in the number of symbols, we see that the time to build a
shared vocabulary is linear in the number of symbols. Figure 4.1 shows
experimental data confirming this estimate.

Once a shared vocabulary of symbols exists, the algorithm can begin
learning inflections. If n; is the number of inflections to be learned, and
r; is chosen such that r; * n; < 0.5, then we can show that the time to
develop a shared set of inflections is O(n;).

An inflection may be learned any time a symbol is successfully trans-
mitted in a training cycle. This occurs if the new inflection does not
conflict with any of the previously learned inflections - that is, if n sym-
bols have already been learned, then it must be the case that for all v;
st. 1 <i <, |vpe1 —vi| < 2r;. Since the value of the new symbol,
Un+1, is chosen by a uniform random process on the interval [0, 1], the
probability p,41 of choosing an acceptable inflection value is no less
than 1 — (2r; * n). The n;th inflection, then, has the least probability
of success, p,; = 1 — (2r; % (n; — 1)) > 2r;, and p,, is generally bounded
below by 2r;.
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Figure 4.1: Number of shared symbols versus elapsed time for 50 nouns
and 20 verbs. Dotted line is theoretical estimate S(t), solid line is
experimental data.
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Figure 4.2: Number of shared inflections versus elapsed time for 4 noun
inflections and 1 verb inflection, in a system with 50 nouns and 20 verbs.
The dotted line is theoretical estimate I(t), beginning with cycle 230,
where S(t) predicts half the vocabulary to be learned. The solid line is
experimental data.

For these experiments then, we can calculate the expected num-
ber of inflections, assuming a shared vocabulary, as a function I(t) of
elapsed cycles t. There are expected to be 3 noun inflections and 1 verb
inflection per training cycle, so the least frequent inflection is expected
to appear at with frequency at least 1/n;. Thus, we obtain

1
I(t) =n;* (1 - P(1, 2rit;0.8))

where P is the incomplete gamma function. Since this function is
linear in the number of inflections, we see that the time to build a
shared set of inflections is linear in the number of inflections. Figure
4.2 shows experimental data confirming this estimate.

Thus, the algorithm is expected to converge in O(s+n;) time, where
s is the size of the vocabulary and n; is the number of inflections.
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4.2 Channel Capacity

The number of symbols and roles which can be learned without false
symbol detection and inflection misinterpretation is dependent on the
number of wires n,,, the number of wires per symbol n,,,, and the
percent stimulus necessary to recognize a symbol p;.

If we want no combination of symbols to be able to generate a spuri-
ous recognition, then each symbol must have at least 1,ps(1 —ps) wires
not used by any other symbol. This means that a vocabulary would
have a maximum size of only W In practice, however, we can
assume that only a few symbols are being transmitted simultaneously.
If we assume that no more than m symbols will be transmitted at once,
then we can conservatively estimate capacity by allowing any two sym-
bols to overlap by no more than n.,ps * ps/m wires. Thus any given
symbol covers a portion of symbol space with volume:

Nuwps(1—22)
Z Nwps Nw — Nwps
() ()

=0
The whole symbol space has volume (,"* ), so a conservative esti-

wps

mate of the maximum number of symbols that can exist is:
()
Nups(1=52) (Mupe) (Mw—nwps
Ei:g (n ip )(n zn ? )
This yields a satisfactorily large capacity for symbols. For the ex-
periments described above, with n,, = 10000, n,,, = 100, p, = 0.8

and a maximum of 6 concurrent symbols, we find that the capacity is
1.167 x 102 distinct symbols.

4.3 Performance Degradation

We expect that the performance of the algorithm will degrade gracefully
as the channel capacity is reduced. As the average Hamming distance
between symbols drops, the chance that a combination of other symbols
will overlap to produce a spurious recognition or interfere with the
inflection being transmitted rises. Since symbols receiving too much
interference are discarded, the algorithm will tend to break up clusters
of symbols and move toward an efficient filling of symbol space. Thus,
reducing the ratio my,/ny,ps ought to cause the transmission errors to
rise gradually and smoothly. In practice we find that this is in fact the
case, as shown in Figure 4.3.
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Figure 4.3: Number of comm lines versus transmission robustness. Hor-
izontal axis is n,, from 100 to 100,000. Vertical axis shows the symbols
and inflections correctly received per symbol and inflection transmitted
(spurious receptions count against this as well) over the course of 200
test cycles on a system trained with 50 nouns, 20 verbs and 4 noun-
roles, nyps = 20, ps = 0.8. Accuracy degrades smoothly with decreased
channel capacity.
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Figure 4.4: Variation in performance as each parameter is varied. For
each graph, the horizontal axis shows the value of the parameter being
varied and the vertical axis shows the fraction of symbols and inflec-
tions correctly received per symbol and inflection transmitted. Mea-
surements are the average values over the course of 10 runs of 200 test
cycles, as in 4.3. For each run of test cycles, the systems were trained
with 50 nouns, 20 verbs and 4 noun-roles, with base parameter val-
ues p;, = 0.8, r; = 0.05, t. = 4, t, = 6, wy, = 20, nyps = 100, and
n, = 10000. All parameters in the system can tolerate small varia-
tions without serious degradation in performance. This figure shows
variation in p, and r;. Figure 4.5 shows variation in t., t,, w,,, and

Nwps

4.4 Parameter Variation

The values of the parameters used in the experiments above were not
carefully chosen. Rather, I made a guess at a reasonable value for each
parameter, expecting that the algorithm should not be very sensitive
to the parameter values. (If it were, then I could hardly claim it was a
robust algorithm!)

To test this, I ran a series of experiments in which I trained and
tested the system with one of the parameters set to a different value.
For each value for each parameter I ran 10 experiments: Figure 4.5
shows the performance of the algorithm as a function of parameter
value for each of the six parameters ps, 7, te, tp, W, and Nyps. (N 18
excluded because its variation is evaluated in the preceding section) As
predicted, the performance of the algorithm is good over a wide range
of values for each variable.
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Figure 4.5: Variation in performance as each parameter is varied, as in
Figure 4.4, for t., tp, Wy, and nyps
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4.5 Dissimilar Features

The operation of this algorithm is not confined to agents presented
with identical features. If dissimilar but correlated feature sets are
presented, then the similarities will be discovered and communicated
in the language shared between the two agents. Features which are
not shared will be transmitted as well, but will never be successfully
interpreted by the listening agent.

I ran an experiment to confirm this, in which examples generated
with 7 nouns, 6 verbs and 4 noun-roles were run through a filter before
being input to the feature lines of each agent. The filter on the first
agent added 0-2 random words from a set of 4, and split one noun
into a pair of features. The filter on the second agent added precisely
one random word from a set of four, remapped the verbs onto a set
of overlapping component features, and relabelled one of the noun-
roles. The system was then trained for 200 cycles with n,, = 1000 and
Nwps = 20.

The final results showed that, as expected, the system had learned a
shared vocabulary despite the handicaps imposed. The random words
added to each side were ignored, since their appearance in the features
of one agent was uncorrelated to the features seen by the other agent.
The noun consistently split into a pair of features for the first agent was
interpreted as a single symbol by the second agent, and communicated
successfully in both directions. The relabelled noun-role in the second
agent was also communicated unerringly. The verbs remapped onto
component features for the second agent, however, were not able to
be fully communicated. This was not unexpected, and occurred as
predicted. The verb remapping was as follows:

move — go
retreat — go, from
approach — go,to
touch — go, contact
eat — ingest, contact
fear — fear

Since symbols are differentiated by intersection, the translation of
several different symbols to the “go” symbol prevented “go” from be-
ing successfully communicated in either direction. Similarly, “contact”
was impaired by its mapping to both “eat” and “touch”. As a result,
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“move” and “touch” could not be reliably communicated. All of the
other verbs, however, having some unique component, were able to be
communicated between the two agents successfully.
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Chapter 5

Contributions

I have created a system which addresses the question of how peer com-
ponents in a distributed intelligence system might construct a commu-
nication system. The design of the system is limited by restrictions
inspired by real-world minds, with the hope that the good properties
of real-world minds will prove more easy to develop in this restricted
domain.

The algorithm which I have constructed allows two agents to create
such a communications system. Moreover, they can do so rapidly, and
with a cost linear in the size of the vocabulary. It operates robustly and
degrades gracefully in adverse circumstances, and can even interface
between related but dissimilar sets of observations.

There are some obvious possible applications of this research in the
domains of networking, microchip design, and multi-agent robotics. In
networking, communication protocols might be discovered or created
automatically by agents which bootstrap based on shared information,
and might prove resilient in the face of problems, given the ability to de-
grade gracefully. A significant problem in microchip design is the preci-
sion interconnects required to connect chips together: this has typically
been addressed by having a few large wires between chips and accept-
ing a much lower interchip bandwidth. A chip-to-chip communication
system based on this research would not need precision interconnects,
but could manufacture a communications system, possibly increasing
bandwidth significantly. Finally, in the field of multi-agent robotics,
this work could be used to help a group of robots communicate more
reliably in the face of noise.

More importantly, however, this work provides a springboard for
thinking about how to get about the practical business of building
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intelligent systems from components which are truly peers. There is
much work to be done in this area, and I believe that this thesis is a
good first step.

5.1 Vision

If this thesis is a first step, however, it begs the questions, “What is
the next step?” and “Where is this going?”

Artificial intelligence research has long been fettered by a tendency
to view the problem of intelligence at either too high or too low a
level. GOFAI techniques like Newell and Simon’s logical reasoner, or
Winograd’s blocks world, or Marr’s vision ideas, postulate intelligence
as a unified and universal system, where one high-level system, with
appropriate inputs, should be able to solve all problems. The low-
level revolution of the 80s erred in the other directions, with Brooks
demanding the abolition of all representational structure, Feldman and
Ballard requiring a system to be constructed at a based level of neurons,
and GA/GP advocates counselling defeat and advocating that we have
computers build hairy low-level designs for us.

Considering these design as analogous to a computer: the GOFAI
people would design the computer as a single UTM covering all activi-
ties: disk activity, memory reads and writes, caching, network commu-
nication, computation. The connectionists and embodied intelligence
people, on the other hand, would take a computer to be its transistors,
and counsel understanding on the level of electrical interactions be-
tween MOSFETs. We in computer science should have known better:
computer science has long recognized the vital importance of abstrac-
tion and modularity in the design of large systems. Our approach to
designing human intelligence should be no different — and recent neu-
roscience evidence suggests that this may indeed be correct, and that
the brain may have many “organs” — internal subdivisions which spe-
cialize in one area.

This is not to say that this is the only approach to building in-
telligence, nor that human intelligence is the only workable model of
intelligence. Indeed, given that our intelligence is the result of the arbi-
trary kludgey workings of evolution, it would be quite surprising if this
was the case! At present, however, I believe that it is most profitable
to build systems architected after inspiration from the human mind,
for several reasons.

First, the human mind is the only example we have of an indis-
putably intelligent architecture, and we would be foolish to cast this
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wealth of information aside. Moreover, attempting to duplicate the ca-
pabilities of humans gives us a yardstick against which we can measure
our work and determine how well we are succeeding.

Second, biological systems, including humans and human intelli-
gence, demonstrate a resiliency and versatility in dealing with adverse
circumstances compared to which our engineering systems are frighten-
ingly brittle and inflexible. Resiliency and versatility are fundamental
tenets of “intelligent behavior”, and so it seems likely that the human
brain has architectural insights to teach us, and thus we would be wise
to take inspiration from the human brain in designing our architectures.

Third, although the brain is an organ of staggering complexity, there
are some informational limits on how complex it may be. Recent re-
search suggests the human brain may be a highly organized structure
with many specialized components, rather than some sort of vast dis-
organized “neural pudding”. There is a hard informational limit on
this structure however, in that it must be specified by our genetic code,
which is only about 1 gigabyte, too small to encode the full structure
of the brain in detail. One way of reconciling the structure of the
brain with the poverty of instructions available for constructing it is
to imagine the brain as composed of a large number of small compo-
nents, where each component has a well-specified design drawn from a
relatively small library of component types. Moreover, there are limits
on the sorts of computation which we can expect it to perform, due
to hardware limitations. Neurons, as hardware, are relatively slow and
imprecise devices, but they are very cheap, and it’s easy to throw a lot
of them at a problem in parallel. Thus, we may expect that imitating
local capabilities of the brain is a tractable engineering task.

Finally, there is a wealth of new functional data emerging from neu-
roscience about the functioning of the human brain. With the advent
of fMRI, neuroscientists have been able to identify many apparent dis-
tinct modules within the brain, and are beginning to uncover data on
how they relate to one another. With this new data, then, comes the
practical hope that we will now have enough data on brain structure
to make intelligent decisions in designing our artificial analogs.

Note that I am couching these guidelines in terms of “inspiration”
rather than faithful duplication. As computer scientists, we ought not
to be too concerned about the transistor-level characteristics of the
hardware or wetware on which our algorithms are running. Rather, we
ought to be concerned about the functionality of small modules — at
the TTL component level, as it were.

That, then, is where I believe our research should focus for the
next decade or two: on building the mid-level “TTL” components of

34



intelligence, and building them in frameworks inspired and restricted
by human intelligence.
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Appendix A

Scheme Code

A.1 Algorithm

;3 Talker
;3 Wires: only driven values are listed:
;5 ( (line 1/-1/X) )

;3 NOTE: Right now, all asserted feature lines are assumed to be positive
(declare (usual-integrations))

(define num-wires 10000) ;; 1000
(define num-wires-per-symbol 100) ;;20
(define min-wires-per-symbol 20) ;;5
(define percent-match 0.8)

(define unary-percent-match 0.05)

;3 12/6 Reformatting internal-map bundles as follows:

;5 Instead of (symbol (commlines)) they now become

;3 (symbol (certaincommlines) (uncertaincommlines) uncertainfactor)

;3 When listening, both certain and uncertain comm lines are considered
;3 When talking, only certain comm lines are used

;3 An uncertain comm lines become certain after surviving n transmissions
(define certainty-threshold 4)

(define certain-pruning-threshold 6)

;3 line abstractions
;3 returns a line-bundle with the new value
;3 On a conflict between values, the line becomes unasserted
;3 This is represented by an "X" on the line
(define (assert-line line-bundle line value)
(let* ((result (split line-bundle
(lambda (x) (eq? (first x) line))))

(pos (first result)) ;; should have O or 1 entries
(neg (second result)))
(if pos
(if (equal? (second (car pos)) value)
line-bundle

(cons (list line ’x) neg))
(cons (list line value) line-bundle))))

;3 this can put inflections on lines as well as simple values
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(define (assert-feature-line line-bundle line inflection value)
(let* ((result (split line-bundle
(lambda (x) (eq? (first x) line))))
(pos (first result)) ;; should have O or 1 entries
(neg (second result)))
(if (and pos (or (not inflection)
(equal? (second (car pos)) inflection)))
(if (or (not inflection) (equal? (third (car pos)) value))
line-bundle
(cons (list line inflection ’x) neg))
(cons (list line inflection value) line-bundle))))

;3 clean-bits: returns only the non-conflicted bits
(define (clean-bits line-bundle)
(list-transform-negative line-bundle (lambda (x) (eq? (second x) ’x))))

;3 returns the value found on the line, or zero if it’s not asserted
;3 Conlicted bits *are* returned as an "X"
;3 Thus, there are four possible results: 1,-1,0,x
(define (test-line line-bundle line)
(let ((result (list-search-positive line-bundle
(lambda (x) (eq? (first x) line)))))
(if result (second result) 0)))

;3 can check the inflection on feature-lines
(define (test-inflection line-bundle line)
(let ((result (list-search-positive line-bundle
(lambda (x) (eq? (second x) line)))))
(if result (second result) 0)))

;; listen & talk return (cons internal-map foo-line)
;3 Two cases to handle:
;3 1. Features in internal-map

HH If asserted on feature-lines: modify internal-map for conflicts
HH else: if enough matches, assert on feature-lines

;3 2. Features asserted, but not in internal-map

HH add new feature to internal-map

;5 Returns (cons internal-map feature-lines
;3 1/2: added spokefirst
;3 1/4: changed "new features" to be features *heard* for the first time,

HH regardless of whether they’ve been spoken before.

HH NOTE: as it’s set up, there’s some overkill. Really, the critical
HH factor is whether c-a is an empty set of not at symbol-creation.
HH However, I’m keeping it this way since it’s a bit more '"pure"

(define (listen spokefirst comm-lines feature-lines internal-map pre-map comm-spoke)
(let* ((smap (if internal-map (second internal-map) #f))
(nmap (if internal-map (first internal-map) #f))
(res (split smap
(lambda (x)
(and (equal? O (test-line feature-lines (first x)))
(equal? 0 (test-inflection feature-lines (first x)))))))
(stimfeat (second res))
(smap-check (first res))
(res2 (split stimfeat
(lambda (x)
(or spokefirst
(< 0 (find-symbol-certainty internal-map (first x)))))))
(newfeat (second res2))
(c-a (list-transform-negative comm-lines
(lambda (x) (member x comm-spoke))))
(newfeat
(map (lambda (x)
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(list (car x) (find-symbol-codes internal-map (car x))
(map first c-a) 1))
(second res2)))
(smap-assert (if (not spokefirst)
(listen-resolve-conflicts spokefirst comm-lines
(first res2))
(first res2))))

(list (list (if (not spokefirst)

(nsquelch (update-nmap nmap comm-lines
feature-lines stimfeat))
nmap)
(append smap-check smap-assert newfeat))
(listen-assert-features comm-lines feature-lines nmap smap-check))))

;3 returns a new internal-map with the codes changed/added

;3 If a

code-mapping drops below a minimum size, it is considered

;3 worthless and discarded. This can happen to either new codes or
;3 codes being changed.

;5 12/6:

(define
(let*

modified to handle certainty
(set-symbol-codes imap symbol codes)
((smap (if imap (second imap) #f))
(nmap (if imap (first imap) #f)))

(list nmap (set-smap-codes smap symbol codes))))

(define
(let*
(if

(define
(letx*
(if

(define
(letx*
(if

(define
(letx*

(if

;; sets
(define
(letx*

(find-smap-codes smap symbol)
((elt (list-search-positive smap (lambda (x) (eq? (first x) symbol)))))
elt (second elt) #f)))

(find-smap-uncertains smap symbol)
((elt (list-search-positive smap (lambda (x) (eq? (first x) symbol)))))
elt (third elt) #f)))

(find-smap-certainty smap symbol)
((elt (list-search-positive smap (lambda (x) (eq? (first x) symbol)))))
elt (fourth elt) #f)))

(set-smap-codes smap symbol codes)
((result (split smap
(lambda (x) (eq? (first x) symbol))))
(pos (first result)) ;; should have O or 1 entries
(neg (second result)))
(< (+ (length (first codes)) (length (second codes)))
min-wires-per-symbol)
(begin
neg)
(if pos
(cons (cons symbol codes) neg)
(cons (cons symbol codes) smap)))))

the code for an inflection
(set-inflection-code imap inflection ucode)
((smap (if imap (second imap) #f))
(nmap (if imap (first imap) #f))
(result (split nmap
(lambda (x) (eq? (first x) inflectiomn))))
(pos (first result)) ;; should have O or 1 entries
(neg (second result)))

(list (cons (list inflection ucode) neg) smap)))
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;3 The purpose of this function is to shrink the symbols in the
;3 association DB in order to have more precise interpretations
;; of which lines represent a given symbol. (NOTE: explain more clearly)
;3 Implemented by:
;3 12/6: adds 1 to the certainty of each symbol.
;3 1/2: added spokefirst
;3 Certain lines are not filtered until the symbol has become certain
(define (listen-resolve-conflicts spokefirst comm-lines mappings)
(let loop ((map-list mappings) (new-imap mappings))
(if map-list
(let* ((elt (first map-list))
(ccodes (find-smap-codes new-imap (first elt)))
(cnewcodes (list-transform-negative ccodes
(lambda (x)
(eq? 0 (test-line comm-lines x)))))
(ucodes (find-smap-uncertains new-imap (first elt)))
(unewcodes (list-transform-negative ucodes
(lambda (x)
(eq? 0 (test-line comm-lines x)))))
(newcert (+ (if spokefirst 0 1)
(find-smap-certainty new-imap (first elt))))
(newcodes
(if (>= newcert certainty-threshold)
(if (>= newcert certain-pruning-threshold)
(list (->uniset (append cnewcodes unewcodes))
’() newcert)
(list (->uniset (append ccodes unewcodes))
’() newcert))
(list ccodes unewcodes newcert))))
(loop (cdr map-list)
(set-smap-codes new-imap (first elt) newcodes)))
new-imap)))

;3 This functions asserts a feature line if enough of its associated
;3 comm-lines are lit up
;5 12/6: Only certain comm lines are considered.
(define (listen-assert-features comm-lines feature-lines nmap mappings)
(fold-left (lambda (features imap-elt)
(let* ((11 (second imap-elt)) ;; line-list
(f11 (list-transform-negative 11
(lambda (x)
(eq? 0 (test-line comm-lines x)))))
(num-1s (length (list-transform-positive 11
(lambda (x)
(eq? -1 (test-line comm-lines x))))))
(numls (length (list-transform-positive 11
(lambda (x)
(eq? 1 (test-line comm-lines x)))))))
(if (and 11 (>= (/ (length f11) (length 11)) percent-match))
(let loop ((inflections
(unary-match (/ numls (+ numls num-1s))
nmap) )
(f features))
(if inflections
(loop (cdr inflections)
(assert-feature-line f (first imap-elt)
(car inflections) 1))
(assert-feature-line f (first imap-elt) #f 1)))
features)))
feature-lines mappings))

(define (unary-match ucode mappings)
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(map first (list-transform-positive mappings
(lambda (x) (< (abs (- (second x) ucode))
unary-percent-match)))))

;3 given the nmap, adjusts interpretations
;3 for features in the nmap

HH if inflection on featurelines

HH get uvalue of comm-lines

HH if more than .5xu-%match away, jump to value
HH else

HH test if stimulated by any comm-lines

HH if so, randomly reselect value

(define (update-nmap nmap comm-lines feature-lines stimfeat)
(let loop ((tnmap nmap))
(if
(not tnmap)
#f
(let* ((infl (car tnmap))
(res (map (lambda (x)
(let* ((lines (map (lambda (y)
(test-line comm-lines y))
(second x)))
(numbits (length lines))
(numls (- numbits (length (delq 1 lines))))
(num-1s (- numbits (length (delq -1 lines))))
(numxs (- numbits (length (delq ’x lines)))))
(if (= numxs 0) ;; for now, only on clean ones
(if (>= (/ (+ numls num-1s) numbits)
percent-match)
(list (first x) (/ numls (+ numls num-1s)))
#£)
’invalid)))
stimfeat))
(tmap (delq #f res))
(ifeat (list-search-positive feature-lines
(lambda (x) (eq? (first infl) (second x))))))
(if (member ’invalid tmap)
(cons infl (loop (cdr tnmap)))
(if ifeat
(let* ((res (list-search-positive tmap
(lambda (x) (eq? (first ifeat) (first x)))))
;; if no value in tmap, don’t change the inflection value
(uvalue (if res (second res) (second infl)))
(dif (- uvalue (second infl))))
(if (> dif (/ unary-percent-match 2))
(cons (list (first infl) uvalue) (loop (cdr tnmap)))
(cons infl (loop (cdr tnmap)))))
(let ((res (list-search-positive tmap
(lambda (x) (< (abs (- (second x) (second infl)))
unary-percent-match)))))
(if res
(cons (list (first infl) (random 1.0))
(loop (cdr tnmap)))
(cons infl (loop (cdr tmmap)))))))))))

;5 nmap = (list (list infl val))
;3 nsquelch kills mappings which are too close together
(define (nsquelch nmap)
(let loop ((m (random-permutation nmap)))
(if m
(let ((res (list-search-positive (cdr m)
(lambda (x) (< (abs (- (second x) (second (first m))))
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(* 2 unary-percent-match))))))
(if res
(loop (cdr m))
(cons (car m) (loop (cdr m)))))
#£)))

;5 Returns the Comm-codes of a symbol in an internal representation
;5 12/6: Only returns the *certain* codes
(define (find-symbol-codes imap symbol)
(let* ((smap (if imap (second imap) #f))
(elt (list-search-positive smap (lambda (x) (eq? (first x) symbol)))))
(if elt (second elt) #f)))

;3 find-symbol-uncertains: returns list of *uncertain* codes
(define (find-symbol-uncertains imap symbol)
(let* ((smap (if imap (second imap) #f))
(elt (list-search-positive smap (lambda (x) (eq? (first x) symbol)))))
(if elt (third elt) #f)))

;3 find-symbol-certainty: returns the certainty value
(define (find-symbol-certainty imap symbol)
(let* ((smap (if imap (second imap) #f))
(elt (list-search-positive smap (lambda (x) (eq? (first x) symbol)))))
(if elt (fourth elt) #f)))

;3 find-inflection-code: returns the unary code for a given inflection
(define (find-inflection-code imap inflection)
(let* ((nmap (if imap (first imap) #f))
(elt (list-search-positive nmap
(lambda (x) (eq? (first x) inflection)))))
(if elt (second elt) #f)))

;; Assert-line on many different lines ((line value) (line value) ...)
(define (assert-line-multiple line-list linebundle)
(if (null? line-list)
linebundle
(assert-line-multiple (cdr line-list) (assert-line linebundle
(caar line-list) (cadar line-list)))))

;; Generates Random Comm Codes
(define (random-comm-codes wps wires)
(if (> wps 0)
(cons (+ (random wires) 1) (random-comm-codes (- wps 1) wires))
#£))

;3 unary-signal: given a set of wires and a unary code, returns a list
;; of wires with appropriate bits on them. Signal is the Jage of 1s.
(define (unary-signal wires ucode)
(let* ((numls (round->exact (* ucode (length wires))))
(num-1s (- (length wires) numls))
(bits (random-permutation (append (make-list numls 1)
(make-list num-1s -1)))))
(map list wires bits)))

;3 Main Talk Procedure
;3 12/6: only outputs certain symbols; all newly generated randoms are certain
;3 Internal-Maps is now a list of two elements. The first is inflection maps,
;3 the second is symbol maps
(define (talk comm-lines feature-lines internal-maps)

(define (loop feature-lines)

(if (null? feature-lines)
#f
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(let* ((cur-elmt (car feature-lines))
(symbol (first cur-elmt))
(inflection (second cur-elmt))
(comm-codes (find-symbol-codes internal-maps symbol))
(infl-code (find-inflection-code internal-maps inflection)))
(cond ((null? comm-codes)
(set! internal-maps
(set-symbol-codes
internal-maps symbol
(list (random-comm-codes num-wires-per-symbol
num-wires) () 0)))
(loop feature-lines))
((null? infl-code)
(set! internal-maps
(set-inflection-code internal-maps inflection
(random 1.0)))
(loop feature-lines))
(else
(append (unary-signal comm-codes infl-code)
(loop (cdr feature-lines))))))))

(if (null? feature-lines)
(list internal-maps comm-lines)
(let* ((newlines (assert-line-multiple (loop feature-lines) comm-lines))
(newmaps internal-maps))
(list newmaps newlines))))

A.2 Testbed

;3 runs simple tests through:
(declare (usual-integrations))

(cf "utils.scm")
(cf "talk2.scm")
(cf "talker.scm")
(cf "runtest.scm")

(load "utils")
(load "talk2")
(load "talker")
(load "runtest")

(define (make-log name)
(let ((fout (open-output-file name)))
(lambda (x) (if (eq? x ’flush-buffer)

(flush-output fout)
(pp x fout)))))

;; exa of use:

;3 (define thelog (make-log "thefile.out"))

;; (thelog ’(this is a list I want to log))

;5 To flush to disk:

;5 (thelog ’flush-buffer)

;3 The system consists of two talkers, each with a feature-bus coming

;3 in, and a comm-line connecting.

;3 The state of this system can be described as a list of five elements:
;3 (featl talkerl comm talker2 feat2)

;3 Starting pattern for a instance

33 C ((£1 1) (£2 2)) imapl O imap2 () )
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HH] or

;5 C ((£1 1) (£2 2)) imapl () imap2 ((f1 1) (£2 2)) )
;; Run a test by:

HH update imapl, update imap2: check for quiescence

;35 A feature set is defined as follows:

;3 There are five roles which can be expressed:

;; subject, object, action, instrument, place

;3 Actions come from category "verb" and anywhere from 0-2 can be asserted
;3 All others are nouns and 2-4 can be asserted

;5 (YES, IT’S PRETTY ARBITRARY: I JUST WANT A DECENT-SIZED SPACE)

;5 How big is it? 28 nouns, 6 verbs. avg 4 words/sentence.

; Normal Set

; (define nouns ’(bob jim mary icepick shovel table lab))
; (define verbs ’(move approach retreat touch eat fear))
; (define noun-roles ’(subject object instrument place))

; Mega Set - 50 nouns, 20 verbs

(define nouns ’(bob jim mary icepick shovel table lab fred bill classroom
leg cup butterfly dog cat turtle door window car hammer
keyboard coffee danish pencil pen eraser wall socket book ed
wheel chainsaw gun kite bedroom shower beach shoe light dark
hat office house apple banana flea vampire stapler kim joe))

(define verbs ’(move approach retreat touch eat fear zap feel fly throw
catch push hit stab tickle hurt love hate want ignite))

(define noun-roles ’(subject object instrument place))

(define (generate-features)
(let loop ((nnoun (+ 2 (random 3)))
(nverb (random 3))
(features ’())
(roles *()))
(let ((vp (list-transform-negative verbs (lambda (x) (memq x features))))
(np (list-transform-negative nouns (lambda (x) (memq x features))))
(nr (list-transform-negative noun-roles (lambda (x) (memq x roles)))))
(if (<= nnoun 0)
(if (<= nverb 0)
(map (lambda (x y) (if y
(list x y 1)
(list x ’verb 1)))
features roles)
(loop O (- nverb 1)
(cons (list-ref vp (random (length vp))) features)
(cons #f roles)))
(loop (- nnoun 1) nverb
(cons (list-ref np (random (length np))) features)
(cons (list-ref nr (random (length nr))) roles))))))

(define cycle-log (make-log "cycle.log"))

(define (run-cycles initial-state i terminate)
(let* ((features (generate-features))

(istest (< 0.8 (random 1.0)))

(testwhich (< 0.5 (random 1.0)))

(state (list (if istest (if testwhich features #f) features)
(second initial-state)
#f
(fourth initial-state)
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(if istest (if testwhich #f features) features))))
(let ((newstate (iterate state)))
(if istest
(if testwhich
(pp (list i ’test2 (first state) ’returns (fifth newstate)))
(pp (list i ’testl (fifth state) ’returns (first newstate))))
(pp (list i ’train (first state))))
(cycle-log (list ’step i features state newstate))
(cycle-log ’flush-buffer)
(if (or (eq? terminate -1) (>= i terminate))
newstate
(run-cycles newstate (+ i 1) terminate)))))

(define cyclestate (run-cycles ’(#f #f #f #f #f) 1 1000)) ;; 300

;; test a percent-correct measure
(let loop ((i 0) (successes 0) (state cyclestate))
(let* ((features (generate-features))
(state (list (if (< i 100) features #f)
(second state)
#f
(fourth state)
(if (< i 100) #f features))))
(if (>= i 200)
(pp ‘(Final results: ,successes sucesses out of ,i trials))
(let ((newstate (iterate state)))
(let ((fout (if (< i 100) (fifth newstate) (first newstate))))
(if (and (equal-set? features (fifth newstate) equal?)
(equal-set? features (first newstate) equal?))
(begin

(cycle-log (list ’test i features ’succeed))

(cycle-log ’flush-buffer)

(loop (+ i 1) (+ successes 1) newstate))

(begin

(cycle-log (list ’test i features fout ’fail))

(cycle-log ’flush-buffer)

(loop (+ i 1) successes newstate))))))))

(declare (usual-integrations))

(define (make-log name)
(let ((fout (open-output-file name)))
(lambda (x) (if (eq? x ’flush-buffer)
(flush-output fout)
(pp x fout)))))

(define get-featl first)
(define get-imapl second)
(define get-comm third)

(define get-imap2 fourth)
(define get-feat2 fifth)

;3 talk returns: (imap comm)

;3 prune-conflicts returns: imap

;5 listen returns: (imap feat)

;3 iterate operates in the following manner:

;3 1. comm lines start blank.

;3 2. have everything speak

;5 3. have everything resolve speaking conflicts
;3 4. have everything listen
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;3 Unfortunately, if we do this in perfect order, then the synchrony

;3 makes it difficult to separate the outgoing and incoming transmissions,
;3 most particularly, to determine which bits of a feature are correct.

;5 We resolve this by ordering the transmissions such that one of the

;3 two hears the others transmissions before its transmission clutters

;3 the wires. (If, of course, only one is transmitting, then it cannot

;; be pre-empted)

(define (iterate state)
(let* ((tresl (talk ’() (get-featl state) (get-imapl state)))

(tres2 (talk ’() (get-feat2 state) (get-imap2 state)))

(comms (combine-comms (second tresl) (second tres2)))

(whofirst (if (and (second tresl) (second tres2))
(if (eq? (random 2) 0) #t #f)
(if (second tresl) #t #f)))

(lresl (listen whofirst (if whofirst comms (second tres2))
(get-featl state) (first tresl)
(get-imapl state) (second tresl)))

(lres2 (listen (not whofirst) (if whofirst (second tresl) comms)
(get-feat2 state) (first tres2)
(get-imap2 state) (second tres2)))

(newstate (list (second lresl) (first lresl) comms (first lres2)

(second lres2))))
newstate)) ; for now, just doing a single learning pass

;3 this merges a set of comm lines, turning transmissions into noise
(define (combine-comms . inputs)
(fold-left
(lambda (x y)
(let* ((resl (split x
(lambda (a)
(list-search-positive y
(lambda (b) (equal? (first b) (first a)))))))
(res2 (split y
(lambda (a)
(list-search-positive x
(lambda (b) (equal? (first b) (first a)))))))
(merged (map (lambda (a)
(let* ((v2 (second
(list-search-positive (first res2)
(lambda (b)
(equal? (first b) (first a)))))))
(list (first a) (if (eq? v2 (second a))
(second a)
’x))))
(first resl))))
(append (second resl) (second res2) merged)))
’0
inputs))
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