
@ MIT

massachusetts institute of technology — artificial intelligence laboratory

Stereo-Based Head Pose Tracking
Using Iterative Closest Point and
Normal Flow Constraint

Louis-Philippe Morency

AI Technical Report 2003-006 May 2003

© 2 0 0 3 m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 2 1 3 9 u s a — w w w. a i . m i t . e d u

Stereo-based Head Pose Tracking using

Iterative Closest Point and Normal Flow

Constraint

by

Louis-Philippe Morency

Submitted to the Department of Electrical Engineering and
Computer Science in partial fulfillment of the requirements

for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2002

c© Massachusetts Institute of Technology 2002. All rights
reserved.

Certified by: Trevor J. Darrell
Assistant Professor
Thesis Supervisor

Accepted by: Arthur C. Smith
Chairman, Department Committee on Graduate Students

Stereo-based Head Pose Tracking using Iterative
Closest Point and Normal Flow Constraint

by
Louis-Philippe Morency

Submitted to the Department of Electrical Engineering and Computer
Science on May 24, 2002, in partial fulfillment of the requirements for
the degree of Master of Science in Computer Science and Engineering

Abstract

In this text, we present two stereo-based head tracking techniques along
with a fast 3D model acquisition system. The first tracking technique
is a robust implementation of stereo-based head tracking designed for
interactive environments with uncontrolled lighting. We integrate fast
face detection and drift reduction algorithms with a gradient-based
stereo rigid motion tracking technique. Our system can automatically
segment and track a user’s head under large rotation and illumination
variations. Precision and usability of this approach are compared with
previous tracking methods for cursor control and target selection in
both desktop and interactive room environments.

The second tracking technique is designed to improve the robustness
of head pose tracking for fast movements. Our iterative hybrid tracker
combines constraints from the ICP (Iterative Closest Point) algorithm
and normal flow constraint. This new technique is more precise for
small movements and noisy depth than ICP alone, and more robust for
large movements than the normal flow constraint alone. We present
experiments which test the accuracy of our approach on sequences of
real and synthetic stereo images.

The 3D model acquisition system we present quickly aligns intensity
and depth images, and reconstructs a textured 3D mesh. 3D views are
registered with shape alignment based on our iterative hybrid tracker.
We reconstruct the 3D model using a new Cubic Ray Projection merg-
ing algorithm which takes advantage of a novel data structure: the
linked voxel space. We present experiments to test the accuracy of our
approach on 3D face modelling using real-time stereo images.

Thesis Supervisor: Trevor J. Darrell
Title: Assistant Professor

2

Acknowledgments

First and foremost, I would like to thank my research advisor, Trevor
Darrell, who with his infinite wisdom has always been there to guide me
through my research. You instilled in me the motivation to accomplish
great research and I thank you for that.

I would like to thank my treasured ”officemate” and friend Neal
Checka. You always been there for me and I appreciate it greatly. I’m
really glad to be your friend.

I would like to thank David Demirdjian for your permanent bonne
humeur. It was really great work with you and I hope you will stay
longer with us.

I would like to thank my accomplice Ali Rahimi. I will remember
the many nights we spent together writing papers and listening to Joe
Dassin and Goldorak.

I would like to thank Marc Parizeau, my undergraduate teacher
from Laval University, Quebec city, who first introduced me to research
and shared with me his passion for computer vision.

Thanks to Jean-Francois Roberge who first introduced me 15 years
ago to object oriented programming and encouraged me since then to
continue my studying in computer sciences.

Merci chere maman pour tout ce que tu as fait pour moi. Durant
plus de 20 annnees (et encore aujourd’hui), tu m’as donne ton amour
et ta sagesse. Tu m’as appris a partager et a respecter les autres. Je
ne pourrai te le dire assez souvent: Merci maman.

Merci cher papa de m’avoir encourage a toujours aller plus loin.
C’est grace a toi si j’ai fait ma demande a MIT. Durant ma derniere
annee a Quebec, j’ai decouvert ce que la complicite pere-fils signifiait.
Merci pour tout ce que tu as fait pour moi.

And finally, I would like to thank the one I love, Tracy Anne Ham-
mond Zeigler, ma chere Titi. Even when I was grumpy or tired, you
always took the time to listen me. I shared with you the most beautiful
moment of my life and I’m expecting a lot more to come. I love you.

3

Contents

1 Introduction 9
1.1 Related Work . 11
1.2 Organization of Thesis 14

2 Stereo-based Head Pose Tracker using ZBCCE 15
2.1 Initialization with Face Detection 15
2.2 Pose Parameters . 16
2.3 ZBCCE Differential Tracking 16
2.4 Drift Reduction . 18

3 Cursor Control User Study using ZBCCE 20
3.1 Tracking Techniques . 20

3.1.1 Stereo-Motion Tracker 20
3.1.2 Inertial Rotation Sensor 21
3.1.3 Normalized Cross-Correlation Tracker 22

3.2 Desktop Experiment . 23
3.2.1 Results . 24
3.2.2 Discussion . 26

3.3 Interactive Room Experiment 27
3.3.1 Results and Discussion 28

4 Iterative Hybrid tracker 29
4.1 Preprocessing . 29
4.2 Iterative Hybrid Tracker Structure 30
4.3 ICP Error Function . 32

4.3.1 Closest Point with k-d Tree 32
4.3.2 Point-to-Plane 32

4.4 NFC Error Function . 33
4.4.1 Inverse Calibration 33
4.4.2 Normal Flow Constraint 34

4

4.4.3 Accuracy comparison for small movements 35
4.5 Hybrid Error Function 35

5 Head Pose Experiments 37
5.1 Test sequence 1 . 37
5.2 Test sequence 2 . 38
5.3 Test sequence 3 . 38

6 3D Model Reconstruction 47
6.1 Linked Voxel Space . 47
6.2 Cubic Ray Projection 49
6.3 Results . 50

7 Conclusion 55

5

List of Figures

3.1 Example of pointer control using a head tracking system. In

the top-left image, a set of axes are overlaid on the user’s face

to show the estimated pose. A close-up of the face is shown

in the top-right. The intersection of the frontal face ray with

a display screen is used to control a pointer, as shown in the

lower image. 21
3.2 Brightness change during the lighting variation experiment.

Left: lamp on. Right: lamp off. 23
3.3 A user during the desktop experiment. The SRI stereo cam-

era is placed just over the screen and the user is wearing the

Intertrax2 device on his head. 24
3.4 Comparison of average error on tracing task of the desktop

experiment. The error bars in the histogram represent the

standard deviation between user results. 25
3.5 Typical trajectories for all three trackers when users perform

small rotations (first row), large rotations (second row) and

under light variation (last column). The trajectory starts

from the upper left corner of the rectangle and ends in the

same location. 26
3.6 Setup for the room experiment. The SRI stereo camera is

placed on the table. 27

4.1 Hybrid tracker structure. 30
4.2 Plot of the sigmoidal function λ(d) used in equation 4.4. No-

tice that as the average distance between matched points d

decrease, NFC error function has more weight, and vice-versa. 31
4.3 Small rotation sequence with synthetic images. 35

5.1 Intensity and depth images from sequence 1. 39
5.2 Face tracking results of sequence 1. Each row represents

tracking results at different frames: 0, 70, 140, and 180. . . . 40

6

5.3 Intensity and depth images from sequence 2. 41
5.4 Face tracking results of sequence 2. Each row represents

tracking results at different frames: 0, 25, 100, and 160. . . . 42
5.5 Comparison of average convergence factor for 80 frames (se-

quence 2). 43
5.6 Intensity and depth images from sequence 3. 44
5.7 Face tracking results for sequence 3. Each row represents

tracking results at different frames: 0, 45, 75, 90, and 105. . 45
5.8 Face tracking results for sequence 3. Each row represents

tracking results at different frames: 135, 150, 170, 195, and

250. 46

6.1 Result of voxels merging on one layer of the voxel cube. Oc-

cupied voxels are represented by a dot (inverse of the covari-

ance) and an arrow (normal vector). The figure shows the

projection of the voxels on two faces of the cube. 50
6.2 Sample images from the sequence. Left: Intensity images.

Right: Depth images. 52
6.3 Progress of the model acquisition. 53
6.4 Final 3D mesh viewed from different directions. 54

7

List of Tables

3.1 Experimental results of the stereo-based tracker inside the

interactive room. 28

8

Chapter 1

Introduction

Head pose or gaze is a potentially powerful and intuitive pointing cue
if it can be obtained accurately and non-invasively. In interactive envi-
ronments, like public kiosks or airplane cockpits, head pose estimation
can be used for direct pointing when hands and/or feet are otherwise
engaged or as complementary information when the desired action has
many input parameters. In addition, this technology can be important
as a hands-free mouse substitute for users with disabilities or for control
of gaming environments.

When interacting directly with users, robustness and efficiency are
key requirements for a successful system. Interactive environments of-
ten include dynamic video projection across multiple large screens, and
thus have illumination levels which can change spontaneously. A head
tracking system for such environments must be able to handle varia-
tions of illumination and large head rotations. In addition, the system
should be fast enough to maintain transparent interaction with the
user.

Head pose tracking can also be used for building textured 3D mod-
els by stitching together synchronized range and intensity frames from
stereo cameras. The head pose tracking performs the first step of 3D
model acquisition by registering frames to recover their relative posi-
tions in the real world. A registration step is necessary because the
shape of most objects cannot be observed from only one view: we must
scan the object from several directions and bring these scans into reg-
istration.

Because frames can rarely be brought into exact registration, a sec-
ond step, the merging phase, is required to resolve these conflicts by
forcing points to lie on a 2D manifold. Range from real-time stereo

9

provides the basis for a modelling tool that is small and hand-held,
requires one-time only calibration, is completely passive, produces al-
most instant 3D models, and provides real-time feedback as the model
is being acquired.

In this text, we present two different techniques for head pose
tracking using stereo cameras. The first technique is based on the
rigid stereo motion tracking technique proposed by Harville et al. [17]
called ZBCCE which combines the Normal Flow Constraint (NFC)
(also called Brightness Change Constraint Equation (BCCE)) with
a Depth Constant Constraint Equation (DCCE). This intensity- and
depth-based technique is relatively insensitive to illumination variation.
Since it is based on real-time 3D observations, it can be more accurate
than previous approaches that presumed approximate models. The
complete tracking system relies on an online drift reduction algorithm
based on Rahimi et al.[33] and an automatic initialization technique
using fast face detection [43].

The performance of the ZBCCE tracking system was evaluated on
a shape tracing task and a selection task. We compared this tracker
performance with published reports and side-by-side implementations
of two other systems. We evaluated tracing accuracy with small and
large head rotations and with different levels of lighting variation. We
also compared the performance of the ZBCCE tracker with that of a
head-mounted inertial sensor. Results from this user study showed that
the ZBCCE tracking system is accurate and fast but does not handle
fast movement.

The second tracking technique is an iterative hybrid tracker de-
signed to improve the robustness of our head pose tracker for fast move-
ments. Our new tracking approach jointly aligns images using a Normal
Flow gradient Constraint (NFC) and an Iterative Closest Point (ICP)
algorithm. This new framework has the precision of the former with
the robustness of the latter. Our implementation of ICP finds corre-
spondences between two 3D point clouds using a 4-dimensional search
space (3D euclidian space + 1D color/brightness) and minimizes the
distance between each 3D point and the tangential plane of its cor-
responding point. This framework does not include DCCE since the
point-to-plane distance used in ICP is a function of the normal vector
which is computed using the depth gradient (same as DCCE).

To date, most ICP algorithms have been tested on very precise 3D
data sets from a laser scanners [32] or other range scanning methods.
We are interested in tracking data from relatively noisy optical stereo
range data captured at modest frame rates. To evaluate this new hy-
brid tracking technique, we performed head pose tracking experiments

10

with real image sequences. We compared our iterative hybrid tracker
with each individual tracking techniques: ICP and the normal flow
constraint.

Finally, we present an efficient solution for 3D model acquisition
using the new iterative head pose tracker to register 3D views. The
outcome of the registration phase is a 3D mesh transformed to a canon-
ical pose where each vertex corresponds to a valid image pixel. Due
to noise in the imager and imperfect registration, the vertices will not
lie on a 2D manifold, but will instead form a fuzzy cloud around the
desired surface. To solve this problem, we introduce a new merging al-
gorithm, called Cubic Ray Projection, which non-rigidly deforms each
mesh so that vertices are forced toward a 2D manifold. To facilitate
the creation of connected meshes from unstructured range data, we
use a linked voxel space during the merging process. The linked voxel
space is easily turned into a connected mesh for rendering. The system
presented is extremely fast and when used with a real-time stereo cam-
era, it is possible to capture 3D models interactively and unobtrusively.
Many 3D views are merged together, reducing noise in the final model.

1.1 Related Work

Several authors have recently proposed face tracking for pointer or
scrolling control and have reported successful user studies [41, 26]. In
contrast to eye gaze [46], users seem to be able to maintain fine mo-
tor control of head gaze at or below the level needed to make fine
pointing gestures1. However, performance of the systems reported
to date has been relatively coarse and many systems required users
to manually initialize or reset tracking. They are generally unable
to accurately track large rotations under rapid illumination variation
(but see [27]), which are common in interactive environments (and air-
plane/automotive cockpits).

Many techniques have been proposed for tracking a user’s head
based on passive visual observation. To be useful for interactive envi-
ronments, tracking performance must be accurate enough to localize a
desired region, robust enough to ignore illumination and scene varia-
tion, and fast enough to serve as an interactive controller. Examples
of 2-D approaches to face tracking include color-based [45], template-
based [26] and eigenface-based [16] techniques. Techniques using 3-D
models have greater potential for accurate tracking but require knowl-

1Involuntary microsaccades are known to limit the accuracy of eye-gaze based
tracking[25].

11

edge of the shape of the face. Early work presumed simple shape models
(e.g., planar[4], ellipsoidal[2], or cylindrical[27]). Tracking can also be
performed with a 3-D face texture mesh [36] or 3-D face feature mesh
[44].

Very accurate shape models are possible using the active appear-
ance model methodology [7], such as was applied to 3-D head data
in [5]. However, tracking 3-D active appearance models with monocu-
lar intensity images is currently a time-consuming process, and requires
that the trained model be general enough to include the class of tracked
users.

The problem of estimating 3D rigid body motion has been stud-
ied extensively in the computer vision and graphics fields. The well-
known Iterative Closest Point (ICP) algorithm, introduced by Chen
and Medioni [6] and Besl and McKay [3], has been used extensively
in the graphics literature to merge 3D laser range scans. In the vision
literature much progress has been made on gradient-based parametric
motion estimation techniques which aggregate pointwise normal flow
constraints [4, 20, 24].

ICP finds corresponding points between two 3D point clouds and
tries to minimize the error (usually the euclidian distance) between
the matched points. Chen and Medioni minimize this error based
on a point-to-plane distance, while Besl and McKay minimize the di-
rect euclidian distance between the matched points (point-to-point).
Rusinkiewicz and Levoy [34] present a extensive survey of many vari-
ants of ICP. Godin et al.[13] first used color to filter matched points
during ICP. While other methods [11, 37] have incorporated color in-
formation in the distance function of the matching process, no solution
has been suggested that uses color/brightness during the error mini-
mization process.

The normal flow is 3D vector field which can be defined as the
component of the 2D optical flow that is in the direction of the image
gradient[42]. When 3D observations are directly available, such as from
optical stereo or laser range finders, a normal flow constraint can be
expressed directly to estimate rigid body motion [39]. Harville et al.[17]
combined normal flow constraint with a depth gradient constraints to
track rigid motion. Gradient-based approaches use color/brightness
information during the minimization process and have proved to be
accurate for sub-pixel movements[1].

Many algorithms have been proposed for registering range data.
These differ notably in the energy function minimized during registra-
tion, and whether the registration procedure ensures global consistency.

The method of Stoddart and Hilton [40] minimizes a function corre-

12

sponding to the energy stored in a spring system connecting correspond-
ing points across frames. This algorithm provides global consistency,
but requires correspondences to be known.

The registration algorithm of [15] brings each point of a scan as
close as possible to its closest point on the model acquired so far, thus
avoiding the need for correspondences. However, this method does not
produce a globally consistent model. Accumulated registration errors
against the model eventually cause the model to become inconsistent
(see [35] for a discussion).

The Iterative Closest Point (ICP) framework proposed by Besl and
McKay [3] iteratively assigns correspondences and then minimizes the
resulting distance metric by rigidly transforming the scans [32, 6]. Chen
and Medioni [6] employ this technique to minimize the distance between
each point of a scan and the closest tangent plane in the corresponding
scan. They perform this minimization jointly over the pose of all scans.
Because each iteration must involve all pairs of corresponding points,
the optimization is expensive.

To reduce the complexity of this minimization, Pulli [32] first aligns
scans pairwise, obtaining relative pose estimates between many redun-
dant pairs of scans. Global consistency is obtained by assigning each
frame a pose such that the pairwise relative alignments are minimally
perturbed. This optimization is fast as it does not require correspon-
dences to be recomputed at each iteration of the optimization and only
matches up frame poses poses instead of individual points.

In contrast to these head tracking systems, our system is robust to
strong illumination changes, automatically initializes without user in-
tervention, and can re-initialize automatically if tracking is lost (which
is rare). In addition, it can track head pose under large rotations and
does not suffer from drift.

Our approach uses the combined depth and intensity constraint of
[17] to obtain relative pose changes between each frame and several
other base frames. The pose changes describe the rigid transformation
required for bringing each frame into registration with its base frames.
The global registration method we present is based on [33] and is similar
in structure to [32] in that, during global registration, poses are relaxed
to find a registration which is consistent with the measured pairwise
pose changes.

13

1.2 Organization of Thesis

The following chapter describes the main components of our ZBCCE
head pose tracking system. We review the pose change estimation
algorithm of [17] and the global pose consistency algorithm of [33].

In chapter 3, we present our experimental paradigm and interaction
task. We evaluate the spatial accuracy and temporal resolution of the
ZBCCE head pose tracker, compare it to previously reported systems,
and conclude with a discussion of these results.

Chapter 4 describes the iterative framework used for 3D view reg-
istration. Section 4.3 presents the closest point matching process and
point-to-plane error function, two important components of ICP. Sec-
tion 4.4 reviews the normal flow constraint and shows how inverse cal-
ibration parameters can be used to do find correspondence. Then,
section 4.5 describes the hybrid error functions.

Chapter 5 present results that show how our iterative hybrid tracker
can reliably track sequences from optical stereo data that neither tech-
nique alone could track.

Chapter 6 describes our novel 3D model reconstruction algorithm
called Cubic Ray Projection, which is applied after frames have been
globally registered using our iterative hybrid tracker. We then show
how our system can be used to build 3D models of human heads.

14

Chapter 2

Stereo-based Head Pose
Tracker using ZBCCE

Our ZBCCE head pose tracking system has three main components.
Its core is an algorithm for instantaneous depth and brightness gradi-
ent tracking called ZBCCE [17], combined with two other modules for
initialization, and stabilization/error-correction. For initialization we
use a fast face detection scheme to detect when a user is in a frontal
pose, using the system reported in [43]. To minimize the accumulation
of error when tracking in a closed environment, we rely on a scheme
which can perform tracking relative to multiple base frames [33].

The following subsections describe the initialization and basic dif-
ferential tracking algorithm which recovers the rotation and translation
of an object between two time steps t and r, given images sets {It, Zt}
and {Ir, Zr}. The last subsection explains how to use multiple base
frames to reduce drift.

2.1 Initialization with Face Detection

When it first comes online, the tracker scans the image for regions
which it identifies as a face using the face detector of [43]. As soon a
face has been consistently located near the same area for several frames,
the tracker switches to tracking mode. The face detector is sensitive
only to completely frontal heads, making it possible for the tracker to
assume that the initial rotation of the head is aligned with the camera
coordinate system. The face detector provides the tracker an initial
region of interest, which is updated by the tracker as the subject moves

15

around. Since depth information is readily available from the stereo
camera, the initial pose parameters of the head can be fully determined
by 2D region of the face with the depth from stereo processing.

When we observe erratic translations or rotations from the tracker,
the tracker automatically reinitializes by reverting to face detection
mode until a new target is found. This occurs when there is occlusion
or rapid appearance changes.

2.2 Pose Parameters

Our tracker process two image sets as input: the new image set {It, Zt}
grabbed at time t and the reference image set {Ir, Zr}. The reference
image set can be either the image set grabbed at time t-1, the first
image set, or any relevant image set between time 0 and time t-1 [33]
(see section 2.4).

The goal of the tracker is to find the rigid pose change {R,�t} be-
tween the two image sets, where R is a 3x3 rotation matrix and �t is a
3D translation vector . A transformation �δ represented by 6 parame-
ters vector [�ω �t]t is computed. In this vector, �ω is the instantaneous
rotation (3 parameters) and �t is the translation (3 parameters). The
current pose estimation is updated as follow:

Rnew = RoldR(δ) (2.1)
�tnew = �told + �t (δ) (2.2)

where R(δ) is the 3x3 matrix representing the rotation ω(δ). Initially,
R0 is set to the identity matrix and �t 0 is set to 0.

2.3 ZBCCE Differential Tracking

To recover the motion between two frames, we apply the traditional
Normal Flow Constraint (NFC) [19] (also called Brightness Change
Constraint Equation (BCCE)) jointly with the Depth Change Con-
straint Equation (DCCE) of [17] on range and intensity imagery of
stereo camera. As shown in [42], the NFC can be expressed as:

−∂Iri

∂t
= ∇Iri

[
∂�uri

∂�qri

]
�V (2.3)

where �V =
[

∂xri

∂t
∂yri

∂t
∂zri

∂t

]
is the velocity of the object, ∇Iri =[

∂Iri

∂uri

∂Iri

∂vri

]
is the image gradient, and ∂Iri

∂t is the time gradient.

16

∂Iri

∂uri
and ∂Iri

∂vri
are computed directly from the referential image Ir. The

time gradient is approximated by:

∂Iri

∂t
= Iti − Iri (2.4)

For a perspective projection where uri = f xri

zri
and vri = f yri

zri
, we

can find the Jacobian matrix:

∂�uri

∂�qri
=

[
f

zri
0 −f xri

z2
ri

0 f
zri

−f yri

z2
ri

]
(2.5)

Since the object is rigid, the velocity V can be expressed as:

�V =
[

I −q̂ri

]
�δ (2.6)

where I is a 3x3 identity matrix and q̂ri is the skew matrix of the vector
�qri. By rearranging the equation, we get a linear system:

εNFC = ‖ANFC
�δ −�bNFC‖2 (2.7)

where each line is defined as follow

�Ai = ∇Iri

[
∂�uri

∂�qri

] [
I −q̂ri

]
(2.8)

bi = −∂Iri

∂t
(2.9)

The DCCE of [17] uses the same functional form as equation (2.3)
to constrain changes in depth. But since depth is not preserved under
rotation, the DCCE includes an adjustment term:

−∂Zri

∂t
= ∇Zri

[
∂�uri

∂�qri

]
�V − Vz (2.10)

where ∇Zri =
[

∂Zri

∂uri

∂Zri

∂vri

]
is the depth gradient and Vz = ∂zri

∂t

is the flow towards the Z direction induced by δ. By rearranging the
equation, we get a linear system similar to NFC:

εDCCE = ‖ADCCE
�δ −�bDCCE‖2 (2.11)

where each line is defined as follow

�Ai = ∇Zri

[
∂�uri

∂�qri

] [
I −q̂ri

]
(2.12)

17

bi = −∂Zri

∂t
+ Vz (2.13)

Note that the DCCE is robust to lighting changes since lighting does
not affect the depth map. We combine the NFC and DCCE into one
function optimization function with a weighted sum:

δ∗ = arg min
δ

εNFC(δ) + λεDCCE(δ)

We can rewrite this equation as one linear system:

arg min
�δ

∥∥∥∥∥
[

ANFC

λADCCE

]
�δ −

[
�bNFC

λ�bDCCE

]∥∥∥∥∥
2

The only unknown variables are the pose parameters, since Z is avail-
able from the depth maps. This linear system can be solved using
a least-squares method or any robust estimator. For an approximate
way to optimize this function, see [17], where one iteration of Newton-
Raphson is shown to be adequate for tracking. To reduce the influence
of outliers, we use a M-estimator to minimize the system [21].

2.4 Drift Reduction

Given a method for computing the pose difference δt
s between frames Ir

and It, one approach for estimating the pose ξt of frame It relative to
the first frame I0 is to accumulate the pose difference between adjacent
frames Ir and Ir+1, for r = 0..t − 1. But since each pose change
measurement is noisy, the accumulation of these measurements becomes
noisier with time, resulting in unbounded drift.

To curb this drift, we compute the pose change between It and
several base frames. When the trajectory of the target crosses itself,
its pose change is computed against recently acquired scans as well as
past scans near the current pose. These pose differences are combined
to not only obtain a more robust and drift-free pose estimate of the
current scan, but also to adjust the pose of past frames by incorporating
knowledge about the closed trajectory.

Several authors have proposed an optimization framework to im-
plement this technique [33, 32, 29]. Poses are assigned to each scan so
that the predicted pose changes between pairs of scans are as similar
as possible to the observed pose changes. Assuming a function d(ξr, ξt)
which returns the pose change between two poses, we wish to minimize
for all poses ξi: ∑

(r,t)∈P

‖δt
r − d(ξr, ξt))‖2

Λrt

18

where P is the set of frame indices between which pose changes have
been computed, and ‖.‖Λ is the Mahalanobis distance. Poses are pa-
rameterized using local rotations so that d(ξr, ξt) = ξr−ξt. Optimizing
(2.4) involves solving a sparse linear system, which can be performed
efficiently using conjugate gradient descent, for example. For more
details, see [33].

19

Chapter 3

Cursor Control User
Study using ZBCCE

To evaluate the ZBCCE stereo-based head pose tracker we performed
two series of experiments, the first in a desktop screen environment and
the second in an interactive room with large projection screens. In the
following subsection, we describe the tracking systems used in this user
study. We then present the experimental setups and results for both
experiments.

3.1 Tracking Techniques

We compared side-by-side the stereo motion tracker of section 2 with a
2D tracker based on normalized cross-correlation, and a head-mounted
inertial rotation sensor. The following sections describe each tracker in
more detail.

3.1.1 Stereo-Motion Tracker

The ZBCCE stereo-motion head tracker is a standalone system which
takes video-rate intensity and range imagery from a stereo camera such
as the SRI Small Vision System [10] camera and locates and tracks
heads in real-time. The SRI camera software produces 320x240 pixel
resolution intensity and range images at 15 fps. The tracker runs on
a 1.5 Ghz Pentium 4 running a Windows operating system, and takes
advantage of Intel’s SIMD architecture through the Intel Performance
Library. This tracker uses the rigid motion stereo algorithm described

20

Figure 3.1: Example of pointer control using a head tracking system. In
the top-left image, a set of axes are overlaid on the user’s face to show
the estimated pose. A close-up of the face is shown in the top-right. The
intersection of the frontal face ray with a display screen is used to control a
pointer, as shown in the lower image.

above, together with face detection and drift reduction (with 2 past
frames).

As in [41], we use the tracked head position to infer a point of
intersection of a ”face ray” with the control or display surface, and use
this to set a pointer target (see figure 3.1).

3.1.2 Inertial Rotation Sensor

We used evaluated tracking in comparison to an inertial rotation sensor,
using InterSense’s Intertrax2 [22]. The manufacturer reports that it is
able to measure changes in rotations in three axes with 0.02 degrees of
precision. Our software samples the tracker at about 100 samples per
second, though the tracker is reported to have a 256 Hz internal sam-

21

pling rate; it was attached to the test PC via USB. The documentation
for the tracker reports zero jitter, which after some experimentation, we
concluded was the result of a hysteretic filter. Based on a patent filed
by the manufacturer, the inertial sensor may combine various sources
of inertial measurement such as the earth’s magnetic and gravitational
fields[12].

In contrast to the vision-based tracker of section 2 which automati-
cally tracks after detecting a face, the Intertrax tracker must be manu-
ally initialized to provide it with a reference frame. The head-mounted
tracker is equipped with a reset button which must be pushed before
the user begins each experiment in order to define the initial coordinate
system and to reset the accumulated drift.

3.1.3 Normalized Cross-Correlation Tracker

We evaluated 2D tracking techniques to explore the importance of
stereo observations for robust real-time tracking. We used a side-by-
side implementation of 2D normalized correlation tracking similar to
that proposed in [26]. (We also compared published reports of other 2D
trackers, as reported below.) The normalized cross-correlation tracker
works in two phases, similar to the stereo tracker described above: first,
a face detector [43] locates a face and reports a region of interest which
represents the bounding box of a face. Second, the correlation tracker
takes a snapshot of the resulting region, scales its magnitude to 1, and
uses it as the template in its tracking phase[14].

Once a template is acquired, for each new image, the correlation
tracker scans a 70 by 30 pixel region around the location where the face
was originally found. For each candidate location (u, v), it computes
the similarity measure:

ε(u, v) =
∑

x

∑
y

‖Ĩt(x + u, y + v) − T̃ (x, y)‖2, (3.1)

where T̃ is the magnitude-normalized face template acquired during
detection and Ĩt is the magnitude-normalized current image.

The correlation tracker reports the value of (u, v) which minimizes
(3.1). Typically, this displacement would be scaled by constants in u
and v and used as the location of the pointer on the screen. However,
because the domain of ε is integers and the resolution of the camera is
low, the approach is insensitive to small motion. As such, the pointer’s
precision suffers.

Instead, we resolve the motion (u, v) to sub-pixel resolutions, by
approximating the D by D pixel neighborhood around the minimum

22

Figure 3.2: Brightness change during the lighting variation experiment.
Left: lamp on. Right: lamp off.

of ε by a second order polynomial ε̂. Then instead of reporting the
minimum of ε(u, v), the correlation tracker reports the minimum of ε̂.

3.2 Desktop Experiment

The desktop experiment involved 8 experiments per subject. Each
subject tested the three tracking techniques described in section 3.1.
Each of the trackers was tested in small-screen and wide-screen mode.
The former allows the user to trace the rectangle using small head
motions. The latter simulates a larger screen which requires larger
head rotations to navigate. In addition, the correlation tracker and
the stereo motion tracker were tested in the small-screen mode under
abruptly varying lighting conditions (see figure 3.2).

As shown in figure 3.3, users sat about 50 cm away from a typical
17” screen, subtended a horizontal angle of about 30 degrees and a
vertical angle of about 20 degrees. The screen displayed a black back-
ground and a white rectangular path drawn in the middle. The task
was to use head pose to move a 2D pointer around the screen to trace
the rectangular path as accurately as possible. Users were allowed to
take as much time as they liked, as long as they were able to complete
the path eventually. Thus, we suggest that the dominant feature under
observation is the tracker’s accuracy in mapping the user’s head to a

23

Figure 3.3: A user during the desktop experiment. The SRI stereo camera
is placed just over the screen and the user is wearing the Intertrax2 device
on his head.

2D location.

3.2.1 Results

The first three rows of figure 3.4 compares the accuracy of the ZBCCE
stereo motion tracker with the 2D normalized cross-correlation tracker
and the Intertrax2 tracker. The histogram shows the average error and
standard deviation of 4 subjects. The average error is computed as
the average distance in pixels between every point on the cursor tra-
jectory and the closest point on the given rectangular path. The three
last rows of the same figure compares our results with some published
system: an optical flow tracker[23], cylindrical tracker[27], and an eye
gaze tracker[46]. We can observe from figure 3.4 that the stereo-based
tracker perform better for large rotation and light variation then the
2D correlation tracker. The stereo-based tracker gives similar accuracy
results then the inertial rotation sensor for small and large rotations.

Figure 3.5 shows typical pointer trajectories for each scenario. It
took an average of 50 seconds to trace each rectangle. We observe from
the trajectories that the stereo-based tracker can be used accurately
point on a screen.

24

0

10

20

30

40

50

60

E
rr

or
(in

pi
xe

l)

Intertrax 2 8.3 6.2

Stereo-based 7.5 6.4 12.4

2D Correlation 9.9 41.0 31.9

Optical Flow 22.9

Cylindical tracker 25

Eye gaze 27

Small rotation Large rotation Light variation

Figure 3.4: Comparison of average error on tracing task of the desktop
experiment. The error bars in the histogram represent the standard deviation
between user results.

In a desktop environment, small rotations are sufficient to drive
a cursor, since the angle subtended by the screen tends to be small.
This situation serves as a baseline where all three trackers can be com-
pared under moderate conditions. Under the small rotation scenario,
all trackers showed similar deviation from the given trajectory, with
an average deviation of 7.5 pixels for the stereo motion tracker, 9.8
pixels for the normalized cross-correlation tracker, and 8.3 pixels for
the inertial tracker. Note that the drift of the inertial sensor becomes
significant during the last quarter of its trajectory (figure 3.5), forcing
subjects to compensate for its error with exaggerated movements.

Navigating a pointer on a wide screen (multiple monitors, projec-
tion screens, cockpits) requires larger head rotations. As expected,
the correlation tracker loses track of the subject during rotations be-
yond 20 degrees, because the tracker is initialized on the appearance
of the frontal face only. It incurred an average error of 41.0 pixels.
The stereo motion tracker, however, successfully tracks the head as
it undergoes large rotations, with an average error of 6.4 pixels. The
Intertrax2 tracker shows an average error of 6.2 pixels. Note that due to

25

Stereo-based tracking
Real Path

2D correlation tracking
Real Path

Intertrax
Real Path

Small Rotation

Large Rotation

Light variation

<20

>40

Figure 3.5: Typical trajectories for all three trackers when users perform
small rotations (first row), large rotations (second row) and under light vari-
ation (last column). The trajectory starts from the upper left corner of the
rectangle and ends in the same location.

the accumulated drift of the inertial sensor, typical users had difficulty
controlling the cursor in the last portion of the trajectory.

Under varying lighting conditions (the light was modulated at about
1/2 Hz), the normalized cross-correlation tracker lost track of the tar-
get regardless of the degree of rotation, yielding an average error of
31.9 pixels as opposed to its 9.9 pixels under unvarying lighting. The
stereo motion tracker did suffer slightly, averaging an error rate of 12.4
pixels as opposed to its initial error of 7.5 pixels under normal lighting
conditions. This is only a factor 1.6 increase in average error, compared
to the correlation tracker’s factor of 3.2 loss of performance.

3.2.2 Discussion

The inertial rotation sensor Intertrax2 is accurate for a short period of
time, but it accumulates noticeable drift. Approximately after 1 minute
of use of the tracker, subjects were often forced to contort their bodies
significantly in order to compensate for the drift. The normalized cross-
correlation tracker appears to be suitable for situations involving small
head rotations and minimal illumination changes.

26

Figure 3.6: Setup for the room experiment. The SRI stereo camera is placed
on the table.

The stereo motion tracker is robust to lighting variations because it
largely relies on depth information, which is unaffected by the illumina-
tion changes. In addition, it can track arbitrarily large transformations
without suffering from drift due to the drift reduction algorithm de-
scribed in section 2.4.

3.3 Interactive Room Experiment

As shown in figure 3.6, the second experiment was run in an interactive
room with large projection screens. Users were sitting about 1.8 meters
away from a 2.1m x 1.5m projection screen, subtended a horizontal
angle of about 100 degrees and a vertical angle of about 80 degrees.
Subject were asked to perform two tasks: the tracing task described
in section 3.2 and a selection task where the user must reach different
colored squares without touching the red squares. A short interview
was performed following the experiment to obtain feedback from the
subject about the usability of these head trackers.

27

Small rotation

Large rotation

Light variation

Average error Standard deviation
(in pixel) (in pixel)

6.3

6.1

11.5

0.4

0.6

3.1

Table 3.1: Experimental results of the stereo-based tracker inside the inter-
active room.

3.3.1 Results and Discussion

With more then 90 degrees of rotation to reach both sides of the screens,
the limitations of the normalized cross-correlation tracker appeared
clearly. Subjects could not use the tracker without unnaturally trans-
lating their heads over long distances to move the cursor correctly.

The stereo-based tracker was successful on both the tracing task and
the selection task. Table 3.1 presents the average errors and standard
deviation for the tracing task of 3 subjects.

The interviews after the second experiment showed that users don’t
like a linear mapping between the head pose and the cursor position.
For slow movement of the head, the ratio cursor distance by head move-
ment should be smaller to give more precision on small selections. For
fast movement of the head, the ratio should be larger to give more
speed on large displacement. These observations corroborate Kjeldson
results[26].

28

Chapter 4

Iterative Hybrid tracker

To improve the robustness of our head pose tracker for fast movement,
we designed a second tracking technique: the iterative hybrid tracker.
In this new tracking framework, we integrate an ICP 3D euclidian error
function with the normal flow constraint, creating a hybrid registration
error metric yielding a tracker which is both robust and precise. The
ICP approach matches points in 4 dimensions (3D + brightness) and
minimizes the euclidian distance between corresponding points. Em-
pirically, we have found that ICP robustly handles coarse motion. The
NFC (Normal Flow Constraint) approach matches points based on the
inverse calibration parameters and find the transformation between cor-
responding points based on their appearance and their 3D position. As
shown in Section 4.5, this method is more precise for small movement
since it searches the pose parameter space using a gradient method
which can give sub-pixel accuracy.

4.1 Preprocessing

The new image set {It, Zt} is preprocessed in concert with known cam-
era calibration information to obtain the 3D vertex set Ψt of i := 1..m
vertices �υti = {�pti, �nti, Iti} where �pti is the 3D point coordinates in the
camera reference, �nti is the normal vector of the surface projected by Zt

at point �pti and Iti is the brightness value of the point �pti as specified
by the intensity image It. The normal vector �nti is computed from the
depth image gradients:

�nti =
[

∂Zt

∂uti

∂Zt

∂vti
1

]
(4.1)

29

Closest
Point

Point-to-
Plane

Inverse
Calibration

Normal
Flow

Minimize
Check

ICP

NFC ICP+ NFC t

ICP

NFC

Warp
(1-)

Figure 4.1: Hybrid tracker structure.

where uri and vri are the 2D image coordinates of Zt.

4.2 Iterative Hybrid Tracker Structure

As shown in figure 4.1, our hybrid tracker iterates a joint error mini-
mization process until convergence. At each iteration two error function
are minimized in the same linear system. The iteration process can be
divided into 5 distinct steps: Match, Error Function, Minimization,
Warping and Convergence check.

• The Match stage finds corresponding points between the 3D im-
age sets. In the hybrid tracker we use two matching techniques:
closest point and inverse calibration. These techniques are de-
scribed in more details in sections 4.3.1 and 4.4.1.

• Given the two sets of correspondences, we compute two error
functions: point-to-plane and normal flow constraint. These two
error functions relate the corresponding point sets to the pose
parameters. As shown in Section 4.3.2 and 4.4.2, each error func-
tion can be locally approximated as linear problems in terms of
the motion parameters:

εICP = ‖AICP
�δ −�bICP ‖2 (4.2)

εNFC = ‖ANFC
�δ −�bNFC‖2 (4.3)

• The Minimization stage estimates the optimal transformation �δ∗

between the matched points using the combined error function:

30

1.0

0.5

dG d

d() d()

d())(1-

NFC for fine
movements

ICP for coarse
movements

Figure 4.2: Plot of the sigmoidal function λ(d) used in equation 4.4. Notice
that as the average distance between matched points d decrease, NFC error
function has more weight, and vice-versa.

�δ∗ = arg min
�δ

[λ(d)εICP + (1 − λ(d))εNFC] (4.4)

where d is the average distance between matched points and λ(d)
is a sigmoid function which arbitrates the importance of the ICP
error function over the normal flow error function as alignment
improves (see figure 4.2). Section 4.5 discusses in more details
how the sigmoid function λ(d) is computed.

• The Warping stage warps the 3D vertex set Ψt according to the
new estimated transformation �δ. The warping is done by updat-
ing the �pti and �nti of each vertex as follows:

�nti
′ = R(δ)�nti �pti

′ = R(δ)�pti + �t (δ) (4.5)

• The Convergence Check stage computes the convergence factor ε
by averaging the distance D between warped 3D points �pti

′ and
referential 3D points �qri:

ε =
1
n

(
n∑

i=1

D(�pti
′, �qri)

)
(4.6)

31

If the difference between the convergence factor ε of two consec-
utive iterations is smaller then a threshold value τ , then conver-
gence is reached. The 3D view registration is completed when
convergence is reached or, in the case of non-convergence, when
a maximum number NI of iterations is performed.

4.3 ICP Error Function

To compute the ICP error function, the matching stage searches for
closest points in a 4-dimensional space composed of the 3D euclidian
space and 1D for brightness. An exhaustive search for matching closest
points makes large displacements easier to track. A k-d tree is used to
accelerate the matching process [38]. As suggested by Rusinkiewicz and
Levoy [34], we use a point-to-plane error function to align the matched
points.

4.3.1 Closest Point with k-d Tree

Among the earliest ICP distance functions proposed was the 3D eu-
clidian distance [3]. This function doesn’t take into account color or
intensity information which may be available. As Godin et al.[13], we
take advantage of intensity information and use a 4D space (X,Y,Z,E)
where E is the brightness value from a intensity image Ir. When Ir is
a color image, Godin et al. [13] suggests using the hue channel as the
brightness measure.

To accelerate the matching process we use a k-d tree and an Ap-
proximate Nearest Neighbor algorithm [30]. The k-d tree is created
with the values {�xr, �yr, �zr, �Ir} of the referential image set. The same
k-d tree is used throughout all the iterations. The matching process
finds, for each vertices �υti of the current 3D vertex set Ψt, the closest
node of the k-d tree {xri, yri, zri, Iri} that minimizes the 4D distance
function:

‖�qri − �pti‖ + k‖Iri − Iti‖ (4.7)

where k is a constant to normalize the brightness value.

4.3.2 Point-to-Plane

The point-to-plane method [6] minimizes the distance between a point
�qri and the tangential plane of the corresponding point �pti:

32

DPlane(�qri, �pti) = �nti(�qri − (R�pti − �t)) (4.8)

By approximating the rotation R with an instantaneous rotation ω
and rearranging the equation 4.8 adequately, we obtain the following
linear system:

εICP = ‖AICP
�δ −�bICP ‖2 (4.9)

where each line is defined as follow

�Ai =
(

�nti × �qri

−�nti

)
(4.10)

bi = �nti · (�pti − �qri) (4.11)

Compared with the point-to-point method [3], the point-to-plane
converges faster but requires extra preprocessing to compute the nor-
mals (see [34] for more details).

4.4 NFC Error Function

The normal flow constraint is a gradient-based approach which can es-
timate sub-pixel movements accurately. During the matching stage, we
use an inverse calibration method to find corresponding points which
belong on the same projective ray. This provides the correspondence
needed to compute the temporal gradient term of the normal flow con-
straint.

4.4.1 Inverse Calibration

The inverse calibration approach [31] searches for corresponding points
of �pti by projecting the 3D point from the 3D coordinate system of Υt

to the referential depth image Zr coordinate system:[
�uri

1

]
= C

[
�pti

1

]
(4.12)

where C is a 3x4 projection matrix that relate 3D coordinate system
of �pti to the 2D image coordinate �uri = [uri vri]. This matrix is
based on the stereo camera or laser scanner parameters.

After projection, two match functions could be used: 1) interpolate
the 3D coordinates �qri of the corresponding point from the projection
value �uri, or 2) search around the projected point �uri in the Zr image to
find the closest point. We used the first method to be compatible with

33

the time gradient term of the normal flow constraint which assumes
that the corresponding points are on the same projective ray.

The 3D coordinates �qri = [xri yri zri] are interpolated from
the depth image Zr as follows:

zri = Zr(�uri) , xri = f uri

zri
, yri = f vri

zri
(4.13)

4.4.2 Normal Flow Constraint

Given 3D input data, the normal flow is the component of the optical
flow in the direction of the image gradient. As shown in [42], the normal
flow can be expressed as:

−∂Iri

∂t
= ∇Iri

[
∂�uri

∂�qri

]
�V (4.14)

where �V =
[

∂xri

∂t
∂yri

∂t
∂zri

∂t

]
is the velocity of the object, ∇Iri =[

∂Iri

∂uri

∂Iri

∂vri

]
is the image gradient, and ∂Iri

∂t is the time gradient.
∂Iri

∂uri
and ∂Iri

∂vri
are computed directly from the referential image Ir. The

time gradient is approximated by:

∂Iri

∂t
= Iti − Iri (4.15)

For a perspective projection where uri = f xri

zri
and vri = f yri

zri
, we

can find the Jacobian matrix:

∂�uri

∂�qri
=

[
f

zri
0 −f xri

z2
ri

0 f
zri

−f yri

z2
ri

]
(4.16)

Since the object is rigid, the velocity V can be expressed as:

�V =
[

I −q̂ri

]
�δ (4.17)

where I is a 3x3 identity matrix and q̂ri is the skew matrix of the vector
�qri. By rearranging the equation, we get a linear system similar to the
point-to-plane technique (section 4.3.2):

εNFC = ‖ANFC
�δ −�bNFC‖2 (4.18)

where each line is defined as follow

�Ai = ∇Iri

[
∂�uri

∂�qri

] [
I −q̂ri

]
(4.19)

bi = −∂Iri

∂t
(4.20)

34

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

1 3 5 7 9 11 13 15 17 19 21 23 25 27

Frame index

A
ve

ra
g

e
er

ro
r

(m
et

er
) NFC

ICP
Im

ag
e

1

Im
ag

e
31

Figure 4.3: Small rotation sequence with synthetic images.

4.4.3 Accuracy comparison for small movements

We compared the performance of NFC and ICP sequential tracking
approach on sequences with small movements. The top part of figure
4.3 shows the first and the last frame of a 31 synthetic frame sequence.
A rotation of 0.5 degrees occurred between each consecutive frames.
Since the sequence is synthetic, we could compare the result of each
tracker with the real transformation (0.5 degrees). The average error
was computed by warping the referential image by the found transfor-
mation and the real transformation and computing the average distance
between the two sets of 3D points. The average error for normal flow
constraint was 0.898mm, better then the ICP with 2.06mm . The graph
in figure 4.3 presents the average error at each frame.

4.5 Hybrid Error Function

At each iteration, the tracking algorithm minimize the hybrid error
function to find the optimal pose parameters δ∗. We can rewrite equa-

35

tion 4.4 as one linear system:

arg min
�δ

∥∥∥∥∥
[

λ(d)AICP

(1 − λ(d))ANFC

]
�δ −

[
λ(d)�bICP

(1 − λ(d))�bNFC

]∥∥∥∥∥
2

This linear system can be solved using a least-squares method or
any robust estimator. To reduce the influence of outliers, we use a
M-estimator to minimize the system [21].

As shown in figure 4.3, the NFC error function is more accurate for
the estimation small movement. Since the normal flow constraint ap-
proximate the pixel by a plane to compute the intensity gradients ∂Iri

∂uri

and ∂Iri

∂vri
of equation 4.14, its accuracy is directly related to the vari-

ance of the Gaussian dG used to compute to compute these gradients.
We want a function that increases the importance of NFC when the
average distance d between matched points decreases, and vice versa.
Figure 4.2 shows the sigmoid function that we use:

λ(d) =
1

1 + e−c(d−dG)
(4.21)

where c is a constant that determine the slope of the sigmoid function
and d is the average distance of matched points found during the clos-
est point matching process (see Section 4.3.1). We define the average
distance as follow:

d =
1
N

N∑
i=1

D(�qri, �pri) (4.22)

where N is the number of matched points and D is the euclidian dis-
tance between two points.

36

Chapter 5

Head Pose Experiments

We tested our hybrid tracker with 3 sequences obtained from a stereo
camera using the SRI Small Vision System [10]. Tracking was ini-
tiated automatically by using a face detector [43]. Without special
optimizations, the hybrid sequential tracker can update poses based on
observations of 2500 points per frame at 2Hz on a Pentium III 800MHz.

The following sections present tracking results for three sequences
recorded in different environments and with different persons. For each
sequence, we present intensity and depth image samples from the origi-
nal sequence. Since the goal is to compare the accuracy of each tracker,
no drift reduction algorithm was used during th tracking of all 3 se-
quences. Then we show the tracking result from 3 different algorithms:
ICP alone(see section 4.3, NFC alone (see section 4.4), and the hybrid
tracker (see section 4.5). For sequence 2, we compare the convergence
of the error factor for each tracking technique.

5.1 Test sequence 1

Figure 5.1 presents some key frames of a sequence where the user move
its head in front of the camera. The sequence contains 180 frames which
represents approximately 18 seconds since the grabbing rate was about
10 Hz. During the sequence, the user turned his head approximately
40 degrees down, up, left, and right. Then, the user translated his head
30cm, which was equivalent to 25 image pixels.

Figure 5.2 present the tracking results after one iteration. We ob-
serve that ICP alone performs well for translation, but has trouble with
rotation. We observe the opposite results for NFC alone which han-
dles rotation well, but translation poorly. The hybrid tracker is able to

37

track all the sequence reliably.

5.2 Test sequence 2

Figure 5.3 presents some key frames of a sequence containing 160 frames
which represents approximately 16 seconds. During the sequence, the
user turned his head left and right (approximately 25 degrees) and then
translated his head left and right rapidly, three times.

Figure 5.4 presents the tracking results for sequence 2 after 3 iter-
ations. As observed for sequence 2, the hybrid tracker perform better
then ICP or NFC alone. The figure 5.5 shows the average convergence
factor of each registration technique. The convergence factor is com-
puted as described in section 4.2. The three techniques converge in less
then 3 iterations. The hybrid error function converge to an average
distance error 20% smaller then ICP alone and 5% smaller then NFC
alone.

5.3 Test sequence 3

Figure 5.6 presents some key frames of a sequence containing 250 frames
(2̃5 seconds). During the sequence, the user lawn left, right before to
look up and finally lawn left again. Figures 5.7 and 5.8 show tracking
results for NFC, ICP and the hybrid tracker. We can observe that
the hybrid tracker perform better then ICP and NFC even after 250
frames. We could improve these results by adding some drift reduction
algorithm as described in section 2.4. Movies of the above results can
be found at http://www.ai.mit.edu/people/lmorency/ .

38

0

35

70

110

140

160

Figure 5.1: Intensity and depth images from sequence 1.

39

ICP Only NFC Only Hybrid

Figure 5.2: Face tracking results of sequence 1. Each row represents tracking
results at different frames: 0, 70, 140, and 180.

40

0

25

75

100

120

160

Figure 5.3: Intensity and depth images from sequence 2.

41

ICP Only NFC Only Hybrid

Figure 5.4: Face tracking results of sequence 2. Each row represents tracking
results at different frames: 0, 25, 100, and 160.

42

200

220

240

260

280

300

320

340

360

380

400

1 2 3 4 5 6 7 8 9 10

Iteration

C
o

n
ve

rg
en

ce
 f

ac
to

r

ICP Only
NFC Only
Hybrid

Figure 5.5: Comparison of average convergence factor for 80 frames (se-
quence 2).

43

0

45

75

90

105

135

150

170

195

250

Figure 5.6: Intensity and depth images from sequence 3.

44

NFC OnlyICP Only Hybrid

Figure 5.7: Face tracking results for sequence 3. Each row represents track-
ing results at different frames: 0, 45, 75, 90, and 105.

45

NFC OnlyICP Only Hybrid

Figure 5.8: Face tracking results for sequence 3. Each row represents track-
ing results at different frames: 135, 150, 170, 195, and 250.

46

Chapter 6

3D Model
Reconstruction

In this chapter, we present an efficient solution for 3D model acquisition
using the iterative hybrid tracker to register 3D views. Once frames
have been globally registered, they are non-rigidly deformed during
the reconstruction phase to produce a smooth triangular mesh. To
construct this mesh, frames are individually converted to meshes by
using the pixel adjacency information in the original range scan. Each
vertex q on a mesh is assigned the 3D location X, surface normal n
and intensity I of its corresponding point in the registered scan. The
uncertainty in these variables is computed by combining the effects of
measurement uncertainty and registration error and stored along the
other parameters:

q = {[Xq nq Iq]; Λq}
Reconstruction then involves a discretization of these vertices into

a linked voxel space (described in the following section), followed by a
merging of nearby voxels using the Cubic Ray Projection algorithm of
section 6.2. The linked voxel space is finally converted to a triangular
mesh and rendered.

6.1 Linked Voxel Space

To maintain an intermediate representation of the final 3D model, we
use a voxel space. However, for our purposes, the simple voxel model
has two main disadvantages: 1) the connectivity of meshes cannot

47

be represented, and 2) converting this volumetric model to a mesh is
difficult[18, 28]. To solve these problems, we use an augmented version
of the voxel space called the linked voxel space.

In a linked voxel space, voxels maintain information about their
connectivity beyond their immediate neighbors in the space. When
converting a mesh to a linked voxel space, edges between vertices of
the mesh are converted to links between voxels. In our representation,
each voxel v is represented by a vertex qv centered in the voxel and a
list of links Lv, initially empty.

v = { qv Lv }

After registration, each frame is converted to a mesh. The mesh is
transformed to the pose recovered during the global registration phase,
and accumulated into the linked voxel space.

The location of each vertex q in the mesh is quantized and mapped
to a voxel v. This voxel v is updated as follows:

• The covariance Λv of v is updated with

Λv
new =

([
Λold

v

]−1
+ Λ−1

q

)−1

• The mean surface normal nv at the voxel is updated with the
normal nq of q using:

nv = Λv
new

(
Λ−1

q nq +
[
Λv

old
]−1

nv

)

where Λq is the uncertainty in the node.

• The intensity value Iv is updated as follow

Iv = Λv
new

(
Λ−1

q Iq +
[
Λv

old
]−1

Iv

)

• Each edge i of the vertex q points to a neighboring node qi which
is mapped to a voxel vi. A link Lvi is added to v if the voxel vi

is not already linked with v.

The mean surface normal of the voxels are used to guide the Cubic
Ray Projection merging phase and ultimately become the normals of
the final mesh model.

48

6.2 Cubic Ray Projection

The next stage of reconstruction thins out the voxel space by projecting
voxels on one of the six faces of a cube that delimits the voxel space,
merging voxels which fall on the same projection ray. As voxels are
merged, the link information of the voxels is updated, resulting in a
voxel space which can be trivially turned into a mesh.

This process aims to identify voxels which represent the same point
on the object being modelled but which have been incorrectly registered
by the registration process. We employ the heuristic that if two voxels
are nearby, have the same normal, and lie along the same projection ray
to the camera, they represent the same point and should be merged.
The cube projection algorithm identifies such voxels by quantizing the
normal vectors and providing an efficient data structure to aid the
search. As a result, merging is an O(n) algorithm, where n is the
number of voxels.

Figure 6.1 depicts the merging process. The inverse of the covari-
ance of a voxel is represented by the size of the dot. The arrow shows
the direction of the normal. The highlighted line in the figure represent
a projection ray to the left face of the cube. Along this ray, only voxels
with a normal vector pointing in the direction of left face are selected.
Voxels which are nearby and which are mapped to the same location on
the surface of the cube are then merged. Merging two voxels involves
updating one of them and unlinking the other.

The merging algorithm updates the mean normal, the intensity
value and the adjacency information of the voxel with the lowest co-
variance v1. The voxel with the highest covariance v2 is unlinked from
the rest of the voxel space. The specifics of the update are similar to
the discretization step: 1

• Average normal n1, intensity I1 and covariance Λ1 are updated
as described in section 6.1.

• Each links L2
vi are added to v1 if the voxel vi is not already linked

with v1.

• All the links from vi to v2 are removed during the unlinking stage.
This step is possible since the voxel space is double linked.

Note that the update throws away only a small amount of informa-
tion: it discards the voxel with the largest covariance, but updates the
voxel with the lowest covariance with the former’s normal and link in-
formation. This voxel merging step is in some ways similar to that of[9]
where only one merging plane is used (instead of a cube) and all voxels

49

Figure 6.1: Result of voxels merging on one layer of the voxel cube. Occupied
voxels are represented by a dot (inverse of the covariance) and an arrow
(normal vector). The figure shows the projection of the voxels on two faces
of the cube.

along a ray contribute to a weighted average distance to the merging
plane (instead of a weighted normal).

Merging all voxels which satisfy the merging criterion results in a
representation where no two nearby voxels with similar normals project
to the same face of the encompassing cube. This thinned spatial repre-
sentation has associated adjacency information which make it readily
available as a triangular mesh.

6.3 Results

When integrated with a real-time stereo camera, our system makes it
possible to capture 3D models interactively and unobtrusively. Using
SRI’s Small Vision System, we captured about 10 seconds worth of
range and intensity frames of a person moving in front of the camera.

50

Figure 6.2 shows some typical frames from the sequence. The subject
rotated his head from left to right, making a 70 degree arc about the
vertical axis. Notice that the range information is missing for much of
the face and must be recovered by incorporating many views.

The registration step aligns all the 3D views together to create a
dense 3D model. Figure 6.3 shows the progression of the 3D model
during the registration step. We can observe that the face model is
completed as the person turn his head. The registration runs online
at the same time as the stereo processing, at about 7 fps on a 1.5Ghz
Pentium 4.

The Cubic Ray Projection phase merges all the views into a linked
voxel space. This step reduces the number of vertices from 200,000
to 18,000. Figure 6.4 shows the reconstructed 3D voxel space, along
with the accompanying texture map. A solid arc of about 180 degrees
was recovered from the 70 degrees of rotation. Global registration, 3D
reconstruction, and rendering together took less than 1 second.

51

Figure 6.2: Sample images from the sequence. Left: Intensity images. Right:
Depth images.

52

Figure 6.3: Progress of the model acquisition.

53

Figure 6.4: Final 3D mesh viewed from different directions.

54

Chapter 7

Conclusion

In the first part of this text, we presented a stereo head tracking system
based on ZBCCE algorithm which requires no manual initialization,
does not drift, and has been shown to be accurate at driving cursors and
selecting objects. Performance of this tracker was compared against
that of a head-mounted inertial sensor and a simple tracker based on
normalized cross-correlation. The latter tracker was prone to lighting
changes, and the former experienced drift over time. The stereo system
was insensitive to these conditions, and was found usable by naive users.

In the second part of this text, we presented a new hybrid 3D view
registration framework for tracking 3D pose from noisy 3D stereo im-
ages. This second tracking technique is an iterative hybrid tracker de-
signed to improve the robustness of our head pose tracker for fast move-
ment. Our approach integrated the fine tracking ability of a gradient-
based normal flow constraint with the robust coarse tracking ability of
the ICP algorithm. The stability of our tracker was shown on synthetic
sequences with known ground truth and on sequences grabbed from a
low-cost stereo camera. Our results indicated that the hybrid approach
outperformed either algorithm alone.

Finally, we have demonstrated an efficient technique for producing
textured 3D models from range and intensity data using our iterative
hybrid tracker. The system uses stereo cameras to obtain synchronized
range and intensity frames, and hence does not require subsequent tex-
ture alignment. Our algorithm allows the object to be moved around
freely to expose different views. The frames first undergo a registration
phase (iterative hybrid tracker) which computes relative pose estimates
between pairs of frames, and globally solves for the optimal set of poses
for all frames. Our registration algorithm uses range as well as intensity

55

data in an image gradient-based approach, compensating for the poor
quality of range from correlation-based stereo. The recovered poses are
used to warp all frames to a canonical position, and a 3D model re-
construction step merges the registered frames together to build a 3D
mesh of the object using a new approach called Cubic Ray Projection
and a new data structure called Linked Voxel. We have demonstrated
our system by reconstructing a model of a human head as the subject
underwent a 70 degree rotation.

We believe that our iterative hybrid tracker when applied to stereo-
based head pose tracking can be an important module in designing
perceptual interfaces for intelligent environments, cockpit applications,
and for disabled users who are not able to use traditional interfaces.
Applied to 3D model acquisition, our iterative hybrid tracker could be
used for 3D video conference by creating online 3D meshes of human
faces.

56

Bibliography

[1] J.L. Barron, D.J. Fllet, and S.S. Beauchemin. Performance of
optical flow techniques. IJCV, 12(1):43–77, 1994.

[2] S. Basu, I.A. Essa, and A.P. Pentland. Motion regularization for
model-based head tracking. In ICPR96, page C8A.3, 1996.

[3] P. J. Besl and N. D. McKay. A method for registration of 3-d
shapes. IEEE Trans. Patt. Anal. Machine Intell., 14(2):239–256,
February 1992.

[4] M. Black and Y. Yacoob. Tracking and recognizing rigid and non-
rigid facial motions using local parametric models of image motion.
In ICCV, pages 374–381, 1995.

[5] V. Blanz and T. Vetter. A morphable model for the synthesis of
3d faces. In SIGGRAPH99, pages 187–194, 1999.

[6] Y. Chen and G. Medioni. Object modelling by registration of
multiple range images. In Proceedings of the IEEE Internation
Conference on Robotics and Authomation, pages 2724–2728, 1991.

[7] T.F. Cootes, G.J. Edwards, and C.J. Taylor. Active appearance
models. PAMI, 23(6):681–684, June 2001.

[8] B. Curless. From range scans to 3d models. Computer Graphics,
33(4), november 1999.

[9] B. Curless and M. Levoy. A volumetric method for building com-
plex models from range images. Computer Graphics, 30(Annual
Conference Series):303–312, 1996.

[10] Videre Design. MEGA-D Megapixel Digital Stereo Head.
http://www.ai.sri.com/k̃onolige/svs/, 2000.

57

[11] J. Feldmar and N. Ayache. affine and locally affine registration of
free-form surfaces. IJCV, 18(2):99–119, 1996.

[12] Eric M. Foxlin. Inertial orientation tracker apparatus having au-
tomatic drift compensation for tracking human head and other
similarly sized body. US Patent 5,645,077, US Patent and Trade-
mark Office, Jun 1994.

[13] G. Godin, M. Rioux, and R. Baribeau. Three-dimensional regis-
tration using range and intensity information. In Proceedings of
SPIE Videometric III, volume 2350, pages 279–290, 1994.

[14] R. C. Gonzalez and R. E. Woods. Digital Image Processing.
Addison-Wesley, Reading, Massachusetts, 1992.

[15] G.Turk and M. Levoy. Zippered polygon meshes form range im-
ages. In Proceedings of SIGGRAPH vol. 2, pages 311–318, 1994.

[16] G.D. Hager and P.N. Belhumeur. Efficient region tracking
with parametric models of geometry and illumination. PAMI,
20(10):1025–1039, October 1998.

[17] M. Harville, A. Rahimi, T. Darrell, G. Gordon, and J. Woodfill.
3d pose tracking with linear depth and brightness constraints. In
Proceedings of ICCV 99, pages 206–213, Corfu, Greece, 1999.

[18] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuet-
zle. Surface reconstruction from unorganized points. Proceedings
of SIGGRAPH, 26(2):71–78, July 1992.

[19] B.K.P. Horn and B.G. Schunck. Determining optical flow. AI,
17:185–203, 1981.

[20] B.K.P. Horn and E.J. Weldon, Jr. Direct methods for recovering
motion. IJCV, 2(1):51–76, June 1988.

[21] P.J. Huber. Robust statistics. Addison-Wesley, New York, 1981.

[22] InterSense Inc. Intertrax 2. http://www.intersense.com.

[23] Mouse Vision Inc. Visual Mouse. http://www.mousevision.com.

[24] M. Irani. Multi-frame optical flow estimation using subspace con-
straints. In In ICCV, September 1999.

[25] R.J.K Jacob. Eye tracking in advanced interface design, pages
258–288. Oxford University Press, 1995.

58

[26] R. Kjeldsen. Head gestures for computer control. In Proc. Second
International Workshop on Recognition, Analysis and Tracking of
Faces and Gestures in Real-time Systems, pages 62–67, 2001.

[27] M. La Cascia, S. Sclaroff, and V. Athitsos. Fast, reliable head
tracking under varying illumination: An approach based on reg-
istration of textured-mapped 3d models. PAMI, 22(4):322–336,
April 2000.

[28] W. Lorensen and H. Cline. Marching cubes: A high resolution
3d surface construction algorithm. Proceedings of SIGGRAPH,
21(4):163–169, July 1987.

[29] F. Lu and E. Milios. Globally Consistent Range Scan Alignment
for Environment Mapping. Autonomous Robots, 4:333–349, 1997.

[30] D. M. Mount and S. Arya. ANN: Library for Approximate Nearest
Neighbor Searching. http://www.cs.umd.edu, 1998.

[31] P.J. Neugebauer. Geometrical cloning of 3d objects via simultane-
ous rgistration of multiple range images. In Proc. Int. Conf. Shape
Modeling and Applications, pages 130–139, 1997.

[32] K. Pulli. Multiview registration for large data sets. In Proc. 3DIM,
pages 160–168, 1999.

[33] A. Rahimi, L.P. Morency, and T. Darrell. Reducing drift in para-
metric motion tracking. In In Proceedings of Internation Confer-
ence of Computer Vision, volume 1, pages 315–322, 2001.

[34] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algo-
rithm. In Proc. 3DIM, pages 145–152, 2001.

[35] Harpreet S. Sawhney, Steve Hsu, and Rakesh Kumar. Robust
video mosaicing through topology inference and local to global
alignment. In ECCV, pages 103–119, 1998.

[36] A. Schodl, A. Haro, and I. Essa. Head tracking using a textured
polygonal model. In PUI98, 1998.

[37] C. Schtz, T. Jost, and H. Hgli. Multi-featured matching algorithm
for free-form 3d surface registration. In ICPR, pages 982–984,
1998.

[38] Simon. Fast and Accurate Shape-Based Registration. Ph.D. Dis-
sertation, Carnegie Mellon University, 1996.

59

[39] G. Stein and A. Shashua. Direct estimation of motion and ex-
tended scene structure from moving stereo rig. In Proc. of CVPR,
June 1998.

[40] A. Stoddart and A. Hilton. Registration of multiple point sets. In
IJCV, pages B40–44, 1996.

[41] K. Toyama. Look,ma - no hands!hands-free cursor control with
real-time 3d face tracking. In PUI98, 1998.

[42] Sundar Vedula, Simon Baker, Peter Rander, Robert Collins, and
Takeo Kanade. Three-dimensional scene flow. In ICCV (2), pages
722–729, 1999.

[43] Paul Viola and Michael Jones. Rapid object detection using a
boosted cascade of simple features. In CVPR, 2001.

[44] L. Wiskott, J.M. Fellous, N. Kruger, and C. von der Mals-
burg. Face recognition by elastic bunch graph matching. PAMI,
19(7):775–779, July 1997.

[45] C.R. Wren, A. Azarbayejani, T.J. Darrell, and A.P. Pentland.
Pfinder: Real-time tracking of the human body. PAMI, 19(7):780–
785, July 1997.

[46] S. Zhai, C. Morimoto, and S. Ihde. Manual and gaze input cas-
caded (magic) pointing. In CHI99, pages 246–253, 1999.

60

