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Abstract

For any sequence of positive integers j1 < j2 < · · · < jn, the k-tuples (ji, ji+1, ..., ji+k−1),
i = 1, 2, . . . , n−k+1, are said to form a monotone path of length n. Given any integers n ≥ k ≥ 2
and q ≥ 2, what is the smallest integer N with the property that no matter how we color all
k-element subsets of [N ] = {1, 2, . . . , N} with q colors, we can always find a monochromatic
monotone path of length n? Denoting this minimum by Nk(q, n), it follows from the seminal
1935 paper of Erdős and Szekeres that N2(q, n) = (n − 1)q + 1 and N3(2, n) =

(

2n−4
n−2

)

+ 1.
Determining the other values of these functions appears to be a difficult task. Here we show
that

2(n/q)q−1

≤ N3(q, n) ≤ 2nq−1 log n,

for q ≥ 2 and n ≥ q + 2. Using a “stepping-up” approach that goes back to Erdős and Hajnal,
we prove analogous bounds on Nk(q, n) for larger values of k, which are towers of height k − 1
in nq−1. As a geometric application, we prove the following extension of the Happy Ending
Theorem. Every family of at least M(n) = 2n2 log n plane convex bodies in general position, any
pair of which share at most two boundary points, has n members in convex position, that is, it
has n members such that each of them contributes a point to the boundary of the convex hull
of their union.

1 Introduction

The classic 1935 paper of Erdős and Szekeres [16] published in Compositio Mathematica was a

starting point of a very rich discipline within combinatorics: Ramsey theory (see, e.g., [20]). Erdős

liked to call the main result of this paper the “Happy Ending Theorem,” as its discovery was

triggered by a geometric observation of Esther Klein, and the authors’ collaboration with her

eventually led to the marriage of Klein and Szekeres.
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At the early stages of its development, Ramsey theory focused on the emergence of large

monochromatic complete subgraphs in colored graphs and hypergraphs. In the 1960s and 70s, many

initial results of Ramsey theory were revisited in a more general setting. For instance, Gerencsér

and Gyárfás [19] proved that for any 2-coloring of the edges of a complete graph with roughly 3n/2

vertices, there is a monochromatic path of length n. Recently, Figaj and ÃLuczak [17] and, in a more

precise form, Gyárfás et al. [21] have settled an old conjecture of Faudree and Schelp, according to

which any 3-colored complete graph with roughly 2n vertices has a monochromatic path of length

n. It follows from a theorem of Erdős and Gallai [15] that for every positive integer q there exists

a constant c(q) ≤ q such that no matter how we color the edges of the complete graph Kc(q)n with

q colors, we can always find a monochromatic path of length n. The smallest value of the constant

c(q) is not known.

The problem becomes simpler if we consider ordered complete graphs and we want to find a

long increasing path such that all of its edges are of the same color. It follows from the results of

Erdős and Szekeres [16], and also from Dilworth’s theorem on partially ordered sets [13], that for

any 2-coloring of the edges of a complete graph with more than (n − 1)2 vertices, one can find a

monochromatic monotone path with n vertices. An easy construction shows that this statement

does not remain true for graphs with (n − 1)2 vertices. The result and its proof readily generalize

to colorings with q ≥ 2 colors: in this case, we have to replace (n − 1)2 with (n − 1)q.

The corresponding problems for hypergraphs are quite hard and their solution usually utilizes

some variant or extension of the celebrated hypergraph regularity lemma. The only asymptotically

sharp result of this kind was proved by Haxell, ÃLuczak et al. [22]. Let H = (V (H), E(H)) be a

k-uniform hypergraph. A tight path or, shortly, a path of length n in H is comprised of a set of n

distinct vertices v1, v2, . . . , vn ∈ V (H) and the set of n − k + 1 hyperedges of the form

{vi, vi+1, ..., vi+k−1} ∈ E(H),

where i = 1, 2, . . . , n − k + 1. It was shown in [22] that no matter how we 2-color all triples of

a complete 3-uniform hypergraph on 4n/3 vertices, one of the color classes will contain a path of

length roughly n. This result is best possible. It was generalized by Nagle, Olsen et al. [26], Cooley,

Fountoulakis et al. [12], and Conlon et al. [9]. These results imply that every q-coloring of the

hyperedges of a complete k-uniform hypergraph on Cn vertices contains a monochromatic copy of

any n-vertex hypergraph with maximum degree ∆, where C = C(k, q,∆) is a suitable constant

depending only on k, q, and ∆.

In the present paper, we consider the analogous problem for ordered hypergraphs. Let Kk
N

denote the complete k-uniform hypergraph, consisting of all k-element subsets (k-tuples) of the

vertex set [N ] = {1, 2, ..., N}. For any n positive integers, j1 < j2 < · · · < jn, we say that the

hyperedges

{ji, ji+1, ..., ji+k−1},

i = 1, 2, . . . , n − k + 1, form a monotone (tight) path of length n. We will present several results

on finding monochromatic monotone paths in edge-colored ordered hypergraphs. As a geometric

application, in Section 7 we will show that every family of at least 2n2 log n plane convex bodies in

general position, any pair of which share at most two boundary points, has n members in convex

position. This substantially improves the previous double-exponential bound of Hubard et al. [23]
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for this problem. Here, and throughout the paper, all logarithms unless otherwise stated are in

base 2.

1.1 Ramsey numbers for monotone paths

Let Nk(q, n) denote the smallest integer N such that for every q-coloring of the hyperedges (k-

tuples) of Kk
N , there exists a monotone path of length n such that all of its hyperedges are of the

same color. Using this notation for graphs (k = 2), the corollary of the Erdős-Szekeres theorem or

the Dilworth theorem mentioned above can be rephrased as

N2(q, n) = (n − 1)q + 1. (1)

For 3-uniform hypergraphs, a straightforward generalization of the cup-cap argument of Erdős

and Szekeres [16] gives

Theorem 1.1. Let N = N3(2, n) be the smallest integer such that for every 2-coloring of all triples

in [N ], there exists a monochromatic monotone path of length n. Then we have

N3(2, n) =

(

2n − 4

n − 2

)

+ 1.

For a larger (but fixed) number of colors, we prove the following theorem which provides lower

and upper bounds that are tight apart from a logarithmic factor in the exponent.

Theorem 1.2. For any integers q ≥ 2 and n ≥ q + 2, we have

2(n/q)q−1
≤ N3(q, n) ≤ 2nq−1 log n.

Define the tower function ti(x, n) recursively as follows. Let t1(x, n) = x and ti+1(x, n) =

nti(x,n), so ti(x, n) is a tower of i − 1 n’s with an x on top. We let ti(x) = ti(x, 2). Using a

“stepping-up” approach, developed by Erdős and Hajnal (see [20]) and strengthened in [9], we

show the following extension of Theorem 1.2 to k-uniform hypergraphs, for any k ≥ 3.

Theorem 1.3. For every k ≥ 3 and q, there are positive constants c, c′ depending only on k and q

such that, for any n ≥ 4k, we have

tk−1(cn
q−1) ≤ Nk(q, n) ≤ tk−1(c

′nq−1 log n).

In Section 2, we prove the recursive upper bound Nk(q, n) ≤ Nk−1((n − k + 1)q−1, n). This

upper bound, together with equation (1), implies that Nk(q, n) ≤ tk(q− 1, n) for k ≥ 3. The upper

bounds in Theorems 1.2 and 1.3 follow from this inequality.

In Sections 3 and 4, we establish the lower bound in Theorem 1.2. We also prove a general

statement there (Theorem 4.3), providing a lower bound on Nk(q, n), which is exponential in

Nk−1(q, n), for every k ≥ 4. Putting these results together, the lower bound in Theorem 1.3 readily

follows.

The case k = 3 is crucial to understanding the growth of Nk(q, n). Indeed, the stepping-up lower

bound mentioned above (see Theorem 4.3) together with the recursive upper bound in Theorem

1.4 and inequality 2, described in the next subsection, show that closing the gap between the upper

and lower bounds on Nk(q, n) in the special case k = 3 would also close the gap for all larger values

of k.
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1.2 Online and size Ramsey numbers

Consider the following game played by two players, builder and painter. For t ≥ 1, at the beginning

of stage t, a new vertex vt is added (the vertices vi for 1 ≤ i < t already are present), and for

each (k − 1)-tuple of vertices (vi1 , . . . , vik−1
) with 1 ≤ i1 < . . . < ik−1 < t, builder decides (in any

order) whether to draw the edge (vi1 , . . . , vik−1
, vt). If builder draws the edge, then painter has to

immediately color it in one of q colors 1, . . . , q. The (vertex) online Ramsey number Vk(q, n) is the

minimum number of edges builder has to draw to guarantee a monochromatic monotone path of

length n.

An ordered k-uniform hypergraph G is said to be (q, n)-path Ramsey if for every q-edge-coloring

of G one can find a monochromatic monotone path of length n. The size Ramsey number Sk(q, n) is

the minimum number of edges of an ordered k-uniform hypergraph G which is (q, n)-path Ramsey.

It follows from the definitions that

Nk(q, n − k + 1) ≤ Vk(q, n) ≤ Sk(q, n) ≤

(

Nk(q, n)

k

)

. (2)

Indeed, the first inequality comes from the following painter strategy. Let wi be the ith vertex

that builder adds in which there is an edge whose largest vertex is wi (there may be vertices not

given labels). That is, wi = vj(i) where j(i) is the ith stage for which at least one edge is added.

Painter colors each edge (wi1 , wi2 , . . . , wik) with i1 < . . . < ik < Nk(q, n − k + 1) the same color

as the color of (i1, . . . , ik) in a q-edge-coloring of the ordered complete k-uniform hypergraph on

Nk(q, n− k + 1)− 1 vertices with no monochromatic path of length n− k + 1. All other edges, i.e.,

those containing a vertex which is not the largest vertex in some edge, can be colored arbitrarily.

Note that every monotone path of length n contains a path of length n − k + 1 such that each

vertex is the largest vertex in an edge of the ordered hypergraph. Therefore, this coloring has

no monochromatic monotone path of length n, and painter guarantees that there are at least

Nk(q, n − k + 1) edges when the first monochromatic monotone path of length n appears. On the

other hand, if builder selects all edges of a (q, n)-path Ramsey ordered k-uniform hypergraph, she

will definitely win; which proves the second inequality. The third inequality is trivial, taking into

account that the ordered complete k-uniform hypergraph Kk
N with N = Nk(q, n) is (q, n)-path

Ramsey.

Conlon, Fox, and Sudakov [10] used online Ramsey numbers to give an upper bound for the

Ramsey number of a complete k-uniform hypergraph with n vertices. Here we apply this technique

to establish an upper bound for the Ramsey number of a monotone path of length n. More precisely,

we show

Theorem 1.4. For every k ≥ 3 and for every q ≥ 1, n ≥ k, we have

Nk(q, n) ≤ qVk−1(q,n+k−2) + k − 2.

In the special case k = 3, this bound is worse than the upper bound in Theorem 1.2. However,

Theorem 1.4 is already useful for k ≥ 4. Indeed, any improvement on the upper bound in Theorem

1.3 for k = 3, together with the trivial upper bound on Vk−1(q, n + k − 2) in (2), will lead to

analogous improvements for all larger k. For example, if, for fixed q, we would know that N3(q, n) =

2O(nq−1), then using Theorem 1.4 we would also know that N4(q, n) = 22O(nq−1)
. Note that the
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recursive bound in Theorem 2.1 does not give such an improvement even if we knew that N3(q, n)

is exponential in nq−1. Similarly, the stepping-up lower bound in Theorem 4.3 shows that any

improvement on the lower bound in Theorem 1.3 for k = 3 will lead to analogous improvements

for all larger k.

In addition to being useful for bounding classical Ramsey numbers as discussed above, online

and size Ramsey numbers are now well-studied topics in their own right. The size Ramsey number

re(H) of a graph H is the minimum number of edges of a graph G in which every 2-edge-coloring

of G contains a monochromatic copy of H. The study of these numbers was initiated by Erdős et

al. [14]. A fundamental problem of Erdős in this area is to determine the growth of the size Ramsey

number of paths. Beck [2] solved this problem, proving that these numbers grow linearly. That

is, re(Pn) ≤ cn, where c is an absolute constant. In contrast, Rödl and Szemerédi [31] disproved

a conjecture of Beck by showing that there are graphs of maximum degree 3 whose size Ramsey

number grows superlinear in the number of vertices. In the other direction, Kohayakawa et al. [24]

recently showed that graphs on n vertices with fixed maximum degree ∆ have size Ramsey number

at most O(n2−1/∆ log1/∆ n).

Another online Ramsey game which is quite close to ours was introduced independently by

Beck [3] and Kurek and Ruciński [25]. In this game, there are two players, Builder and Painter,

who move on the originally empty graph with an unbounded number of vertices. At each step,

Builder draws a new edge and Painter has to color it either red or blue immediately. The edge

online Ramsey number r̄(H) is the minimum number of edges that builder has to draw in order

to force painter to create a monochromatic H. As Builder can simply draw the edges of a given

graph, we have the inequality r̄(H) ≤ re(H). A basic conjecture in this area due to Rödl is to show

that limn→∞
r̄(Kn)
re(Kn) = 0. Conlon [8] made substantial progress on this conjecture, showing that

r̄(Kn) ≤ cnre(Kn) holds infinitely often, where c < 1 is an absolute constant. Randomized variants

of the edge online Ramsey number were studied in [1], [4], [18].

Note that the problem of estimating Vk(q, n) and Sk(q, n) is most interesting in the case of

graphs (k = 2). Indeed, for larger k, Nk(q, n) grows roughly (k−2)-fold exponential in nq−1, so the

lower and upper bounds on these numbers are roughly determined by Nk(q, n). We will therefore

focus our attention on the interesting case k = 2.

In view of (2), one may think that the functions Vk(q, n) and Sk(q, n) cannot differ too much.

Rather surprisingly, already for graphs (k = 2) this is not the case. In Section 5, we show that the

size Ramsey number satisfies S2(q, n) ≥ cqn
2q−1. On the other hand, also in that section we prove

Theorem 1.5. We have

V2(2, n) = (1 + o(1))n2 log2 n,

and for every fixed q ≥ 2, there are constants cq and c′q such that

cqn
q log n ≤ V2(q, n) ≤ c′qn

q log n.

Moreover, the proof of Theorem 1.5 shows that builder has a winning strategy which uses

N2(q, n) vertices and each vertex vt belongs to at most c′q log n edges (vj , vt) with j < t. This

theorem shows that, by using the information on the initial portion of the coloring, builder can

substantially reduce the number of edges that guarantee a monochromatic monotone path.
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1.3 Noncrossing convex bodies in convex position

In the last section, we apply Theorem 1.2 and Lemma 6.1 to a problem for families of convex bodies.

To formulate our question, we need some definitions. A family C of convex bodies (compact convex

sets with nonempty interior) in the plane is said to be in convex position if none of its members is

contained in the convex hull of the union of the others. We say that C is in general position if

1. every three members of C are in convex position;

2. no two members C, C ′ ∈ C have a common tangent that meets C ∩ C ′; and

3. no three members of C share a common tangent.

Bisztriczky and Fejes-Tóth [5] generalized the Happy Ending theorem of Erdős and Szekeres [16],

[6] as follows. They proved that for every n, there exists a function D(n) such that any family of

D(n) pairwise disjoint convex bodies in general position in the plane contains n members in convex

position. It was proved in [27] that D(n) ≤
(

(

2n−4
n−2

)

+ 1
)2

.

In [28], the Bisztriczky-Fejes Tóth theorem has been extended to families of noncrossing convex

bodies, that is, to convex bodies, no pair of which share more than two boundary points. It was

proved that there exists a function N = M(n) such that from every family of N noncrossing convex

bodies in general position in the plane one can select n members in convex position. More recently,

Hubard et al. [23] showed that the function M(n) grows at most double exponentially in n. We

use Theorem 1.2 to obtain a much better bound.

Theorem 1.6. Let N = M(n) denote the smallest integer such that every family of N noncrossing

convex bodies in general position in the plane has n members in convex position. Then we have

M(n) ≤ N3(3, n) ≤ 2n2 log n.

Note that no analogue of the last theorem is true if we drop the assumption that the bodies

are noncrossing. One can construct a family of arbitrarily many pairwise crossing rectangles that

which are in general position, but no four of them are in convex position (see [28]).

Theorem 1.6 can be established, as follows. First, we choose a coordinate system, in which the

left endpoint (i.e., the leftmost point) of every member of the family is unique, and the x-coordinates

of the left endpoints are different. Let C1, C2, . . . , CN denote the members of our family, listed in

the increasing order of the x-coordinates of their left endpoints. Suppose that N = N3(3, n).

In the last section, we define a 3-coloring of all ordered triples (Ci, Cj , Ck) with i < j < k. We

will show that this coloring has the property that if a sequence of sets Ci1 , Ci2 , . . . (i1 < i2 < · · · )

induces a monochromatic monotone path, then they are in convex position.

According to Theorem 1.2, N ≤ nn2
. Therefore, our colored triple system contains a monochro-

matic monotone path of length n. In other words, there exists a sequence i1 < i2 < · · · < in such

that all ordered triples induced by the sets Cij are of the same color. It follows from the special

property of our coloring mentioned above that the sets Ci1 , . . . , Cin are in convex position. This

will complete the proof of Theorem 1.6.

Organization: The rest of the paper is organized as follows. In the next section we prove a

recursive upper bound on Nk(q, n). In Section 3, we prove results on monochromatic walks in
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digraphs and the minimum chromatic number of a (q, n)-path Ramsey graph which will be used

in the subsequent two sections. In Section 4, we prove lower bounds on Nk(q, n). In Section 5, we

prove bounds on size and online Ramsey numbers of paths, as well as an alternative upper bound

on Nk(q, n) in terms of online Ramsey numbers. In Section 6, we prove a lemma relating monochro-

matic cliques in “transitive” colorings to monochromatic monotone paths in general colorings. We

use this lemma in Section 7 in the proof of Theorem 1.6. We finish with some concluding remarks

and open problems in Section 8.

2 An upper bound on Nk(q, n)

Given any two positive integers i ≤ j, let [i, j] denote the set of positive integer h with i ≤ h ≤ j,

and [i] = [1, i]. We begin by proving a recursive upper bound on Nk(q, n).

Theorem 2.1. For any integers n ≥ k ≥ 2 and q ≥ 2, we have

Nk(q, n) ≤ Nk−1((n − k + 1)q−1, n).

Proof. Suppose for contradiction that there is a q-coloring

χ :

(

[N ]

k

)

→ [q]

of the edges of the complete k-uniform ordered hypergraph Kk
N on N = Nk−1((n − k + 1)q−1, n)

vertices with no monochromatic path of length n. Define the auxiliary coloring

φ :

(

[N ]

k − 1

)

→ [k − 1, n − 1]q−1,

as follows. For any v1 < . . . < vk−1, we let φ(v1, . . . , vk−1) = (n1, . . . , nq−1), where ni is the length

of the longest monochromatic path in color i ending with v1, . . . , vk−1. By convention, any k − 1

vertices v1, . . . , vk−1 form a monochromatic monotone path of length k− 1 with respect to coloring

χ. Thus, we have k − 1 ≤ ni ≤ n − 1, for every i (1 ≤ i ≤ q − 1).

By our assumption, N = Nk−1((n−k+1)q−1, n), so that in coloring φ, there is a monochromatic

monotone path of length n. Let u1 < . . . < un denote the vertices of this path. To complete the

proof of the theorem, it is sufficient to show that these vertices form a monochromatic monotone

path in color q, with respect to the coloring χ. Suppose that this is not the case. Then, for

some 1 ≤ j ≤ n − k + 1 and 1 ≤ i ≤ q − 1, we have χ(uj , uj+1, . . . , uj+k−1) = i. Since the

vertices u1, . . . , un form a monochromatic monotone path with respect to the coloring φ, it follows

that in coloring χ, the length of the longest monochromatic monotone path of color i ending with

uj , uj+1, . . . , uj+k−2 is the same as the length of the longest monochromatic monotone path of color

i ending with uj+1, uj+2, . . . , uj+k−1. However, any longest monochromatic monotone path of color

i ending with uj , uj+1, . . . , uj+k−2 can be extended to a longer monochromatic monotone path of

color i, by adding the vertex uj+k−1. This contradiction completes the proof of the theorem.

Now we are in a position to prove the upper bound in Theorem 1.2.
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Proof of the upper bounds in Theorems 1.2 and 1.3. We prove the stronger inequality

Nk(q, n) ≤ tk(q − 1, n),

for every k ≥ 3. The proof is by induction on k. By (1), we have N2(q, n) = (n−1)q +1. According

to Theorem 2.1,

N3(q, n) ≤ N2((n − 2)q−1, n) = (n − 1)(n−2)q−1
+ 1 < nnq−1

= t3(q − 1, n).

Now suppose that the desired inequality holds for k. Then it also holds for k + 1, because, again

by Theorem 2.1, we have

Nk+1(q, n) ≤ Nk((n − k)q−1, n) ≤ tk((n − k)q−1, n) ≤ tk(n
q−1, n) = tk+1(q − 1, n).

3 Monochromatic walks in digraphs

Let DN denote the complete digraph on N vertices, that is, the directed graph in which each

pair of distinct vertices is connected by two edges with opposite orientations. A walk of length

n in a digraph is a sequence of n vertices v1, . . . , vn with possible repetitions such that for every

i (1 ≤ i < n), the directed edge −−−→vivi+1 belongs to the digraph. If v1 = vn, then the walk is called

closed. Note that closed walks can be used to construct walks which are arbitrarily long. A digraph

with no closed walk is acyclic.

Let f(q, n) be the smallest number N such that for every q-coloring of the edges of DN , there

is a monochromatic walk of length n. First, we show that for a fixed q, the order of magnitude

of f(q, n) is nq−1. In the next section, this fact is used to establish the lower bound on N3(q, n),

stated in Theorem 1.2.

Theorem 3.1. For any integers n, q ≥ 2, we have

(n/q)q−1 ≤ f(q, n) ≤ N2(q − 1, n) = (n − 1)q−1 + 1.

Proof. We first establish the upper bound. Consider a q-coloring of the edges of DN with N =

N2(q − 1, n). We have to show that there is a monochromatic walk with n vertices. Suppose

that the set of edges of color q does not determine a walk of length n. Then these edges form

an acyclic digraph. Hence, there is an ordering of the vertices of DN so that the edges of color

q go backwards. Thus, removing the backwards edges, we have an ordered complete graph on

N = N2(q − 1, n) vertices, whose edges are colored with q − 1 colors. In one of the color classes,

we can find a monotone path with n vertices, which is a monochromatic directed path in DN .

The lower bound follows from Lemma 3.2 below. Indeed, letting m = 1 + ⌊n−2
q−1 ⌋, it is easy to

check that 2 + (q − 1)(m − 1) ≤ n and m ≥ n/q, so

f(q, n) ≥ f(q, 2 + (q − 1)(m − 1)) ≥ mq−1 ≥ (n/q)q−1.
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Lemma 3.2. For any integers n, q ≥ 2, we have f(q, 2 + (q − 1)(n − 1)) > nq−1.

Proof. Define the coloring φ of the edges of the complete digraph on [n]q−1, as follows. For any

pair of distinct vertices, a = (a1, . . . , aq−1), b = (b1, . . . , bq−1), define the color of the directed edge

(a, b) as the smallest coordinate i for which ai < bi. If there is no such coordinate, that is, if ai ≥ bi

for all i (1 ≤ i ≤ q−1)), then color the directed edge (a, b) with color q. For each color i ≤ q−1, the

length of a longest monochromatic walk of color i is n, because traversing any edge of color i, the

ith coordinate must increase. On the other hand, along any walk in color class q, the coordinates

are never allowed to increase, and in each step at least one of them must strictly decrease, so that

the sum of the coordinates strictly decreases. The sum of the coordinates of a point in [n]q−1 is at

least q − 1 and is at most (q − 1)n. Therefore, the length of such a monochromatic walk does not

exceed (q − 1)n − (q − 1) + 1 = 1 + (q − 1)(n − 1).

Recall from Subsection 1.2 that an ordered graph G is called (q, n)-path Ramsey if for every

q-edge-coloring of G there exists a monochromatic monotone path of length n. Let χ(q, n) denote

the minimum chromatic number of an ordered graph G which is (q, n)-path Ramsey.

We close this section by showing that the functions χ(q, n) and f(q, n) are actually identical.

Therefore, Theorem 3.1 implies that, for a fixed q, χ(q, n) also grows on the order of nq−1.

The (classical) Ramsey number R(n; q) is the minimum N such that every q-edge-coloring of

the complete graph on N vertices contains a monochromatic clique on n vertices.

Theorem 3.3. For any integers q, n ≥ 2, we have

χ(q, n) = f(q, n).

Proof. We first show that χ(q, n) ≥ f(q, n). Consider a q-edge-coloring φ of the edges of the

complete digraph with vertex set [f(q, n)− 1] without a monochromatic walk of length n. Assume

for contradiction that there exists an ordered graph G with χ(G) < f(q, n), which is (q, n)-path

Ramsey, and consider a partition V (G) = V1 ∪ . . .∪Vt into independent sets with t = χ(G). Define

a q-coloring ρ of the edges of G, as follows. If v, w are adjacent with v < w and v ∈ Vi and w ∈ Vj ,

let ρ(v, w) = φ(i, j). If the vertices v1 < . . . < vn form a monochromatic monotone path with

respect to the edge-coloring ρ of G, then denoting by ik the integer for which vk ∈ Vik , we have that

i1, . . . , in form a monochromatic walk with respect to the edge-coloring φ. This is a contradiction,

showing that our assumption χ(G) < f(q, n) was wrong.

To show that χ(q, n) ≤ f(q, n), we define an ordered graph H, which is f(q, n)-colorable and

(q, n)-path Ramsey. Let V (H) = [Rt], where t = f(q, n) and R = R(n; Q) is the Q-color Ramsey

number for the complete graph on n vertices with Q = qt2−t. Connect two vertices i, j (1 ≤ i <

j ≤ Rt) by an edge in H if j − i is not a multiple of t. The partition of V (H) modulo t defines

a proper t-coloring of H. Since the first t vertices of H form a clique, we have χ(H) = t. It

remains to prove that H is (q, n)-path Ramsey. Consider an edge-coloring ψ of H with q colors.

Define an auxiliary Q-coloring τ of the complete graph on [R] vertices, where the color of the

edge between u, v (1 ≤ u < v ≤ R) is given as a t × t matrix A = (aij) with 0’s in the diagonal

and aij = ψ((u − 1)t + i, (v − 1)t + j) for every i 6= j. Obviously, the number of colors used in

this coloring is at most the number of possible matrices A, which is equal to qt2−t = Q. By the

definition of the Ramsey number R = R(n; Q), [R] contains a monochromatic clique on n vertices,
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with respect to the coloring τ . Denote the vertices of such a clique by u1 < u2 < . . . < un. Define

a q-edge-coloring ξ of the complete digraph on [t], where ξ(i, j) = ψ((u1 − 1)t + i, (u2 − 1)t + j).

Since t = f(q, n), there is a monochromatic walk i1, . . . , in of length n with respect to the coloring

ξ. Then the vertices (u1−1)t+ i1, (u2−1)t+ i2, . . . , (un−1)t+ in form a monochromatic monotone

path in the q-edge-coloring ψ of H, which completes the proof.

4 Lower bounds on Nk(q, n)

In this section we adapt the stepping-up approach of Erdős and Hajnal on hypergraph Ramsey

numbers to provide lower bounds for Nk(q, n), stated in Theorems 1.2 and 1.3. First we address

the case k = 3.

Theorem 4.1. For any integers q, n ≥ 2, we have

N3(q, n) > 2f(q,n−1)−1.

Proof. Let φ be a q-coloring of the edges of the complete digraph D on vertex set [0, f(q, n−1)−2]

without a monochromatic walk on n−1 vertices. We use φ to define a q-coloring χ of the hyperedges

(triples) of the complete ordered 3-uniform hypergraph K3
N on the vertex set V = [N ] with N =

2f(q,n−1)−1, as follows.

For any a ∈ V , write a − 1 =
∑f(n−1,q)−2

i=0 a(i)2i with a(i) ∈ {0, 1} for each i. For a 6= b, let

δ(a, b) denote the largest i for which a(i) 6= b(i). Obviously, we have δ(a, b) 6= δ(b, c) for every triple

a < b < c.

Given any triple a < b < c, define χ(a, b, c) = φ(δ(a, b), δ(b, c)). To complete the proof of

the theorem, it is enough to show that, with respect to this coloring, there is no monochromatic

monotone path of length n. Suppose for contradiction that there is such a path, and denote its

vertices by a1 < a2 < . . . < an. Letting δj = δ(aj , aj+1) for every j (1 ≤ j < n), it follows

from the definition of the coloring χ that the integers δ1, . . . , δn−1 ∈ [0, f(q, n − 1) − 2] induce a

monochromatic walk in the digraph D, with respect to the coloring φ. This contradiction completes

the proof.

From Lemma 3.2, we have the estimate f(q, n−1)−1 ≥ mq−1 with m = 1+⌊n−3
q−1 ⌋. It is easy to

check that m ≥ n/q if n ≥ q + 2. Together with Theorem 4.1, we immediately obtain the following

corollary, which is the same as the lower bound in Theorem 1.2.

Corollary 4.2. For any integers q ≥ 2 and n ≥ q + 2, we have

N3(q, n) ≥ 2(n/q)q−1
.

We next give a recursive lower bound on Nk(q, n) for k ≥ 4. The proof is an adaptation of an

improved version of the stepping-up technique, due to Conlon, Fox, and Sudakov [11]. It easy to

see that, together with Corollary 4.2, this gives the lower bound in Theorem 1.3.

Theorem 4.3. For any integers n ≥ k ≥ 4 and q ≥ 2, we have

Nk(q, n + 3) > 2Nk−1(q,n)−1.
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Proof. We start the proof in a way similar to Theorem 4.1.

Let φ be a q-coloring with colors 1, . . . , q of the edges of the complete ordered (k − 1)-uniform

hypergraph on Nk−1(q, n)− 1 vertices without a monochromatic monotone path on n vertices. We

use φ to define a q-coloring χ of the edges of the complete ordered k-uniform hypergraph Kk
N on

the vertex set V = [N ] with N = 2Nk−1(q,n)−1, as follows.

For any a ∈ V , write a − 1 =
∑Nk−1(q,n)−2

i=0 a(i)2i with a(i) ∈ {0, 1} for each i. For a 6= b,

let δ(a, b) denote the largest i for which a(i) 6= b(i). As in the proof of Theorem 4.1, we have

δ(a, b) 6= δ(b, c) for every triple a < b < c.

Given any k-tuple a1 < a2 < . . . < ak of V , consider the integers δi = δ(ai, ai+1), 1 ≤ i ≤ k − 1.

If δ1, . . . , δk−1 form a monotone sequence, then let χ(a1, a2, . . . , ak) = φ(δ1, δ2, . . . , δk−1).

Now we have to color the k-tuple (a1, . . . , ak) in the case when δ1, . . . , δk−1 is not monotone.

We say that i is a local minimum if δi−1 > δi < δi+1, a local maximum if δi−1 < δi > δi+1, and a

local extremum if it is either a local minimum or a local maximum. Since δi−1 6= δi for every i, every

nonmonotone sequence δ1, . . . , δk−1 has a local extremum. Let i1 denote the first local extremum.

If δ1, . . . , δk−1 is not monotone, we define χ(a1, . . . , ak) = 1 if i1 is even and a local maximum, or

if i1 is odd and a local minimum. Otherwise, let χ(a1, . . . , ak) = 2.

Suppose for contradiction that the vertices a1 < . . . < an+3 induce a monochromatic monotone

path with respect to the q-coloring χ. For 1 ≤ i ≤ n + 2, let δi = δ(ai, ai+1). Since there

is no monochromatic monotone path on n vertices with respect to the coloring φ, the sequence

δ1, . . . , δn+2 ∈ [0, Nk−1(q, n) − 2] must have a local extremum. Moreover, if i1 denotes the location

of the first local extremum, we have 2 ≤ i1 ≤ n − 1.

Case 1: The first local extremum i1 satisfies i1 > 2. We claim that, if i1 < k − 1, then the

first two edges of the path, e1 = (a1, . . . , ak) and e2 = (a2, . . . , ak+1), receive different colors,

contradicting our assumption that the path is monochromatic. If i1 ≥ k − 1, then the edges

e1 = (ai1−k+3, . . . , ai1+2) and e2 = (ai1−k+4, . . . , ai1+3) receive different colors, which is again a

contradiction. Indeed, in either case the type (maximum or minimum) of the first local extremum

is the same for these two edges, but their locations differ by one and hence have different parity,

which implies that e1 and e2 receive different colors.

Case 2: The first local extremum is i1 = 2.

Case 2(a): 3 is a local extremum. Note that consecutive extrema have different types, so that

the types of 2 and 3 are different. Therefore, the first two edges of the path, e1 = (a1, . . . , ak)

and e2 = (a2, . . . , ak+1), must have different colors, contradicting our assumption that the path is

monochromatic. Indeed, for each of these edges, the first local extremum is the second δ, but these

extrema are of different types, and hence e1 and e2 receive different colors.

Case 2(b): 3 is not a local extremum. As the sequence δ2, . . . , δn+1 cannot be monotone,

the sequence of δ’s has a second local extremum i2 satisfying 3 < i2 ≤ n. If i2 < k, then the

edges e1 = (a2, . . . , ak+1) and e2 = (a3, . . . , ak+2) have different colors. If i2 ≥ k, then the edges

e1 = (ai2−k+3, . . . , ai2+2) and e2 = (ai2−k+4, . . . , ai2+3) have different colors. Indeed, in either case,

the first local extremum for the pair of edges are of the same type, but their locations differ by one

and hence have different parity, which implies they have different colors. This completes the proof

of the theorem.
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5 Size and Vertex Online Ramsey numbers for monotone paths

We begin this section by estimating vertex online Ramsey numbers, introduced in Subsection 1.2

of the Introduction. We then prove an alternative upper bound on Nk(q, n), in terms of the online

Ramsey number Vk−1(q, n). We end this section by estimating the size Ramsey number S2(q, n).

5.1 Games

In this subsection we study vertex online Ramsey numbers. We first relate the online Ramsey game

to another game, which we call the (q, n)-lattice game (or lattice game for short). In this game

there are two players, builder and coordinator. During the game, a sequence of (not necessarily

distinct) points in the q-dimensional grid Z
q
>0 with positive coordinates is built. After stage i, the

sequence has length i. In stage i+1, a new point pi+1 is added to the sequence as described below.

In each step of stage i + 1, builder picks a point pj = (x1,j , ..., xq,j) with j ≤ i already in the

sequence. Coordinator then decides a coordinate k ∈ [q]. The point pi+1 must satisfy that its kth

coordinate is greater than the kth coordinate of pj , i.e., xk,j < xk,i+1. After some steps, builder

decides it is time to end this stage, and coordinator picks a point pi+1 satisfying the conditions

provided by the steps. Note that in stage 1, as there are no points yet in the sequence, no steps are

taken and the only thing that happens is coordinator picks a point p1 in Z
q
>0 to begin the sequence.

Let L(q, n) be the minimum (total) number of steps needed for builder to guarantee that there is

a point in the sequence with a coordinate at least n. The following lemma relates these numbers

with online Ramsey numbers.

Lemma 5.1. For all q and n, we have

L(q, n) = V2(q, n).

Proof. We first prove the bound L(q, n) ≥ V2(q, n). As builder and painter are playing the Ramsey

game, builder and coordinator play a corresponding lattice game. We will show that as long as

painter guarantees in the Ramsey game there is no monochromatic monotone path of length n,

coordinator can guarantee in the lattice game that no point in the sequence will have a coordinate

at least n. Each vertex vi in the Ramsey game corresponds to a point pi in the lattice game. To

prove the desired result, coordinator will guarantee that the kth coordinate of the point pi in the

lattice game is the length of the longest monotone monochromatic path in color k ending at vi in

the Ramsey game. At each step of stage i in the lattice game, builder picks the point pj . Then,

in the Ramsey game builder picks the edge (vj , vi) to add. The color k, 1 ≤ k ≤ q, that painter

picks to color the edge (vj , vi) is the coordinate which coordinator picks so that the kth coordinate

of pi is greater than the kth coordinate of pj . At the end of this stage, coordinator picks the point

pi such that the kth coordinate of pi is the length of the longest monotone monochromatic path in

color k in the Ramsey game ending at vi. This shows that, no matter what builder’s strategy is,

coordinator can mimic painter’s strategy and continue the lattice game for as long as the Ramsey

game.

Next we show that L(q, n) ≤ V2(q, n), which would complete the proof. As builder and coordi-

nator are playing the lattice game, builder and painter play a corresponding Ramsey game. We will

show that as long as coordinator guarantees in the lattice game that no point in the sequence will
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have a coordinate at least n, painter can guarantee in the Ramsey game there is no monochromatic

monotone path of length n. Each point pi in the lattice game will have a corresponding vertex vi

in the Ramsey game. To prove the desired result, painter will guarantee that for each vertex vi and

each color k, the length of the longest monochromatic path in color k ending at vi is at most the

kth coordinate of pi.

At each step of stage i in the Ramsey game, the builder picks an edge (vj , vi) to add. Then,

in the corresponding lattice game, building picks the point pj to compare pi with. The coordinate

k that coordinator picks so that the kth coordinate of pi is greater than the kth coordinate of

pj will be the color k that painter uses to color the edge (vj , vi). The length of the longest

monochromatic monotone path in color k with last edge (vj , vi) is one more than the length of the

longest monochromatic monotone path in color k ending at vj , and this length is at most the kth

coordinate of pj by construction. Since the kth coordinate of pi is greater than the kth coordinate of

pj , this guarantees that the length of the longest monochromatic monotone path in color k ending

at vi is at most the kth coordinate of pi. This shows that, no matter what builder’s strategy is,

painter can mimic coordinator’s strategy and continue the Ramsey game for as long as the lattice

game.

The next lemma tells us the minimum number of steps required for builder to win the (q, n)-

lattice game. The lattice Z
q naturally comes with a partial order ≺, where p ≺ q if p 6= q and the

kth coordinate of q is at least the kth coordinate of p for 1 ≤ k ≤ q. We will use this order further

on.

Lemma 5.2. In the (q, n)-lattice game, the minimum number of stages (i.e., the number of points

in the constructed sequence) builder needs to guarantee a point in the sequence with a coordinate at

least n is (n − 1)q + 1.

Proof. Indeed, in each stage, builder, by picking all previous points at steps, can ensure that the

points in the constructed sequence are distinct. Hence, as there are only (n−1)q points in Z
q
>0 with

coordinates at most n− 1, by the pigeonhole principle, the minimum number of stages required for

builder is at most (n−1)q +1. Picking a linear extension of the partial order ≺ on [n−1]q described

above, coordinator can guarantee that pi is the ith smallest point in the linear extension. In this

way, the minimum number of stages required for builder is at least (n − 1)q + 1, which completes

the proof.

For a finite subset S ⊂ Z
q and a point p ∈ Z

q, define the position of p with respect to S to

be the maximum t such that for each k ∈ [q], there are at least t points s ∈ S such that the kth

coordinate of p is at least the kth coordinate of s.

Lemma 5.3. Let S be a finite nonempty subset of Z
q.

1. There is a point p ∈ S whose position with respect to S is at least |S|/q.

2. If p ∈ Z
q is such that there is no s ∈ S satisfying s ≺ p, then the position of p with respect to

S is at most
(

1 − 1
q

)

|S|.

Proof. We first show the first part. For each t, the number of elements of position less than t is

less than tq. Indeed, for each of the q coordinates, less than t elements of S have position less than
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t in that coordinate. All other elements have position at least t. Setting t = |S|/q, there is a point

of S of position at least |S|/q.

We now show the second part. Suppose the position of p with respect to S is t. Delete from

S all elements s for which there is k ∈ [q] such that the kth coordinate of s is larger than the kth

coordinate of p. Since p has position t, the number of deleted elements is at most q(|S| − t). If

|S| > q(|S|−t), then p is at least as large as an element of S, a contradiction. Hence, |S| ≤ q(|S|−t),

and we have t ≤ (1 − 1
q )|S|, which completes the proof.

We now prove an upper bound on L(q, n).

Lemma 5.4. Let a(q, n) = 1+(q− 1) log n
log( q

q−1
)

and b(q, n) = (n− 1)q +1. In the (q, n)-lattice game,

builder has a winning strategy which uses the minimum possible number of stages, which is b(q, n),

such that each stage uses at most a(q, n) steps. In particular, we have

L(q, n) ≤ b(q, n)a(q, n).

Proof. By Lemma 5.2, the minimum possible number of stages builder needs to win the (q, n)-lattice

game is indeed b(q, n).

As there are at most (n − 1)q points in Z
q with positive coordinates at most n − 1, it suffices

for builder to guarantee at each stage i, using at most a(q, n) steps, that coordinator picks a point

pi not already in the sequence. To accomplish this, it suffices for builder to guarantee that for each

point pj in the sequence with j < i, there is k ∈ [q], such that the kth coordinate of pi must be

greater than the kth coordinate of pj .

Suppose we have finished i − 1 stages, and we are now on stage i. Let M0 denote the set of

maximal elements in the already constructed sequence of i − 1 points. We have |M0| ≤ (n − 1)q−1

as M0 cannot contain two points with the same q − 1 first coordinates.

In the first step of stage i, builder picks a point pj1 ∈ M0 of position in M0 at least |M0|/q.

Such a point exists by the first part of Lemma 5.3. Coordinator then picks a coordinate k1. By

the definition of position, there are at least |M0|/q points in M0 whose k1th coordinate is at most

the k1th coordinate of pj1 . Therefore, point pi must have k1th coordinate larger than the k1th

coordinate of these at least |M0|/q points in M0. Let M1 denote those points in M0 whose k1th

coordinate is larger than the k1th coordinate of pj1 , so |M1| ≤ (1 − 1/q)|M0|.

After step h, we have a set Mh with |Mh| ≤ (1−1/q)h|M0| such that for every point pj ∈ M0\Mh,

there is k ∈ [q] such that the kth coordinate of pi is guaranteed to be larger than the kth coordinate

of pj . If Mh is nonempty, then builder moves on to step h + 1 and picks a point pjh+1
∈ Mh of

position in Mh at least |Mh|/q. Such a point exists by the first part of Lemma 5.3. Coordinator

then picks a coordinate kh+1. By the definition of position, there are at least |Mh|/q points in Mh

whose kh+1th coordinate is at most the kh+1th coordinate of pjh+1
. Therefore, point pi must have

kh+1th coordinate larger than the kh+1th coordinate of these at least |Mh|/q points in Mh. Let

Mh+1 denote those points in Mh whose kh+1th coordinate is larger than the kh+1th coordinate of

pjh+1
, so |Mh+1| ≤ (1 − 1/q)|Mh|.

If Mh is empty, then builder decides to end the stage and coordinator must pick a point pi

satisfying the required conditions. Note that we eventually will have an empty Mh as M0 is a finite

set, and Mh is a proper subset of Mh−1. Since in the previous step Mh−1 is nonempty, we have

1 ≤ |Mh−1| ≤ (1 − 1/q)h−1|M0| ≤ (1 − 1/q)h−1(n − 1)q−1,
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and so the number h of steps satisfies

h ≤ 1 + (q − 1)
log n

log( q
q−1)

= a(q, n).

Since M0 are the maximal elements of the already constructed sequence, and for every point p ∈ M0,

there is k ∈ [q] such that the kth coordinate of pi is greater than the kth coordinate of p, then pi

cannot be an element of the already constructed sequence. This completes the proof.

We remark that one can do a little better in the above proof by improving the bound on |M0| by

using a result of de Bruijn, van Ebbenhorst Tengbergen, and Kruyswijk [7] which extends Sperner’s

theorem. This result says that the set of elements in [n − 1]q whose coordinates sum to ⌊nq/2⌋

forms a maximum antichain in the poset on [n − 1]q. Since M0 is an antichain, the size of this set

is an upper bound on |M0|.

We next present a strategy for coordinator which gives a lower bound for L(q, n).

Lemma 5.5. For each fixed q ≥ 2, we have L(q, n) ≥ (q − 1 − o(1)) nq logq n.

Proof. We present a strategy for coordinator which satisfies that the number of steps in the stage

the ith point not already in the sequence is added is at least a certain number depending on i which

will be defined later in the proof. Level r of the grid [n−1]q consists of all points in this grid whose

coordinates sum to r. The new points will be added in levels, so no points of larger level are added

until all points of lower level are already in the sequence.

At stage i, for some r, all points in levels j with j < r are already in the sequence, and not all

of level r is in the sequence. Let S0 denote the set of points in level r not already in the sequence.

As S0 is disjoint from the already constructed sequence, and no element in the already constructed

sequence is larger than any point in S0, then no matter what point pj1 in the already constructed

sequence builder chooses for the first step to compare pi with, by the second part of Lemma 5.3, the

position of pj1 with respect to S0 is at most (1 − 1
q )|S0|. Hence, there is k ∈ [q] such that at least

1
q |S0| points in S0 have kth coordinate more than the kth coordinate of pj1 . Coordinator picks this

coordinate k to compare with, and lets S1 denote the points in S0 whose kth coordinate is larger

than the kth coordinate of pj1 , so |S1| ≥ |S0|/q.

After h steps of stage i, we have a subset Sh of level r with |Sh| ≥ |S0|/qh and every point in

Sh satisfies the conditions that must be satisfied by pi. Notice this is satisfied for h = 1. Builder

has two options, either continue on to step h + 1, or declare the turn over.

In the first case, builder picks a point pjh+1
in the already constructed sequence to compare

pi with. By the second part of Lemma 5.3, the position of pjh+1
with respect to Sh is at most

(1 − 1
q )|Sh|. Hence, there is k ∈ [q] such that at least 1

q |Sh| points in Sh have kth coordinate more

than the kth coordinate of pjh+1
. Coordinator picks this coordinate k to compare with, and lets

Sh+1 denote the points in Sh whose kth coordinate is larger than the kth coordinate of pjh+1
, so

|Sh+1| ≥ |Sh|/q. This finishes step h + 1.

In the second case, builder declares the turn is over after the h steps. There are two possibilities:

|Sh| = 1 or |Sh| > 1. If |Sh| = 1, coordinator picks pi to be the point in Sh. The number h of

steps in this case satisfies 1 = |Sh| ≥ |S0|/qh, so h ≥ logq |S0|. Otherwise, |Sh| > 1, and we claim

that there is still a point z ∈ [n − 1]q in a level less than r which can be chosen for pi. Indeed, if

x = (x1, . . . , xq) and y = (y1, . . . , yq) are distinct points in Sh, then the point z = (z1, . . . , zq) with
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zj = min(xj , yj) satisfies the desired properties. Indeed, as x and y are in level r, the level of z is
∑q

i=1 min(xi, yi) <
∑q

i=1 xi = r. Further, the set of possibilities for pi is of the form that the kth

coordinate is at least some mk for each k, and, as x and y are in this set, then z is also in this set.

The point z is already in the sequence, and coordinator lets pi be this point. Since pi is already in

the sequence, after stage i builder is exactly in the same situation as before stage i in regards to

winning the (q, n)-lattice game, and so the steps in this stage did not help get closer to ending the

game.

In each stage for which a new point appears in the sequence at least logq |S0| steps were used,

where |S0| is the number of points not yet in the sequence in the level currently being used to fill

the new points. Let lr denote the number of points in level r. We have lr = 1 if and only if r = q

or q(n − 1). We thus have

L(q, n) ≥

q(n−1)
∑

r=q

lr
∑

m=1

logq m =

q(n−1)−1
∑

r=q+1

lr
∑

m=1

logq m ≥

q(n−1)−1
∑

r=q+1

∫ lr−1

1
logq mdm

=

q(n−1)−1
∑

r=q+1

(

m logq m − m/ ln q
)

∣

∣

∣

lr−1

m=1
=

q(n−1)−1
∑

r=q+1

(lr − 1) logq(lr − 1) − (lr − 2)/ ln q

≥ ((q(n − 2) − 1)ℓ log ℓ − ((n − 1)q − 2 − 2(q(n − 2) − 1) / ln q) ,

where in the second inequality we bounded a sum from below by an integral using the fact

f(x) = log x is an increasing function, and the last inequality follows from Jensen’s inequality

and convexity of the function f(x) = x log x, where we substitute
∑q(n−1)−1

r=q+1 ℓr = (n− 1)q − 2, and

ℓ = ((n − 1)q − 1 − q(n − 2)) / (q(n − 2) − 1) is the average of ℓr − 1 with r ranging from q + 1 to

q(n − 1) − 1. For q fixed, this bound can be simplified to

L(q, n) ≥ (1 − o(1))nq logq nq−1 = (q − 1 − o(1)) nq logq n,

which completes the proof.

5.2 Alternative upper bound on Nk(q, n)

In this subsection, we present the proof of Theorem 1.4, which gives an upper bound on Nk(q, n)

in terms of the online Ramsey number Vk−1(q, n + k − 2).

Define V ′
k(q, n) exactly as Vk(q, n), except in each stage t ≥ k, builder must add at least one

edge (whose largest vertex is vt). We refer to the online Ramsey game in which builder must add

at least one edge in each stage t ≥ k as the modified online Ramsey game. We have

Vk(q, n) ≤ V ′
k(q, n) ≤ Vk(q, n + k − 1), (3)

the lower bound being trivial. Note that in the usual online Ramsey graph, those vertices vt which

are not the largest vertex in an edge can only be among the first k−1 vertices of a monotone path.

Hence, after a monochromatic monotone path of length n + k − 1 is created, the last n vertices of

the path each are the largest vertex of some edge, which gives the upper bound. We will use this

upper bound in the proof below.
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Proof of Theorem 1.4. Let χ :
([N ]

k

)

→ [q] be a q-coloring of the edges of Kk
N , where N =

qVk−1(q,n+k−2) + k − 2. We have to show that Kk
N contains a monochromatic monotone path of

length n.

We construct a set of vertices {v1, v2, ..., vt} and a (k − 1)-uniform hypergraph H on these

vertices with at most Vk−1(q, n + k − 2) edges such that for any (k − 1)-edge e = {vi1 , ..., vik−1
},

i1 < · · · < ik−1, the color of any k-edge {vi1 , ..., vik−1
, vik} in Kk

N with ik > ik−1 is the same, say

χ′(e). Moreover, this (k − 1)-uniform hypergraph will contain a monochromatic path of length n,

which one can easily see will define a monochromatic path of length n in Kk
N . As described below,

the way the vertices of the set are constructed will be determined by playing the modified online

Ramsey game.

We begin the construction of this set of vertices by setting v1 = 1 and setting S1 = [N ] \ {v1}.

After stage t of the process, we have a set of vertices {v1, ..., vt} with v1 < · · · < vt and a set St such

that w > vt for all w ∈ St and for each (k − 1)-edge {vi1 , ..., vik−1
} in H with i1 < · · · < ik−1 ≤ t,

the color of the k-edge {vi1 , ..., vik−1
, w} in Kk

N is the same for every w in St and for every w = vj

with ik−1 < j ≤ t.

In the beginning of stage t + 1, we let vt+1 be the smallest element in St. We play the modified

online Ramsey game, so that builder chooses the edges, which are (k−1)-tuples {vi1 , . . . , vik−2
, vt+1}

with i1 < · · · < ik−2 < t+1, to be drawn according to his strategy. Painter then colors these edges.

For the first edge e1 chosen, painter looks at all k-tuples containing this edge and a vertex from

St \ {vt+1}. The (k − 1)-edge is colored r1 ∈ [q] in χ′ if there are at least (|St| − 1)/q such k-tuples

that have color r1, breaking ties between colors arbitrarily. Such a color r1 exists by the pigeonhole

principle. This defines a new subset St,1, which are all vertices in St \ {vt+1} such that together

with edge e1 form a k-tuple of color r1 = χ′(e1). After j edges have been drawn in this stage,

we have a subset St,j , and we color the next drawn edge ej+1 color rj+1 if the number of k-tuples

of color rj+1 containing it and a vertex from St,j is at least |St,j |/q, breaking ties between colors

arbitrarily. Then we define St,j+1 to be the set of at least |St,j |/q vertices in St,j which together

with ej+1 form an edge of color rj+1.

After builder has added all (k − 1)-edges with largest vertex vt+1, the remaining set will be

St+1. Let mt be the number of (k − 1)-edges e = {vi1 , ..., vik−2
, vt} with i1 < · · · < ik−2 < t in H.

Since we are playing the modified online Ramsey game, we have mt = 0 for 1 ≤ t ≤ k − 2 and

mt ≥ 1 for t ≥ k − 1.

We now show by induction that

|St| ≥
N − (k − 2)

q
Pt

i=k−1 mi

−
t

∑

i=k−1

1

q
Pt

j=i mj

.

For the base case t = k − 2, we have

|Sk−2| = N − (k − 2).

Suppose we have proved the desired inequality for t. When we draw a vertex vt+1, the size of

our set decreases by 1. Each time we draw an edge from vt+1, the size of our set S goes down by a

factor of q. Therefore
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|St+1| ≥
|St| − 1

qmt+1
≥

N − (k − 2)

q
Pt+1

i=k−1 mi

−

(

t
∑

i=k−1

1

q
Pt+1

j=i mj

)

−
1

qmt+1

=
N − (k − 2)

q
Pt+1

i=k−1 mi

−
t+1
∑

i=k−1

1

q
Pt+1

j=i mj

.

The number of edges drawn in the (k − 1)-uniform hypergraph after t stages is
∑t

i=k−1 mi. If

this is at most V ′
k−1(q, n) ≤ Vk−1(q, n + k − 2), as q ≥ 2 and mi ≥ 1 for all i ≥ k − 1, we have

|St| ≥
N − (k − 2)

q
Pt

i=k−1 mi

−
t

∑

i=k−1

1

q
Pt

j=i mj

≥
N − (k − 2)

qV ′
k−1(q,n)

−
t

∑

i=k−1

1

qt−i+1

>
N − (k − 2)

qV ′
k−1(q,n)

− 1 = 0.

Since |St| is an integer, |St| ≥ 1 and we can continue to the next stage. Thus, at the time we

stop,
∑t

i=1 mi > V ′
k−1(q, n) and we have constructed a (k−1)-uniform hypergraph H that contains

a monochromatic monotone path in coloring χ′ on vertices vi1 , . . . , vin . On the other hand, it

follows from the properties of our construction that the vertices vi1 , . . . , vin form a monochromatic

monotone path of length n in Kk
N as required.

5.3 Size Ramsey numbers

We close this section by proving a lower bound on the size Ramsey number S2(q, n). Recall that

χ(q, n) denotes the minimum chromatic number of an ordered graph G which is (q, n)-path Ramsey.

A graph is t-degenerate if every subgraph of it has a vertex of degree at most t. Every t-degenerate

graph has an ordering of its vertices such that each vertex is adjacent to at most t earlier vertices.

Indeed, let a vertex of degree at most t be the last vertex in the ordering, and continue picking

vertices out of degree at most t from the remaining induced subgraph, adding them to the end of

the ordering, until all vertices are picked out. From this ordering, we get that every t-degenerate

graph has chromatic number at most t + 1 as we can color the vertices in order, picking the color

of a vertex distinct the colors of its at most t neighbors that come before it in the ordering.

Theorem 5.6. Let n1, n2, q ≥ 2 be integers, and let n = n1 + n2 − 1. We have

S2(q, n) ≥ (χ(q, n1) − 1)N2(q, n2)/2.

Proof. Let G be an ordered graph such that for every q-edge-coloring of G there is a monochro-

matic monotone path of length n. Suppose for contradiction that G has fewer than (χ(q, n1) −

1)N2(q, n2)/2 edges. Partition V (G) = V1 ∪ V2, where V2 is the t-core of G with t = χ(q, n1) − 1,

which is formed by deleting, one-by-one, vertices from G of smallest degree until the remaining

induced subgraph has minimum degree at least t. Since G has fewer than (χ(q1, n)− 1)N2(q, n2)/2

edges, and the minimum degree in the subgraph of G induced by the vertex set V2 is at least t, we
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have the inequality |V2| < N2(q, n2), and hence there is a q-coloring with color set [q] of the edges

inside V2 with no monochromatic monotone path of length n2. The subgraph of G induced by the

vertices in V1 is (t−1)-degenerate, so it can be properly colored with t = χ(q, n1)−1 colors. Hence,

by definition of χ(q, n1), there is a q-edge-coloring with color set [q] of the edges inside V1 without

a monochromatic monotone path of length n1. We still have to color the edges between V1 and V2.

For any two vertices i ∈ V1 and j ∈ V2, if i < j, color the edge (i, j) color 1, and if i > j, color

the edge (i, j) color 2. For each j ∈ {1, 2}, a monochromatic monotone path cannot start with a

vertex in Vj , later have a vertex in V3−j , and then, even later have a vertex in Vj , as otherwise

it would contain an edge of color 1 and an edge of color 2. Therefore, the length of the longest

monochromatic monotone path is at most the sum of the lengths of the longest monochromatic

monotone paths within V1 and within V2, which is at most (n1−1)+(n2−1) = n−1, contradicting

our assumption that every q-edge-coloring of G has a monochromatic monotone path of length n.

The proof is complete.

Taking n1 = n2 = n/2 in the previous theorem, and using N2(q, n) = (n−1)q +1 and Theorems

3.1 and 3.3, we have the following corollary.

Corollary 5.7. For any integers n, q ≥ 2, we have S2(q, n) ≥ cqn
2q−1 for some constant cq > 0

only depending on q.

This should be compared with the trivial upper bound

S2(q, n) ≤

(

N2(q, n)

2

)

=

(

(n − 1)q + 1

2

)

≤ n2q.

Thus, for fixed q, the lower and upper bound on S2(q, n) are roughly a factor n apart.

6 Transitive colorings

In this short section we prove a simple lemma which is used in the proof of Theorem 1.6. A family

F of k-element subsets of [N ] (i.e., a k-uniform hypergraph on the vertex set [N ]) is said to be

transitive if for any i1 < i2 < . . . < ik+1 such that

{i1, i2, . . . , ik}, {i2, i3, . . . , ik+1} ∈ F ,

we can conclude that all k-element subsets of {i1, i2, . . . , ik+1} belong to F . A q-coloring of all

k-element subsets of [N ] is called transitive if each of its color classes is transitive.

For the geometric application Theorem 1.6, we need the following lemma relating monochro-

matic cliques in transitive colorings to monochromatic monotone paths in general colorings.

Lemma 6.1. Let N = Nk(q, n) be the smallest integer such that for every q-coloring of all hyper-

edges of Kk
N , the complete k-uniform hypergraph on the vertex set [N ], there exists a monochromatic

monotone path of length n. Then, for every transitive q-coloring of all hyperedges of Kk
N , there exists

a monochromatic complete subhypergraph of size n.

Lemma 6.1 directly follows from the definition of Nk(q, n) and the following statement.
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Lemma 6.2. Let n > k, and let H be a k-uniform ordered hypergraph on the vertex set [n], which

contains a monotone path of length n, that is, {i, i+1, . . . , i+k−1} ∈ E(H) for all 1 ≤ i ≤ n−k+1.

If E(H) is transitive, then H is the complete k-uniform hypergraph on [n].

Proof. We proceed by induction on n. The base case n = k + 1 follows from the definition of

transitivity.

For the inductive step, suppose that n > k + 1 and that the statement has already been es-

tablished for all ordered hypergraphs with fewer than n vertices. Let H be a hypergraph with n

vertices meeting the conditions of the lemma. By the induction hypothesis, the induced subhyper-

graph H[{1, . . . , n − 1}] ⊆ H, consisting of all edges of H contained in {1, . . . , n − 1} is complete,

and so is the induced subhypergraph H[{2, . . . , n}] ⊆ H.

Observe that this implies that for any 1 ≤ i ≤ n, the induced hypergraph H[{1, . . . , n} \ {i}]

contains a monotone path of length n−1. As the edge set of H[{1, . . . , n}\{i}] is clearly transitive,

we can apply the induction hypothesis to conclude that H[{1, . . . , n} \ {i}] is a complete k-uniform

hypergraph, for all i. Therefore, H is also a complete k-uniform hypergraph.

7 Noncrossing convex bodies—Proof of Theorem 1.6

Let C = {C1, C2, ..., CN} be a family of N = N3(3, n) noncrossing convex bodies in general position

in the plane, numbered from left to right, according to the x-coordinates of their left endpoints

(leftmost points). We have to show that C contains n members in convex position.

In order to complete the proof outlined at the end of Subsection 1.3 in the Introduction, we

have to define a 3-coloring of all triples (Ci, Cj , Ck) with i < j < k, which satisfies some special

properties. We need some definitions.

We say that the triple (Ci, Cj , Ck), i < j < k has a clockwise (counterclockwise) orientation

if there exist distinct points qi ∈ Ci, qj ∈ Cj , qk ∈ Ck such that they lie on the boundary of

conv(Ci ∪Cj ∪Ck) and appear there in clockwise (counterclockwise) order (cf. [29], [32]). Clearly,

the orientation of a triple can be clockwise and counterclockwise at the same time. See Figure 1.

Cj
Ck

iC

(a) (Ci, Cj , Ck) not in
general position.

Cj

iC

Ck

(b) Clockwise orienta-
tion.

iC

Cj

Ck

(c) Counterclock-
wise orientation.

C j
iC

Ck

(d) Both orienta-
tions.

Figure 1: Orientations of convex bodies.

As we numbered the members of C according to the order of their left endpoints, for any i < j <

k, the left endpoint of Ci must lie on the boundary of conv(Ci ∪ Cj ∪ Ck). The triple (Ci, Cj , Ck)

is said to have a strong-clockwise (strong-counterclockwise) orientation if there exist points qj ∈

Cj , qk ∈ Ck such that, starting at the left endpoint q∗i of Ci, the triple (q∗i , qj , qk) appears in clockwise

(counterclockwise) order along the boundary of conv(Ci ∪ Cj ∪ Ck). We say that (Ci, Cj , Ck) has

both strong orientations if it has both a strong-clockwise and a strong-counterclockwise orientation.
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Notice that it is possible that (Ci, Cj , Ck) has both orientations, but only one strong orientation.

On the other hand, every triple has at least one strong orientation. Obviously, if (Ci, Cj , Ck) has a

strong-clockwise orientation, say, then it also has a clockwise orientation.

7.1 Definitions, notation, and observations

Let C = {C1, C2, ..., CN} be a family of noncrossing convex bodies in general position, numbered

from left to right, according to the x-coordinates of their left endpoints (leftmost points). A

subfamily of convex bodies S is called separable if it has a member C such that conv(∪S) \ C is

disconnected. We say that C separates S if conv(∪S) \C is disconnected. Clearly if a triple is not

separable, then it only has one strong orientation. Since C is a family of noncrossing convex sets,

every triple has at most one member that separates it.

We will make several observations on the triples of C using the following notation. For i < j < k,

let β denote the boundary of conv(Ci ∪ Cj ∪ Ck), q∗i denote the left endpoint of Ci, and let

γi = Ci ∩ β, γj = Cj ∩ β, γk = Ck ∩ β.

Observation 7.1. For i < j < k, Ck cannot separate (Ci, Cj , Ck).

Proof. For sake of contradiction, suppose that Ck separates the triple (Ci, Cj , Ck). Then γi is a

simple continuous curve (i.e., homeomorphic to the unit interval) that contains the left most point

of β, γj is also a simple continuous curves, and γk consists of two disjoint simple continuous curves

γk1 and γk2 . Since no two convex bodies have a common tangent that meets at their intersection,

γi, γj , γk1 , γk2 are pairwise disjoint. Moreover, γi, γk1 , γj , γk2 appear in clockwise order along β.

However since q∗i ∈ γi and since the left endpoint of Cj lies inside conv(Ci, Cj , Ck) to the left of the

left endpoint of Ck, this implies that Cj and Ck cross, that is, they share more than two boundary

points which is a contradiction.

¤

Observation 7.2. For i < j < k, the triple (Ci, Cj , Ck) has both strong orientations if and only if

Cj separates it.

Proof. If Cj separates the triple (Ci, Cj , Ck), then γi and γk are simple continuous curves such

that q∗i ∈ γi, while γj consists of two disjoint simple continuous curves γj1 , γj2 . Moreover since C

is in general position, γi, γj1 , γk, γj2 are pairwise disjoint and appear in clockwise order along β.

Therefore we can find points qj1 ∈ γj1 , qj2 ∈ γj2 , and qk ∈ γk such that q∗i , qj1 , qk, qj2 appear on β

in clockwise order. Hence (Ci, Cj , Ck) has both strong orientations.

For the other direction, suppose that (Ci, Cj , Ck) has both strong orientations. Since the triple

(Ci, Cj , Ck) is separable, and we know that Ck does not separate it, it suffices to show that Ci does

not separate (Ci, Cj , Ck).

Suppose Ci separates (Ci, Cj , Ck). Then γj and γk are simple continuous curves, and γi consists

of two disjoint simple continuous curves γi1 and γi2 . We can assume that q∗i ∈ γi1 . Since Ci separates

(Ci, Cj , Ck), γi1 , γj , γi2 , γk are pairwise disjoint and must appear in clockwise or counterclockwise

order along β. If γi1 , γj , γi2 , γk appear in clockwise order, then (Ci, Cj , Ck) has only a strong-

clockwise orientation since there does not exists points qj ∈ γj and qk ∈ γk such that q∗i , qj , qk

appear in counterclockwise order along β. Likewise if γi1 , γj , γi2 , γk appear in counterclockwise

order along β, then (Ci, Cj , Ck) has only a strong-counterclockwise orientation. In either case,

(Ci, Cj , Ck) does not have both strong orientations and we have a contradiction.
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Suppose that Ci separates (Ci, Cj , Ck). By the argument above (Ci, Cj , Ck) has only one strong

orientation since γi1 , γj , γi2 , γk must appear in clockwise or counterclockwise order along β. Let h

be a fixed line that goes through q∗i and intersects γi2 . We can assume that h is not vertical. Then

by the noncrossing property and by convexity of conv(Ci ∪ Cj ∪ Ck), regions Cj \ Ci and Ck \ Ci

must be separated by h. Therefore we make the following observation.

Observation 7.3. For i < j < k, suppose that Ci separates the triple (Ci, Cj , Ck) and let h be the

line described as above. If Cj \Ci lies in the upper half-plane generated by h (and Ck \Ci lies in the

lower half-plane), then (Ci, Cj , Ck) has only a strong-clockwise orientation. Likewise if Cj \Ci lies

in the lower half-plane generated by h (and Ck \ Ci lies in the upper half-plane), then (Ci, Cj , Ck)

has only a strong-counterclockwise orientation.

Proof. If Cj \ Ci lies in the upper half-plane generated by h, then γi1 , γj , γi2 , γk must appear

in clockwise order along β. Hence there does not exists points qj ∈ γj and qk ∈ γk such that

q∗i , qj , qk appear in counterclockwise order along β. Therefore (Ci, Cj , Ck) does not have a strong-

counterclockwise orientation, which implies that it only has a strong-clockwise orientation since

every triple has at least one strong orientation.

By a similar argument, if Cj \ Ci lies in the lower half-plane generated by h, this implies that

(Ci, Cj , Ck) has only a strong-counterclockwise orientation.

¤

For each pair of indices i < j, let ~lij (and ~rij) denote the directed common tangent line of Ci

and Cj which meets Ci before Cj , such that Ci ∪ Cj lies completely to the right (left) of ~lij (~rij).

Let C be a family of noncrossing convex sets in general position, and let β denote the boundary

of conv(∪C). We say that the pair (Ci, Cj) appears in consecutive clockwise (counterclockwise)

order on β if there exists points qi ∈ Ci ∩ β and qj ∈ Cj ∩ β such that if γ is the arc generated by

moving from qi to qj along β in the clockwise (counterclockwise) direction, then the interior of γ

does not intersect any member of C.

If (Ci, Cj) appears in consecutive clockwise (counterclockwise) order on β, then ~lij (~rij) is the

directed line going through points qi and qj (where qi, qj is defined as above) such that conv(∪C)

lies to the right (left) of ~lij (~rij). Therefore we have the following.

Observation 7.4. For i < j < k, if (Ci, Cj , Ck) has both strong orientations, then Ci∪Cj ∪Ck lies

to the right of ~lij and ~ljk, and lies to the left of ~rij and ~rjk. In other words, (Ci, Cj) (and (Cj , Ck))

appears in consecutive clockwise and counterclockwise order on the boundary of conv(Ci, Cj , Ck).

Proof. By Observation 7.2, Cj separates (Ci, Cj , Ck). Therefore γi and γk are simple continuous

curves while γj consists of two disjoint simple continuous curves γj1 and γj2 . Moreover, γi, γj1 , γk, γj2

are pairwise disjoint and appear in clockwise order along the boundary of conv(Ci ∪ Cj ∪ Ck).

Hence (Ci, Cj) (and (Cj , Ck)) appears in consecutive clockwise and counterclockwise order on the

boundary of conv(Ci, Cj , Ck). ¤

Observation 7.5. For i < j < k, if (Ci, Cj , Ck) has only a strong-clockwise orientation, then

Ci ∪Cj ∪Ck lies to the right of ~lij and to the left of ~rik. In other words, (Ci, Cj) appears in consec-

utive clockwise order and (Ci, Ck) appears in consecutive counterclockwise order on the boundary

of conv(Ci ∪ Cj ∪ Ck).
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Proof. By Observation 7.1 and 7.2, either (Ci, Cj , Ck) is not separable or Ci separates it. If

(Ci, Cj , Ck) is not separable, then γi, γj , γk are pairwise disjoint simple continuous curves that

appear on the boundary of conv(Ci ∪ Cj ∪ Ck) in clockwise order. Hence (Ci, Cj) appears in

consecutive clockwise order and (Ci, Ck) appears in consecutive counterclockwise order on the

boundary of conv(Ci ∪ Cj ∪ Ck) and we are done.

If Ci separates (Ci, Cj , Ck), then γj and γk are simple continuous curves while γi consists of

two disjoint simple continuous curves γi1 and γi2 . Moreover γi1 , γj , γi2 , γk are pairwise disjoint

and appear in clockwise order. Hence (Ci, Cj) appears in consecutive clockwise order and (Ci, Ck)

appears in consecutive counterclockwise order on the boundary of conv(Ci ∪ Cj ∪ Ck)

¤

By a symmetric argument, we have the following.

Observation 7.6. For i < j < k, if (Ci, Cj , Ck) has only a strong-counterclockwise orientation,

then Ci ∪ Cj ∪ Ck lies to the left of ~rij and to the right of ~lik.

7.2 The transitive property and its application

Lemma 7.7. Let i < j < k < l. If the triples (Ci, Cj , Ck) and (Cj , Ck, Cl) have both strong

orientations, then the same is true for (Ci, Cj , Cl) and (Ci, Ck, Cl).

Proof. By Observations 7.2 and 7.4, both Ci and Cl must lie to the right of ~ljk and to the left of

~rjk as shown in Figure 2.

ljk

rjkCk
Cj

Ci

Cl

Figure 2: For Lemma 7.7.

Hence Cj separates the triple (Ci, Cj , Cl) and Ck separates the triple (Ci, Ck, Cl), which implies

(Ci, Cj , Cl) and (Ci, Ck, Cl) have both strong orientations.

¤

Lemma 7.8. Let i < j < k < l. If the triples (Ci, Cj , Ck) and (Cj , Ck, Cl) have only strong-

clockwise orientations (or only strong-counterclockwise orientations), then the same is true for

(Ci, Cj , Cl) and (Ci, Ck, Cl).

Proof. By symmetry, it is sufficient to verify the statement in the case when the triples (Ci, Cj , Ck)

and (Cj , Ck, Cl) have only strong-clockwise orientations.

Claim 7.9. (Ci, Ck, Cl) has only a strong-clockwise orientation.

Notice that we can make the following assumption.
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(∗) Cl lies to the left of ~rik and to the right of ~ljk.

Indeed, by Observations 7.4 and 7.6, we can assume that Cl lies to the left of ~rik since otherwise

(Ci, Ck, Cl) would not have a strong-counterclockwise orientation and we would be done, that

is, (Ci, Ck, Cl) has only a strong-clockwise orientation since every triple has at least one strong

orientation. Moreover by Observation 7.5, Cl must lie to the right of ~ljk since (Cj , Ck, Cl) has only

a strong-clockwise orientation.

We define L to be the vertical line through the left endpoint of Ck, p1 to be the left endpoint

of Ck, p2 to be the first point on ~ljk from Ck in the direction of ~ljk, p3 to be the first point on ~rik

from Ck in the direction of ~rik, and p4 to be the first point on ~rjk from Ck in the direction of ~rjk.

For simplicity, we will assume that p1, p2, p3, p4 are distinct, since otherwise it would just make the

remaining analysis easier.

Observation 7.10. p1, p2, p3, p4 appear in clockwise order along the boundary of Ck.

Proof. Let ∂ denote the boundary of conv(Cj ∪ Ck). Since Cj and Ck are noncrossing, Ck ∩ ∂ is

the arc generated by moving along the boundary of Ck from p2 to p4 in the clockwise direction.

Since the left endpoint of Cj lies to the left of L and since p1, p2, p4 are all distinct, p1 must lie

in the interior of conv(Cj ∪ Ck). Hence p1, p2, p4 appear in clockwise order along the boundary of

Ck. Therefore it suffices to show that points p2, p3, p4 appear in clockwise order. By Observation

7.5, Cj must lie to the left of ~rik and therefore p3 ∈ Ck ∩ ∂. Since p2, p3, p4 are distinct, p2, p3, p4

appear in clockwise order along the boundary of Ck and this completes the proof.

¤

By the ordering on C and by (∗), Cl must lie to the right of L, to the right of ~ljk, and to the

left of ~rik. Hence Cl \ Ck must lie in one of the three regions defined as follows. Let Region I be

the region enclosed by L, ~ljk, and the arc generated by moving from p1 to p2 along the boundary

of Ck in the clockwise direction, whose interior is disjoint from Ck. Let Region II be the region

enclosed by ~ljk, ~rik, and the arc generated by moving from p2 to p3 along the boundary of Ck in

the clockwise direction, whose interior is disjoint from Ck. Let Region III be the region enclosed

by L, ~rik, and the arc generated by moving from p3 to p1 along the boundary of Ck in the clockwise

direction, whose interior is disjoint from Ck. See Figure 3(a).

Observation 7.11. Cl \ Ck does not lie in Region I.

Proof. For sake of contradiction, suppose Cl \ Ck lies in Region I. Then the proof falls into two

cases.

Case 1. Suppose that Cj does not intersect Region I. This implies that the tangent point of Cj on
~ljk lies to the left of L. Therefore, the triangle T1 whose vertices is this tangent point, p1, and p2

contains Region I. Since the vertices of T1 are in Cj ∪ Ck, the triangle T1 is a subset of the convex

hull conv(Cj ∪ Ck). Hence,

Cl ⊂ (Region I ∪ Ck) ⊂ (T1 ∪ Ck) ⊂ conv(Cj ∪ Ck),

which is a contradiction.

Case 2. Suppose Cj does intersect Region I. Let h be the line that goes through the left endpoint of

Cj and a point on Cj ∩~ljk. If Cl \Cj lies below h, then Cl ⊂ conv(Cj ∪Ck) which is a contradiction.
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Figure 3: Regions I, II, and III.

If Cl \ Ck lies above h, then Cj separates (Cj , Ck, Cl) and by Observation 7.3, (Cj , Ck, Cl) has a

strong counter-clockwise orientation which is also a contradiction. See Figure 3(b).

¤

Observation 7.12. Cl \ Ck does not lie in Region II.

Proof. For sake of contradiction, suppose Cl \Ck lies in Region II. By Observation 7.10, p2, p3, p4

appear in clockwise order. Hence Cl lies to the left of ~rjk. This implies that Ck separates the triple

(Cj , Ck, Cl). By Observation 7.2, (Cj , Ck, Cl) has both strong orientations which is a contradiction.

See Figure 4(a).

¤

Therefore Cl \ Ck must lie in Region III. Suppose for contradiction that Ci does not intersect

Region III. Then the tangent point of Ci on ~rik lies to the left of L. Therefore, the triangle T2

whose vertices is this tangent point, p1, and p3 contains Region III. Since the vertices of T2 are in

Ci ∪ Ck, the triangle T2 is a subset of the convex hull conv(Ci ∪ Ck). Hence,

Cl ⊂ (Region III ∪ Ck) ⊂ (T2 ∪ Ck) ⊂ conv(Ci ∪ Ck),

which is a contradiction. Hence, Ci must intersect Region III. Moreover, Cl \ Ci must lie in the

lower half-plane generated by the line that goes through the left endpoint of Ci and a point on

Ci ∩~rik as otherwise again Cl ⊂ conv(Ci ∪Ck). Since Ci separates (Ci, Ck, Cl) and by Observation

7.3, (Ci, Ck, Cl) has only a strong-clockwise orientation. See Figure 4(b). This completes the proof

of Claim 7.9.

¤

Now we will show that (Ci, Cj , Cl) has only a strong-clockwise orientation by a very similar

argument.

Claim 7.13. (Ci, Cj , Cl) has only a strong-clockwise orientation.

Just as before, we can assume the following.
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Figure 4: Regions II and III.

(∗∗) Cl lies to the left of ~rij and to the right of ~ljk.

Indeed, by Observation 7.6, we can assume that Cl lies to the left of ~rij since otherwise (Ci, Cj , Cl)

would not have a strong-counterclockwise orientation and we would be done, that is, (Ci, Cj , Cl) has

only a strong-clockwise orientation since every triple has at least one strong orientation. Moreover

by Observation 7.5, Cl must lie to the right of ~ljk since (Cj , Ck, Cl) has only a strong-clockwise

orientation.

Since (Ci, Cj , Ck) has only a strong-clockwise orientation, then either (Ci, Cj , Ck) is not sepa-

rable, or Ci separates it. Now the proof falls into two cases.

Case 1: Assume that (Ci, Cj , Ck) is not separable. Then we define L′ to be the vertical line

through the left endpoint of Cj , p5 to be the left endpoint of Cj , p6 to be the first point on ~ljk
from Cj in the direction of ~ljk, p7 to be the first point on ~rij from Cj in the direction of ~rij , and

p8 to be the first point on ~rjk from Cj in the direction of ~rjk. For simplicity, we will assume that

p5, p6, p7, p8 are distinct, since otherwise it would just make the remaining analysis easier. Now we

make the following observation.

Observation 7.14. p5, p6, p7, p8 appear in clockwise order along the boundary of Cj.

Proof. Let ∂ denote the boundary of conv(Cj ∪Ck). Then Cj ∩ ∂ is the arc generated by moving

along the boundary of Cj from p8 to p6 in the clockwise direction. Since p5 is the leftmost point

of conv(Cj ∪ Ck), p5 ∈ Cj ∩ ∂. Hence p5, p6, p8 appear in clockwise order along the boundary of

Cj . Therefore it suffices to show that p6, p7, p8 appear in clockwise order. Since (Ci, Cj , Ck) is not

separable and has a strong-clockwise orientation, Ck does not lie completely to the left of ~rij . Since

p6, p7, p8 are all distinct, p7 lies in the interior of conv(Cj ∪Ck). Thus p6, p7, p8 appear in clockwise

order along the boundary of Cj and this completes the proof.

¤
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By (∗∗) and the ordering on C, Cl must lie to the right of L′, to the left of ~rij , and to the right

of ~ljk. Therefore Cl \ Cj must lie in one of the three regions defined as follows. Let Region IV be

the region enclosed by ~ljk, L′, and the arc generated by moving from p5 to p6 along the boundary

of Cj in the clockwise direction, whose interior is disjoint from Cj . Let Region V be the region

enclosed by ~ljk, ~rij , and the arc generated by moving from p6 to p7 along the boundary of Cj in

the clockwise direction, whose interior is disjoint from Cj . Let Region VI be the region enclosed by

L′, ~rij , and the arc generated by moving from p7 to p5 along the boundary of Cj in the clockwise

direction, whose interior is disjoint from Cj . See Figures 5(a) and 5(b).
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Figure 5: Regions IV, V, and VI.

Observation 7.15. Cl \ Cj cannot lie in Region IV

Proof. For sake of contradiction, assume that Cl \Cj does lie in Region IV. Since p5, p6, p8 appear

in clockwise order along the boundary of Cj , Cj separates the triple (Cj , Ck, Cl). Moreover, Cl \Cj

lies in the upper half-plane generated by the line that goes through p5 and p6. By Observation

7.3, (Cj , Ck, Cl) has only a strong-counterclockwise orientation and we have a contradiction. See

Figure 6(a).

¤

Observation 7.16. Cl \ Cj cannot lie in Region V.

Proof. For sake of contradiction, assume that Cl \ Cj does lie in Region V. Since Cl lies to the

left of ~rij and since p7, p8 appear in clockwise order along the boundary of Cj , we can conclude

that Cl lies to the left of ~rjk. Since Cl 6⊂ conv(Cj ∪ Ck), Ck separates the triple (Cj , Ck, Cl). By

Observation 7.2, (Cj , Ck, Cl) has both strong orientations and we have a contradiction. See Figure

6(b).

¤

Therefore Cl \ Cj must lie in Region VI. Suppose for contradiction that Ci does not intersect

Region VI. Then the tangent point of Ci on ~rij lies to the left of L′. Therefore, the triangle T3

whose vertices is this tangent point, p5, and p7 contains Region VI. Since the vertices of T3 are in

Ci ∪ Cj , the triangle T3 is a subset of the convex hull conv(Ci ∪ Cj). Hence,

Cl ⊂ (Region VI ∪ Cj) ⊂ (T3 ∪ Cj) ⊂ conv(Ci ∪ Cj),
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which is a contradiction. Therefore Ci must intersect Region VI and Cl \ Ci must lie in the lower

half-plane generated by the line that goes through the left endpoint of Ci and a point on Ci ∩ ~rij .

Therefore Ci separates (Ci, Cj , Cl) and by Observation 7.3, (Ci, Cj , Cl) has only a strong-clockwise

orientation. See Figure 6(c).
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Figure 6: Regions IV, V, and VI.

Case 2: Assume that Ci separates (Ci, Cj , Ck).

Observation 7.17. p5, p7, p6 appear in clockwise order along the boundary of Cj.

Proof. Let β denote the boundary of conv(Ci ∪ Cj). Since Ci separates (Ci, Cj , Ck), the arc

generated by moving along the boundary of Cj from p5 to p6 in the clockwise direction must

contain Cj ∩ β. Since p7 ∈ Cj ∩ β, p5, p7, p6 appear in clockwise order along the boundary of Cj .

¤

By (∗∗) and the ordering on C, Cl must lie to the right of L′ and to the right of ~ljk. Hence

Cl \ Cj must lie in one of the following two regions. Let Region VII be the region enclosed by
~ljk, L′, and the arc generated by moving from p5 to p6 along the boundary of Cj in the clockwise

direction, whose interior is disjoint from Cj . Finally let Region VIII be the region enclosed by

L′, ~ljk, and the arc generated by moving from p6 to p5 along the boundary of Cj in the clockwise

direction, whose interior is disjoint from Cj . See Figures 7(a) and 7(b).

Observation 7.18. Cl \ Cj cannot lie in Regions VII.

Proof. For sake of contradiction, suppose Cl \ Cj lies in Region VII. Then Cj separates the triple

(Cj , Ck, Cl), and Cl \ Cj lies in the upper half-plane generated by the line that goes through the

points p5 and p6. By Observation 7.3, (Cj , Ck, Cl) has only a strong-counterclockwise orientation

and we have a contradiction. See Figure 8(a).

¤
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Figure 7: Ci separates (Ci, Cj , Ck).

Therefore Cl \ Cj must lie in Region VIII. Since Ci separates the triple (Ci, Cj , Ck), which has

only a strong-clockwise orientation, Ci must intersect Region VIII and ~ljk. Since Cl 6⊂ conv(Ci∪Cj),

Cl \Ci must lie in the lower half plane generated by the line that goes through the left endpoint of

Ci and a point on Ci ∩ ~rij . Thus Ci separates (Ci, Cj , Cl) and by Observation 7.3, (Ci, Cj , Cl) has

only a strong-clockwise orientation. See Figure 8(b). This completes the proof of Claim 7.13 and

Lemma 7.8.
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¤

Now we are ready to define a 3-coloring of the complete 3-uniform ordered hypergraph K3
C

formed by all triples in C = {C1, . . . , CN}. A triple (Ci, Cj , Ck), i < j < k is colored

1. red if it has only a strong-clockwise orientation;

2. blue if it has only a strong-counterclockwise orientation;

3. green if it has both strong orientations.

Lemmas 7.7 and 7.8 imply that the above coloring is transitive.
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Since N = N3(3, n), the edges of K3
C , i.e., the triples of C, determine a monochromatic monotone

path of length n. As this coloring is transitive, Lemma 6.2 implies that the members of this path

induce a monochromatic complete 3-uniform subhypergraph K ⊆ K3
C . It follows from the definition

of the coloring that all hyperedges of K are triples which have the same strong orientations. The

proof of Theorem 1.6 is now a direct consequence of the following statement from [23] and Theorem

1.2, which gives an upper bound on N = N3(3, n).

Lemma 7.19. If a family of noncrossing convex bodies in general position in the plane can be

ordered in such a way that every triple has a clockwise orientation (or every triple has a counter-

clockwise orientation), then all members of the family are in convex position.

¤

8 Concluding Remarks

1. We proved estimates on the minimum number of vertices Nk(q, n) of a complete ordered k-

uniform hypergraph for which every q-coloring of its edges has a monochromatic monotone path of

length n. In particular, for q ≥ 3 and n ≥ q + 2, we have

2(n/q)q−1
≤ N3(q, n) ≤ nnq−1

.

It would be interesting to close the gap between the lower and upper bound.

2. We proved that the smallest integer M(n) such that every family of M(n) noncrossing convex

bodies in general position in the plane has n members in convex position satisfies M(n) ≤ N3(3, n) ≤

nn2
. It would be interesting to improve the bound on M(n) further and, in particular, decide

whether M(n) grow exponential in n.

3. We proved that triples of noncrossing convex bodies with only a strong-clockwise orientation have

the transitive property. However it is easy to see that triples with a strong-clockwise orientation

do not. In particular, it is possible to have four convex bodies ordered from left to right according

to their left endpoints, such that (C1, C2, C3) and (C2, C3, C4) have a strong-clockwise orientation,

but (C1, C3, C4) does not as shown in Figure 9.

C

C

2

C1

C3

4

Figure 9: (C1, C3, C4) does not have a strong-clockwise orientation.

4. We proved that the vertex online Ramsey number V2(q, n) and the lattice game number L(q, n)

are equal, asymptotically determined these numbers for q = 2, and determined the order of growth

of these numbers for fixed q. We leave as an open problem to asymptotically determine these

numbers for fixed q > 2.
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5. We proved that the size Ramsey number S2(q, n), which is the minimum number of edges of a

graph which is (q, n)-path Ramsey, satisfies cqn
2q−1 ≤ S2(q, n) ≤ c′qn

2q for some constants cq, c
′
q

depending on n. It would be interesting to determine the growth of S2(q, n) for fixed q.
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Math. 10 (1967), 167–170.

[20] Graham, R. L., Rothschild, B. L., Spencer, J. H.: Ramsey Theory, 2nd ed., Wiley, New York,

1990.
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