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Abstract

A central feature of dynamic collective decision-making is that the rules that govern procedures for
future decision-making and the distribution of political power across players are determined by current
decisions. For example, current constitutional change must take into account how the new constitution
paves the way for further changes in laws and regulations. We develop a general framework for the
analysis of this class of dynamic problems. Under relatively natural acyclicity assumptions, we provide
a complete characterization of dynamically stable states as functions of the initial state and determine
conditions for their uniqueness. The explicit characterization we provide highlights two intuitive features
of dynamic collective decision-making: (1) a social arrangement is made stable by the instability of
alternative arrangements that are preferred by su¢ ciently many members of the society; (2) e¢ ciency-
enhancing changes are often resisted because of further social changes that they will engender. Finally,
we apply this framework to the analysis of the dynamics of political rights in a society with di¤erent
types of extremist views.
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1 Introduction

Consider the problem of a society choosing its constitution. Naturally, the current rewards from

adopting a speci�c constitution will in�uence this decision. Yet, as long as the members of the

society are forward-looking and patient, the future implications of the constitution may be even

more important. For example, a constitution that encourages economic activity and bene�ts

the majority of the population may nonetheless lead to future instability or leave room for a

minority to seize political control. If so, the society� or the majority of its members� may

rationally shy away from adopting such a constitution. Many problems in political economy,

club theory, coalition formation, organizational economics, and industrial organization have a

structure resembling this example of constitutional choice.

We develop a tractable framework for the analysis of dynamic collective decisions. Consider a

society consisting of a �nite number of in�nitely-lived individuals. It starts in a particular state.

A state in our framework represents both economic and political arrangements. In particular,

it determines stage payo¤s (for example, by shaping economic allocations) and also how the

society can determine its future states (e.g., which subsets of individuals can change the economic

allocations and political rules; see Examples 1 and 2). Our focus is on dynamic equilibria when

individuals are su¢ ciently forward-looking. Under natural acyclicity assumptions which rule out

Condorcet-type cycles, we prove the existence and characterize the structure of (dynamically)

stable states. An equilibrium is represented by a mapping � which designates the dynamically

stable state � (s0) as a function of the initial state s0. We show that the set of dynamically

stable states is largely independent of the details of agenda-setting and voting protocols.

Although our main focus is the noncooperative analysis of the environment outlined above,

it is both convenient and instructive to start with an axiomatic characterization of stable states.

This characterization relies on the observation that su¢ ciently forward-looking individuals do

not wish to support change towards a state (constitution) that might ultimately lead to another,

less preferred state (our stability axiom). We also introduce two other natural axioms ensuring

that individuals do not support changes that give them lower utility. We characterize the set

of mappings, �, that are consistent with these three axioms recursively and provide conditions

under which there exists a unique member of � (Theorem 1). We show that even when � is not

a singleton, the sets of stable states de�ned by any two �1; �2 2 � are identical.

Our main results are given in Theorem 2. Under the assumptions that (i) agents have a
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discount factor su¢ ciently close to 1, and (ii) there are (small) transaction costs from changing

states, the equilibria of our dynamic game for any agenda-setting and voting protocol corresponds

to some � 2 �. Conversely, for any � 2 �, there exists a protocol such that the resulting non-

cooperative equilibrium is represented by �.

Both high discount factors and transaction costs are assumed to enable a sharp charac-

terization of the structure of stable states, though they are also reasonable in many relevant

applications.1 The high discount factor assumption is motivated by situations in which a new

state, involving a di¤erent con�guration of political power, can be immediately changed by those

who have power (which is itself a consequence of lack of commitment in political decisions dis-

cussed below). We also believe that most major changes in political rules and organizational

forms involve transaction costs.2 We should add, however, that the payo¤ implications of these

transaction costs are small in our setup precisely because the discount factor is high (and thus, in

equilibrium, discounted payo¤s are approximately equal to what they would have been without

the transaction cost; see below).

At the center of our approach is the natural lack of commitment in dynamic decision-making

problems� those that gain additional decision-making power as a result of a reform cannot

commit to refraining from further choices that would hurt the initial set of decision-makers.

This lack of commitment leads to two intuitive results. First, a particular social arrangement

(constitution, coalition, or club) is made stable not by the absence of a powerful set of players

that prefer another alternative, but because of the absence of an alternative stable arrangement

that is preferred by a su¢ ciently powerful constituency. To understand why certain social

arrangements are stable, we must thus study the instabilities that changes away from these

arrangements would unleash. Second, dynamically stable states can be ine¢ cient� i.e., they

may be Pareto dominated by the payo¤s in another state (see Theorem 3).

Our �nal result, Theorem 4, provides su¢ cient conditions for the acyclicity assumptions

1These assumptions ensure that agents compare di¤erent paths putting a su¢ ciently large weight on payo¤s in
the �nal state that will ultimately emerge and persist rather than on payo¤s in transitory states along these paths.
Since we impose relatively few restrictions on protocols and preferences (in particular, no �cardinal�comparisons
between payo¤s in di¤erent states), cycles in the dynamic game cannot be ruled out without su¢ ciently forward-
looking agents and without transaction costs (see Examples 3, 4 and 5 in Appendix B).

2One example illustrating the plausibility of transaction costs in the context of political change comes from
the emergence of democracy, studied, among others, by Acemoglu and Robinson (2000, 2006a) and Lizzeri and
Persico (2004). These works assume that while commitment to policies is not feasible, political institutions, such
as democracy or voting rights, cannot be immediately reversed or totally disregarded once introduced (otherwise,
democracy would have no value over and above a promise to implement certain policies). The most plausible
reason for this is that there are transaction costs in changing political institutions (e.g., once given, voting rights
cannot be taken back without incurring some costs).
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(used in Theorems 1 and 2) to hold when states belong to an ordered set (e.g., a subset of

R). In particular, it shows that these results apply when (static) preferences satisfy a single-

crossing property or are single-peaked (and some mild assumptions on the structure of winning

coalitions are satis�ed). These properties are satis�ed in the majority of models of static or

dynamic political economy as illustrated by the various applications discussed in Appendix B.

Theorem 4 shows that our main results are both applicable in a wide variety of environments

and typically easy to apply; also, Theorems 1 and 2 apply in a range of situations in which states

do not belong to an ordered set.

Below, we provide two simple examples that illustrate main insights of our theoretical model.

We start with a classic example that illustrates the tension between payo¤s and political power

that is present in more general form throughout our analysis. We then provide a more substantive

example, to which we return in Section 6.

Example 1 Consider a society that consists of two social groups, E, the elite, and M , the

middle class. There are three states with di¤erent payo¤s and distribution of political power:

(1) absolutist monarchy a, in which E rules, with no political rights for M ; (2) constitutional

monarchy c, in which M has greater security and is willing to invest; (3) democracy d, where

M becomes more in�uential and privileges of E disappear. Stage payo¤s satisfy

wE (d) < wE (a) < wE (c) , and wM (a) < wM (c) < wM (d) .

This implies that E has higher payo¤ under constitutional monarchy than under absolutist

monarchy (e.g., because greater investments by M increase tax revenues). On the other hand,

M prefers democracy to constitutional monarchy and is least well-o¤ under absolutist monarchy.

Both parties discount the stage payo¤s at rate � 2 (0; 1). States a; c; and d not only determine

payo¤s, but also specify decision rules. In absolutist monarchy, E decides which regime will

prevail tomorrow; in both c and d, M decides next period�s regime.

Using our notation, d is a dynamically stable state, and � (d) = d. In contrast, c is not a

dynamically stable state, since starting from c, there will be a transition to d and thus, � (c) = d.

Therefore, if, starting in state a, E chooses a transition to c, this will lead to d in the following

period, and thus give E a discounted payo¤ of

UE (reform) = wE (c) + �
wE (d)

1� � :
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If E decides to stay in a forever, its payo¤ is UE (no reform) = wE (a) = (1� �). If � is su¢ ciently

small, then UE (no reform) < UE (reform), and reform takes place. However, when players are

su¢ ciently forward looking (� is large), then UE (no reform) > UE (reform). In this case,

� (a) = a. This example illustrates both of our main results. First, state a is made stable by

the instability of another state, c, which is preferred by those who are powerful in a. Second,

both E and M would be strictly better o¤ in c than in a, so the stable state starting from a

is Pareto ine¢ cient. It also illustrates that the set of stable states is larger when players are

forward-looking (when � is small, only d is stable; when � is large, both a and d are stable).

Example 2 Consider the choice of how inclusive society should be towards di¤erent political

and social views. A central issue facing most countries with signi�cant Muslim populations is

what types of political, social and economic rights to give to religious and secular groups. At one

end, countries such as Saudi Arabia and Iran deprive secular groups of all kinds of social and legal

rights. At the other end, Turkey, Syria, Algeria, and several European countries with Muslim

minorities have at times restricted participation of religious individuals in political and social

life. Both types of bans appear to be motivated, at least in part, by dynamic considerations.

Saudi Arabia and Iran are concerned that giving rights to non-religious groups would weaken

their regimes, while in Turkey bans on Islamist practices and parties have been motivated by

the so-called �slippery slope�argument that giving rights to religious groups would ultimately

reduce the rights of secular groups.3 Some commentators interpret the developments in Turkey

following greater inclusiveness towards religious groups and parties as supporting the predictions

of this slippery slope argument.

To capture these issues in the simplest possible way, consider a society consisting of N

individuals ranked in ascending order of religiosity. A state s consists of the set of individuals Z

who currently have the right to political participation and a policy � which determines tolerance

to secularism and religiosity. Individuals receive utility from their income and from policy �.

Suppose that the larger is the set of individuals with the right to political participation, the

greater are net incomes (e.g., because the society functions more cooperatively or individuals

with rights feel more secure and undertake greater investments or are less likely to rebel). We

�x a political rule, e.g., majority or supermajority rule, which determines who can choose both

� and the set of individuals who will have the right to political participation in the next period.
3On �slippery slope�arguments, see Schauer (1985), and on the con�ict between religious and secular groups,

see Roy (2009) and Rabasa and Larrabee (2008).
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This is a highly complex and, in our view, interesting social situation. It captures the �slip-

pery slope�argument as giving rights to previously-excluded religious individuals has short-run

economic bene�ts but could later deprive secular individuals of their political rights. More-

over, both the high discount factor and transaction costs assumptions appear plausible in this

context.4 In Section 6, we apply our general results to the study of this environment.

This example also enables us to investigate the question: can we change the constitution so as

to give the right to political participation while at the same time ban certain policies and certain

future constitutional changes? This issue can be analyzed within our framework by introducing

constitutions that require unanimity for certain types of changes (see also Barberà and Jackson,

2004). Such constitutions guarantee Pareto e¢ ciency. However, our analysis highlights the

reasons why constitutions that stipulate such unanimity rules may not be credible, e.g., when a

certain supermajority has su¢ cient de facto political power to challenge the unanimity clause.

Roberts (1999) and Barberà, Maschler, and Shalev (2001) can be viewed as major precursors

to our paper. Roberts (1999) studies dynamic voting in clubs in a society with N individuals,

where voting is by majority rule, individuals are ordered according to �single-crossing�prefer-

ences, and only clubs of the form f1; 2; : : : ; kg for di¤erent values of k are allowed. Barberà,

Maschler, and Shalev (2001) study a dynamic game of club formation in which any member of

the club can unilaterally admit a new agent.5 Laguno¤ (2006), who constructs a general model

of political reform and relates reform to the time-inconsistency of induced social rules, is another

precursor. Acemoglu and Robinson�s (2000, 2006) and Lizzeri and Persico�s (2004) analyses of

franchise extension and Barberà and Jackson�s (2004) model of constitutional stability are also

related and can be cast as applications of our general framework.

Two other closely related papers are Chwe (1994) and Gomes and Jehiel (2005). Chwe pro-

vides a model where payo¤s are determined by states and transitions from one state to another

are governed by exogenous rules to analyze the relationship between two distinct notions from

cooperative game theory, consistent and stable sets. However, in Chwe�s setup, neither a nonco-

4For example, in Turkey the �rst religious local administration in Istanbul quickly moved to restrict the ability
of certain restaurants to serve alcohol (though ultimately the most extreme measures were not successful), which is
consistent with frequent choices of actions and thus high discount factors. Furthermore, even minor constitutional
changes led to signi�cant con�ict and gridlocks, with potential economic and social costs, which is consistent with
signi�cant transaction costs.

5Barberà, Sonnenschein, and Zhou (1991) study a model of voting by quotas, so that a club admits a new
member if su¢ ciently many current members (more than the quota) vote in favor. This implies that there may
be many outcomes of voting at a given voting stage, while our assumptions impose that, at each voting stage,
there is always a unique status quo and a unique alternative.
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operative analysis nor characterization results are possible.6 Gomes and Jehiel study a related

environment with side payments. They show that a player may sacri�ce his instantaneous payo¤

to improve his bargaining position for the future, and that the equilibrium may be ine¢ cient

when the discount factor is small. In contrast, in our game Pareto dominated outcomes are not

only possible in general, but may emerge as unique equilibria and are more likely when discount

factors are close to 1. We also provide a full set of characterization (and uniqueness) results,

which are not present in Gomes and Jehiel (and in fact, with side payments, we suspect that

such results are not possible). Finally, in our paper a dynamically stable state depends on the

initial state, while in Gomes and Jehiel, as the discount factor tends to 1, there is �ergodicity�

(the ultimate distribution of states does not depend on the initial state).

Finally, our work is also related to the literatures on noncooperative coalition formation

and club theory.7 An important di¤erence between our approach and the previous literature

on coalition formation is that, motivated by political settings, we assume that the majority (or

supermajority) of the members of the society can impose their will on those players who are

not a part of the majority. This contrasts with the positive externalities and free-rider problems

studied by the previous literature. In addition, most of these works assume the possibility of

binding commitments (Ray and Vohra, 1997, 1999), while we suppose that players have no

commitment power.8

The rest of the paper is organized as follows. Section 2 introduces the general environ-

ment. Section 3 presents our axiomatic analysis. In Section 4, we prove the existence of a

(pure-strategy) Markov perfect equilibrium of the dynamic game for any agenda setting and

voting protocol and establish the equivalence between these equilibria and the axiomatic char-

acterization in Section 3. Section 5 applies our results when states belong to an ordered set,

while Section 6 uses our results to study the dynamics of political rights discussed in Example

2. Section 7 concludes. Appendix A contains main proofs; additional proofs, applications, and

examples are presented in Appendix B, which is available online.

6The link between Chwe�s consistent sets and our dynamically stable states is discussed in Appendix B.
7On noncooperative coalition formation, see, e.g., Konishi and Ray (2003), Mariotti (1997), Ray and Vohra

(1997, 1999), Seidmann and Winter (1998). On club theory, see Ellickson et al. (1999), Scotchmer (2001).
8Other related works include: Burkart and Wallner (2000) who develop an incomplete contracts theory of club

enlargement; Jehiel and Scotchmer (2001) who show that the requirement of a majority consent for admission to a
jurisdiction may be no more restrictive than an unrestricted right to migrate; Alesina, Angeloni, and Etro (2005)
who study the problem of EU enlargement; and Bordignon and Brusco (2003) who study the role of �enhanced
cooperation agreements� in EU enlargement.
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2 Environment

There is a �nite set of players I. Time is discrete and in�nite, indexed by t (t � 1). There is

a �nite set of states which we denote by S. Throughout the paper, jXj denotes the number of

elements of setX, so jIj and jSj denote the number of individuals and states, respectively. States

represent both di¤erent institutions a¤ecting players�payo¤s, and the distribution of political

power and the procedures for decision-making (e.g., sizes and identities of ruling coalitions, the

degree of supermajority, or the weights or powers of di¤erent agents). Although our game is

one of non-transferable utility, a limited amount of transfers can be incorporated by allowing

multiple (but still a �nite number of) states that have the same procedure for decision-making,

but di¤erent payo¤s across players.

The initial state is denoted by s0 2 S. This state may be a part of the description of the

game or chosen by Nature from S at random. For any t � 1, the state st 2 S is determined

endogenously. A nonempty set X � I is called a coalition, and we denote the set of coalitions

by C. Each state s 2 S is characterized by a pair
�
fwi (s)gi2I ;Ws

�
. Here, for each state s 2 S,

wi (s) is a (strictly) positive stage payo¤ assigned to individual i 2 I. Political institutions in

state s are described by the set of winning coalitions in state s, Ws, a (possibly empty) subset

of C. This allows us to summarize di¤erent political procedures, such as weighted majority or

supermajority rules, in an economical way. For example, if in state s a majority is required for

decision-making, Ws includes all subsets of I that form a majority; if in state s individual i is

a dictator, Ws contains all coalitions that include i.9 Since Ws is a function of the state, the

procedure for decision-making can vary across states.10

Throughout the paper, we maintain the following assumption.

Assumption 1 (Winning Coalitions) For any state s 2 S, Ws � C satis�es:

(a) If X;Y 2 C, X � Y , and X 2 Ws then Y 2 Ws.

(b) If X;Y 2 Ws, then X \ Y 6= ?.

Part (a) simply states that if some coalition X is winning in state s, then increasing the size

of the coalition will not reverse this. Part (b) rules out the possibility that two disjoint coalitions
9Political rules summarized by the Ws�s do not specify certain institutional details, such as who makes pro-

posals, how voting takes place and so on. These are speci�ed by the agenda-setting and voting protocols of our
dynamic game. We will show that these only have a limited e¤ect on equilibrium outcomes, justifying our focus
on Ws as a representation of �political rules�.
10Our environment allows for the case where some states, say s and s0, provide the same payo¤s for all players

but have di¤erent sets of winning coalitions.
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are winning in the same state. If Ws = ?, state s is exogenously stable. None of our existence

or characterization results depend on whether there is an exogenously stable state.

We introduce the following binary relations on S. For x; y 2 S, we write

x � y () 8i 2 I : wi (x) = wi (y) . (1)

In this case we call states x and y payo¤-equivalent, or simply equivalent. More important for

our purposes is the binary relation �z. For any z 2 S, �z is de�ned by

y �z x () fi 2 I : wi (y) � wi (x)g 2 Wz. (2)

Intuitively, y �z x means that there exists a coalition of players that is winning (in z) with

each of its members weakly preferring y to x. Note three important features about �z. First, it

contains information about stage payo¤s only. In particular, wi (y) � wi (x) does not mean that

individual i prefers a switch to state y rather than x. Whether or not he does so depends on the

continuation payo¤s following such a switch. Second, the relation �z does not presume any type

of coordination or collective decision-making among the members of the coalition in question.

It simply records the existence of such a coalition. Third, the relation �z is conditioned on z

since whether the coalition of players weakly preferring y to x is winning depends on the set of

winning coalitions, which is state dependent. With a slight abuse of terminology, if (2) holds, we

say that y is weakly preferred to x in z. In light of the preceding comments, this neither means

that all individuals prefer y to x, nor that there will necessarily be a transition from state x to

y� it simply designates that there exists a winning coalition of players, each obtaining a greater

stage payo¤ in y than in x. Relation �z is de�ned similarly by

y �z x () fi 2 I : wi (y) > wi (x)g 2 Wz. (3)

If (3) holds, we say that y is strictly preferred to x in z.11

The next assumption puts some joint restrictions on payo¤ functions and winning coalitions.

Assumption 2 (Preferences) Payo¤s fwi (s)gi2I;s2S satisfy the following properties:

(a) For any sequence of states s1; s2; : : : ; sk in S,

sj+1 �sj sj for all 1 � j � k � 1 =) s1 �sk sk:
11Relation � de�nes equivalence classes; if x � y and y � z, then x � z. In contrast, the binary relations

�z and �z need not even be transitive. Nevertheless, for any x; z 2 S, we have x �z x, and whenever Wz is
nonempty, we also have x �z x. From Assumption 1 we have that for any x; y; z 2 S, y �z x implies x �z y, and
similarly y �z x implies x �z y.
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(b) For any sequence of states s; s1; : : : ; sk in S with sj �s s for 1 � j � k and sj � sl for

1 � j < l � k;

sj+1 �s sj for all 1 � j � k � 1 =) s1 �s sk:

Moreover, if for x; y; s 2 S we have x �s s and y �s x, then y �s s.

Assumption 2 plays a major role in our analysis and ensures �acyclicity�(but is weaker than

�transitivity�). Part (a) rules out cycles of the form y �x x, z �y y, x �z z� that is, a cycle such

that in each state, a winning coalition of players strictly prefers the next state. Part (b) rules

out cycles of the form y �s x, x �s z, z �s y (unless the states x, y, and z are payo¤-equivalent).

As such, it also rules out any cycles of the form y �s x, z �s y, x �s z.12 It also imposes an

additional requirement which may be interpreted as �partial transitivity�.13

Although Assumptions 1 and 2 rule out several interesting environments, they are natural

given our interest in obtaining general characterization results. More importantly, they are

satis�ed in most dynamic political economy models (see Theorem 4 and applications discussed

in Appendix B). In addition to Assumptions 1 and 2, we obtain additional uniqueness results

by imposing the following (stronger) requirement.

Assumption 3 (Comparability) For x; y; s 2 S such that x �s s, y �s s, and x � y, either

y �s x or x �s y.

Assumption 3 means that if two states x and y are strictly preferred to s (in s), and they

are not equivalent, then x and y are �s-comparable. This assumption is not necessary for our

main results but is su¢ cient to guarantee uniqueness of equilibrium.

3 Axiomatic Characterization

Before specifying the details of agenda-setting and voting protocols, we provide an abstract

characterization of stable states. This axiomatic analysis has two purposes. First, it illustrates

that the key economic forces that arise in the context of dynamic collective decision-making are

largely independent of the details of agenda-setting and voting protocols. Second, the results in

this section are a preparation for the characterization of the equilibrium of the dynamic game

12Neither part of Assumption 2 is implied by the other. Examples 6 and 7 in Appendix B illustrate the types
of cycles that can arise when either 2(a) or 2(b) fails.
13Transitivity would require that for any s; x, y and z, y �s x, x �s z implies y �s z. Instead, our condition

imposes this only when z = s.
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introduced in the next section. In particular, our main result, Theorem 2, will make use of this

axiomatic characterization.

The key economic insight enabling an axiomatic characterization is that with su¢ ciently

forward-looking behavior, an individual should not wish to transit to a state that will ultimately

lead to another state that gives her lower utility. This basic insight enables a tight characteriza-

tion of (axiomatically) stable states.

More formally, our axiomatic characterization determines a set of mappings � such that for

any � 2 �, � : S ! S assigns an axiomatically stable state s1 2 S to each initial state s0 2 S.

We impose the following three natural axioms on �.

Axiom 1 (Desirability) If x; y 2 S are such that y = � (x), then either y = x or y �x x.

Axiom 2 (Stability) If x; y 2 S are such that y = � (x), then y = � (y).

Axiom 3 (Rationality) If x; y; z 2 S are such that z �x x, z = � (z), and z �x y, then

y 6= � (x).

All three axioms are natural in light of what we have discussed above. Axiom 1 requires

that the society should not permanently move from state x to another state y unless there is

a winning coalition that supports this transition. Axiom 2 encapsulates the stability notion

discussed above; if some state is not dynamically stable, it cannot be the ultimate stable state

for any initial state. Axiom 3 imposes the reasonable requirement that if there exists a stable

state z preferred to both x and y by winning coalitions in state x, then � should not pick y

in x.14 Note that while all three axioms refer to properties of �, they are closely related to

underlying individual preferences that � aggregates.

We next de�ne the set � formally and state the relationship between axiomatically stable

states and �.

De�nition 1 (Axiomatically Stable States) Let � � f� : S ! S: � satis�es Axioms 1�3g.

A state s 2 S is (axiomatically) stable if � (s) = s for some � 2 �. The set of stable states

(�xed points) for mapping � 2 � is D� = fs 2 S: � (s) = sg and the set of all stable states is

D = fs 2 S: � (s) = s for some � 2 �g.
14Assumption 2b guarantees that if y �x x and z �x y, then z �x x. Thus if Axiom 1 is satis�ed, then the

requirement z �x x may be dropped in Axiom 3. We do not do this since the current form of Axiom 3 is weaker
and also better captures the idea of �group rationality�.
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The next theorem establishes the existence of stable states and paves the way for Theorem

2, which establishes the equivalence between equilibria of the dynamic game (de�ned in Section

4 below) and stable sets of mappings � 2 �. A proof of Theorem 1 is provided in Appendix A.15

Theorem 1 (Axiomatic Characterization of Stable States) Suppose Assumptions 1 and

2 hold. Then:

1. The set � is non-empty. That is, there exists a mapping � satisfying Axioms 1�3.

2. Any � 2 � can be recursively constructed as follows. Order the states as
n
�1; :::; �jSj

o
such that for any 1 � j < l � jSj, �l ��j �j. Let � (�1) = �1. For each k = 2; :::; jSj, de�ne

Mk =
�
s 2

�
�1; : : : ; �k�1

	
: s ��k �k and � (s) = s

	
. (4)

Then

� (�k) =

�
�k ifMk = ?

s 2Mk: @z 2Mk with z ��k s ifMk 6= ?
. (5)

(If there exist more than one s 2 Mk such that @z 2 Mk with z ��k s, pick any of these; this

corresponds to multiple � functions).

3. The stable sets of any two mappings �1; �2 2 � coincide, i.e., D�1 = D�2 = D.

4. If, in addition, Assumption 3 holds, then for any two mappings �1 and �2 in �, �1 (s) �

�2 (s) for all s 2 S.

Theorem 1 provides a simple recursive characterization of the set of mappings � that satisfy

Axioms 1�3. Intuitively, Assumption 2(a) ensures that there exists some state �1 2 S such that

there does not exist another s 2 S with s ��1 �1. Taking �1 as base, we order the states asn
�1; :::; �jSj

o
according to relation��jas indicated in part 2 of the theorem. Then, we recursively

construct the set of statesMk � S, k = 2; :::; jSj, that includes stable states that are preferred

to state �k (that is, states s such that � (s) = s and s ��k �k). When the set Mk is empty,

there exists no stable state that is preferred to �k (in �k) by members of a winning coalition. In

this case, we have � (�k) = �k. WhenMk is nonempty, there exists such a stable state and thus

� (�k) = s for some such s. In addition to its recursive (and thus easy-to-construct) nature, this

characterization is useful as it highlights the fundamental property of stable states emphasized

in the Introduction: a state �k is made stable precisely by the absence of winning coalitions in

15This theorem may be proved under weaker assumptions. Part (b) of Assumption 2 may be substituted by
the following condition: For any sequence of states s; s1; : : : ; sk in S with sj �s s for 1 � j � k, sj+1 �s sj for
all 1 � j � k � 1 would imply s1 �s sk.
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�k favoring a transition to another stable state (i.e., by the fact that Mk = ?). This insight

plays an important role in applications.

Part 3 of Theorem 1 shows that the set of stable states D does not depend on the speci�c

� chosen from �. For two di¤erent maps �1 and �2 in �, it is possible that �1(s0) 6= �2(s0) for

some initial state s0, but the ranges of these mappings are the same. These ranges, and thus

the set of stable states D, are uniquely determined by preferences and the structure of winning

coalitions.16 Finally, part 4 shows that when Assumption 3 holds, any stable states resulting

from an initial state must be payo¤-equivalent. In other words, if s1 = �1 (s0) and s2 = � (s0),

then s1 and s2 might di¤er in terms of the structure of winning coalitions, but they must give

the same payo¤s to each individual.

We have motivated the analysis leading up to Theorem 1 with the argument that, when

agents are su¢ ciently forward-looking, only axiomatically stable states should be observed (at

least in the �long run�, i.e., for t � T for some �nite T ). The analysis of the dynamic game

introduced in the next section substantiates this interpretation.

4 Noncooperative Foundations of Dynamically Stable States

We now describe the extensive-form game capturing dynamic interactions in the environment

of Section 2 and characterize Markov Perfect equilibria (MPE) of this game. The main result is

the equivalence between the MPE of this game and the set � in Theorem 1.

We �rst specify preferences and introduce transaction costs of changing states. At each date

t, individual i maximizes discounted utility

Ui (t) = (1� �)
X1

�=t
���tui (�) , (6)

where � 2 (0; 1) is a common discount factor. We also impose:

Assumption 4 (Payo¤ s) The stage payo¤s in (6) are given by

ui (t) =

�
wi (st) if st = st�1
~wi if st 6= st�1

(7)

For each i 2 I and any state x 2 S, we have

~wi < wi (x) .

16 In Appendix B, we relate the set D to two concepts from cooperative game theory, von Neumann-
Morgenstern�s stable set and Chwe�s largest consistent set. Under Assumptions 1 and 2, both sets coincide
with D.
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Assumption 4 introduces a �transaction cost� of state transitions: in any period in which

there is a transition, each player obtains a lower payo¤ than she would have done without the

transition. Given our normalization wi (s) > 0, Assumption 4 is satis�ed, e.g., if ~wi = 0 for all

i: Since we focus on the case of � close to 1, this transaction cost has little e¤ect on discounted

payo¤s.17 In particular, once (and if) a dynamically stable state s is reached, individuals receive

wi (s) at each date thereafter. Substantively, this transaction cost is introduced to guarantee

the existence of a pure-strategy MPE.18

We next specify: (1) a protocol for a sequence of agenda-setters and proposals in each state;

and (2) a protocol for voting over proposals. Voting is sequential and is described below; the

exact sequence in which votes are cast will not matter.19 We represent the protocol for agenda-

setting using a sequence of mappings, f�sgs2S , and refer to it simply as a protocol. Let Ks be

a natural number for each s 2 S. Then, �s is de�ned as a mapping

�s : f1; : : : ;Ksg ! I [ S

for each state s 2 S. Thus, each �s speci�es a �nite sequence of elements from I [ S, and

determines the sequence of agenda-setters and proposals (here Ks is the length of this sequence

for state s). If �s (k) 2 I, then it denotes an agenda-setter who will make a proposal from the set

of states S. Alternatively, if �s (k) 2 S, then it directly corresponds to an exogenously-speci�ed

proposal over which individuals vote. Therefore, the extensive-form game is general enough to

include both proposals for a change to a new state initiated by agenda-setters and exogenous

proposals. We make the following assumption on f�sgs2S :

Assumption 5 (Protocols) For each s 2 S, one (or both) of the following two conditions

holds:

(a) For any state z 2 S n fsg, there exists k : 1 � k � Ks such that �s (k) = z.

(b) For any player i 2 I there exists k : 1 � k � Ks such that �s (k) = i.
17More precisely, de�ne �" = maxi2I;x2S jwi (x)� ~wij, which is a natural measure of the size of transaction

costs. Then for any �", there exists �0 < 1 such that Theorem 2 holds for � > �0. This fact, which is proved in
Appendix B, implies that payo¤s from the game considered here are arbitrarily close to an environment without
transaction costs.
18Examples 4 and 5 in Appendix B demonstrate that if the transaction cost is removed from (7), a (pure-

strategy) equilibrium may fail to exist or may include cycles. While these possibilities are potentially interesting,
they appear to be non-robust. Alternative game forms (e.g., those that assume a small cost of voting) lead to
results similar to what we derive with the current speci�cation.
19The assumption of sequential voting allows us to focus on Markov Perfect equilibria without further re�ne-

ments that are typically required to rule out counterintuitive voting equilibria. Acemoglu, Egorov, and Sonin
(2009) suggest an equilibrium re�nement, Markov Trembling-Hand Perfect equilibrium, which implies identical
equilibrium behavior for games with simultaneous voting and corresponding games with sequential voting.
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This assumption implies that either sequence �s contains all possible states other than the

�status quo�s as proposals or it allows all possible agenda-setters to eventually make a proposal

before the voting round ends. We assume that protocol �s is �xed for each state s; di¤erent

states might have the same payo¤s and winning coalitions under di¤erent protocols.

In the beginning, at t = 0, state s0 2 S is determined (either as part of the description of

the environment or randomly). Subsequently (for t � 1), the timing of events is as follows:

1. Period t begins with state st�1 inherited from the previous period.

2. For k = 1; : : : ;Kst�1 , the k
th proposal Pk;t is determined as follows. If �st�1 (k) 2 S, then

Pk;t = �st�1 (k). If �st�1 (k) 2 I, then player �st�1 (k) chooses Pk;t 2 S.

3. If Pk;t 6= st�1, then there is sequential voting between Pk;t and st�1 (we will show that

the sequence of voters has no e¤ect on the equilibrium outcome). Each player votes yes (for

Pk;t) or no (for st�1). Let Yk;t denote the set of players who voted yes. If Yk;t 2 Wst�1 , then

alternative Pk;t is accepted; otherwise (if Yk;t =2 Wst�1), it is rejected. If Pk;t = st�1, there is no

voting and we adopt the convention that in this case Pk;t is rejected.

4. If Pk;t is accepted, then a transition to state st = Pk;t takes place, and the period ends. If

Pk;t is rejected or if there is no voting because Pk;t = st�1 and k < Kst�1 , then the game moves

to step 2 with k increased by 1; if k = Kst�1 , the next state is st = st�1, and the period ends.

5. In the end of the period, each player receives stage payo¤ ui (t).

A MPE is de�ned in the standard fashion as a subgame perfect equilibrium (SPE) where

strategies are functions of �payo¤-relevant states�only. Here payo¤-relevant states are di¤erent

from the states s 2 S described above, since the proposal under consideration, as well as votes

already cast, are also payo¤ relevant for the continuation game (see Appendix B for a formal

de�nition). Any Markovian strategy pro�le � in the dynamic game de�nes a transition mapping

on S, s 7�! s�, where st = s�t�1 is the next period�s state given state st�1. In what follows, we

use the terms MPE and equilibrium interchangeably. Next, we de�ne dynamically stable states.

De�nition 2 (Dynamically Stable States) State s1 2 S is a dynamically stable state

if there exist an initial state s0 2 S, a set of protocols f�sgs2S , an MPE strategy pro�le �, and

T <1 such that along the equilibrium path we have st = s1 for all t � T .

Put di¤erently, s1 is a dynamically stable state if it is reached in some �nite time T and

is repeated thereafter� st = s1 for all t � T . Our objective is (i) to determine whether

dynamically stable states exist in the dynamic game described above and to characterize them
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as a function of the initial state s0 2 S, and (ii) to establish the equivalence between dynamically

and axiomatically stable states characterized in the previous section.

We consider situations in which � is greater than some threshold �0 2 (0; 1) derived as an

explicit function of payo¤s in Appendix A. The main result of the paper is summarized in the

following theorem.

Theorem 2 (Characterization of Dynamically Stable States) Suppose that Assumptions

1, 2, 4, and 5 hold. Then there exists �0 2 (0; 1) such that for all � > �0, the following is true.

1. For any � 2 � there exists a set of protocols f�sgs2S and a pure-strategy MPE � of the

game such that for any s0 2 S; s�t = � (s0) for any t � 1; that is, the game reaches � (s0)

after one period and stays in this state thereafter. Therefore, for each s0 2 S; s = � (s0) is a

dynamically stable state.

2. Moreover, for any set of protocols f�sgs2S there exists a pure-strategy MPE. Any such

MPE � has the property that there exists � 2 � such that for any initial state s0 2 S, s�t = � (s0)

for all t � 1. Therefore, all dynamically stable states are axiomatically stable.

3. If, in addition, Assumption 3 holds, then the MPE is essentially unique: For any set of

protocols f�sgs2S , any pure-strategy MPE �; any initial state s0 2 S, and any � 2 �, s�0 � � (s0).

Parts 1 and 2 of Theorem 2 state that the set of dynamically stable states and the set of

stable states D de�ned by axiomatic characterization in Theorem 1 coincide; any mapping � 2 �

that satis�es Axioms 1�3 is the outcome of a pure-strategy MPE and any such MPE implements

the outcome of some � 2 �. An important implication is that the recursive characterization of

axiomatically stable states in (5) can be used to calculate dynamically stable states.

The equivalence of the results of Theorems 1 and 2 is intuitive. Had players been shortsighted

(impatient), they would care mostly about the payo¤s in the next state or the next few states that

would arise along the equilibrium path. However, when players are su¢ ciently patient (� > �0),

they care more about payo¤s in the ultimate state than the payo¤s along the transitional states.

Consequently, winning coalitions are not willing to move to a state that is not (axiomatically)

stable according to Theorem 1.

The proof of Theorem 2 is technically involved, but the idea is intuitive. For a given mapping

� 2 �, we conjecture the continuation payo¤s from accepting a particular alternative z in state

s. We construct an MPE in the truncated game starting in state s in period t with terminal

payo¤s given by the continuation payo¤s. We then show that transitions are given by �, and
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the continuation payo¤s are as conjectured. Conversely, if � is a MPE, we show that transitions

starting from any state s will eventually converge to some state  (s), and then use Assumption

2(b) to show that any equilibrium path must lead to a state that is payo¤-equivalent to  (s).

Finally, we verify that mapping  (s) satis�es Axioms 1� 3.

As illustrated by Example 1 in the Introduction, there is a tension between distribution

of payo¤s in a state and distribution of political power in the same state. Sometimes, Pareto

improving transitions are impossible without changing the balance of political power. The next

theorem clari�es the conditions under which Pareto e¢ ciency will arise.

Theorem 3 (Pareto E¢ ciency) Suppose that for every two states x and y there is a state

z such that fwi (z)gi2I = fwi (y)gi2I and Wz � Wx, and no state is exogenously stable (i.e.,

Ws 6= ? for each s 2 S). Then, every (axiomatically or dynamically) stable state is Pareto

e¢ cient. Otherwise, stable states may be Pareto ine¢ cient.

The positive result is that whenever the political environment is such that the current

decision-makers can alter the economic allocation without giving up political power (which is

captured here by the fact that a transition from x to z achieves the same payo¤s as a transition

to y without reallocating power to other groups), only Pareto e¢ cient states are stable.

5 Ordered States and Agents

Theorems 1 and 2 provide a complete characterization of axiomatically and dynamically stable

states as a function of the initial state s0 2 S provided that Assumptions 1 and 2 are satis�ed.

While the former is a very natural assumption and easy to check, Assumption 2 may be somewhat

more di¢ cult to verify. In this section, we show that when the sets of states S and agents

I admit a linear order according to which individual stage payo¤s satisfy single-crossing or

single-peakedness properties (and the set of winning coalitions fWsgs2S satis�es some natural

additional conditions), Assumption 2 is satis�ed. This result enables more straightforward

application of our main theorems in a wide variety of circumstances.

In a number of applications, the set of states S has a natural order, so that any two states

x and y can be ranked. When such an order exists, we can take, without loss of any generality,

S to be a subset of R. Similarly, let I � R. Given these orders on the set of states and the set
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of individuals, we introduce certain standard restrictions on preferences.20 All of the following

restrictions and de�nitions refer to stage payo¤s and are thus easy to verify.

De�nition 3 (Single-Crossing and Single-Peakedness) Given I � R, S � R, and

fwi (s)gi2I;s2S , the single-crossing condition holds if for any i; j 2 I and x; y 2 S such

that i < j and x < y, wi (y) > wi (x) implies wj (y) > wj (x) and wj (y) < wj (x) implies

wi (y) < wi (x).

Given S � R and fwi (s)gi2I;s2S , preferences are single-peaked if for any i 2 I there exists

a state xi such that for any y; z 2 S, y < z � xi or xi � z > y implies wi (y) � wi (z).

We next introduce a generalization of the notion of the �median voter� to more general

political institutions (e.g., those involving supermajority rules within the society or a club).

De�nition 4 (Quasi-Median Voter) Given I � R and fWsgs2S , player i 2 I is a quasi-

median voter (in state s) if for any X 2 Ws such that X = fj 2 I : a � j � bg for some

a; b 2 R we have i 2 X.

Denote the set of quasi-median voters in state s by Ms: Lemma 1 in the proof of Theorem

4 shows that, provided that Assumption 1 is satis�ed, this set is nonempty.

De�nition 5 (Monotonic Median Voter Property) Given I � R and S � R, the set

of winning coalitions fWsgs2S has monotonic median voter property if for each x; y 2 S

satisfying x < y there exist i 2Mx, j 2My such that i � j.

The last de�nition is general enough to encompass majority and supermajority voting as well

as those voting rules that apply to a subset of players (such as club members or those that are

part of a restricted franchise). Finally, we also impose the following weak genericity assumption.

Assumption 6 (Weak Genericity) Preferences fwi (s)gi2I;s2S and the set of winning coali-

tions fWsgs2S are such that for any x; y; z 2 S, x �z y implies x �z y or x � y.

Assumption 6 is satis�ed if no player is indi¤erent between any two states (though it does

not rule out such indi¤erences). Next, we present the main result of this section.

20Rothstein (1990) and Austen-Smith and Banks (1999) study another restriction, order-restricted preferences.
As Gans and Smart (1996) show, this notion is equivalent to single-crossing and is thus covered by our framework.
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Theorem 4 (Characterization with Ordered States) For any I � R, S � R, preferences

fwi (s)gi2I;s2S , and winning coalitions fWsgs2S satisfying Assumption 1 and Assumption 6:

1. If single-crossing condition and monotonic median voter property hold, then Assumption

2 is satis�ed and thus Theorems 1 and 2 apply.

2. If preferences are single-peaked and for any x; y 2 S and any X 2 Wx, Y 2 Wy we have

X \ Y 6= ?, then Assumption 2 is satis�ed and thus Theorems 1 and 2 apply.

Part 2 of Theorem 4 requires a stronger condition than the monotonic median voter property.

Because this condition implies the monotonic median voter property, part 1 of the theorem

continues to be true under the hypothesis of part 2. However, the converse is not true.

6 Application

In this section, we apply our results to the dynamics of political rights discussed in Example

2 in the Introduction. Consider a society I = f1; : : : ; ng consisting of n groups (or individuals)

ranked in ascending order of religiosity, so that 1 is most secular and n is most religious. There

is a one-dimensional policy space indexed by � 2 R =
�
�1; : : : ; �r

	
, where higher � corresponds

to greater tolerance towards religiosity and less tolerance towards non-religious individuals.

In each period t, the set of individuals who have the right to political participation is Zt,

a connected subset of I. We assume that at each date, political decisions are made by �-

(super)majorities (i.e., coalitions of at least � jZtj members). These decisions include the deter-

mination of which subset of the society will have the right for political participation in the next

period (i.e., the subset Zt+1) and the next period�s religiosity policy �t+1. The state can thus

be represented by s = (�; Z) where � 2 R and Z is a connected subset of I.

We assume that each individual cares about the policy towards religiosity � and also about

the extent of political participation in society. For example, higher political participation may

increase income or the amount of public goods, or decrease political instability. Since these

e¤ects are likely to a¤ect all players equally, we assume that preferences over states are given by

wi (s) = vi (�) + V (Z) ,

where V (Z) is any function, and vi (�) satis�es the strict increasing di¤erences condition:

vi (�)� vj (�) is strictly increasing in � whenever i > j.
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This condition implies, in particular, that the sequence of ideal policies of agents, f�̂ (i)gni=1,

is (weakly) monotonically increasing. It is satis�ed, for example, if individuals had quadratic

utility function vi (�) = � (�� �̂i)2.

Since an �-(super)majority in Z chooses the religiousity policy for the next period, �, it is

natural that this policy choice is between �̂minMZ
and �̂maxMZ

, where, as before, MZ is the set

of quasi-median voters. Formally, the set of states S consists of all pairs (�; Z), where Z is a

connected subset of I and �̂minMZ
� � � �̂maxMZ

.

This example speci�es a rich and highly complex social situation. Granting political partic-

ipation to previously-excluded religious [resp., secular] individuals will have short-run economic

bene�ts, but could unleash a political process that might later on deprive secular [resp., reli-

gious] individuals of their political rights. The richness of the environment results from the fact

that individuals with political rights are simultaneously choosing a policy � and the subset of

the society Z that will have political rights in the future. Despite this, the tools and insights

developed so far can be applied to derive a sharp characterization of the structure of equilibria.

We �rst establish that Assumptions 1 and 2 are satis�ed, so that the dynamic equilibrium in

this environment can be characterized by applying Theorems 1 and 2. To simplify the exposition

of the results, we assume that wi (s) 6= wi (s
0) for any i 2 I and s 6= s0, which ensures that

Assumption 6 holds. Thus, we can use � (s0) to denote the state, both axiomatically and

dynamically stable, that corresponds to intitial state s0.

Proposition 1 1. For any degree of (super)majority �, Assumptions 1 and 2 are satis�ed

and thus Theorems 1 and 2 apply in this environment. In particular, there exists �0 < 1

such that for any discount factor � > �0; an equilibrium exists.

2. Assume V (Z) to be (strictly) increasing (whenever Z 6= Z 0; Z � Z 0 implies V (Z) <

V (Z 0)). Then for any initial state s0, � (s0) = s = (Z; �) with Z containing at least one

of the extreme players, 1 or n.

To prove the �rst part, we enumerate the states
�
s1; : : : ; sjSj

	
so that � (s) is weakly increas-

ing. We then establish that strict increasing di¤erences and monotonic median voter properties

hold, and use Theorem 4.21 The second part of Proposition 1 shows that when V is an increas-

ing function, stable states provide political rights to at least one of the extreme members of
21However, note that the original environment is not ordered and this theorem could not have been applied

directly; we can only apply it after undertaking this enumeration.
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the society. Intuitively, this holds because the threat to the current set of individuals holding

power comes either from greater religiosity or greater secularism. Thus, there will necessarily

be expansion towards the less threatening side.

This result does not rule out that political rights will be given to everybody in society.

The next proposition studies this question. In what follows, we assume that V (Z) is strictly

increasing and vi (�) is single-peaked for all i 2 I.

Proposition 2 De�ne A � V (I)�maxi2I V (I n fig) and Ai � V (I)� V (fig).

1. Suppose v1 (�̂ (1)) � v1 (�̂ (minMI)) < A and vn (�̂ (n)) � vn (�̂ (maxMI)) < A. Then for

any initial state s, Z (� (s)) = I.

2. Suppose v1 (�̂ (1)) � v1 (�̂ (minMI)) > A1 and vn (�̂ (n)) � vn (�̂ (maxMI)) > An. There

exists k 2 N such that if the initial state s0 satis�es jZ (s0)j � k, then: (i) when Z0 includes

the middle player (or at least one of the two middle players if n is even), Z (� (s0)) = I,

and (ii) when Z0 includes one of the extreme players, Z (� (s0)) 6= I.

3. If � > n�1
n , i.e., the rule is unanimity, then for any initial state s0, Z (� (s0)) = I.

The �rst part of this proposition shows that if utility gains from greater political participa-

tion are su¢ ciently large (su¢ cient to compensate extremists for a change in policies towards

religiosity), then political participation is granted to all parties. More interestingly, the second

part shows that when these gains are not su¢ ciently large, political participation is granted to

all if political power initially rests with moderates and not granted if it rests with one of the

extremes.

The third part asserts that if the decision rule is unanimity, then political rights can be

extended to all individuals because the status quo religious policy may be preserved in this case.

Intuitively, unanimity guarantees that political power will not shift to extremists of the opposite

conviction and thus enables expansion of political participation.22 This �nal result raises the

question of whether the groups that are currently powerful can introduce a unanimity clause into

the current constitution or set of rules in order to cement their political power even as reforms

are implemented. While this may be feasible under certain circumstances, we believe that it is in

22This is similar to the general result in Theorem 3, which shows that when a policy may be changed without
undermining the power of currently powerful players, equilibria are necessarily Pareto e¢ cient. (Recall that only
states with full participation are Pareto e¢ cient in this application).
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general not possible to grant political participation to new groups and individuals but e¤ectively

take away their ability to implement signi�cant future policy changes by introducing unanimity

clauses or other restrictions. (One reason is that this would go against the spirit of current

allocation of political power determining current policy choices and reforms.)

Finally, we consider an even richer environment where individuals also choose the degree of

(super)majority rule �. In particular, now a state is s = (�; Z; �), with � 2 A, where A �
�
1
2 ; 1
�

is a �nite set. Then, since A is a �nite set, our previous results yield the following proposition.

Proposition 3 1. In this environment, Assumptions 1 and 2 are satis�ed and thus Theorems

1 and 2 apply.

2. Suppose that A contains � > n�1
n . Then for any equilibrium and for any state s0,

Z (� (s0)) = I.

This proposition demonstrates the applicability of our results in the environment in which

the degree of supermajority necessary for future decisions is also a collective choice. Again,

whenever unanimity can be imposed, full participation is guaranteed. Intuitively, they can

make any (and every) individual a veto player, preventing future policy changes. We should,

however, reiterate at this point that this result does not imply that changing the decision rule

to unanimity is always or often feasible. In many relevant situations, including those mentioned

in the Introduction and several we discuss in Appendix B, it is a hardwired feature that future

decisions will be made by a (weighted) majority of those who participate in future decision

making, and their ability to change policies and laws cannot be restricted by past unanimity

clauses or constitutional requirements.23 Along these lines, for example, those worried about the

�slippery slope�of giving more rights to religious groups in Turkey fear that any constitutional

guarantees can be changed in the future.

7 Conclusion

A central feature of collective decision-making in many social situations, such as societies choos-

ing their constitutions or institutions, leaders building political coalitions, countries joining in-

ternational unions, or private clubs deciding on their membership, is that the rules that govern

regulations and procedures for future decision-making, and inclusion and exclusion of members

23See Acemoglu, Egorov and Sonin (2008) for an example.
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are made by the current members and under the current regulations. This feature implies that

dynamic collective decisions must recognize the impact of current decisions on future choices.

We developed a framework for a systematic study of this class of problems. We provided

both an axiomatic and a noncooperative characterization of stable states and showed that the

set of (dynamically) stable states can be computed recursively. This recursive characterization

highlights that a particular state s is stable if no other stable state makes a winning coalition

(in s) better o¤. This implies that stable states need not be Pareto e¢ cient; there may exist a

state that provides higher payo¤s to all individuals, but is itself not stable.

Our analysis relies on several substantive and technical assumptions. Substantive assump-

tions, such as a minimum amount of acyclicity, are essential for our approach. Others, the

technical ones, are adopted for convenience and can be relaxed, though often at the cost of fur-

ther complication. Among possible extensions, most interesting might be to introduce stochastic

elements so that the set of feasible transitions or the distribution of powers stochastically vary

over time, and to include capital-like state variables so that some subcomponents of the state

have autonomous dynamics.
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Appendix A

Proof of Theorem 1

(Part 1) We �rst construct, by induction, a sequence of states
n
�1; :::; �jSj

o
such that

if 1 � j < l � jSj , then �l ��j �j . (A1)

Assumption 2(a) implies that for any nonempty collection of states Q � S, there exists z 2 Q

such that for any x 2 Q, x �z z. Applying this result to S, we obtain �1. Now, suppose we

have de�ned �j for all j � k � 1, where k � jSj. Applying the same result to the collection of

states S n
�
�1; : : : ; �k�1

	
, we conclude that there exists �k satisfying (A1) for each k.

The second step is to construct, again by induction, a candidate mapping � : S ! S. For

k = 1, let � (�k) = �k. Suppose we have de�ned �
�
�j
�
for all j � k � 1 where 2 � k � jSj.

De�ne the collection of statesMk as in (4). This is the subset of states for which � has already

been de�ned and which satisfy � (s) = s and are preferred to �k within �k. If Mk is empty,

then we de�ne � (�k) = �k. IfMk is nonempty, then take � (�k) = z 2Mk such that

s ��k z for any s 2Mk (A2)

(applying Assumption 2(b) toMk, we get that there exists z 2Mk such that s ��k z, and thus

s ��k z, for all s 2Mk). Proceeding inductively for all 2 � k � jSj, we obtain � as in (5).

To complete the proof, we need to verify that mapping � in (5) satis�es Axioms 1�3. This is

straightforward for Axioms 1 and 2. In particular, by construction, either � (�k) = �k (in that

case these axioms trivially hold), or � (�k) is an element ofMk. In the latter case, � (�k) ��k �k
and � (� (�k)) = � (�k) by (4). To check Axiom 3, suppose that for some state �k there exists

y such that y ��k �k, y = � (z), and y ��k � (�k). Then y ��k �k, combined with condition

(A1), implies that y 2
�
�1; : : : ; �k�1

	
, and therefore y 2Mk. But then y ��k � (�k) contradicts

(A2). This means that such y does not exist, and therefore Axiom 3 is satis�ed.
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(Part 2) This statement is equivalent to the following: if, given a sequence
n
�1; :::; �jSj

o
with the property (A1), � (�k) does not satisfy (5) for some k, then � does not satisfy Axioms

1�3. Suppose �rst that � (�k) is not given by (5) at k = 1. Then � (�1) 6= �1, so � (�1) = �l

for l > 1. In this case, � does not satisfy Axiom 1, because �l ��1 �1 by (A1). Now, let k > 1

be the smallest k for which � (�k) is not given by (5). Suppose, to obtain a contradiction, that

Axioms 1�3 hold. ThenMk in (4) is well-de�ned, and eitherMk = ? orMk 6= ?. IfMk = ?

and � (�k) is not given by (5), then � (�k) 6= �k. Then, Axioms 1 and 2 imply � (�k) ��k �k
and � (� (�k)) = � (�k). Since Mk = ?, we must have that � (�k) = �l for l > k, but in this

case � (�k) ��k �k contradicts (A1). This contradiction implies that � violates either Axiom

1 or Axiom 2 (or both). If Mk 6= ?, then consider �l = � (�k). If l > k, then Axiom 1 is

violated. If l = k, then � violates Axiom 3 (to see this, take any z 2Mk 6= ? and observe that

z ��k �k, z ��k � (�k) and � (z) = z). If l < k, then Axiom 1 and Axiom 2 imply � (�k) 2Mk.

Then, since � (�k) is not given by (5), there exists some y 2Mk such that y ��k � (�k). But in

this case � violates Axiom 3, since y ��k � (�k), y ��k �k, and � (y) = y). We have obtained

contradictions in all possible cases.

(Part 3) Suppose, to obtain a contradiction, that D�1 6= D�2 . Then 9k : 1 � k � jSj such

that �j 2 D�1 , �j 2 D�2 for all j < k, but either �k 2 D�1 and �k =2 D�2 , or �k =2 D�1 and

�k 2 D�2 . Without loss of generality, assume that �k 2 D�1 and �k =2 D�2 . Then part 2 implies

that �2 (�k) = �l for some l < k. Applying Axioms 1 and 2 to mapping �2, we obtain �l ��k �k
and �2 (�l) = �l; the latter implies that �l 2 D�2 . Since, by hypothesis, �j 2 D�1 , �j 2 D�2
for all j < k, we have �l 2 D�1 . Therefore, �l ��k �k, �l ��k �1 (�k) (because �1 (�k) = �k),

and �1 (�l) = �l, but this violates Axiom 3 for mapping �1.

(Part 4) Suppose Assumption 3 holds. Suppose, to obtain a contradiction, that for some

state s, �1 (s) � �2 (s). Part 3 of this Theorem implies that �1 (s) = s , �2 (s) = s; since

�1 (s) � �2 (s), we must have that �1 (s) 6= s 6= �2 (s). Axiom 1 then implies �1 (s) �s s,

�2 (s) �s s, and Assumption 3 implies that either �1 (s) �s �2 (s) or �2 (s) �s �1 (s). Without

loss of generality, suppose that the former is the case. Then for y = �2 (s) there exists z = �1 (s)

such that z �s y, z �s s, and �2 (z) = z (the latter holds because �1 (s) = s by Axiom 2,

and then �2 (s) = s by part 3 of this Theorem). Then we can apply Axiom 3 to �2 and s and

conclude that �2 (s) 6= y, a contradiction. �
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Proof of Theorem 2

(Part 1) Assume � satis�es the following conditions:

for any i 2 I and x; y 2 S, (A3)

wi (x) < wi (y) implies wi (x) <
�
1� �jSj

�
~wi + �

jSjwi (y) .

To prove part 2, we will also need the following conditions:

for any i 2 I and x; y; z 2 S, (A4)

wi (x) < wi (y) implies
1� �
�

(wi (z)� (1� �) ~wi) + �wi (x) < wi (y)

In total, there is a �nite number of conditions in (A3) and (A4). Therefore, there exists �0 2

(0; 1) such that for all � > �0, (A3) and (A4) hold.

Pick any � 2 � and any s0 2 S: We construct a MPE of the game such that for each period

t � 1, st = � (st�1). For i 2 I and s; q 2 S, let

Vi (s; q) =

�
(1� �)wi (s) if s = q
(1� �) ~wi if s 6= q

�
+

�
�wi (� (q)) if � (q) = q

� (1� �) ~wi + �2wi (� (q)) if � (q) 6= q

�
. (A5)

In the equilibrium we construct below, Vi (s; q) will be the continuation payo¤ of i as a function

of the current state s and the accepted proposal q. In the remainder, we drop time indices.

For each s 2 S, take Ks � jSj�1. Take �s (�) such that Assumption 5 holds, and if � (s) 6= s,

then �s (Ks) = � (s). Consider strategy pro�le �� constructed as follows: Each i 2 I votes for

proposal Pk (says yes) if and only if:

(i) either k = Ks (we are at the last stage of voting), PKs = � (s) and Vi (s; � (s)) > Vi (s; s);

(ii) or Vi (s; Pk) > Vi (s; � (s)).

In addition, if �s (k) 2 I for some k, this player chooses proposal Pk arbitrarily.

The strategy pro�le �� is Markovian. We will show that it is an MPE in three steps.

First, we show that under the strategy pro�le ��, there is a transition to � (s) if � (s) 6= s

and no transition if � (s) = s. Suppose that � (s) 6= s, then Axiom 1 implies that

Xs � fi : wi (� (s)) > wi (s)g 2 Ws.

Now, (A3) and � > �0 imply that for all i 2 Xs, we have

Vi (s; � (s)) = (1� �) ~wi + �wi (� (s)) > (1� �)wi (s) + � (1� �) ~wi + �2wi (� (s)) = Vi (s; s) .
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Consequently, if � (s) 6= s, then under ��, there is transition to � (s) if stage Ks is reached.

Let us now show that there exist no X 0
s 2 Ws and Pk 2 S such that Vi (s; Pk) > Vi (s; � (s))

for all i 2 X 0
s, i.e., the set of players for whom Vi (s; Pk) > Vi (s; � (s)) is not a winning coalition

in s. To obtain a contradiction, suppose there exists such a X 0
s and Pk. Then, since Pk 6= s and

� (� (s)) = � (s), we would have that for all i 2 X 0
s,

wi (� (Pk)) > (1� �) ~wi + �wi (� (Pk)) � Vi (s; Pk) > Vi (s; � (s)) � (1� �) ~wi + �wi (� (s)) ,

and thus, by (A3),

wi (� (Pk)) > wi (� (s)) for all i 2 X 0
s:

So, X 0
s 2 Ws implies � (Pk) �s � (s), which, given that � (s) �s s, yields � (Pk) �s s by

Assumption 2(b). But � (Pk) �s � (s), � (Pk) �s s, and � (� (Pk)) = � (Pk) contradicts Axiom

3. Therefore, the set of players with Vi (s; Pk) > Vi (s; � (s)) does not form a winning coalition

in s. This means that under ��, no proposal is accepted if � (s) = s, and if � (s) 6= s, then no

proposal is accepted in all stages but the last one, and in the last stage PKs = � (s) is accepted.

Second, we verify that given ��, continuation payo¤s after acceptance of proposal q are given

by (A5). If proposal q 6= s is accepted, then there is an immediate transition to q, while if no

proposal is accepted, then each player i receives stage utility (1� �)wi (s). In the next period,

there is a transition (to � (q)) under �� if and only if � (q) 6= q, and after that there are no

transitions along the equilibrium path. Hence, the continuation payo¤s are given by (A5).

Third, we show that there are no pro�table deviations from �� at any stage. For an agenda-

setter, this holds because no proposal that he can make is accepted. For a voter, notice that

since continuation strategies are Markovian, it is always a best response to vote for the option

that the player (weakly) prefers, and this is what pro�le �� prescribes. Indeed, if � (s) 6= s, then

in the last voting stage, each player i compares continuation payo¤ Vi (s; � (s)) if the proposal

is accepted and Vi (s; s) if it is rejected. In all other voting stages, player i receives Vi (s; Pk) if

proposal Pk is accepted and Vi (s; � (s)) if it is rejected (because � (s) will be eventually accepted

if � (s) 6= s and no proposal is accepted if � (s) = s). Therefore, there are no pro�table deviations

from �� given the continuation payo¤s in (A1). Thus, �� is a best response to itself at every

voting stage for any s 2 S, and thus �� is a MPE of the entire game.

(Part 2) We �rst prove that an MPE exists, and then that any MPE has the stated

properties. We �rst construct a mapping � satisfying Axioms 1�3. Take a sequence of states
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n
�1; :::; �jSj

o
satisfying (A1). Then, follow the procedure described in Theorem 1. First, we set

� (�1) = �1. If for l � 2 we haveMl = ?, then � (�l) = �l; otherwise, de�ne Zl �Ml by

Zl =
�
z 2Ml : 8s 2Ml : s � z ) s ��l z

	
.

Then Zl 6= ?, as we can apply Assumption 2(b) to Ml. Choose a particular element of Zl as

� (�l) as follows. Let Y�l be the set of stages of protocol ��l such that for any stage j 2 Y�l ,

��l (j) 2 S implies ��l (j) 2 Zl, and ��l 2 I implies that for some z 2 Zl : wi (z) > wi (�l),

where i = ��l (j). By Assumption 5, Y�l is nonempty; let k
�
�l
be the last stage from Y�l . If

��l

�
k��l

�
2 S, then let � (�l) = ��l

�
k��l

�
, while if ��l

�
k��l

�
2 I, then let � (�l) be any element

z 2 Zl such that wi (z) > wi (�l) for i = ��l (j). Proceeding inductively by l, we get mapping �.

We now construct an equilibrium which implements � and in which continuation payo¤ of

player i if the current state is s and proposal q is accepted, Vi (s; q), is given by (A5), and if no

alternative is accepted, each player i receives Vi (s; s). Given these continuation payo¤s, each

period can be viewed as a �nite (truncated) game with terminal payo¤s given by Vi (s; q). We

construct an MPE �0 of this truncated game by backward induction.

Case (i): � (s) 6= s. Given any current states s, consider the stage k�s de�ned above in

the construction of mapping �. If k�s is not the last stage, then for stages from Ks down to

k�s + 1 we do the following. Suppose that in the last stage, the voting is over the alternative

s0. Comparing payo¤s as in the proof of part 1, we see that in a SPE, s0 must be accepted if

and only if s0 = � (s) and rejected otherwise. But by de�nition of Ys, s0 may be voted only if

nominated by some player i. Proceeding backward to the agenda-setting stage, we notice that

such player i must have wi (� (s)) � wi (s), and then he strictly prefers to stay in s, which means

that nominating s0 = � (s) is not his best action. By not nominating � (s) if the game reached

the last stage Ks he ensures that the next state is s. We can apply the same reasoning to all

voting stages up to k�s + 1, and get an SPE in the subgame starting from stage k�s + 1 where no

proposal is accepted and s is implemented.

Consider now stage k�s . By the same reasoning, only � (s) may be accepted if nominated. At

this stage, it either happens automatically according to the protocol or, if �s (k�s) = i 2 I, then

i�s best response is to nominate � (s): if i does not, then s persists for an extra period. Hence,

in a subgame that starts at stage k�s , there is a SPE where � (s) is accepted.

If k�s 6= 1, we proceed with backward induction. At stage k�s � 1, no proposal other than

� (s) may be accepted, and we can choose voting strategies such that � (s) is rejected at this
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stage (it is later accepted at stage k�s). If at this stage the agenda-setter is some player i, he is

indi¤erent, and we pick any action. Proceeding backward, we �nish constructing a SPE �0 of

this truncated game if the current state is s for the case � (s) 6= s.

Case (ii): � (s) = s. Take the last voting stage, and suppose that some proposal s0 6= s is

considered. For a player i to vote for s0, wi (� (s0)) > wi (s) must hold. However, since � (s) = s,

such players do not form a winning coalition. Consequently, we can choose voting strategies so

that a transition to another state will not be supported. Consequently, at the agenda-setting

stage, any action may be chosen, as none of his proposals may be accepted. We can use backward

induction to construct a strategy pro�le �0 where no proposal is accepted.

Note that in both cases, we can choose �0 to be Markovian by choosing the same actions

in equivalent subgames for any player who is indi¤erent. Having done so for all s 2 S, we

get a Markovian strategy pro�le �. But given that in this strategy pro�le all transitions are

one-stage, the payo¤s are indeed given by (A5), and therefore there is no pro�table one-shot

deviation (otherwise, �0 would not be a SPE for some s). This shows that � is a MPE.

Our next step is to establish the properties that any MPE satis�es. Take any set of protocols

f�s (�)gs2S and any pure-strategy MPE �. For any state s, the proposal q that is accepted along

the equilibrium path is well-de�ned (let q = s if all proposals are rejected) and de�ne � (s) = q.

First, note that � : S ! S has �no cycles�: if � (s) 6= s then for any n > 1, �n (s) 6= s (where

�2 (s) � � (� (s)) etc.). This can be established by contradiction. Suppose there exists n such

that �n (s) = s, but � (s) 6= s. Denote by Js � f1; : : : ;Ksg the set of voting stages in state s

where a proposal Pk made along the equilibrium path is accepted. By de�nition of �, the �rst

voting stage in Js leads to � (s). Two cases are possible.

Case (i): for every k 2 Js, �n+1 (Pk) 6= �n (Pk) for all n. Then consider the last voting stage

k0 2 Js. If Pk0 is accepted, each player i receives ~wi, and if Pk0 is rejected, i gets (1� �)wi (s)+

� ~wi > ~wi. But Pk0 cannot be accepted in a MPE, yielding the desired contradiction.

Case (ii): for some k 2 Js, �n+1 (Pk) = �n (Pk) for some n. Denote the set of such k by

J 0s � Js; clearly, the �rst stage in Js is not in J 0s. Let k
0 be the �rst stage in J 0s; then �

n+1 (Pk0) =

�n (Pk0) for all n � jSj�1. Consider the stage k00 in Js that precedes k0. Accepting the proposal

made at k00, Pk00 , gives ~wi to each player i, while rejecting it yields at least
�
1� �jSj

�
~wi +

�jSjwi
�
�jSj (Pk00)

�
> ~wi Therefore, proposal Pk00 cannot be accepted in any MPE, which yields

a contradiction and establishes the �no cycle�result.

This �no cycle� result in turn implies that �n (s) = �jSj�1 (s) for all n � jSj � 1. De�ne
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 (s) = �jSj�1 (s), and, with the convention that �0 (s) � s,

m (s) = min fn 2 N[f0g : �n (s) =  (s)g , (A6)

Evidently, 0 � m (s) � jSj � 1, and m (s) = 0 if and only if  (s) = � (s) = s. Moreover,

 ( (s)) = � ( (s)) =  (� (s)) =  (s) (A7)

for any state s, as follows from the de�nition of mapping  . Finally, de�ne

�Vi (s) =

�
(1� �)wi (s) if � (s) = s
(1� �) ~wi if � (s) 6= s

�
+ �wi (� (s)) , (A8)

which is the equilibrium payment of player i if the equilibrium proposal � (s) is accepted, and,

slightly abusing the notation �Vi

�Vi (s; q) =

�
(1� �)wi (s) if s = q
(1� �) ~wi if s 6= q

�
+ � �Vi (q) . (A9)

Clearly, �Vi (s; q) gives the continuation payo¤ of player i if in state s alternative q is accepted,

and equilibrium play (according to �) follows. We now prove an auxiliary result; then we will

prove that  (s) satis�es Axioms 1 and 2, then that � (s) =  (s) (which implies st = � (s0) for

all t � 1), and �nally that  satis�es Axiom 3.

Proof that if proposals Pkj and Pkl, j < l, are proposed and accepted in state s, then

 
�
Pkj
�
�  (Pkl) and m

�
Pkj
�
� m (Pkl). We only need to consider the case where � (s) 6= s,

and thus m (s) � 1. For each state s take the set of voting stages J such that for each k 2 J ,

the proposal Pk is accepted. Let J =
�
k1; : : : ; kjJ j

	
, where kj < kl for j < l (we drop index

s for convenience); then J 6= ?. In equilibrium, proposal Pk1 is accepted, so � (s) = Pk1 and

 (Pk1) =  (s). Since each Pkl for 1 � l � jJ j is accepted in this equilibrium, then 1 � l < jJ j,
�Vi (s; Pkl) � �Vi

�
s; Pkl+1

�
for a winning coalition in s. For such players,�

1� �m(Pkl)+1
�
~wi + �

m(Pkl)+1wi ( (Pkl)) ��
1� �m

�
Pkl+1

�
+1
�
~wi + �

m
�
Pkl+1

�
+1
wi
�
 
�
Pkl+1

��
, (A10)

and therefore, from (A3), wi ( (Pkl)) � wi
�
 
�
Pkl+1

��
; this implies  (Pkl) �s  

�
Pkl+1

�
. We

also have that �Vi
�
s; PkjJj

�
� �Vi (s; s) for a winning coalition in s, and for such players,�

1� �m
�
PkjJj

�
+1
�
~wi + �

m
�
PkjJj

�
+1
wi

�
 
�
PkjJj

��
� (1� �)wi (s) + �

��
1� �m(s)

�
~wi + �

m(s)wi ( (s))
�

>
�
1� �m(s)+1

�
~wi + �

m(s)+1wi ( (s)) . (A11)
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From (A3), we get wi
�
 
�
PkjJj

��
� wi ( (s)) = wi (Pk1); therefore,  

�
PkjJj

�
�s  (Pk1).

Assumption 2(b) now implies that  
�
Pkj
�
�  (Pkl) for all 1 � j < l � jJ j. Now (A10) implies

that m (Pkl) � m
�
Pkl+1

�
for all 1 � l � jJ j � 1, which proves the auxiliary result.

Proof that  satis�es Axiom 1. Suppose  (s) 6= s, so the auxiliary result applies. For a

winning coalition of players in s, �Vi
�
s; PkjJj

�
� �Vi (s; s). The previous auxiliary result implies

 
�
PkjJj

�
=  (s) and m (Pk1) � m

�
PkjJj

�
= m (s) � 1, and then the �rst inequality in (A11),

together with (A3), implies wi ( (s)) > wi (s). We have thus proved that for any s 2 S such

that  (s) 6= s,  (s) �s s, and therefore Axiom 1 holds.

Proof that  satis�es Axiom 2 is straightforward as  ( (s)) =  (s) from (A7).

Proof that � (s) =  (s). If  (s) = s, then � (s) = s =  (s) due to the �no cycle� result.

Let us prove that if  (s) 6= s, then transition to state  (s) takes place in one step, i.e., that

 (s) = � (s) (or, equivalently, in (A6) m (s) = 1 whenever � (s) 6= s). Consider two cases.

Case (i):  (s) = Pkj for some j : 1 � j � jJ j. In this case, m
�
Pkj
�
= 0 since Axiom 2

is proven to hold. But we proved that m (Pkl) is weakly increasing in l, therefore, m (� (s)) =

m (Pk1) = 0, and therefore m (s) = 1.

Case (ii):  (s) = Pkj does not hold for any j. This implies that m (Pk1) � 1 and  (s) 6=

� (s). Suppose that at some stage k, the proposal Pk =  (s) is made (not necessarily on

equilibrium path). Then if it accepted, each player i will get �Vi (s; Pk) = (1� �) ~wi+�wi ( (s)),

and if it is rejected, he will receive

�Vi (s; x) � (1� �)wi (s) + � (1� �) ~wi + �2wi ( (s))

for some x such that  (x) =  (s). Any player with wi ( (s)) > wi (s) must, given (A3), have

�Vi (s; Pk) > �Vi (s; x). Since  (s) �s s (Axiom 1), proposal Pk =  (s) will be accepted.

By Assumption 5, either every proposal will be made exogenously at some stage k, or each

player will become agenda-setter. In the �rst case, k 2 J , but in the case under consideration

 (s) = Pkj does not hold for any j, contradiction. In the second case, if a player i such

that wi ( (s)) > wi (s) is the agenda-setter at stage k, then he cannot propose Pk =  (s) in

equilibrium, as it will be accepted, and we again get to a contradiction. However, proposing

Pk =  (s) will yield �Vi (s; Pk) whereas making the equilibrium proposal will yield �Vi (s; x). For

player i, �Vi (s; Pk) > �Vi (s; x) as we proved earlier, thus he has a pro�table deviation. This

cannot happen in equilibrium, which proves that � (s) =  (s) for all s 2 S.

Proof that  satis�es Axiom 3. Suppose that Axiom 3 does not hold. This implies that
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there exist states s; z 2 S such that  (z) = z, z �s s (which implies z 6= s), and z �s  (s)

(which implies  (z) �  (s)). As before, suppose that at some stage k, the proposal Pk = z is

made (not necessarily on equilibrium path). If it is accepted, each player i will get �Vi (s; z) =

(1� �) ~wi + �wi (z), and if it is rejected, this player will get

�Vi (s; x) � (1� �)wi (s) + � (1� �) ~wi + �2wi ( (s))

for some x such that  (x) =  (s). Now, (A4) implies that �Vi (s; z) > �Vi (s; x) whenever

wi (z) > wi ( (s)), i.e., for a winning coalition in s. Therefore, proposal Pk = z will be accepted.

Since  (z) �  (s), it must be that z is never proposed along the equilibrium path. By

Assumption 5, this is only possible if each player becomes the agenda-setter at some stage k.

When a player with wi (z) > wi ( (s)) becomes the agenda-setter, proposing z is a pro�table

deviation for him. This cannot happen in equilibrium, and this contradiction establishes that  

satis�es Axiom 3. This completes the proof of part 2 of the Theorem.

(Part 3) This result immediately follows from Theorem 1 and part 2 of this Theorem. �

Proof of Theorem 3

Suppose, to obtain a contradiction, that stable state s 2 S is Pareto ine¢ cient. This means that

for some x 2 S, wi (x) > wi (s) for all i 2 I. By hypothesis, there is y 2 S such that Wy � Ws

and wi (y) = wi (x) > wi (s) for all i 2 I. Take a mapping � 2 � that satis�es Axioms 1�3.

Consider two cases. If � (y) = y, then from � (s) = s and y �s s we get y �s � (s), � violates

Axiom 3 (if there is z such that � (y) = y, y �s s, and y �s z, then z 6= � (s)). If � (y) 6= y, then

Axiom 1 implies wi (� (y)) > wi (y) > wi (s) for a winning coalition in y, which is a winning

coalition in s, and thus � (y) �s s and � (y) �s � (s). Axiom 2 guarantees that � (� (y)) = � (y).

Again, we conclude that � violates Axiom 3. �

Proof of Theorem 4

The next lemma, proved in Appendix B, characterizes properties of quasi-median voters. Recall

that Ms denotes the set of quasi-median voters in state s.

Lemma 1 Given I � R, S � R, payo¤ functions fwi (s)gi2I;s2S , and winning coalitions

fWsgs2S satisfying Assumption 1, the following are true.

1. For each s, the set Ms is nonempty.
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2. If the single-crossing property in De�nition 3 holds, then for any states x; y; z 2 S,

x �z y if and only if for all i 2Mz, wi (x) > wi (y) , and

x �z y if and only if for all i 2Mz, wi (x) � wi (y) .

3. If monotonic median voter condition in De�nition 5 holds, then there is a nondecreasing

sequence fmsgs2S of players such that ms 2Ms for all s 2 S.

Proof of Theorem 4. (Part 1) We start with Assumption 2(a). Suppose that there is

a cycle s1; : : : ; sl such that sk+1 �sk sk for 1 � k � l � 1 and s1 �sl sl. Take a monotonic

sequence of median voters fmsgs2S . Recall that ms is part of any connected winning coalition

in s, therefore, if for some x and z, x �z z, then wx (mz) > wz (mz). Now for each s 2 S consider

an alternative set of winning coalitions where ms is the dictator, i.e., W 0
s = fX 2 C : ms 2 Xg.

Denoting the induced relation between states by �0, we have that if x �z z, then x �0z z.

Consequently, if there was a cycle s1; : : : ; sl such that sk+1 �sk sk for 1 � k � l�1 and s1 �sl sl,

then we have sk+1 �0sk sk for 1 � k � l � 1 and s1 �0sl sl; therefore, a cycle for �
0 exists. Now

take the shortest cycle for �0 (which need not be a cycle for �). Without loss of generality,

suppose that s2 is the lowest state (so s2 � s1 and s2 � s3); then ms2 � ms1 and ms2 � ms3 .

Since s3 �0s2 s2 and s2 �
0
s1 s1, we have wms2

(s3) > wms2
(s2) and wms1

(s2) > wms1
(s1). But

s2 � s3 and ms2 � ms1 , hence, wms2
(s3) � wms2

(s2) > 0 implies wms1
(s3) � wms1

(s2) > 0.

Combining this with wms1
(s2) > wms1

(s1), we conclude that wms1
(s3) > wms1

(s1). But then

s3 �0s1 s1, since ms1 is the dictator in s1. This implies that s2 may be skipped in the cycle,

contradicting the assumption that fskglk=1 is the shortest cycle.

To verify Assumption 2(b), take any s 2 S and some ms 2 Ms. Suppose there is a cycle

s1; : : : ; sl such that sk+1 �s sk for 1 � k � l�1, s1 �s sl, and sj � sk for 1 � j < k � l. Without

loss of generality, assume that state sl maximizes the payo¤ of ms among states s1; : : : ; sl. Then

wms (sl) � wms (s1), and Assumption 6 implies wms (sl) > wms (s1). But then, by Lemma 1,

s1 �s sl, and this contradicts the existence of a cycle. Finally, if x; y 2 S are such that x �s s

and y �s x, then for any i 2Ms we have wi (y) > wi (x) > wi (s), which, in turn, implies y �s s.

This shows that Assumption 2(b) holds and completes the proof of part 1.24

(Part 2)25 Let W =
S
s2SWs; then W, as a set of winning coalitions, satis�es Assumption

1. Let �� be given by x �� y if and only if fi 2 I : wi (x) > wi (y)g 2 W. Since preferences are
24This result can also be derived using Theorem 4.6 in Austin-Smith and Banks (1999).
25We thank an anonymous referee for suggesting this simpler proof of part 2 of Theorem 4.
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single-peaked, Theorem 4.1 in Austen-Smith and Banks (1999) implies that �� is transitive, and

hence acyclic. Clearly, a cycle in Assumption 2(a) would also be a cycle for ��; given Assumption

6, so would a cycle in Assumption 2(b). Hence, such cycles do not exist. Finally, Theorem 4.1

in Austen-Smith and Banks (1999) suggests that the preference relation �s is transitive, and so

x �s s and y �s x imply y �s s. �

Proofs of Propositions in Section 6

Proof of Proposition 1. (Part 1) Since � > 1
2 is the rule for all states, Assumption 1

is satis�ed. Enumerate all states as s1; : : : ; sm (where m = jSj) such that � (sk) is weakly

increasing in k (the order of states with the same � may be arbitrary). With this order, I and

S satisfy the single-crossing condition as in De�nition 3. Indeed, if sk < sl and i < j, then

(wj (sl)� wj (sk))� (wi (sl)� wi (sk))

= (vj (� (sl))� vj (� (sk)))� (vi (� (sl))� vi (� (sk))) � 0,

because � (sk) � � (sl) and v satis�es the strict increasing di¤erences condition. Now construct

a nondecreasing sequence of quasi-median voters; this would prove that Monotonic median voter

property holds. For state sk, take msk such that �̂msk
� � (sk) < �̂msk

+1 if � (sk) < �̂n, and let

msk = n otherwise. Then msk is determined uniquely for each state sk, is weakly increasing,

and is a quasi-median voter in state sk by the assumption on feasible religious policies �. We

can now apply part 1 of Theorem 4 to show that Assumption 2 is satis�ed and Theorem 1 and

Theorem 2 apply.

(Part 2) Suppose that some state s with 1; n =2 Z (s) is stable. Suppose Z (s) = [a; b] and let

Z 0 = [a� 1; b+ 1]. Then minMZ0 � minMZ � maxMZ � maxMZ0 , and thus s0 = (� (s) ; Z 0)

is a feasible state. By the assumption on V (Z), s0 Pareto dominates s. Take a mapping � that

satis�es Axioms 1�3 and let x = � (s0). Then Axiom 1 implies that wi (� (s0)) � wi (s
0) > wi (s)

for a winning coalition in s0, and thus, by Lemma 1, for all i 2 Ms0 . Therefore, this holds for

all i 2 Ms, and thus for a winning coalition in s. Since � (� (s0)) = � (s0), we get a violation of

Axiom 3. This proves that s is not stable, and either 1 or n should be part of Z (s) for any

stable state s. Hence, starting from any s0, at least one of these players will be given political

participation. �

Proof of Proposition 2. (Part 1) Notice that any state x with Z (x) = I is stable, as

any � with � (x) 6= x would violate Axiom 1. Indeed, since �̂minMI � � (x) � �̂maxMI and
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preferences are single-peaked, quasi-median voter minMI would be worse o¤ from any state y

with � (y) > � (x), and maxMI would be worse o¤ if � (y) < � (x). Now suppose, to obtain a

contradiction, that for some s such that Z (s) 6= I, � (s) = s. Consider the following cases. Case

(i): � (s) < �̂minMI . Take x =
�
�̂minMI ; I

�
; by hypothesis, w1 (x) > w1 (s), and thus

w1 (x) = v1
�
�̂minMI

�
+ V (I) > v1 (�̂1) + V (s) � v1 (s) + V (s) = wi (s) .

Since � (x) > � (s), this implies wi (x) > wi (s) for all i 2 I. But we proved that x is stable, and

then � (s) = s violates Axiom 3. Case (ii): �̂minMI � � (s) � �̂maxMI . Take x = (� (s) ; I) and

notice that wi (x) > wi (s) for all i 2 I. Since we earlier proved that � (x) = x, we immediately

get a contradiction to Axiom 3. Case (iii): � (s) > �̂maxMI . This case is completely analogous

to case (i). In all cases, � (s) = s leads to a contradiction.

(Part 2) Let k = 1. Let state s be such that Z (s) � k and Z (s) includes the middle player.

Denote the player in Z (s) by i and take x = (�̂i; I), which is feasible for any �. Then � (x) = x

as proved earlier. If � (s) 6= x, then Axiom 3 is violated, as wi (x) > wi (y) for any state y 6= x.

This proves that � (s) = x.

If s includes either player 1 or player n and Z (s) � k, then either s = (�̂1; f1g) or

s = (�̂n; fng). Suppose that � (s) = x = (�; I); then �̂minMI � � � �̂maxMI , and

v1 (�) � v1
�
�̂minMI

�
and vn (�) � v1

�
�̂maxMI

�
by single-peakedness. Then in the �rst case

w1 (x) = v1 (�) + V (I) � v1
�
�̂minMI

�
+ V (I) < v1 (�̂1) + V (f1g) = w1 (s) ,

and thus Axiom 1 is violated. Similarly, in the latter case, wn (x) < w1 (s), and Axiom 1 is

again violated. This proves that � (s) 6= x.

(Part 3) Take some s; suppose, to obtain a contradiction, that � (s) = x such that Z (x) 6= I.

By Axiom 1, wi (x) > wi (s) for all i 2 I. Consider y = (� (x) ; I); the unanimity rule ensures

that y is feasible for any � (x). As shown earlier, � (y) = y, and wi (y) > wi (x) > wi (s) for

every player i 2 I. But then � (s) = x violates Axiom 3, a contradiction. �

Proof of Proposition 3. (Part 1) The proof follows that of part 1 of Proposition 1.

(Part 2) Suppose, to obtain a contradiction, that for some s, � (s) = x such that Z (x) 6= I

for a mapping � that satis�es Axioms 1�3. By Axiom 1, wi (x) > wi (s) for a winning coalition

in s. Consider y = (�0; � (x) ; I) such that �0 > n�1
n ; then y is feasible. But � (y) = y, and

wi (y) > wi (x) for every player i 2 I. Then wi (y) > wi (s) for a winning coalition in x. But

then � (s) = x violates Axiom 3, a contradiction. �
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Appendix B for �Dynamics and Stability of Constitutions, Coali-
tions and Clubs� (Not For Publication)

Examples, Applications and Additional Results

De�nition of MPE

Consider a general n-person in�nite-stage game, where each individual can take an action at

every stage. Let the action pro�le of each individual be ai =
�
a1i ; a

2
i ; : : :

�
for i = 1; : : : ; n, with

ati 2 Ati and ai 2 Ai =
Q1
t=1A

t
i. Let h

t =
�
a1; : : : ; at

�
be the history of play up to stage t (not

including stage t), where as = (as1; : : : ; a
s
n), so h

0 is the history at the beginning of the game,

and let Ht be the set of histories ht for t : 0 � t � T � 1.

We denote the set of all potential histories up to date t by

Ht =
tS
s=0

Hs:

Let t-continuation action pro�les be ai;t =
�
ati; a

t+1
i ; : : :

�
for i = 1; : : : ; n, with the set of con-

tinuation action pro�les for player i denoted by Ai:t. Symmetrically, de�ne t-truncated action

pro�les as ai;�t =
�
a1i ; a

2
i ; : : : ; a

t�1
i

�
for i = 1; : : : ; n, with the set of t-truncated action pro�les

for player i denoted by Ai;�t. We also use the standard notation ai and a�i to denote the action

pro�les for player i and the action pro�les of all other players (similarly, Ai and A�i). The payo¤

functions for the players depend only on actions, i.e., player i�s payo¤ is given by ui
�
a1; : : : ; an

�
.

A pure strategy for player i is

�i : H1 ! Ai.

A t-continuation strategy for player i (corresponding to strategy �i) speci�es plays only after

time t (including time t), i.e.,

�i;t : H1 nHt�2 ! Ai;t,

where H1 nHt�2 is the set of histories starting at time t.

We then have:

De�nition 6 (Markovian Strategies) A continuation strategy �i;t is Markovian if

�i;t (ht�1) = �i;t

�
~h��1

�
for all � � t, whenever ht�1; ~h��1 2 H1 are such that for any ai;t; ~ai;� 2 Ai;t and any a�i;t 2

A�i;t,

ui (ai;t; a�i;t j ht�1) � ui (~ai;� ; a�i;t j h��1)
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implies

ui

�
ai;t; a�i;t j ~ht�1

�
� ui

�
~ai;� ; a�i;t j ~h��1

�
.

Markov perfect equilibria in pure strategies are de�ned formally as follows:

De�nition 7 (MPE) A pure strategy pro�le �̂ = (�̂1; :::; �̂n) isMarkov perfect equilibrium

(MPE) (in pure strategies) if each strategy �̂i is Markovian and

ui (�̂i; �̂�i) � ui (�̂i; �̂�i) for all �i 2 �i and for all i = 1; : : : ; n.

Examples

Example 3 (Nonexistence if � is not close to 1) There are 4 players, I = f1; 2g, and 4

states, S = fA;B;C;Dg. Players�preferences are given by: w1 (A;B;C;D) = (90; 70; 60; 5),

w2 (A;B;C;D) = (5; 50; 40; 30), w3 (A;B;C;D) = (25; 50; 40; 30), w4 (A;B;C;D) =

(25; 25; 40; 30). Winning coalitions are de�ned as follows: in states A, B, C, player 1 is the

dictator, while in state D, players 2, 3, 4 make decisions by majority voting. It is straightfor-

ward to show that Assumptions 1, 2. (The only condition to be checked is that Assumption

2(b) holds for state s = D, and this follows from the fact that B �D D, C �D D, but A �D B

and A �D C.) Suppose, however, that the discount factor � is not close to 1, say, � = 1=2;

there are either no transaction costs or small transaction costs. The protocol at any state is

� = (A;B;C;D) (with the current state skipped).

Suppose that there exists an equilibrium in pure strategies. Given that player 1 is the

dictator in states A, B, C, we immediately get that if the game is at state A, no transition will

happen, and if the game is at either B or C, then there will be an immediate transition to A.

Consider now what will happen if the state is D. Consider all four possibilities: no transition,

transition to A, transition to B, and transition to C.

If there is no transition in equilibrium and alternative C is voted, it will be accepted as

players 3 and 4 will support it (even though they prefer C, but not A where C ultimately leads,

to D, they still prefer the path from C to A to staying in D. This also means that it will be

proposed along the equilibrium path. Hence, D cannot be stable.

If there is transition to A in equilibrium, then consider the last voting where, if reached on

or o¤ the equilibrium path, A will be proposed. All of the players 2, 3, 4 will prefer to vote
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against this alternative, as any other transition, as well as staying in D, will lead to a higher

payo¤ for each of them. Hence, transition to A cannot happen in equilibrium.

Suppose that there is transition to state B. Then again, players 2 and 4 would prefer to

stay in D, even though this may mean transiting to B in the next period. Voting against B

will, however, lead to voting on C, so we need to verify that C will be rejected at this voting.

Accepting C will lead to C and then to A, while rejecting will lead to D, and then (as transition

to B happens in equilibrium) to B and then to A. The latter is preferred by players 2 and 3,

which means that C will be rejected if B is rejected. Consequently, players 2 and 4 are better

o¤ voting against B, which means that transition to B may not happen in equilibrium.

Finally, suppose that transition to state C happens in equilibrium. If so, when alternative

B is voted, players 2 and 3 will support B, as they prefer to transit to A through B rather than

through C. This implies that transition to C cannot happen in equilibrium either. In all cases,

we have reached a contradiction, which means that there is no pure-strategy MPE in this case.

Example 4 (Nonexistence without Transaction Costs) In this example, we show that

a MPE in pure strategies may fail to exist if we assume away the transaction cost. There

are 8 states S = fA;B;C;D;E; F;G;Hg and 7 players. The set of winning coalitions are:

WA = fX 2 C : jf1; 2; 3g \Xj � 2g (i.e., majority voting between 1; 2; 3), WB = [4], WD = [5],

WF = [6],WC =WE =WG =WH = [7] (here, [i] denotes the set of winning coalitions where i is

the dictator, so [i] = fX 2 C : i 2 Xg). The payo¤s are as follows: w1 (�) = (0; 30; 0; 0; 20; 0; 0; 1),

w2 (�) = (0; 0; 0; 30; 0; 0; 20; 1), w3 (�) = (0; 0; 20; 0; 0; 30; 0; 1), w4 (�) = (0; 0; 1; 0; 0; 0; 0; 0),

w5 (�) = (0; 0; 0; 0; 1; 0; 0; 0), w6 (�) = (0; 0; 0; 0; 0; 0; 1; 0), w7 (�) = (0; 0; 0; 0; 0; 0; 0; 1). It is

straightforward to show that Assumptions 1, 2 are satis�ed (it is helpful to notice that the

only state s that satis�es s �A A is s = H).

Evidently, state H is stable (dictator 7 will never deviate), and similarly any of the states

E;F;G will immediately lead to H. It is also evident that B will immediately lead to C, because

C is the only state where dictator 4 receives a positive utility; similarly, D immediately leads

to E and F immediately leads to G. Let us prove that no move from state A can form a

pure-strategy equilibrium. First, it is impossible to stay in A: players 1; 2; 3 would be better o¤

moving to H. Moving to H immediately is not possible in an equilibrium either: Then players

1 and 3 would rather deviate and move to B, which would then lead to C and only then to H,
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since the average payo¤ of this path would be higher for each of these players (recall that the

discount factor is close to 1).

Let us consider possible moves to B and C (the moves to D;E; F;G are considered similarly).

If the state were to change to C, then players 1 and 2 would rather deviate and move to D (and

then to E, followed by H). Finally, if the state were to change to B, then 2 and 3 could deviate

to F , so as to follow the path to G and H after that; this is better for these players than

moving to B, followed by C and H. So, without imposing a transaction cost it is possible that

a pure-strategy equilibrium does not exist.

Example 5 (Cycles without Transaction Costs) In this example, we show that in the

absence of transaction cost, an equilibrium may involve a cycle even though Assumptions 1,

2 hold. There are 6 players, I = f1; 2; 3; 4; 5; 6g, and 3 states, S = fA;B;Cg. Players�

preferences are given by w1 (A;B;C) = (5; 10; 4), w2 (A;B;C) = (5; 4; 10), w3 (A;B;C) =

(4; 5; 10), w4 (A;B;C) = (10; 5; 4), w5 (A;B;C) = (10; 4; 5), w3 (A;B;C) = (4; 10; 5), and win-

ning coalitions are de�ned by WA = fX 2 C : 1; 2 2 Xg, WB = fX 2 C : 3; 4 2 Xg, WC =

fX 2 C : 5; 6 2 Xg. Then one can see that there is an equilibrium which involves moving from

state A to state B, from B to C, and from C to A. To see this, because of the symmetry it

su¢ ces to see that the players will not deviate if the current state is A. The alternatives are to

stay in A or move to C. But staying in A hurts both player 1 and player 2 (for player 2 who

dislikes state B this is true because it postpones the move to C, the state that he likes best,

while for player 1 this is evident). At the same time, moving to C hurts player 1, because state

C is the worst of the three states for him not only in terms of stage payo¤, but also in terms

of discounted present value (if the cycle continues, as it should due to the one-stage deviation

principle). So, this cycle constitutes a (Markov Perfect) equilibrium.

It is also easy to see that in this example, Assumptions 1, 2 are satis�ed: in fact, there are

no two states s; s0 2 fA;B;Cg such that s �s0 s0. Finally, notice that the aforementioned cycle

is not the only equilibrium. In particular, the cycle in the opposite direction may also arise in

an equilibrium (this holds because of symmetry), and situation where all three states are stable

is also possible (indeed, if B and C are stable, then players 1 will always block transition from

A to C whereas player 2 will always block transition from A to B).
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Example 6 (Nonexistence without Assumption 2(a)) There are 3 players, I = f1; 2; 3g,

and 3 states, S = fA;B;Cg. Players� preferences satisfy w1 (A) > w1 (B) > w1 (C),

w2 (B) > w2 (C) > w2 (A), and w3 (C) > w3 (A) > w3 (B) (for example, w1 (A;B;C) =

(10; 8; 5), w2 (A;B;C) = (5; 10; 8), w3 (A;B;C) = (8; 5; 10)). Winning coalitions are given

by WA = fX 2 C : 3 2 Xg, WB = fX 2 C : 1 2 Xg, WA = fX 2 C : 2 2 Xg (in other words,

states A;B;C have dictators 1; 2; 3, respectively). We then have A �B B, B �C C, C �A A, so

Assumption 2(a) is violated.

It is easy to see that there are no dynamically stable states in the dynamic game in this case.

To see this, suppose that state A is dynamically stable, then state B is not, since player 1 would

enforce transition to A. Therefore, state C is stable: player 2, who is the dictator in C, knows

that a transition to B will lead to A, which is worse than C. However, then player 3, knowing

that C is stable, will have an incentive to move from A to C. In equilibrium this deviation

should not be pro�table, but it is; hence, there is no equilibrium where A is stable. Now, given

the transaction costs, there is no MPE in pure strategies, since if no state is dynamically stable,

the players would bene�t from blocking every single transition in every single state.

Let us now formally show that there is no mapping � that satis�es Axioms 1�3. Assume

that there is such mapping �. By Axiom 2, there is a stable state (for any state s, � (s) is

stable). Without loss of generality, suppose that A is such a state: � (A) = A. Then state C is

not stable: if it were, we would obtain a contradiction with Axiom 3, since C �A A. If C is not

stable, then either � (C) = A or � (C) = B. The �rst is impossible by Axiom 1, since player 2,

who is a member of any winning coalition in C, has w2 (C) > w2 (A). Therefore, � (C) = B,

and by Axiom 2, � (B) = B. But we have A �B B and � (A) = A; this means, by Axiom 3,

that � (B) = B cannot hold. This contradiction shows that with these preferences, there is no

mapping � that satis�es Axioms 1�3.

Example 7 (Nonexistence without Assumption 2(b)) There are 3 players, I = f1; 2; 3g,

and 4 states, S = fA;B;C;Dg. Players� preferences satisfy w1 (A) > w1 (B) > w1 (C) >

w1 (D), w2 (B) > w2 (C) > w2 (A) > w2 (D), and w3 (C) > w3 (A) > w3 (B) > w3 (D)

(for example, w1 (A;B;C;D) = (10; 8; 5; 4), w2 (A;B;C;D) = (5; 10; 8; 4), w3 (A;B;C;D) =

(8; 5; 10; 4)). Winning coalitions are given by WA = WB = WC = fIg = ff1; 2; 3gg,

WD = ff1; 2g ; f1; 3g ; f2; 3g ; f1; 2; 3gg (in other words, in states A;B;C there is unanimity
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voting rule, while in state D there is majority voting rule). We then have A �D D, A �D D,

A �D D and A �D B, B �D C, C �D A, so Assumption 2(b) is violated. Assume, in addition,

that KD = 3, and �D (1) = C, �D (2) = B, �D (3) = A.

In this case, states A;B;C are dynamically stable: evidently, player who receives 10 (1; 2; 3,

respectively) will block transition to any other state. Consider state D; it is easy to see that

it is not dynamically stable. Indeed, if it were, then all three players would be better o¤ from

transition to either of the three other states A;B;C, so they must vote for any such proposal in

equilibrium. Now that it is not dynamically stable, we must have that some of proposals C;B;A

are accepted in equilibrium. Suppose that A is accepted, then B may not be accepted (because

two players, 1 and 3, strictly prefer A to B), and therefore C must be accepted (because two

players, 2 and 3, strictly prefer C to A). But then A may not be accepted, as players 2 and 3

would prefer to have it rejected so that C is accepted in the next period, and thus A must be

rejected in the equilibrium. This contradicts our assertion that A is accepted, and we would

obtain a similar contradiction if we assumed that some other proposal is accepted. Hence, there

is no MPE in pure strategies in this case.

We now show that there is no mapping � that satis�es Axioms 1�3. Assume that there is

such mapping �. Since for each of the states A;B;C there is no state that is preferred to it by

all three players, then Axiom 1 implies that � (A) = A, � (B) = B, and � (C) = C. Consider

state D. If � (D) = D, this would violate Axiom 3, since, for instance, state A satis�es A �D D

and � (A) = A. Hence, � (D) 6= D; without loss of generality assume � (D) = A. But then state

C satis�es C �D A, C �D D, and � (C) = C. By Axioum 3 we cannot have � (D) = A. This

contradiction proves that there does not exist mapping � that satis�es Axioms 1�3.

Example 8 (Multiple Equilibria without Assumption 3) There are 2 players, I = f1; 2g,

and 3 states, S = fA;B;Cg. Players� preferences satisfy w1 (A) > w1 (B) > w1 (C),

w2 (B) > w2 (A) > w2 (C) (for example, w1 (A;B;C) = (5; 3; 1), w2 (A;B;C) = (3; 5; 1)).

Winning coalitions are given by WA = WB = WC = fIg = ff1; 2gg (in other words, there is a

unanimity voting rule in all states A;B;C). Then Assumptions 1 and 2(a,b) are satis�ed, while

Assumption 3 is violated (both A and B are preferred to C, but neither A �C B nor B �C A).

One can easily see that in this case there exist two mappings, �1 and �2, which satisfy Axioms

1�3. Let �1 (A) = �1 (C) = A and �1 (B) = B. Let �2 (A) = A and �2 (B) = �2 (C) = B.
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Mappings �1 and �2 di¤er in only that the �rst one maps state C to state A, and the second

one maps state C to state A. It is straightforward to verify that �1 and �2 satisfy Axioms 1�3,

and also that no other mapping satis�es these Axioms. Note that the sets of stable states under

these two mappings satisfy D�1 = fA;Bg = D�2 , as they should according to Theorem 1.

Proof of Lemma 1

(Part 1) Let b be such that B = fj 2 I : �1 < j � bg 2 Ws and fj 2 I : �1 < j < bg =2

Ws. Intuitively, such B is the �leftmost� winning coalition. Similarly, let a be such that

A = fj 2 I : a � j <1g 2 Ws and fj 2 I : a < j <1g =2 Ws, so that A is the �rightmost�

winning coalition. Assumption 1 implies that Z = A \ B 6= ?. Since all quasi-median voters

must be both in A and B, we also have Ms � Z. Next, we show that Z � Ms is also true.

To obtain a contradiction, assume the opposite. Then for some �connected� coalition X =

fj 2 I : x � j � yg 2 Ws the inclusion Z � X does not hold. Then, evidently, either the lowest

or the highest quasi-median voter is not in X. Suppose, without loss of generality, the latter is

the case. Since X is winning, coalition Y = fj 2 I : �1 < j � yg (where y is the highest player

in X) is winning, and therefore Z � Y . But this implies that the highest quasi-median voter

is neither in X nor in Y , which is impossible and thus yields a contradiction. This proves that

Ms = Z 6= ?.

(Part 2) Consider the case x � y (the case x < y is treated similarly). Suppose x �z y.

Then fi 2 I : wi (x) > wi (y)g 2 Wz (is winning in z). But by SC, this coalition is connected,

and therefore includes all players from Mz. Conversely, suppose that wi (x) > wi (y) for all

i 2 Mz. Now SC implies that the same inequality holds for player j whenever j � i 2 Mz.

Part 1 of the Lemma implies that fj 2 I : 9i 2Mz such that j � ig 2 Wz. This establishes

that wi (x) > wi (y) for all i 2 Mz implies x �z y, and completes the proof for this case. The

proof of the results for the � relation is analogous.

(Part 3) By part 1 of this Lemma, the set Ms is nonempty for each s 2 S. Let

ms = max
x2S:x�s

min
m2Mx

m. (B1)

Evidently, if x < y, then mx � my. Moreover, ms 2 Ms. To prove this last statement, assume

the opposite; then ms = minm2Mx for some x < s. Since we assumed ms =2 Ms, then either

ms 2 Mx is less than all elements in Ms or greater than all elements in Ms. In the �rst case,
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ms < minm2Msm, which violates the de�nition of ms in (B1). In the second case, we �nd that

Ms lies to the left of Mx, violating the monotonic median voter property. This contradiction

proves that ms 2Ms for all s 2 S. Since the sequence (B1) is increasing, part 3 follows. �

Transaction Cost and Discount Factor

In the proof of Theorem 2 in Appendix A, the two conditions that the discount factor �

has to satisfy are given by (A3) and (A4). Recall that in footnote 17, we de�ned �" =

maxi2I;x2S jwi (x)� ~wij. Suppose that �" increases, which means that at least for one individual

i, payo¤ during transition, ~wi, decreases. This makes both (A3) and (A4) harder to satisfy for

a given �, but both conditions hold for some higher �. Consequently, for any �" there exists

�0 < 1 such that for � > �0, Theorem 2 holds. This also implies that for any �" > 0, as � ! 1,

discounted payo¤s are independent of transaction costs (i.e., do not depend on �").

Additional Applications

We now illustrate how the characterization results provided in Theorems 1 and 2 can be applied

in a number of political economy environments considered in the literature. We show that in

some of these environments we can simply appeal to Theorem 4. Nevertheless, we will also see

that the conditions in Theorem 4 are more restrictive than those stipulated in Theorems 1 and

2. Thus, when Theorem 4 does not apply, Theorems 1 and 2 may still be applied directly.

Voting in Clubs

Following Roberts (1999), suppose that there are N states of the form sk = f1; : : : ; kg for

1 � k � N . Roberts (1999) imposes the following strict increasing di¤erences condition:

for all l > k and j > i, wj (sl)� wj (sk) > wi (sl)� wi (sk) ; (B2)

and considers two voting rules: majority voting within a club (where in club sk one needs more

than k=2 votes for a change in club size) or median voter rule (where the agreement of individual

(k + 1) =2 if k is odd or k=2 and k=2+ 1 if k is even are needed). These two voting rules lead to

corresponding equilibrium notions, which Roberts calls Markov Voting Equilibrium and Median

Voter Equilibrium, respectively. He establishes the existence of mixed-strategy equilibria with

both notions and shows that they both lead to the same set of stable clubs.
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It is straightforward to verify that the environment introduced in Roberts (1999) is a special

case of our environment, and his two voting rules are special cases of the general voting rules

allowed in our framework. In particular, let us �rst weaken Roberts�s strict increasing di¤erences

property to single-crossing, in particular, let us assume that

for all l > k and j > i, wi (sl) > wi (sk) =) wj (sl) > wj (sk) ; and (B3)

wj (sk) > wj (sl) =) wi (sk) > wi (sl) :

Clearly, (B2) implies (B3) (but not vice versa). In addition, Roberts�s two voting rules can be

represented by the following sets of winning coalitions:

Wmaj
sk

= fX 2 C : jX \ skj > k=2g , and

Wmed
sk

=

�
fX 2 C : (k + 1) =2 2 Xg if k is odd;

fX 2 C : fk=2; k=2 + 1g � Xg if k is even.

Clearly, both
n
Wmaj
sk

oN
k=1

and
�
Wmed
sk

	N
k=1

satisfy Assumption 1 as well as the monotonic median

voter property in De�nition 5. Let us also assume that Assumption 6 holds. In this case, this

can be guaranteed by assuming that wi (s) 6= wi (s
0) for any i 2 I and any s; s0 2 S (though a

weaker condition would also be su¢ cient). Then, it is clear that Theorem 4 from the previous

section applies to Roberts�s model and establishes the existence of a pure-strategy MPE and

characterizes the structure of stable clubs. It is important, however, to emphasize that while

our model nests Roberts�environment as a special case, the characterization of MPE is obtained

here, unlike Roberts�s paper, only under the assumption of transaction costs and a su¢ ciently

large discount factor.

It can also be veri�ed that Theorem 4 applies with considerably more general voting rules

(e.g., with di¤erent degrees of supermajority rule in each club). The following set of winning

coalitions nests various majority and supermajority rules: for each k, let the degree of superma-

jority in club sk be lk where k=2 < lk � k and de�ne the set a winning coalitions as:

W lk
sk
= fX 2 C : jX \ skj � lg

Then, a relatively straightforward application of Theorem 4 establishes the following proposition.

Proposition 4 In the voting in clubs model, with winning coalitions given by either Wmaj
sk ,

Wmed
sk

, or W lk
sk
, where k=2 < lk � k for all k, the following results hold.
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(i) The monotonic median voters property in De�nition 5 is satis�ed.

(ii) Suppose that preferences satisfy (B3) and Assumption 6. Then Assumptions 2(a,b) hold

and thus the characterization of MPE and stable states in Theorems 1 and 2 applies.

(iii) Moreover, if only odd-sized clubs are allowed, then in the case of majority or median

voter rules Assumption 3 also holds and thus the dynamically stable state (club) is uniquely

determined (up to payo¤-equivalence) as a function of the initial state (club).

Proof. (Part 1) Take msk = (k + 1) =2 if k is odd and ms = k=2 if k is even. Evidently, for

any of the rules Wmaj
sk , Wmed

sk
, or W lk

sk
where k=2 < lk � k for all k, msk is a quasi-median voter

and, moreover, the sequence fmskg
N
k=1 is monotonically increasing.

(Part 2) In all cases Wmaj
sk , Wmed

sk
, or W lk

sk
where k=2 < lk � k, Assumption 1 trivially

holds. From part 1 it follows that Theorem 4 (part 1) is applicable, so Assumption 2(a,b) holds.

(Part 3) In an odd-sized club sk, median voter is a single person (k + 1) =2, and in the case

of majority voting, we have sl �sk sk if and only if w(k+1)=2 (sl) > w(k+1)=2 (sk) because of the

single-crossing condition. In either case, if sl and sj are two di¤erent clubs, player (k + 1) =2 is

not indi¤erent between them by Assumption 6. This implies that either sl �sk sj of sj �sk sl
for any sj and sl, which completes the proof.

This proposition shows that a sharp characterization of dynamics of clubs and the set of

stable clubs can be obtained easily by applying Theorem 4 to Roberts�s original model or to

various generalizations. Another generalization, not stated in Proposition 4, is to allow for a

richer set of clubs. For example, the feasible set of clubs can also be taken to be of the form of

fk � n; : : : ; k; : : : ; k + ng \ I for a �xed n (and di¤erent values of k). It is also noteworthy that

the approach in Roberts�s paper is considerably more di¢ cult and restrictive (though Roberts

also establishes the existence of mixed-strategy MPE for any �). Therefore, this application

illustrates the usefulness of the general characterization results presented in this paper.

Ine¢ cient Inertia and Lack of Reform

We now provide a more detailed example capturing the main trade-o¤s discussed as motivation in

the Introduction. Consider a society consisting of N individuals and a set of �nite states S. We

start with s0 = a corresponding to absolutist monarchy, where individual E holds power. More

formally, Wa = fX 2 C : E 2 Xg. Suppose that for all x 2 S n fag, we have that I n fEg 2 Wx,

that is, all players except E together form a winning coalition. Moreover, there exists a state,
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�democracy,�d 2 S such that � (x) = d for all x 2 S n fag. In other words, starting with any

regime other that absolutist monarchy, we will eventually end up with democracy. Suppose also

that there exists y 2 S such that wi (y) > wi (a), meaning that all individuals are better o¤ in

state y than in absolutist monarchy, a. In fact, the gap between the payo¤s in state y and those

in a could be arbitrarily large. It is then straightforward to verify that Assumptions 1�3 are

satis�ed in this game.

To understand economic interactions in the most straightforward manner, consider the

extensive-form game described in Section 4. It is then clear that for � su¢ ciently large, E

will not accept any reforms away from a, since these will lead to state d and thus � (a) = a.

This example illustrates the potential (and potentially large) ine¢ ciencies that can arise in

games of dynamic collective decision-making and emphasizes that commitment problems are at

the heart of these ine¢ ciencies. If the society could collectively commit to stay in some state

y 6= d, then these ine¢ ciencies could be partially avoided. And yet such a commitment is not

possible, since once state y is reached, E can no longer block the transition to d.

We can take this line of argument even further. Suppose again that the initial state is s0 = a,

where Wa = fX 2 C : E 2 Xg. To start with, suppose that there is only one other agent, P ,

representing the poor, and two other states, d1, democracy with limited redistribution, and d2,

democracy with extensive redistribution. Suppose Wd1 =Wd2 = fX 2 C : P 2 Xg and

wE (d2) < wE (a) < wE (d1) and wP (a) < wP (d1) < wP (d2) ;

so that P prefers �extensive�redistribution. Given the fact that Wd1 =Wd2 = ffPg ; fE;Pgg,

once democracy is established, the poor can implement extensive redistribution. Anticipating

this, E will resist democratization.

Now consider an additional social group, M , representing the middle class, and suppose

that the middle class is su¢ ciently numerous so that Wd1 = Wd2 = ffM;Pg ; fE;M;Pgg.

The middle class is also opposed to extensive redistribution, so wM (a) < wM (d2) < wM (d1).

This implies that once state d1 emerges, there no longer exists a winning coalition to force

extensive redistribution. Now anticipating this, E will be happy to establish democracy (extend

the franchise). Thus, this example illustrates how the presence of an additional powerful player,

such as the middle class, can have a moderating e¤ect on political con�ict and enable institutional

reform that might otherwise be impossible (see Acemoglu and Robinson, 2006a, for examples in

which the middle class may have played such a role in the process of democratization).
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Coalition Formation in Nondemocracies

As mentioned above, Theorems 1 and 2 can be directly applied in situations where the set of

states does not admit a (linear) order. We now illustrate one such example using a modi�cation

of the game of dynamic coalition formation in Acemoglu, Egorov, and Sonin (2008).

Suppose that each state determines the ruling coalition in a society and thus the set of

states S coincides with the set of coalitions C. Members of the ruling coalition determine the

composition of the ruling coalition in the next period. A transition to any coalition in C is

allowed, which highlights that the set of states does not admit a complete order (one could

de�ne a partial order over states, though this is not particular useful for the analysis here).26

Each agent i 2 I is assigned a positive number i, which we interpret as �political in�uence�

or �political power.�For any coalition X 2 C, let X �
P
j2X j . Suppose also that payo¤s are

given by

wi (X) =

�
i=X if i 2 X
0 if i =2 X (B4)

for any i 2 I and any X 2 C � S.27 The restriction to (B4) here is just for simplicity. Also,

take any � 2 [1=2; 1) as a measure of the extent of supermajority requirement. De�ne the set of

winning coalitions as

WX =
n
Y 2 C :

X
j2Y \X

j > �
X

j2X
j

o
. (B5)

Clearly, this corresponds to weighted �-majority voting among members of the incumbent coali-

tion X (with � = 1=2 corresponding to simple majority). In addition, suppose that the following

simple genericity assumption holds:

X = Y only if X = Y . (B6)

The following proposition can now be established.

26 In Acemoglu, Egorov and Sonin (2008), not all transitions are allowed. In particular, the focus is on a game of
�eliminations�from ruling coalitions in nondemocracies, so that once a particular individual is eliminated, he can
no longer be part of future ruling coalitions (either because he is �killed,�permanently exiled, or is permanently
excluded from politics by other means). In Appendix B, we allow for restrictions on feasible transitions and show
how Proposition 5 can be generalized to cover the case of political eliminations considered in Acemoglu, Egorov,
and Sonin (2008).
27This is a special case of the payo¤ structure in Acemoglu, Egorov and Sonin (2008), where we allowed for any

payo¤ function satisfying the following three properties: (1) if i 2 X and i =2 Y , then wi (X) > wi (Y ); (2) if i 2 X
and i 2 Y , then wi (X) > wi (Y ) if and only if i=X > i=Y ; and (3) i =2 X and i =2 Y , then wi (X) = wi (Y ).
The form in (B4) is adopted to simplify the discussion here.
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Proposition 5 Consider the environment in Acemoglu, Egorov, and Sonin (2008). Then there

exists an arbitrarily small perturbation of payo¤s such that Assumptions 1, 2(a,b), and 3 are

satis�ed. Then Theorem 1 and Theorem 2 apply and characterize the stable states.

Proof. Let us perturb players�payo¤s so that if i =2 X, then wi (X) = "X where " > 0 is small.

Assumption 1 immediately follows from (B5) and that � � 1=2. To prove that Assumption 2(a)

holds, it su¢ ces to notice that Y �X X is impossible if Y > X , so any cycle would break

at the least powerful coalition in it (which is unique because of genericity). Similarly, to prove

that Assumption 2(b) holds, notice that if a �-cycle exists, it is by genericity a �-cycle. But if

Y �X X and Z �X X, then Y > Z implies Z �X Y , and thus Y �X Z: indeed, all players

in Z prefer Z to Y , and they form a winning coalition in X, for if they did not, Z �X X would

be impossible. Again, this means that any cycle would break at the least powerful coalition in

it. Now, take Y �X X and Z �X X. This implies �X < Y < X and either Z � �X or

Z > X . If Z � �X , all players who are not in Z prefer Y to Z: this is obviously true for

the part that belongs to Y , while if a player is neither in Y nor in Z, this is true because of

the perturbation we made, for in this case Y > �X � Z . Since players in Z do not form a

winning coalition in this case, we have Z �X Y . Consider the second case where Z > X ; then

all players in Y prefer Y to Z, since Y < Z . This means that Y �X Z and thus Z �X Y .

One can similarly show that Assumption 3 holds: if Y �X X and Z �X X, then, by genericity,

X � Y implies Y 6= Z . Without loss of generality, Y > Z , and in this case Z �X Y . This

completes the proof.

The Structure of Elite Clubs

In this subsection, we brie�y discuss another example of dynamic club formation, which allows

a simple explicit characterization. Suppose there are N individuals 1; 2; : : : ; N and N states

s1; s2; : : : ; sN , where sk = f1; 2; : : : ; kg. Preferences are such that for any n0 = n1 < j � n2 < n3,

wk (sn0) = wk (sn1) < wk (sn3) < wk (sn2) . (B7)

These preferences imply that each player k wants to be part of the club, but conditional on being

in the club, he prefers to be in a smaller (more �elite�) one. In addition, a player is indi¤erent

between two clubs he is not part of. Suppose that decisions are made by a simple majority rule

of the club members, so that winning coalitions are given by

Wsk = fX 2 C : jX \ skj > k=2g . (B8)
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It is straightforward to verify that this environment satis�es Assumptions 1, 2(a,b), and 3.28

Hence, we can use Theorems 1 and 2 to characterize the set of stable states and the unique

outcome mapping. First, notice that state s1 is stable. This club only includes player 1, who is

thus the dictator, and who likes this state best, and thus by Axiom 1 we must have � (s1) = s1.

In state s2, a consensus of players 1 and 2 is needed for a change. But s2 is the best state for

player 2, so � (s2) = s2. In state s3, the situation is di¤erent: state s2 is stable and is preferred

to s3 by both 1 and 2 (and is the only such state), so � (s3) = s2. Proceeding inductively, we

can show that club sj is stable if and only if j = 2n for n 2 Z+, and the unique mapping � that

satis�es Axioms 1�3 is

� (sk) = s2blog2 kc , (B9)

where bxc denotes the greatest integer less than or equal to x 2 R. The following proposition

summarizes the above discussion.

Proposition 6 In the elite club example considered above with preferences given by (B7) and

set of winning coalitions given by (B8), the following results hold.

1. Assumptions 1, 2(a,b), and 3 hold.

2. If, instead of (B7), for n0 < n1 < k � n2 < n3 we have wk (sn0) < wk (sn1) < wk (sn3) <

wk (sn2), then single-crossing condition is satis�ed (and monotonic median voter property

is always satis�ed in this example).

3. Club sk is stable if and only if k = 2n for n 2 Z+.

4. The unique mapping � that satis�es Axioms 1�3 is given by (B9).

Proof. (Part 1) Assumption 1 holds in each club sk, because the voting rule is simple majority.

To show that Assumption 2(a) holds, we notice that it is impossible to have sl �sk sk for l > k,

because all members of sk prefer sk to sl. Therefore, any cycle that we hypothesize to exist will

break at its smallest club. To show that Assumption 2(b) holds, take any club s = sk. The set

of clubs fslg that satisfy sl �sk sk is the set of clubs that satisfy k=2 < l < k. Hence, for any

28Alternatively, one could consider a slight variation where a player who does not belong to either of any
two clubs prefers the larger of the two. In this case, Theorem 4 can also be applied. In particular, with this
variation, the single-crossing condition is satis�ed (if wi (sy) > wi (sx) for y > x and j > i, then i =2 x and
thus, j =2 x, and wj (sy) > wj (sx); conversely, wj (sy) < wj (sx) means j 2 sy, thus i 2 sy, and therefore
wi (sy) < wi (sx)). The monotonic median voter condition holds as well (one can choose quasi-median voter in
state sj to be b(j + 1) =2c 2Msj ; this sequence is weakly increasing in j).
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clubs sl, sm with l < m that satisfy sl �sk sk and sm �sk sk we have sl �sk sm: indeed, players

i 2 f1; : : : ; lg which form a simple majority will prefer sl to sm, as they are included in both

clubs, but prefer the smaller one. Therefore, sm �sk sl is impossible for l < m. Let us now take

sl �sk sk and sm �sk sk. This means k=2 < l � k, and either m � k=2 or m � k. If m � k=2,

then the set of members of club sk who prefer sm to sl is f1; : : : ;mg: those who belong to sl
but not to sm prefer sl, while those who do not belong to either of sm and sl are indi¤erent. So,

players only players in sm may strictly prefer sm to sl. But they do not constitute at least half

of the club in sk, so sm �sk sl. Consider the second case, m � k. But then all players in sl (i.e.,

a majority) will prefer sl to sm, and therefore sm �sk sl. We have proved that Assumption 2(b)

holds.

Finally, to show that Assumption 3 holds, take s = sk, sl and sm such that sl �sk sk,

sm �sk sk, and sl � sm. Without loss of generality assume l < m. But then sl �sk sm, since all

players from sl prefer sl, and they form a majority in sk. This proves that Assumption 3 holds.

(Part 2) Monotonic median voter property holds, since we can take msk to be player k=2

if k is even and (k + 1) =2 is odd; clearly, fmskg
N
k=1 is an increasing sequence of quasi-median

voters. To show that the single-crossing condition holds, take i; j 2 I such that i < j and

sk; sl 2 S with k < l. Suppose wi (sl) > wi (sk). This is possible if i 2 sl but i =2 sk or i =2 sk; sl.

In either case, i =2 sk, and therefore j =2 sk. But then wj (sl) > wj (sk). Suppose now that

wj (sl) < wj (sk); this means that j 2 sk; sl. But then i 2 sk; sl, and therefore wi (sl) < wi (sk).

This establishes that the single-crossing condition holds.

(Part 3) Notice that it is never possible that sl �sk sk if k < l. We can therefore start with

smaller clubs. Club s1 is stable and 1 = 20. Suppose we proved the statement for j < k and

now consider club sk. If log2 k =2 Z, then club sj for j = 2blog2 kc is stable and contains more

than half members of sk. Hence, sk is unstable. Conversely, if log2 k 2 Z, then the only clubs

we know to be stable do not contain more than k=2 members, so sk is stable. This proves the

induction step.

(Part 4) If log2 k 2 Z, then 2blog2 kc = k, and the statement follows from part 3. If log2 k =2 Z,

then s2blog2 kc is the only club which is preferred to sk by a majority (other stable clubs are either

larger than sk or at least twice as small as s2blog2 kc , i.e., more than two times smaller than sk).

The result follows.
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Stable Voting Rules and Constitutions

Another interesting model that can be analyzed using Theorem 4 is Barbera and Jackson�s

(2004) model of self-stable constitutions. In addition, our analysis shows how more farsighted

decision-makers can be easily incorporated into Barbera and Jackson�s model.

Motivated by Barbera and Jackson�s model, let us introduce a somewhat more general frame-

work. The society takes the form of I = f1; : : : ; Ng and each state now directly corresponds to

a �constitution�represented by a pair (a; b), where a and b are integers between 1 and N . The

utility from being in state (a; b) is fully determined by a, so that each player i receives utility

wi [(a; b)] = wi (a) : (B10)

In contrast, the set of winning coalitions needed to change the state is determined by b 2 Z+:

W(a:b) = fX 2 C : jXj � bg (B11)

(so b may be interpreted as the degree of supermajority).

In Barbera and Jackson�s model, individuals di¤er according to the probability with which

they will support a proposal for a speci�c reform away from the status quo. The parameter a

determines the (super)majority necessary for implementing the reform. The parameter b, on

the other hand, is the (super)majority necessary (before individual preferences are realized) for

changing the voting rule a. Expected utility is calculated before these preferences are realized

and de�nes wi [(a; b)]. Ranking individuals according to the probability with which they will

support the reform, Barbera and Jackson show that individual preferences satisfy (strict) single-

crossing and are (weakly) single-peaked.

For our analysis here, let us consider any situation in which preferences and winning coalitions

satisfy (B10) and (B11). It turns out to be convenient to reorder all pairs (a; b) on the real line

as follows: if (a; b) and (a0; b0) satisfy a < a0, then (a; b) is located on the left of (a0; b0), and

we write (a; b) < (a0; b0); the ordering of states with the same a is unimportant. Suppose that

wi (a), and thus wi [(a; b)], satis�es the single-crossing condition in De�nition 3. This enables

us to apply Theorem 4 to any problem that can be cast in these terms, including the original

Barbera and Jackson model.

Let us next follow Barbera and Jackson in distinguishing between two cases. In the case of

constitutions, any combination (a; b) is allowed, while in the case of voting rules, only the subset

of states where a = b is considered (then a = b is the voting rule); in both cases it is natural
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to assume b > N=2. Barbera and Jackson call a voting rule or a constitution (a; b) self-stable

if there is no alternative voting rule (a0; b0) with a0 = b0 (or, respectively, constitution (a0; b0))

such that (a0; b0) is preferred to (a; b) by at least b players. The following proposition states the

relation between self-stable constitutions and dynamically stable sets.

Proposition 7 Consider the above-described environment and assume that preferences satisfy

single-crossing condition and Assumption 6 holds. Then:

1. Assumptions 1, 2(a,b) are satis�ed.

2. There exist mappings �v for the case of voting rules (a = b) and �c for the case of consti-

tutions that satisfy Axioms 1�3.

3. The set of self-stable constitutions coincides with the set of dynamically stable states.

Proof. (Part 1) Assumption 1 follows from b > N=2. Therefore, Theorem 4 applies and

Assumption 2(a,b) are satis�ed.

(Part 2) By part 1, Theorem 1 is applicable. The result immediately follows.

(Part 3) By de�nition, a constitution (a; b) is self-stable if ji 2 I : wi (a0) > wi (a)j < b for

all feasible a0. But this is equivalent to (a0; b0) �(a;b) (a; b) for all (a; b). By (5) we obtain that

�c [(a; b)] = (a; b), i.e., (a; b) is �c-stable. Hence, a self-stable constitution is a dynamically stable

state.

Vice versa, take any dynamically stable state (a; b). Suppose, to obtain a contradiction, that

(a; b) is not a self-stable constitution; let us prove that then �c [(a; b)] 6= (a; b). Consider the set

of constitutions Q = f(a0; b0)g such that (a0; b0) �(a;b) (a; b); since (a; b) is not self-stable, this set

is nonempty. Note that if (a0; b0) 2 Q, then (a0; N) 2 Q (because the second part of the pair of

rules does not enter the utility directly). Now take some player i and (a0; b0) 2 Q that is most

preferred by i among the states within Q (or one of such states if there are several of these).

Consider state (a0; N) 2 Q. First, since it lies in Q, (a0; N) �(a;b) (a; b). Second, this state is

�c-stable: indeed, if it were not the case, we would have some other (a
00; b00) �(a0;N) (a0; N). This

means that each player prefers (a00; b00) to (a0; N), which of course implies that at least a players

prefer (a00; b00) to (a; b), so (a00; b00) 2 Q. But there is player i who at least weakly prefers (a0; b0)

(and therefore (a0; N), which is the same as far as immediate payo¤s are concerned) to any other

element in Q. This means that such (a00; b00) does not exist, and state (a0; N) is stable. Axiom
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3 then implies that �c (a; b) cannot equal (a; b), since state (a
0; N) is �c-stable and is preferred

to (a; b). This completes the proof.

Coalition Formation in Democracy

We next brie�y discuss how similar issues arise in the context of coalition formation in democ-

racies, for example, in coalition formation in legislative bargaining.29

Suppose that there are three parties in the parliament, 1; 2; 3, and any two of them would be

su¢ cient to form a government. Suppose that party 1 has more seats than party 2, which

in turn has more seats than party 3. The initial state is ?, and all coalitions are possi-

ble states. Since any two parties are su¢ cient to form a government, we have W? = Ws =

ff1; 2g ; f1; 3g ; f2; 3g ; f1; 2; 3gg for all s: First, suppose that all governments are equally strong

and a party with a greater share of seats in the parliament will be more in�uential in the coali-

tion government. Consequently, w3 (?) � w3 (f1; 2g) < w3 (f1; 2; 3g) < w3 (f1; 3g) < w3 (f2; 3g);

other payo¤s are de�ned similarly. In this case, it can be veri�ed that � (?) = f2; 3g: indeed,

neither party 2 nor party 3 wishes to form a coalition with party 1, because party 1�s in�uence

in the coalition government would be too strong. The equilibrium in this example then coincides

with the minimum winning coalition.

However, as emphasized in the Introduction, the dynamics of coalition formation does not

necessarily lead to minimum winning coalitions. To illustrate this, suppose that governments

that have a greater number of seats in the parliament are stronger, so that w2 (?) � w2 (f1; 3g) <

w2 (f1; 2; 3g) < w2 (f2; 3g) < w2 (f1; 2g). That is, party 2 receives a higher payo¤ even though it

is a junior partner in the coalition f1; 2g, because this coalition is su¢ ciently powerful. We might

then expect that f1; 2g may indeed arise as the equilibrium coalition, that is, � (?) = f1; 2g.

Nevertheless, whether this will be the case depends on the continuation game after coalition

f1; 2g is formed. Suppose, for example, that after the coalition f1; 2g forms, party 1, by virtue

of its greater number of seats, can sideline party 2 and rule by itself. Let us introduced the

shorthand symbol �7!�to denote such a feasible transition, so that we have f1; 2g 7! f1g (which

naturally presumes thatWf1;2g = fX 2 C : 1 2 Xg). Similarly, starting from the coalition f2; 3g,

party 2 can also do the same, so thatWf2;3g = fX 2 C : 2 2 Xg and f2; 3g 7! f2g. However, it is
29See, for example, Baron and Ferejohn (1986), Austen-Smith and Banks (1988), Baron (1991), Jackson and

Moselle (2002), and Norman (2002) for models of legislative bargaining. The recent paper by Diermeier and Fong
(2008) that studies legislative bargaining as a dynamic game without commitment also raises a range of issues
related to our general framework here.
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also reasonable to suppose that once party 2 starts ruling by itself, then party 1 can regain power

by virtue of its greater seat share, that is, Wf2g = fC 2 C : 1 2 Cg and thus f2g 7! f1g. In this

case, the analysis in this paper immediately shows that � (?) = f2; 3g, that is, the coalition

f2; 3g emerges as the dynamically stable state.

What makes f2; 3g dynamically stable in this case is the fact that f2g is not dynamically

stable itself. This example therefore reiterates, in the context of coalition formation in democ-

racies, the insight that the instability of states that can be reached from a state s contributes

to the stability of state s.

Concessions in Civil War

Let us brie�y consider an application of the ideas in this paper to the analysis of civil wars. This

example can also be used to illustrate how similar issues arise in the context of international

wars (see, e.g., Fearon, 1996, 2004, Powell, 1998). Suppose that a government, G, is engaged

in a civil war with a rebel group, R. The civil war state is denoted by c. The government

can initiate peace and transition to state p, so that Wc = fC 2 C : G 2 Cg. However, using

the shorthand �7!�introduced in subsection 7, we now have p 7! r, where r denotes a state in

which the rebel group becomes strong and su¢ ciently in�uential in domestic politics. Moreover,

Wp = fX 2 C : R 2 Xg, and naturally, wR (r) > wR (p). If wG (r) < wG (c), there will be no

peace and � (c) = c despite the fact that we may also have wG (p) > wG (c). The reasoning for

why civil war may continue in this case is similar to that for ine¢ cient inertia discussed above.

As an interesting modi�cation, suppose next that the rebel group R can �rst disarm partially,

in particular, c 7! d, where d denotes the state of partial disarmament. Moreover, d 7! dp,

where the state dp involves peace with the rebels that have partially disarmed. Suppose that

Wdp = ffG;Rgg, meaning that once they have partially disarmed, the rebels can no longer

become dominant in domestic politics. In this case, provided that wG (dp) > wG (d), we have

� (c) = dp. Therefore, the ability of the rebel group to make a concession changes the set of

dynamically stable states. This example therefore shows how the role of concessions can also be

introduced into this framework in a natural way.

Taxation and Public Good Provision

In many applications preferences are de�ned over economic allocations, which are themselves

determined endogenously as a function of political rules. Our main results can also be applied
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in such environments. Here we illustrate this by providing an example of taxation and public

good provision. Suppose there are N individuals 1; 2; : : : ; N and N states s1; s2; : : : ; sN , where

sk = f1; 2; : : : ; kg. We assume that decisions on transitions are made by an absolute majority

rule of individuals who are enfranchised, so that winning coalitions take the form

Wsk = fX 2 C : jX \ skj > k=2g .

We also assume that the payo¤ of individual i is given by

wi (sj) = E
��
1� � sj

�
Ai +Gsj

�
; (B12)

where Ai is individual i�s productivity (we assume Ai > Aj for i < j, so that lower-ranked

individuals are more productive), E denotes the expectations operator, and � sj is the tax rate

determined when the voting franchises sj . When an odd number of individuals are allowed to

vote, the tax rate is determined by the median. When there is an even number of voters, each

of two median voters gets to set the tax rate with equal probability. The expectations in (B12)

is included because of the uncertainty of the identity of the median voter in this case. Finally,

Gsj = h
�Pk

l=1 � sjAl

�
is the public good provided through taxation, where h is an increasing

concave function.

For the single-crossing property, we require that for any i < j 2 I and for any sl; sl+1 2 S,

wj (sl+1) > wj (sl)) wi (sl+1) > wi (sl) and wi (sl+1) < wi (sl)) wj (sl+1) < wj (sl) .

Denoting the equilibrium taxes in states sl and sl+1 by � sl+1 and � sl , the following condition is

su¢ cient (but not necessary) to ensure this:

E
�
1� � sl+1

�
Aj � E (1� � sl)Aj > E

�
1� � sl+1

�
Ai � E (1� � sl)Ai,

since the equilibrium levels of public goods, Gsl and Gsl+1 , cancel out from both sides. Therefore,

E� sl+1 > E� sl (B13)

is su¢ cient for single-crossing. Note that individual i, when determining the tax rate in sl,

would maximize (1� �)Ai + h
�
�
Pl
m=1Am

�
. This implies that individual i would choose � i

such that

Ai = h0
�
� i
Xl

m=1
Am

�Xl

m=1
Am.
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From the concavity of h it follows that for i < j, � i > � j . Now consider a switch from sl to

sl+1. Then, with probability 1/2, the tax is set by the same individual (then the tax rate is

the same in sl+1 as in sl), and with probability 1/2, by a less productive individual (then the

tax rate is greater in sl+1 than in sl). Therefore, (B13) holds and we can apply Theorem 4 to

characterize the dynamically stable states in this society. More interestingly, these results can

also be extended to situations where public goods [taxes] are made available di¤erentially to

[imposed on] those who have voting rights (club members).

The Relationship Between D, von Neumann-Morgenstern Stable Set, and
Chwe�s Largest Consistent Set

The following de�nitions are from Chwe (1994) and von Neumann and Morgenstern (1944).

De�nition 8 (Consistent Sets) For any x; y 2 S and any X 2 C, de�ne relation !X by

x!X y if and only if either x = y or x 6= y and X 2 Wx.

De�nition 9 1. We say that state x is directly dominated by y (and write x < y) if there

exists X 2 C such that x !X y and x �X y, where we write x �X y as a shorthand for

wi (x) < wi (y) for all i 2 X.

2. We say that state x is indirectly dominated by y (and write x � y) if there exist

x0; x1; : : : ; xm 2 S such that x0 = x and xm = y and X0; X1; : : : ; Xm�1 2 C such that

xj !Sj xj+1 and xj �Sj y for j = 0; 1; : : : ;m� 1.

3. A set S � S is called consistent if x 2 S if and only if 8y 2 S;8X 2 C such that x!X y

there exists z 2 S, where y = z or y � z, such that x �X z.

De�nition 10 (von Neumann-Morgenstern�s Stable Set)A set of states X � S is von

Neumann-Morgenstern stable if it satis�es the following properties:

1. (Internal stability) For any x; y 2 X we have y �x x;

2. (External stability) For any x 2 S nX there exists y 2 X such that y �x x.

Proposition 8 Suppose Assumptions 1 and 2 hold. Then:

1. The set of stable states D is the unique von Neumann-Morgenstern stable set;
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2. D is the largest consistent set;

3. Any consistent set is either D or any subset of the set of exogenously stable states (and

vice versa, all such sets are consistent).

Proof. We take the sequence of states
n
�1; :::; �jSj

o
satisfying (A1). Suppose that set of states X

is von Neumann-Morgenstern stable; let us prove that X = D. Clearly, �1 2 X , since �k ��1 �1
for any state �k. Now suppose that we have proved that X\

�
�1; : : : ; �k�1

	
= D\

�
�1; : : : ; �k�1

	
for some k � 2; let us prove that �k 2 X if and only if �k 2 D. From Theorem 1 it follows

that it su¢ ces to prove that �k 2 X if and only ifMk = ?. Suppose �rst thatMk 6= ?; then,

since Mk = X \
�
�1; : : : ; �k�1

	
by construction, we have that �l ��k �k for some l < k such

that �l 2 X . Hence, if �k 2 X , then internal stability property would be violated, and therefore

�k =2 X . Now consider the case whereMk = ?. This means that X \
�
�1; : : : ; �k�1

	
= ?, and

therefore there does not exist �l 2 X such that l < k and �l ��k �k. But by (A1), �l ��k �k
whenever l > k. Hence, for any �l 2 X such that l 6= k we have �l ��k �k, and therefore

�k 2 X , for otherwise external stability condition would be violated. This proves the induction

step, and therefore completes the proof that X = D.

(Part 2) It is obvious that for any x; y 2 S, x < y implies x � y. In our setup, however,

the opposite is also true, so x < y if and only if x� y. To see this, suppose that x� y; take a

sequence of states and a sequence of coalitions as in De�nition 8. Let k � 0 be lowest number such

that xk+1 6= x. This means that x !Xk xk+1 (because xk = x) and 8i 2 Xk : wx (i) < wy (i).

By de�nition, x < y; note also that Xk 2 Wx, since x 6= xk+1.

To show that set D is consistent, consider some mapping � that satis�es Axioms 1�3. Take

any x 2 D, and then take any y 2 S and any X 2 C such that x!X y. Let z = � (y); then, as

follows from Axiom 1, either z = y or y � z. Now consider two possibilities: x = y and x 6= y. In

the �rst case, x = y 2 D, so z = y = x. Since X is nonempty, property 9i 2 X : wx (i) � wz (i)

is satis�ed. Now suppose that x 6= y; then X 2 Wx. On the other hand, z 2 D. But it is

impossible that z �x x, since both x and z are stable (otherwise, Axiom 1 would be violated for

mapping �), hence, in this case, 9i 2 X : wi (x) � wi (z), too.

Now take some x =2 D. We need to show that there exist y 2 S and X 2 C such that

x !X y and for any z 2 D which satis�es that either z = y or y � z, we necessarily have

8i 2 X : wi (x) < wi (z). Take y = � (x) and X = fi 2 I : wi (x) < wi (y)g 2 Wx; then x!X y.

Note that it is impossible that for some z 2 D we have y � z, for then y < z, and therefore
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z �y y, which would violate Axiom 1. Therefore, any z 2 D such that either z = y or y � z

must satisfy z = y. But then, by our choice of X, we have 8i 2 X : wi (x) < wi (z). This proves

that D is indeed a consistent set.

To show that D is the largest consistent set, suppose, to obtain a contradiction, that the

largest consistent set is S 6= D. Since D is consistent, we must have D � S. Consider sequencen
�1; :::; �jSj

o
satisfying (A1), and among all states in S nD 6= ? pick state x = �k 2 S nD with

the smallest number, i.e., such that if �l 2 S n D, then l � k. We now show that, according

to the de�nition of a consistent set, x =2 S, which would contradict the assertion that state S

is consistent. Take some mapping � that satis�es Axioms 1�3. Now let y = � (x) 2 D and

X = fi 2 I : wi (x) < wi (y)g 2 Wx; then x !X y and, since x =2 D, y 6= x, which by (A1)

implies that y = �l for l < k. Now if for some z 2 S we have y � z, then y < z, and hence

z �y y, which implies z = �j for some j < l < k. But then z =2 S n D, and therefore z 2 D.

However, it is impossible that y; z 2 D and z �y y, as this would violate Axiom 1. Therefore,

if for some z 2 S either z = y or y � z, then in fact z = y. But for such z, we do have

8i 2 X : wi (x) < wi (z), by construction of X. We get a contradiction, since by de�nition of a

consistent set x =2 S, while we picked x 2 S nD. This proves that D is the largest consistent set.

(Part 3) By part 2, if S is a consistent set, then S � D. Suppose that S 6= D, but S includes

a state which is not exogenously stable. Suppose x 2 S is not exogenously stable and y 2 D nS;

then x !X y for some X 2 Wx. Since x 2 S, there exists z 2 S where either z = y or y � z,

such that 9i 2 X : wi (x) � wi (z). But y 2 D n S, and hence y � z, which implies, as before,

y < z and z �y y. However, this is impossible, since y; z 2 D. This contradiction proves that if

S 6= D, S may not include any state which is not exogenously stable.

Consider, however, any S which consists of exogenously stable states only. Take any x 2 S.

If y 2 S and X 2 C are such that x!X y, then x = y. In that case, we can take z = y 2 S and

�nd that condition 9i 2 X : wi (x) � wi (z) trivially holds. Now take any x =2 S. Consider two

possibilities. If state x is exogenously stable, then take X = I and y = x; then x !X y. If for

some z 2 S we had y � z, then, in particular, y !Y z for some Y 2 C, which is incompatible

with z 6= y; at the same time, z = y is impossible, as z 2 S and y = x =2 S. This means that for

this y there does not exist z 2 S such that either z = y or y � z, and therefore x = y should not

be in S. Finally, suppose that x is not exogenously stable. Again, consider mapping � satisfying

Axioms 1�3 and take y = � (x) and X = fi 2 I : wi (x) < wi (y)g 2 Wx; then x !X y. By

the same reasoning as before, if for some z 2 S either z = y or y � z, then z = y, because
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y � z would imply z �y y for y; z 2 D. But for such z, we have 8i 2 X : wi (x) < wi (z) by

construction of X. This proves that S is indeed a consistent set, which completes the proof.
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