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Abstract—\We present a technique for the rapid and reliable or configuration of the component or system: these inputs
evaluation of linear-functional output of elliptic partial differ-  typically reflect geometry, properties, and boundary conditions
ential equations with affine parameter dependence. The essential and loads; we shall assume thais a P-vector (orP-tuple) of

components are {) rapidly uniformly convergent reduced-basis . . . . P
approximations — Galerkin projection onto a spacelWy spanned parameters in a prescribed closed input donfaia R*. The

by solutions of the goveming partial differential equation at N input-output relationship®(x): D — R thus encapsulates the
(optimally) selected points in parameter space;i() a posteriori behavior relevant to the desired engineering context.
error estimation — relaxations of the residual equation that |n many important cases, the input-output functiet(u)

provide inexpensive yet sharp and rigorous bounds for the eror s pest articulated as a (say) linear functioabf a field
in the outputs; and (iii) offline/online computational procedures iable ue The field iable. in t tisfi
— stratagems that exploit affine parameter dependence to de- variable u®(y). € held variable, In turn, satisiies a-

couple the generation and projection stages of the approximation Parametrized partial differential equation (PDE) that describes
process. The operation count for the online stage — in which, the underlying physics: for givep € D, u®(u) € X¢ is the
given a new parameter value, we calculate the output and gglution of

associated error bound — depends only onV (typically small)

and the parametric complexity of the problem. The method is a(u®(p),v;p) = f(v), VwveXS 1)

thus ideally suited to the many-query and real-time contexts. . . .

In this paper, based on the technique we develop a robust inverse Wherea(-, -; 1) and f are continuous bilinear and linear forms,
computational method for very fast solution of inverse problems respectively; andX® is an appropriate Hilbert space defined
characterized by parametrized partial differential equations. The  gver the physical domaif2 C R¢. Relevant system behavior

essential ideas are in three-fold: first, we apply the technique to ; ; ; e w g » : :
the forward problem for the rapid certified evaluation of PDE is thus described by an implicit *input-output” relationship

input-output relations and associated rigorous error bounds; 5(p) = £(u®(p)). )
second, we incorporate the reduced-basis approximation and

error bounds into the inverse problem formulation; and third, The problem of evaluating input-output relationship, which
rather than regularize the goodness-of-fit objective, we may requires solution of the underlying partial differential equation
instead identify all (or almost all, in the probabilistic sense) (1), is calledforward problem In contrast, thénverse problem

system configurations consistent with the available experimental . d with deducing the i ts f th d
data — well-posedness is reflected in a bounded “possibility 'S cONcerned with deducing the inputs from the measured-

region” that furthermore shrinks as the experimental error is = Observable outputs.
decreased. Our particular interest — or certainly the best way to motivate
our approach — is in specific areas of inverse problems
Keywords Linear elliptic equations, Reduced-basis methoghat take real-time aspect as high priority. For example, in
Reduced-basis approximation, posteriori error estimation, nondestructive evaluation, we may be interested in assess-
Parameter estimation, Inverse computational method, Posfient, evolution, and accommodation of a crack in a critical
bility region. component of an in-service jet engine. Typical computational
|. INTRODUCTION tasks inclgde robyst pargm.ete.r estimation (iqverse problems)
. . . . . . _and adaptive design (optimization problems): in the former —
Engineering analysis requires the prediction of (say, a sing example, assessment of current crack length — we must

13 n_e H - . . N .
selected “output’s rglevant to ul't|mate compqnent and SYSgeduce inputg: representing system characteristics based on
tem performance typical outputs include energies and fOrcesoutputSSC(u) reflecting measured observables; in the latter

critical stresses or strains, flowrates or pressure drops, and var, example, prescription of allowable load — we must

ious local and global measures of _concentration, temperat%gduce inputsy representing “control” variables based on
an(‘j‘- flux. Ihese outputs are.funclt|0ns of s_ystem par_am,‘at%ﬁtputSSe(u) reflecting current process objectives. Both of
or “inputs,” u, that serve to identify a particular reallzat|or1[hese demanding activities must support agtion in the

IHere superscripté” shall refer to “exact.” We shall later introduce a “truth presence of continually evolving environmental and mission
approximation” which will bear no superscript. parameters.



The computational requirements on the forward problem are Il. REDUCED-BASIS APPROXIMATION

thus formidable: the evaluation must beal-time since the The reduced-basis (RB) approximation was first introduced
action must bémmediateand the evaluation must wertified i the |ate 1970s in the context of nonlinear structural anal-
— endowed with a rigorous error bound — since the actigijs [1], [15] and subsequently abstracted and analyzed [4],
must besafeandfeasible For example, in our aerospace cracky 7] [20] and extended [9], [10], [16] to a much larger
example, we must predidn the field — without recourse cjass of parametrized partial differential equations. We first
to a lengthy computational investigation — the load that thgiroduce nested sampleSy = {u1 € D,...,un € D},
potentially damaged structure can unambiguosslfelycarry. | < N < N,. . and associated nested “Lagrangian’ RB
Classical approaches such as the finite element method gpacesWy = span{¢,(un) = u(pn),1 < n < N},

not typically satisfy these requirements. In the finite element < N < N,....2 Our RB approximation is then: Given
method, we first introduce a piecewise-polynomial “truthy, ¢ D, we evaluate

approximation subspac& (C X°¢) of dimension . The

“truth” finite element approximation is then found by (say) sv(p) = Llun(p)) (8)
Galerkin projection: givenu € D, whereuy (1) € Wy satisfies
s(p) = L(u(p)) (3) a(un (p),v;p) = f(v), Vv e Wy. )

We consider in this paper only Galerkin projection, though
Petrov-Galerkin approaches can be advantageous. We note that
the RB approximation is constructed not as an approximation

a(u(p),vip) = f(v), VvelX (4)  to the exact solutionu®(p), but rather as an approximation

. . to the (finite element) truth approximation(.). As already

We assume — hence the appellation “truth” — thetis giscyssed), the dimension oft, will be very large; our RB
sufficiently rich thatu(u) (respectively,s(n)) is sufficiently  ¢ormylation and associated error estimation procedures must
close tou®(u) (respectivelys©(x)) for all p in the parameter po stapleand (online)efficientas N — oc.
domainD. Unfortunately, for any reasonable error tolerance, essencelly comprises “snapshots” on the parametrically
the dimensionV' needed to satisfy this condition — even with,q,ced manifoldM = {u(y) | € D} C X. It is clear that
the application of appropriate (parameter-dependent) adaptive is very low-dimensional furthermore, it can be shown —

mesh refinement strategies — is typically extremely large, apf consider the equations for the sensitivity derivatives and

in particular much too large to provide real-time response R, oke stability and continuity — that is very smooth We

the “deployed” context. thus anticipate thaty (1) — u(x) very rapidly, and that we

We Sha” make two CI‘UCial hypo'[heses. The fiI‘St hypothe%y hence Choosy < A/' Many numerica| examp|es Jus“fy

is related to well-posedness, and is often verified oaly this expectation [8]; and, in certain simple cases, exponential

pOSthiorl We assume that satisfies a Stablllty and Continuity convergence can be proven [12]' [19] We emphasize that the

condition deployed context requires global reduced-basis approximations
that areuniformly (rapidly) convergent over the entire param-

, VueD; (5) eter domairD; proper choice of the parameter sampigg is

thus crucial.

We may now representy(u) as uy(p) = Z;V:l UN ;.

Our RB output may then be expressed ag(p) =

Z;V:l un j(1)€(¢;), where — we now invoke our affine

assumption (7) — they ;(p),1 < j < N, satisfy theN x N

Here 3(u) is the Babgka “inf-sup” (stability) parameter — |inear algebraic system

the minimum (generalized) singular value associated with our

whereu(p) € X satisfies

0< fo < B = inf_sup UL
weX yex ||wlxv]x

a(w,v; p
v(u) = sup sup ( )

— 7 < oo, VueD. (6)
wex vex [wlx|lvllx

N Q
differential operator — andy(u) is the standard continuity oY arr - Y — £ 10
anterentt )3 { >0 (GirG) fun s () = F(G), (20)
The second hypothesis is related primarily to numerical ef?c-)r i = 1. N.Itis clear from (10) that we may pursue

ciency, and is typically verifie@ priori. We assume that is

affinein the parametey: in the sense that an offline-online computational strategy [2], [10], [19] that is

ideally suited to the deployed real-time context.
Q In the offline stage — performeance — we first solve for
a(w, v; p) = Z@qw)aqw,v), (7) thed, 1 <i < Nyax; we then formand storel(¢;),1 < i <
q=1 Nmaxa andaq(Cj,Q), 1< i,j < Nmax; 1< q < Q In the

for g = 1,...,Q parametedependentfunctions @q(ﬂ) . 2In actual practice, the bases should be orthogonalized with respect to the
A . . - inner product associated with the Hilbert spake (-,-)x; the algebraic

D — R and paramete‘ndependentonF'nUOUS blinear forms systems then inherit the “conditioning” properties of the underlying partial

a?(w,v). The affine assumption may in fact be relaxed [3]. differential equation.



online stage — performed many times, for each netinthe whereC € X and £ € X, 1 < n < N, 1 < g <
field” — we first assemble and subsequently invert the (fult) satisfy theparameter-independerRoisson(-like) problems
N x N “stiffness” matrixsz:1 ©9(p)a?(¢;,¢;) to obtain the (C,v) = f(v), Yv € X and(LL,v) = —a?((p,v), Yv € X,
unj, 1 < j < N — at costO(QN?) + O(N?); we then respectively. We then insert the expression (19) into (16) to
evaluate the sunZé\Ll un j()€(¢;) to obtainsy(u) — at obtain

costO(N). The online complexity isndependenbf N, and N

hence — given thatv < A" — we shall realize extremely €x (1) = (C.0)x+ > > ©%u)un TL(U){Q(CVC;IL)X
rapid deployed response.

Q N , ,
q , q q

IIl. A POSTERIORIERRORESTIMATION + Z:: 2. OT () unw(p) (C"’ﬁn’)x} :
We assume for now that we are giveW(y), a (to-be- an efficient offline-online decomposition may now be iden-
constructed) positive lower bound for the mf-_sup parametefiied. In the offline stage — performed once — we first
B(w): Blu) > B(p) > /_6’0 >0, Yu € D. We then introduce the gq1ve for ¢ and L£i,1<n<N, 1<gq< Q; we then
dual norm of the residuaky (u) = supv_ex[R(’U;/{)/H’UHX]' evaluate and save the relevant parameter-independent inner
where R(v; ) = f(v) — a(un(p),v; p) is the residual asso- products (C,C)x, (C,£9)x, (£%7£q’)x, 1 < n,n < N,

: . . « ” n’
leatgrendat\g:thujv(ﬂ). We may now define our “energy errory < q,¢ < Q. Note that all quantities computed in the

en () offline stage are independent of the paramgtdn the online
An(p) = = 5 (11) stage — performed many times, for each new valueyof
B() “in the field” — we simply evaluate3, (1) in terms of the
and associated effectivity as ©9(p), un » (1) and the precalculated and stored (parameter-
(0 = An(p) 12) indeper_1dent)(~, ~)X_ inner pr02du<2:ts. The_ operation_ count for
nn(p) = () — un(0)x the online stage is onlY)(Q*N#). Again, the online com-

] plexity is independent ofAV and — for Q not too large —
We can then readily demonstrate [19], [22] that for any,mmensurate with the online cost to evaluate ;1)
N? 1 S N S Nmaxa

Finally, we turn to the development of our lower boufig:)

1< nn(p) < v(w)/B(), YueD. (13) for the inf-sup “constant’3(u). To begin, we note that
The left inequality states that y (1) is a rigorous upper bound B(n) = [ inf (Trv, Trv) x (20)
for ||u(u) — un ()] x; the right inequality states thak v (u) H=1\luex loll% ’

is a (reasonably) sharp upper bound fr(y) — un (1) x-

We further define an error bound for the output whereT" : X — X is defined as

. ‘(v (T*w,v)x = a(w,v;p), Yo € X. (21)
A%y () = sup 2 A () ; (14) |
vex vl x Next givenzi € D andt = (t()---t(p)) € R — notet;
for which we clearly obtain is the value of thej*® component oft — we introduce the
. bilinear form
ls(u) = sn ()| < Ay (p), YpeD. (15) - o pe0
It remains to develop appropriate constructions and associatelw viti) = (T"w,T"v)x + ; t(p){ ; i) (%)
offline-online computational procedures for the efficient calcu- = - b
lation of e 5 (1) and 5(p). We consider the former [14], [19]. [a9(w, T"v) + a®(v, TFw)] } (22)
To begin, we note from standard duality arguments that
) and associated Rayleigh quotient
_ R 1
ex (1) = sup = = ()l (16) T (o, 0:1:70)
veX ||V||Xx f(t;ﬁ) = mi)I(l W ; (23)
whereé(p) € X satisfies ve Vlix
) . it is readily demonstrated th&(¢; iz) is concave irt [13], and
(é(n),v)x = R(v;p), YveX. A7) hencep’ = {n e RY | F(u— ;i) > 0} is perforce convex.

We next observe from our reduced-basis expansion and affifg next introduce semi-norms |,: X — Ry o such that
assumption (7) thaR(v; 1) may be expressed as ja?(w, )] < T |wly ol , YwoveX, 1<q<Q,

Q N
R(vip) = f(v) = 32 22 ©1(p)unn(p) a?(Ge,v).  (18) AN
g=1 n=1 Zl |w‘q
=
It thus follows from (17), (18), and linear superposition that COx = o wl[x (24)
Q N - .
) =Ct Y S O9() unn (i) L3 (19) for positive parameter-independent constdits1 < ¢ < Q,

a=1 n=1 and C'x. (Note thatCy is typically independent ofQ, since



the a? are often associated with non-overlapping subdomains IV. A ROBUSTINVERSE COMPUTATIONAL METHOD

of ©2.) We may then define . L
As mentioned earlier, in inverse problems we are concerned

O(u;m) = Cx max {FqH(aq(u) — 01(n) with predicting the unknown parameters from the measured
9€{L---.Q} outputs. The inverse problem is of course typically ill-posed.
P q The latter is traditionally addressed by regularization [7];
_ 007 ) o )
—Z (1 —T0) (p) T(M)H} (25) unfortunately, though adaptive regularization techniques are
p=1 Hi) quite sophisticated, the ultimate prediction is nevertheless
for 1 = (@ -~ pry) € RY. We now introduce pointgi; affected by thea priori assumptions — in ways that are

and associated polytopg¥’s  DAs, 1 < j < J, such that  difficult to quantify in a robust fashion.
Our approach promises significant improvements. Thanks to

J
Dc | PHi, (26) the rapid convergence of the reduced-basis approximation and
J=1 the offline/online computational stratagem we can, in fact,
. - _ _j hieve real-time response in the “deployed” stage; and, thanks
min /F(v — fij; &) — max P(u; ;) > € J 27) & e . N
veVHi (v =5 115) pePhi (s 1) 2 esB(57) (27 to our a posteriorierror estimators, we can associate rigorous

for 1 < j < J. Here V% is the set of vertices associatecertificates of fidelity to our (very fast) output predictions.
with the_pobﬂopeppj — for exampleP%i may be a simplex These advantages are further leveraged within the inverse-
with [VAi| = P + 1 vertices; andes €]0,1[ is a prescribed problem context, rather than regularize the goodness-of-fit

accuracy constant. Finally, our lower bound is given by ~ ©bjective, we may instead identify all (or almost all, in the
probabilistic sense) system configurations consistent with the

Blp) = jeq “?}f;ﬁepﬁj eaB ;) - (28)  available experimental data. Well-posedness is now reflected
. o - ~_in a bounded “possibility regionR that furthermore shrinks

It can be readily demonstrated thatu) has the requisite g5 the experimental error is decreased.
theoretical and computational attributes(x) > 5(1) > |n the context of inverse problems, our input has two compo-
€ 8o > 0, Yu € D, which thus ensures well-posed and rigorougents, ;; — (v,0), wherev € D¥ are characteristic-system pa-
error bounds. _ _ . _ rameters and- are experimental control variables. The inverse
We now turn to the offline/online decomposition. Ta#line  ,piems involve determining the true but unknown parame-
stage comprises two parts: tigenerationof a set of points o5+ from noise-free measuremenfs(v*,a;,),1 < k <
and polytopes/verticesy; and P, Vi, 1 < j < J: and gy 1y actual practice, due to the presence of noise in mea-
the verification that (26) (trivial) and (27) (nontrivial) are g;rement our experimental data will be in the form of intervals
indeed satisfied. We focus on verification; generation — quiﬁ6 o) =[5, 0%) (1 — €oxp)s 5%, o) (1 + €oxp)] , ke =
. . . . - . exps - ) exp /s 9 exp/|» -
involved — is described in detail in [13]. To verify (27), the; ..., K, where e, is the error in measurement. The in-

essential observation is that the expensive terms — “Tuterse problem is then: Given experimental measurements
eigenproblems associated with (20) andf, (23) — are Z(eexp,0r),k = 1,..., K, we wish to determine the region
limited to a finite set ofvertices P € DY in which the unknown parameters’ must reside.
.] . .
T+ 3 |V Towards this end, we define
j=1

= Dv T(€oxp,0r), 1 <k < K 29
in total; only for the extremely inexpensive — and typically P ={v € D"ls(v,on) € L(cexp, o) bo@9)

algebraically very simple —&(y; fi;) terms must we consider where s(v, o) is determined by(3) and (4). Unfortunately,
minimization over thepolytopes Theonline stage (28) is very the realization ofP requires manyqueriesof s(v, o), which
simple: a search/look-up table, with complexity logarithmic ifh turn demands repeated solutions of the underlying PDE.
J and polynomial inP. _ Instead, we shall construct a bounded “possibility regieh”
In conclusion, we can calculate a rigorous and sharp UPRg[ch thatP ¢ R. We first apply the reduced-basis method to
bound AR, (1) = X (1)/B() for |s(1) — s (w)] with online  optain s (1) = sy (1) £ A% (1), and recall that — thanks to

complexityindependenof \. These inexpensive error bounds, rigorous bounds (15) —s(u1) € [sx (1), 53 (12)]. We may
serve most crucially in the online stage — to choose optim@len define

N, to confirm the desired accuracy, to establish strict feasibil-

ity, and to control sub-optimality. However, the bounds may R = {1/ €DV | [sy(v,on), sk (v, on)] N
also be gainfully enlisted in the offline stage — to construct
optimal samples$y: GivenSi’lDt =p3[DO N = 2,...; Niax; T(exp; %), 1 <k < K} (30)

SN = SR Ui py = argmax,ezr Al (u); END J;
our input samplé&?’ can be very large since the marginal costlearly, we have accommodated both numerical and experi-
to evaluateAs$, (u) is very smalf mental error and uncertainty (within our model assumptions),

and hences* € P C R. The important point is thak can be
3In contrast to standard POD economization proceduresv2ljever form P P

the rejected snapshoteur inexpensive bound\}, (i) serves as a (good) constructed Ver_y inexpensively Siﬂ@@;(,u.) and A?V('“) are
surrogate for the actual error [14]. computed only inO(N?3 + Q*N?) per online evaluation.



Central to our computational inverse method is a robust inverisewell-posed and its solution approximates well the restric-
algorithm to construciR: we first find one point inR; we tion of v to the bounded domaif2° limited by 0D° and
then conduct a binary chop at different angles to map out the. For the purpose of simplicity, we shall consider simple
boundary ofR. In a future paper, we provide further detaildirst-order Sommerfeld radiation condition at large distances,
and apply the method to more realistic applications. though higher-order approximation may be pursued. Our weak

V. S A ‘AS P formulation of the exterior Neumann problem is thus: given
. INVERSE SCATTERING ANALYSIS: IMPLE PROBLEM uo= (D°kd,d), evaluateu (u) — C(u(u); ), where

To demonstrate the various aspects of the method and th—u) e 7 is the solution of

lustrates the contexts in which we develop it, we apply our

method to a simple (acoustics) exterior inverse scattering a(u,v;p) = f(v;p), Vv € Z; (34)
problem. Inverse scattering problems has of course attracp?eq

. : o . i e the forms are given by
enormous attention due to its practical importance in various

areas of engineering an_d science such as m_ed|cal, geqphysmal, a(w, v; 1) = V.V — k2wi — ik wo, (35)
defense science. The wide range of applications has stimulated Qo o

the development of different solution approaches for inverse o

scattering problems [18], [5], [6]. Our view is that the de- f(v; ) :/ —ikdT vel** 4y, (36)
velopment of numerical methods in inverse scattering analysis oDe

should remain close to the applications and in particular should Je—ikd"x u(z) _pgr

have the numerical solution in real-time as high priority. £(v; ) = K/BDO u(x) 5 oy © mers ., (37)

However, in almost cases, the techniques are quite expensive
— do not accommodate either extensive optimization or reathere Z is the complex function space
time response — and do not well quantify uncertainty.

We consider the scattering of a time harmonic acoustic in-

. ; ket o . S
cident waveu™(z) = ¢ ¢ moving in directiond by an Here superscripts R and | denote the real and imaginary part
infinite cylinder with bounded cross sectid!?, wherek is the  yagpectively:s shall denote the complex conjugate «gfand
wave number of the incident plane waw&. Assuming that ;| the modulus of v.

the objectD* is “sound-hard”, the scattered wavesatisfies aAg a simple demonstration we consider an two-dimensional

Z={v=="+i R HY(Q),v € H'(Q°)}. (38)

an acoustics exterior Neumann problem ellipse of unknown major and minor axés, b)) and unknown
Autk2u=0 in RQ\EO, (31a) orientationa for D°. Hence, for given geometric parametriza-

P ‘ tion (a, b, ) and the incident wave'<, the forward problem

8—(1; +u™) =0 on 9D°, (31b) is to find the scattered wave and in particular the far field
v ou patternu.,. In contrast, the inverse problem is to predict the

Tlirgo NG (8r - ik:u) =0, r=]|z (31c) true but unknown parametefs”, b*, a*) from the knowledge

of the far field patternu.,(k,d, d, c.,;,) Mmeasured at several
Mathematically, the Sommerfeld radiation condition (31dlirectionsd with experimental errok.,, for one or several
ensures the wellposedness of the problem (31); physicallyditections d and wave numbers. In the language of our
characterizes out-going waves. The scattered wab@s the notation, the inpup. € D C R consists ofk, d, d, a, b, and a

following asymptotic behavior in which (a,b,) are characteristic-system parameters and
oikr A 1 A (k,d,d) are experimental control variables; and the output
u(z) = Wuoo(d» d)+0 (r> , d=uz/lz],x — oo (32) s(u)is the far-field patterm.. Furthermore, we shall consider

the parameter domai® = D*4¢ x D*b whereDk 44 =
The function u., defined on the unit spher§ c R? is [7/12,7/12] x [0,27] x [0,2x] and D»*»* = x[0.5,1.5] x
known as the scattering amplitude or the far-field pattern g_57 1.5] x [0,x] (note here that > b and wave numbek is
the scattered wave. The Green representation theorem andfitagy).

asymptotic behaviour of the fundamental solution ensurespg now map°(a,b,o) via a continuous piecewise-affine
representation of the far-field pattern in the form [11] transformation to a fixed reference domaih* This new

R He—ikdTe oulz) .t problem can now be cast precisely in the desired abstract
Uoo(d) = /i/ {u(m) - e ikd z} (33)
oDe°

form (34), in whichQ2 andZ are independent of the parameter
v v . In particular, as required, all parameter dependence now
.3 ) , enters through the bilinear forma(-,-; 1). Furthermore, it is
wherex = Z\/% andv is the normal to the bounda@yD°.  readily demonstrated that our affine assumption (7) applies for
Since the problem is posed over indefinite domain, before
attempting numerical solutions, it is required to replace the*The original domain is bounded by an artificial boundaty and the

indefinite domain with a artificial closed bounddF9 enclos- ¢llipse, wherel is an oblique rectangle which has the same orientation as
the ellipse and is scaled with the minor and major axes of the ellipse. The

ing_the object. A boundary conc_Jition is then introduced Oference domain is bounded by a square of §iz8, 5] x |5, 5] and the
I'° in such a way that the resulting boundary-value problesaundary of a unit circular reference object.



— 1 N A’U‘N ave A5\7.ave AIJ]V ave
@ = 5. Note hoyvevgr that .the_forc_e and output fgnchonﬁls 10 T 1800 0T T T 8oms 0T T E B3t 07
and/ are not affine i, which implies that our oﬁl!ne—onllpe_ 50 T 3.19x10-92 | 3.19x10-2 | 5.63 x10-07
decomposition may break down. Fortunately, this restriction 30 | 7.20<10- 03 | 7.20x10-73 | 5.63 x10~07
can be readily addressed by a new empirical interpolation 40 | 2.38x1070% | 2.38x10~ %% | 5.63 x10~ 7
approach in which we replace the nonaffine form with the 50 | 1.06x10~"% | 1.06x10_" [ 5.63x10_77
60 | 3.47x107%% [ 3.46x10~ 7% | 5.63x10~ 77

necessarily affine approximation [3]. On the other side, in
general, our posteriorierror bounds are no longer completel
rigorous, because the empirical interpolation induces a n
rigorous component in the error bounds. We shall articulate
the rigorous/nonrigorous facets of the error bounds shortly.

We now present basic numerical results. For the inf-sup |°W?Lr1rning now to computational effort, for (sayy = 40 and
bound construction, we choogg = 0.5 and thus coveD such any giveny (say, (r/12,0,0,7,0.5 0.'5)) — for which the

that (26) and (27) are satisfied with only= 13 polytope$ o1 in the reduced-basis outpsit; (1) relative to the truth

(we provide in detaib?(x), a(w, v), our choice of|-|g, 1 < gn5roximations(y) is certifiably less thanA%, (i) (= 4.97 x

¢ <10, and(-,-)x in [13]); for our reduced-basis spaces w§,-4) __ the Online Time (marginal cost) to compute both

pursue the optimal sampling strategy described in Section ;I]IV(M) andA%, (1) is less than 1/126 the Total Time to directly

for Niuax = 62; we present in Table JAnmax, 7Naver  calculate the truth result(y) = £(u(y)). Clearly, the savings

AR max> @A77y e @S @ function ofV. Here Ay max 1S the iyl pe even larger for problems with more complex geometry
and solution structure in particular in three space dimensions.

é‘lr']A_\BLE II: Rigorous and non-rigorous parts of the error bound
as a function ofN.

maximum overZEres, 0f Ay (1), nn.ave IS the average over

Eest Of AN(”)éH“(W - “NS(“)H'_Aisv,max Is the maximum  Nevertheless, even for our current very modest example, the
Over Emesy Of AR (1), @ndiyyy . is the average OVEETe:  compytational economies are very significant.

s - 343 . . . N
of Ax(u)/lIs(r) — sn(u)|l, where Eqesy (D)™ is a Finally, we consider the characterization of the unknown
random parameter sample of size 256. We observe that ﬁ‘pse — more precisely, the construction of possibil-

reduced-basis approximation converges very rapidly, and tti@t region R — that illustrates the new capabilities en-

our rigorous error bounds are in fact quite sharp. The outplllieq by rapid certified input-output evaluation. In particular,
effectivities are noD(1) primarily due to the relatively crude iven experimental data in the form of intervals,, =
bounds obtained with the dual norm of the output function 7 5 e oia 5wk o
The adioint techni be effectivel dto ] tuoo(k7d,d,a,b,a J(1 — €exp)s Uso(k,d,d,a*,b",a*)(1 +
errgrabéczgdse%rntﬁgeoﬁﬁpnut Flg] e[(iéll\je Ii;;:vero ;?f]gég\\:ﬁiesegxp)] measured at several angléswith experimental error
o ’ ' C i » for several directions! of the incident wave, we seek
0(10) are acceptable within the reduced-basis context: tha §identify a regionR ¢ Db in which the true — but
to the very rapid convergence rates, the “unnecessary” increej

in ' — to achieve a given error tolerance — is proportionately - o~ obstacle parameters, b” anda, must reside.
9 Prop our numerical experiments, we keep the wave number fixed

very small. k = w/12 and use positive: and positivey directions for the
5 5 incident wave. For each direction of the incident wave, there
N AN,rnax 7N ,ave AN,max nN’ave . . - . .
10 T 332x10-9T | 467 | 2.00x10-9T | 33.00 are {(: 4) directionsd;,j = 1,...,J, whose value are given
20 | 7151092 | 415 | 4.66x10 "2 | 29.75 by d; = 2n(j —1)/J,1 < j < J, at which the outputs are
30 | 1.54x10702 520 | 9.41x10-73 | 25.95 collected.

40 | 6.09x10-93 | 450 [ 3.63x10~9% [ 2256 P— I .
501 222¢10="° 486 | T1x10="° | 2826 We show in Figures 1a, 1b, and 1c the possibility regions for

60 | 827x10-9% | 439 | 50210 "% | 31.38 the major and minor axes and orientiation of our ellipse —
more precisely, (more convenient) 3-ellipsdidkat contain
TABLE I: Numerical results for the direct scattering problemthe possibility regions for the minor and major axes and
orientation — for experimental error of 5%, 2%, and 1%.
We next look at the various rigorous and non-rigorous paf$ €xpected, B exp decrease*sR shnnks*toward the exact
of the error boundA (). For this purpose, we introduce(SYNtetic) valuea™ = 1.25,b* = 0.75,a" = 5m/8. More
AN ave IS the average oveEres; Of Apn(u); AN ave is the

importantly, for any finitee..,, R rigorously captures the
uncertainty in our assessment of the obstacle parameters

empirical interpolation (see [13] for a detailed definition ofew ingredient is reliable fas_t evaluations that permit us to _
these quantities). We present in Table Il these quantities aS0duct @ much more extensive search over parameter space;

function of N. We observe that\’, . _ is indeed no different [0 @ 9IVen cexp, R may be generated online in less than
e 137 seconds on a Pentium 1.6 GHz thanks to a per forward

from An(p), which basically indicates rigor of our error M
bounds. evaluation time of only 0.028 seconds. Moreover, these pos-

5The number of polytopes is reasonably small because our bilinear formPThe ellipsoid can be obtained from a set of points representing the
a(-,-; p) in fact depends only on, b andk, and wave numbek = w/12 is  possibility region by formulating an appropriate minimization problem that
in the low-frequency regime. returns the smallest ellipsoid containing the set of points [13].
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Fig. 1: Ellipsoids containing possibility regior®® for experimental error of (a%, (b) 2%, and (c)1%. Note the change in
scale in the axesR shrinks as the experimental error decreases. The true parametér$,afe = (1.25,0.75) anda™ = 57/8.
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