Memory Usage Inference
for Object-Oriented Programs

Huu Hai Nguyen, Wei-Ngan Chif2, Shengchao Qir?, and Martin Rinarét?
!Singapore-MIT Alliance?Department of Computer Science, National University of Singap@emputer
Science and Al Laboratory, Massachusetts Institute of Technology

Abstract—We present a type-based approach to statically de- languages, we need to deal with different issues than for
rive symbolic closed-form formulae that characterize the bounds functional counterparts, namely aliasing, mutable states, and
of heap memory usages of programs written in object-oriented qynamic dispatch. Besides safety guarantees, results of these

languages. Given a program with size and alias annotations, nal n offer quidance t timize r) f
our inference system will compute the amount of memory analyses can ofier guidance to op € resource usages o

required by the methods to execute successfully as well as thePrograms.
amount of memory released when methods return. The obtained In [8], we propose a type system that can capture the

analysis .I’ESUHZS are useful for networked devices with limited bounds of memory usage in Object_oriented programs. Mem-
computational resources as well as embedded software. ory bounds are described as symbolic formulae in terms of the
Index Terms—Type System, Object-Oriented Languages, initial sizes of the methods’ parameters.
Memory Management The key of our proposal is a (size-)polymorphic type system
that uses symbolic constraints based on Presburger arithmetic
|. INTRODUCTION to characterize heap usage of each method in programs written
The proliferation of mobile devices with network coniN a@n object-oriented language. Each method is annotated
nections and limited computing resources poses interestiff? Symbolic formulae that state, in terms of the initial
problems. It is desirable for those devices to be able §#¢€S Of the method's input parameters, how much memory
download and safely execute mobile codes without or witRi Néeded to execute the method successfully, and how much

minimal user intervention. To that end, the device must be almory will be returned to the execution platform when the

to assert that downloaded codes are safe to execute. One adpgped finishes. The prototype type checker that we have built

of safety is that the codes run within the limited resourdé€monstrates that our proposal is viable and practical.

supplies of the device, where resources can be memory, CPU the current paper, in order to further enhance the practi-
cycles, network bandwidth, power, etc. This property is al§&ity of the proposed type system, we develop and formalize
highly desirable for embedded systems. an inference mechanism to automatically derive the memory

There are a number of works that analyze memory usa@@ects of methods for a program. We also develop a prototype

bounds of programs written in functional languages [13'nr,nple_me_ntation of the analysis to confirm its viability and
[11], [12]. In [11], Hofmann and Jost develops a method fBracticality. _ _ _
automatically derives heap memory bounds for a first-order The structure of t_he paper is as foIIows._Sectlon I illustrates
functional language with explicit heap management. On tifae basic ideas via an example. Section Il presents the
other hand, the other works typically require hand annotatiolfguage we are focusing on. Section IV shows the memory
from programmers, the systems then verify the correctness'@fations and operations that are going to be used throughout
these annotations. the paper. Section V presents our inference rules. Section
Given the widespread use of object-oriented languages |\ Shows how we handle recursive methods. ~Section VI
Java and Java Card [16] in mobile and smart card applicatigf$cusses related works and section VIII concludes.
development, there is a strong demand to develop analyses
that can derive and verify memory usage bounds for pro- Il. EXAMPLE

grams written in object-oriented languages. For object-oriented .
To help predict the memory usage of each program, we

Shengchao Qin is with the Department of Computer Science, School pfopose asized type systeii®], [7], [14] for object-oriented

Computing, National University of Singapore,3 Science Drive 2, Singapo, ograms with support for interprocedural size analysis. In this
117543, Republic of Singapore. Email: ginsc@comp.nus.edu.sg. Tel: +65- . . .
6874 1298 ype system, size properties of both user-defined types and

Wei-Ngan Chin is with the Department of Computer Science, School @rimitive types are captured. In the case of primitive integer
Computing, National University of Singapore,3 Science Drive 2, Singapot'?pe int(v), the size variable captures its integer value, while
117543, Republic of Singapore. Email: chinwn@comp.nus.edu.sg

Martin Rinard is with the Department of Electrical Engineering and confor ch’lean typevool(v), the S'Z_e variable is elthe'I’O orl
puter Science at the Massachusetts Institute of Technology, 545 Technolainoting false or true, respectively. For user-defined class
Square NE43-620A Cambridge, MA 02139. Email: rinard@Ics.mit.edu ¢ pes, wWe use:(ni,...,n,) where ¢ ; ¢r with size variables

Huu Hai Nguyen is the author for correspondence. He is a stude|¥t ’ P J
in the Computer Science Programme, Singapore-MIT Alliance. Emaif1;--->"p to denote size properties that is defined in size
nguyenh2@comp.nus.edu.sg relationg, and invariant constrairt;. As an example, consider

a stack class that is implemented with a linked list as shown { } Net

beIOW. Menm. Release
Req.
class List(n) where n=m+1 ; n>0 { | | | | | |
Object<>@ val; push push pop push pop
List(m)@ next;

time

: Fig. 2. push3pop2: Heap Consumption and Recovery
class Stack(n) where n=m ; n>0 {
List(m)@ head;
: the alias annotation of the curretitis parameter. We use the

List(n) denotes a linked-list data structure of sizeand primed notation, advocated in [10], [15], to capture imperative
similarly for stack(n). The size relationsi=m+1 andn=m changes on size properties. For thesh method, n'=n+1
define some size properties of the objects in terms of the sizegtures the fact that the size of the stack object has increased
of their components, while the constraint-0 signifies an by 1; similarly, the post-condition for thep methodn'=n—1,
invariant associated with the class type. Due to the needdenotes that the size of the stack is decreased by 1 after
track the states of mutable objects, our type system requires ¢ operation while its preconditiom> 0 ensures thapop is
support of alias controls of the form=u | s | R | L. We US€U not invoked on an empty stack. The memory requirement for
ands to mark each reference that is (definitely)aliasedand the push method,{(List, 1)}, captures the fact that onast
(possibly) shared respectively. We use to mark read-only node will be consumed. For thep method,e, = {(List, 1)}
fields which must never be updated after object initializatiofhdicates that one.ist object will be recovered. For the

We useL to mark unique references that are temporarilyushapop2 method, heap requirement fgList, 2)}, while the
borrowed by a parameter for the duration of its methodiget release i§(List,1)}. This is illustrated by Fig. 2.
execution. Our inference accepts the example above, less the memory
Methods in the target language are annotated with memeynotations, which will be automatically derived.
bounds as follows:
t Mty v1,...,tn vn) Where ¢pr; Ppo; €c; € {€} [1l. L ANGUAGE AND ANNOTATIONS

¢or and o denote the pre-condition and post-condition We focus on a kernel object-oriented language called
of the method, expressed in terms of constraints on its SiﬁfeEMJ The syntax of the source language is given in Fig 3

variables. These constraints can provide precise size relatiﬁw mory effect annotations shall be inferred automatically.
for the parameters and return value of the declared meth te that the suffix notation” denotes a list of zero or

The .memory.effect 'S captgred byande,. <. denotesnemory more distinct syntactic terms that are suitably separated. For
requirement i.e., the maximum memory space thaty be example, (¢ v)* denotes(ts v,..., ¢, v.) where n>0. Local

consumegd while e d_enotesnet release i.e., the minimum variable declarations are supported by block structure of the
memory space thawill be recoveredat the end of method form ¢ v = e1: e> With e, denoting the result
— €1,€2 2 .

g‘;’or?stézg' u'\éliimZr%aeﬁﬁgzﬁgcr?gi?ga“On ahd Leca/ﬁé¥é A€ We assume a call-by-value semantics MiEMJ, where
P 9 9 A, o)}, values (primitives or references) are passed as arguments to

ci is a class type, while denotes its symbolic count. parameters of methods. For simplicity, we do not allow the

class Stack(n) where n=m ; n>0 { parameters to be updated (or re-assigned) with different values.

List(m)@ head; There is no loss of generality, as we can always copy such
parameters to local variables for updating, without altering the
L | void()@ Push(Ubje;tjfz@ o) D0 external behaviour of method calls.

where true%”/:”_* su(list, 1)) To support sized typing, our types and methods are aug-

{ List()@ tmp=thishead; thishead=new List(o,tmp)} \nonteq with size variables and constraints. For size con-
L | void()@ pop() where n>0; n'=n—1;{}; {(List, 1)} straints, we presently restrict to Presburger form, as decidable

{ List()@ t1 = this.head; List()@ t2 = t1.next; (and practical) constraint solvers exist, e.g. [17]. For simplicity,
tl.dispose(); this.head = t2} we are only interested in tracking size properties of objects.

We therefore restrict the relatiop in each class declaration

L | void()@ push3pop2(0Object()@ o) of ¢i(n1,...,n,) which extendscy(ni,...,n,) to the form

where true;n'=n+1; {(List, 2)}; {(List, 1)}

{ this.push(o); this.push(o); this.pop(); Ni—g41mi = i Whereby _/(O‘i) m_{”h cnpt = 0. NOte_ th_at
this.push(o); this.pop()}}} V(a;) returns the set of size variables that appeared ifThis
. restricts size properties to depend solely on the components
Fig. 1. Methods for thétack Class of their objects. Size constraints between components, such

as those found for balancing the heights of AVL trees are

Fig 1 shows the fully annotated classack. Methods disallowed here, but may be placeddn instead.
are annotated with, amongst other things, symbolic memoryNote that each class declaration has a set of instance
consumption and memory release. These annotations allgithods whose main purpose is to manipulate objects of the
the memory effects of a method to be determined in declared class. For convenience, we also provide a set of static

straightforward manner once the sizes of the input parametg{gthods with the same syntax as instance methods, except for
are known. The notationA(|) prior to each method capturesaccess to a receiver object.

P -:— def meth preservation of uniqueness together with precise size-tracking
def::= class ¢ (ny.p) extends ca(nyq) where ¢ ; ¢; {fd” (A|m)*} @cross methods. Consider the following method with baex

fd et f parameters.
m::=¢ mn((t v)") where ¢pr; Ppo {€} void()@ join(List(m)@ x, List(n)@ y)
tu=T7(n")@ where n > 0;m/=n+m;- -

{ if isNull(x.next) then x.next =y

Az=U|L|S8]|R else join(x.next,y) }

Tu=c | prim

prim ::=int | bool | void | float The first parameter is annotatedlast-onceand can thus be
wu=v | v.f tracked for size properties without loss of uniqueness. How-
ex=()mull | k | w | w=e| tv=e1;es | newc(*) ever, the second parameter is markedqueas its reference
| v.mn(v®) | mn(v"™) | if v then e; else e2 escapes the method body (into the tail of the first parameter).
| v.dispose() In other words, the parametgr can have its uniqueness
p€ F (Presburger Size Constraint) consumed but nok, as reflected in the body of the above
n= bl g1 NG |1 V2| g |In-9|Vn- o method declaration. Given two unique listsandb, the call
b€ BExp (Boolean Expression) join(a,b) would consume the uniqueness wfbut not that
= true | false |a1=az | a1 <z | a1 <o of a. Our lent-once policy is more restrictive than the policy
a € AExp (Arithmetic Expression) of normal lending [1] as we require each lent-once parameter
— B | B s a | aidas | —a to be unaliased within the scope of its method. For example,
| max(a,02) | min(a o) join(a,a) is allowed by the type rules of [1], but disallowed
wherek™™ € Z is an integer constant by our lent-once’s policy.

In our alias type system, uniqueness may be
transferred (by either assignment or parameter-passing)
from one location (variable, field or parameter)
to another location. Consider a type environment
{x::0bject({)@,y::0bject ()@, z::0bject ()@} where variables
Fig. 3. Syntax of the language x and y are unique, whilez is shared. In the following

code, {x = y;z = x}, the uniqueness of is first transferred
) o) to location x, followed by the consumption of uniqueness

One important characteristic oMEMJ is that memory o . that is lost to the shared variable Alias subtyping

recovery is done explicitly. In particular, dead objects mayjjes (shown below) allow unique references to be passed to

be reclaimed via @v.dispose() primitive. We provide an ghared and lent-once locations (in addition to other unique
analysis to insert these calls safely and automatically baﬁsgations) but not vice-versa.

on uniqueness information.

n € SV is a size variable
f € Fd is a field name
v € Var is an object variable

A<cA U<, L UZ,S
A. Alias Checking

We introduce four alias control mechanismg s |R|L A key difference of our alias checking rules, when compared
adopted from [3], [4], [1]. These alias mechanisms shall ke [1], is that we do not require an external “last-use” analysis
used to support precise size tracking in the presence of mutafole variables . Neither do we need to change the underlying
objects, and also for the explicit recovery of memory spagemantics of programs to nullify each location whose unique-
when unique objects become dead. For size-tracking, we iess is lost. We achieve this with a special set of references
troduceR-mode fields to allow size-immutable properties to b&hose uniqueness have been consumed, cdbed-sebf the
accurately tracked for all objects. For example, an alternatif@m {w*} wherew = v | v.f. This dead-set is tracked flow-
class declaration for the list data type is given below, whegensitively in our system.
its next field is marked as read-only (or immutable). Note that

the val field remains mutable. IV. MEMORY USAGE SPECIFICATION

class RList(n) where n=m+1; n>0 { To allow memory usage to be precisely specified, we
g:i::‘g@%val; . propose a bag abstraction of the forftc;,a:)}, where
ist(m)@ next; ¢; denotes its classification, while; is its cardinality. For
' instance, Y1 = {(c1,2), (c2,4), (c3,3)} denotes a bag witla,
The size property of such aList type can be analysed atappearing twicec, appearing four times ands appearing
compile-time, while allowing its objects to be freely sharedhrice. We provide the following two basic operations for bag
However, this comes at the cost of mutability and the lost @Pstraction to capture both the domain and the count of its

unigueness. element, as follows:
We make use df-mode parameters, Wi'Fh thienited unique dom(Y) =4 {c | (e;n) €T}
(or lent-oncé property [4], to capture unique references that n, if (,n)eT

Y (c) =df

are temporarily lent out to method calls. They allow the 0, otherwise

We define several operations (union, difference, exclusiof) Notations

over bags. These operations combine two bags to produce
new bag: P 9 P ?ms subsection defines the notations that we use when

formulating the inference. We use functianto return size
di%gg I:i g gg”n(qig ng”n((%gl}k variables in a size formula, e.g(z'=z+1Ay=2) = {2',y, 2}
) | Ve € dom(T) — X} We e_x_tenql it to annotated type, type environment, and memory
specification.
We also define operations that compare two bags. Thesé&he functionprime takes a set of size variables and returns
operations are used during inference to generate memthgir primed version, e.gorime({s1,...,sn}) = {s1,...,sn}.

Ty WYy =df {(C,T
YTi—"2 =g {(c,T
T\ X =ar {(c,T

adequacy constraints: This operation is idempotent, namely = +'. We extend it to
annotated type, type environment, memory, and substitution.
Ti3Y2 =4 A,y Ti(c) > Ta(c) Often, we need to express a no-change condition on a set
where Z = dom(Y;) U don(Y2) of size variables. We definerat operation as follows which
Ti=T2 =4 A,y Yile)=Ta(c) returns a formula for which the original and primed variables
whereZ = dom(T1) N dom(T3) are made equal.

not ({}) =aqr true no¥({z} U X) =4 (2’ = z) Ano¥(X)
V. MEMORY INFERENCE

The inference phase analyzes the methods in the progranmie usen* = fresh() to generate new size variables. We
propagating size and memory usage information, and colleetend it to annotated type, so that fresht) will return a new
ing memory adequacy constraints. These constraints are thgve ¢ with the same underlying type asbut with fresh size
solved, with the help of fixpoint computation when recursiomariables instead. The functi@ouatét;, t2) generates equality
is present, and memory requirement and memory release ewastraints for the corresponding size variables of its two argu-
derived from solution to the constraints. ments, usually when both arguments share the same underlying
The inference works in a bottom-up order of the call grapkype. For example, we hawguatéInt(r) , Int(s")) = (r =).

processing one strongly connected component at a time. Tdgnditional is expressed as <1b> & =g { ? if b

i ; 2 otherwise
processing of each strongly connected component ConS'StSFRE functionrenamét, t2) returns an equality substitution, e.g.
the following steps:

.) o _renaméInt(r), Int(s'))=[r — s’]. The operatou combines two

1) Calculating symbolic program state, building ConStra"Homain-disjoint substitutions into one.
abstractions, and collecting memory adequacy con-The fynctionfdListis used to retrieve a full list of fields for
stralnts)) . o a given class, together with its size relation. The functioris

2) Solving constraint abstractions using fixpoint used to retrieve the size invariant that is associated with each

3) Deriving memory requirement and memory releasgpe This function shall also be extended to type environment
based on the computed invariant and collected memai),q jist of types.

adequa}cy constraints _ ~Imperative size changes occur in the presence of assignment
The type inference rule for expressions has the followirend are captured by the sequential operator, which is defined
form: as:
DA YTHent, A, ®
. . . Aoy ¢ =g Ir1- 10 p2(A) A p1(9)
where type environmerif maps variables to their annotated where Y = {s1,...,sn}; {r1,...,rn} = fresh))

types,Y(Y’) are memory available before and after evaluation p1 = [si = riliy 5 p2 = [si o rilin
of e, respectively,A(A’) are the size constraints before andg, example, if we
after evaluation of expressiog respectively.® is a set of can be captured as:
(A,) pairs wherep is the constraint that enforces memory
adequacy and\ is the size context at the program point where
© is generated. We need to carry the size context along so that

we can generate memory requirement and to suitably combine
them. The result correctly reflects the state of variablafter the
The inference rule for methods has the following form: code sequence.

have = 2;x = x + 1, then size changes

A rz+1

r+1

T }
Ir-r=2A2'
:L'/

I Fmeth meth— meth’| Q

whereT is empty for static methods and contains one single Memory Operations
entry forthis for instance methods. The methoukth'’is the Heap space is directly changed by ther and dispose
transformed version ahethwhere memory effects annotationgrimitives. [New] generates constraints to ensure that suffi-
are added. The constraint abstract@rcaptures the relations cient memory is available for consumption f%. [DISPOSE]
between the sizes of the method’s parameters and the memmmgdits back space relinquished dspose, thus no constraint
effects of the method. is generated. The memory effect is accumulated according to
Fig. 4 presents our rules for memory effects inference. the flow of computation. The following example illustrates
the following subsections, we will take a closer look at ththese rules. Suppode = {x :: List(z)@,y :: List(y) @},
more important inference rules. T = {(List,c)}.

[NEW]

fdList(c(n®)) = (¢ fi)li=y, &) r* = fresh()
ti = prlme(F(vL)) Eit < [R — S]ii,pi 1€l.p
X=Ur V() p=[n"—rIulUl pi [DISPOSE]
&= {(AY3{(e, D} Ti=T-{(e 1)} P(0) = c(n)@ Y1 =T {(c,1)}
[A Y Fnew c(vr.p) @ e{r*)@, ANSX -p¢’), T1,& T;A; T v.dispose() : void()@, A, T1, {(A, true)}
(1] [svi]
(Al mn((; 0i)in1.p) where ¢pr; dpo; €c; €r {€}) € c(n”) (& mn((; i)in1.p) Where ¢pr; dpo; €c; € {€}) € P
t =freshit) to=cn™Y@ TI'(v;) =t i€0..p t=freshit) T'(v;)=1t; i€l..p
bty <itipi i€lp pp=U",pi L=U",V(t) Fti <iti,pi i€lp pp=U'_,pi L=U",V(t:)
X =UL VM) @1 ={(AT3e)} X =ULVE) @1 ={(AT3e)}
p = renamét, t)Up,Uprime(p,) Y = XU prime(X) p = renamét, t)Up, Uprime(p,) Y = XU prime(X)
Al =Aor3Y - p(dprAppo) T1 =T —e e, Al =Aor3Y - p(dprAppo) T1=T—eMe,
Ay =(A] A Y =primele.)) <isRec(mn)> A} A1 =(A] AT =primele.)) <tisRec(mn)> A}
F; A; T vo.mn(vl“p) o, Al, Tl, [ON F; A; TF v(],mn(vl“p) n Alv Tl, (o3}
[METH]

md= ¢ mn((#; vi)i:1..p) where ¢pr; dpo {€}
I' = FU{(UL' o i:L)Llp} A= nOY(Fl)/\qﬁpr/\inv(Fl)

[1F] e,={(c, fresha)| cerelC(e)} e.={(c, fresha)|ceconCe)}
['(v) = bool(b)@ & = &1 A Do Q= {mnW) = A1} W =V(1)UV(EH)UV(e)UV(e,)
F;A/\b/ILTF(h 2:t1,A1,T1,(I31 F1§A§€ckeiit7A1,T1,@1 (62,6;\):SO|VE((I3)
T;AAD =0;T F ez i ta, Ag, Vo, Oy O=,U {(true,ec JOAY1der)}
t3, Ag, Tg = mSS(tl,tQ, Al, AQ, Tl, TQ) md’ = f mn((ﬂ 1)1;),,;;1“1,,) where ¢pr§ ¢p0Amn<W>; 62.; 6;‘ {6}
T;A; T Fif v then ey else ez :: t3, Az, T3, P I' Fmenmd— md’ | Q

Fig. 4. Memory Inference Rules

method. Our inference then builds a constraint abstraction that

@ = {(A, Y I{(List,)P} = {(A,c > 1)} captures the relation between these memory variables and the
A1=Aogya’'=z+1 T =7T—{(List, 1)} sizes of the method input parameters.
I A; T F x = new List(o,x) : void()@, Ay, T1, Py Some auxiliary functions are used in this ruleonC(e)
To=T w{(List, 1)} returns the sets of object classes that may be consumed by

I'; Ar; Y1 F y.dispose() :: void() @B, A1, Yo, Py

expressione; relC(e) returns the sets of object classes that
may be released by expressienThese sets can be computed
Thenew operation consumesiast node, while theiispose separately by a simple bottom-up effect analysis.

ope.rlatt;?n releases_backﬁist ngd_e.erThe Yr)eh effect |sdthat To illustrate how the rule works, we consider tpesh
available memoryr is unchanged, i.€r, = Y. However, due ;
to the order of th% two opera?ions, we require that there mug thod of thestack class. This _me'ghp_d allocates newst
be at least ona.ist node initially. This is captured by the N0de, so themEeTH] generates its initial memory as =
following memory adequacy constraint: {(List,cl)}. While checking the method body, thew op-
erator generates the constraint {(List, 1)} = cl > 1. Hence
we can derive the memory requirement for gheh method

as{(List, 1)}.

I'; A; T F x=new List(o, x);y.dispose()::void ()@, A1, T2, D1

p=TD{(List,)} =c> 1

C. Method Invocation E. Generating Memory Effects
' Generated preconditions can be combined to reduce the size
For method invocation, parameter passing is modelled by the memory effects. This process strengthens the precon-
substitution. This process replaces size variables of fornthtions, and makes them more compact. This is important
parameters by that of actual ones. Those size variables 94t Scalability. The idea is that if the conjunction of the

. condition of one branch and the size context of another
cannot be tracked due to global sharing are removed paamch implies the precondition of the latter, then the latter’s

existential quantifier. To ensure memory adequacy, the reacondition is redundant. In this case the precondition of the
generates constraints that force available memory to be faemer suffices for both. More formally, this is described as
less than what is needed for the callee. follows:

reduce (A1, pre,), (Az, pre,)) =g
if Ay Apre, = pre, then

D. Methods {(A1V Az, prey)}

The inference rule for methodMeTH]) generates a fresh else if A, A pre, — pre, then
memory variable for each class of which objects may be else{(AI V Az, pre;)}
allocated or released by the method. These variables are place- (A1, pre,), (As, pre,)}

holders for the amount of memory available at the start of the

VI. MEMORY ANALYSIS FORRECURSIVEMETHODS VIl. RELATED WORK

A. Deriving Memory Invariant Past research on improving memory models for object-
For each recursive method, we construct a constraint aifiented paradigm have focused largely on efficiency, mini-
straction that relates the sizes of the input parameters, thigation and safety. We are unaware of any prior work on
amount of memory available at the beginning of the meth@nalysing memory usage by OO programs for the purpose
to the sizes of the parameters of passed to the recursive @élchecking for memory adequacy. The closest related work
and the amount of memory available just prior to the recursi@ memory adequacy are based on first-order functional
call. This one-step relation is subjected to a fixpoint procedup@radigm, where data structures are mostly immutable and
to compute the multi-step relation. Létn*, m*, 7*,/m*) be thus easier to handle. We shall review two recent works in
the one-step relation, the fixpoint computation is formulatéfis area before discussing other complimentary works.
as follows [20]. Note thatm* and m* are the sizes of the Hughes and Pareto [13] proposed a type and effect system
input parameters and memory available at the beginnir@)) space usage estimation for a first-order functional lan-
respectively, whereas* and* are that of the recursive call. guage, extended with region language constructs of Tofte’s and
Talpin[19]. Their sized-region type system maintains upper
bounds on the height of the run-time stack, and on the memory
I {n*,m*, n*,m*) = L;{n*, m* A*, m*)V used by regions. The use of region model facilitates recovery
ang, my - Li{ng, m§, n*, m*) A I(n*, m*, nf, ms) of heap space. However, as each region is only deleted when
For the computation to converge, we may need to apph its objects become dead, more memory than necessary may
approximation techniques such as hulling and widening [9]€ used, as reported by [2]. Stack usage has been modelled

ko Ak o0k

Li{n*,m* n* m*) = I{n*,m*,n*, m*)

[20]. in Hughes and Pareto’s work, but tail-call optimization is not
supported.
B. Deriving Memory Requirement More recently, Hofmann and Jost [11] proposed a solution

The technique we use to derive memory requirement {& obtain linear bounds on the heap space usage by first-
similar to that used to derive precondition for array bounadrder functional programs. A key feature of their solution is
checks [20]. A memory adequacy constrainis turned into a the use of linear typing which allows the space of each last-

memory requirement by the following steps. First we compulgse gata constructor (or record) to be directly recycled by a
pre= A => . A is the size state at the program point where

memory constraing is generated. The operates is defined matching allocation. As a consequence, memory recovery can

as: be supported within each function, but not across functions

Ar>p=(A = py) where p=s15),...,5,+—s, Unless memory tokens are explicitly passed. Also, stack usage
51,..., 80 = V() is not covered by their model. To infer memory bounds of

Then we projecpre into the sizes of the method’s parameter&!nctions, they derive a linear program based on the function's
by using the |, operator, which is defined as follows: typing derivations and the fact that all type annotations in their

6 Ly = VW - 6 where W = V(¢) — V system are non-negative. The solution of the generated linear

program directly yields suitable memory bounds required.

What the |, operator does is it eliminates all free size This derivation technique can be put under the more general
variables in a formulae) by means of universal quantifier,framework by Rugina and Rinard [18]. They transform the
except for those specified . bounds of accessed memory regions, including pointers and
array accesses, into linear programs. The derived results can
be used in a number of analyses, including parallelization, data

To derive memory release, we build a constraint abstracticece detection, array bound check elimination.
that relates the amount of memory available at the end ofAnother recent work on resource verification is [5]. They
the method with the amount of memory available at these a combination of both static checks to be verified by com-
beginning and the sizes of the method parameters. We th@lers and dynamic checks to be verified by runtime systems.
solve this constraint abstraction by fixpoint method to get@ynamic checks are associated with operations that reserve
safe approximation of the relation. This solved form will allowesources from execution environments whereas static checks
us to determine the amount of memory released when thee associated with operations that consume the reserved

C. Deriving Memory Release

method returns. resources. The reserve operations may fail at runtime due to
In general, given a constraint abstraction for a recursivesource insufficiency. The static checks ensure that, once the
method reserve operations succeed, the consumption operations never

. . . fail due to insufficiency of resources.
q<’I’L 7O> = ¢0 \ ¢1 [q<n17 01>7 q<n2702>]

VIII. CONCLUSION
where ¢q represents the base case, and

#1]g(nt,01),q(ns,00)] represents the recursive case, We have proposed a type-based analysis to automatically

postcondition can be derived as follows [9]: derive the memory effects of methods in object-oriented pro-
qo(n*,0) = false grams. The analysis can derive both memory consumption and
gi+1{n",0) = ¢o V ¢1[qi(n7,01),qi(n3, 02)] release. Analysis of recursive methods is carried out with the

help of fixpoint analysis of derived constraint abstractions. The

memory effects of methods are propagated interprocedurajiyg] R. Rugina and M. Rinard. Symbolic bounds analysis of pointers, array

Moreover, the ideas presented here can be applied to analyz

other kind of computational resource usages as well.

e indices, and accessed memory regions. Phoceedings of the ACM
Conference on Programming Language Design and Implementation
(PLDI), pages 182-195. ACM Press, June 2000.

Although constraints used in the analysis are limited 9] M. Tofte and J. Talpin. Region-based memory managenefarmation

the linear nature of Presburger arithmetic, memory effec[%]

are not necessarily orsnglelinear combination of the sizes

of method’s parameters. Instead we can have multiple linear port, SoC, Natl Univ. of Singapore, November 2003.

and Computation132(2), 1997.

D.N. Xu, C. Popeea, S.C. Khoo, and W.N. Chin. Mod-
ular inference for array checks optimization. Technical re-
avail. at

formulae, each representing the memory effects of one or more NttP://www.comp.nus.edu.sgkun/research/arraiech.ps.

execution paths through the method’s body, thereby allowing

more expressiveness and better accuracy.

REFERENCES

[1] J. Aldrich, V. Kostadinov, and C. Chambers.
Program Understanding. IRroceedings of the ACM Conference on

Object-Oriented Programming Systems, Languages and Applications

(OOPSLA) Seattle, Washington, November 2002.
[2] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering
Custom Memory Allocation. IrProceedings of the ACM Conference

on Object-Oriented Programming Systems, Languages and Applications

(OOPSLA) November 2002.
[3] J. Boyland, J. Noble, and W. Retert.
Generalization of Uniqueness and Read-Only. Rroceedings of

the European Conference on Object-Oriented Programming (ECQOP)

Budapest, Hungary, June 2001.

[4] E. C. Chan, J. Boyland, and W. L. Scherlis.
Specifications for Analysis and Manipulation. Rroceedings of the
IEEE International Conference on Software Engineering (IC®&pes
167-176, Kyoto, Japan, April 1998.

[5] Ajay Chander, David Espinosa, Peter Lee, and George C. Necula.
Optimizing resource bounds enforcement via static verification of dy-

namic check placement. I8ubmitted to the 11th ACM Conference on
Computer and Communications Securi@ctober 2004.
[6] W.N. Chin and S.C. Khoo. Calculating sized types.Pliroceedings of

the ACM Workshop on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM) pages 62—72, Boston, Massachusetts, United

States, January 2000.

[7] W.N. Chin, S.C. Khoo, S.C. Qin, C. Popeea, and H.H. Nguyen. Verifying

Safety Policies with Size Properties and Alias ControlsPlaceedings
of the 27th International Conference on Software Engineerivigy
2005. To appear.

[8] W.N. Chin, H.H. Nguyen, S.C. Qin, and M. Rinard. Pre-
dictable Memory Usage for Object-Oriented Programs. Techni-
cal report, SoC, Natl Univ. of Singapore, March 2004. avail. at

http://www.comp.nus.edu.sghfjinsc/papers/memj.ps.gz.

[9] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints

among variables of a program. Rroceedings of the ACM Symposium
on the Principles of Programming Languages (POPpjages 84-96.
ACM Press, 1978.

C. A. R. Hoare and J. HeJnifying Theories of Programmindrentice-
Hall, 1998.

M. Hofmann and S. Jost.
first order functional programs. IRroceedings of the ACM Symposium
on the Principles of Programming Languages (POPNew Orleans,
Louisiana, January 2003.

[10]

[11]

[12]
place updateNordic Journal of Computing7, December 2000.

[13]
Bounded Space: Towards Embedded ML Programmindrréceedings
of the ACM Conference on Functional Programming (ICF&¢ptember
1999.

[14]

Principles of Programming Languages (POPRIpages 410-423. ACM
Press, January 1996.

L. Lamport. The temporal logic of action8CM Trans. on Programming
Languages and Systent6(3):872-923, May 1994.
Sun Microsystems. Java Card platform
http://java.sun.com/products/javacard/.

W. Pugh.
algorithm for dependence analysSommunications of the ACN8:102—
114, 1992.

[15]
[16]

[17]

Alias Annotation for

Capabilities for Sharing: A

Promises: Limited

Static prediction of heap space usage for

Martin Hofmann. A type system for bounded space and functional in-

J. Hughes and L. Pareto. Recursion and Dynamic Data-Structures in

J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive
systems using sized types. Pnoceedings of the ACM Symposium on the

specification.

The Omega Test: A fast practical integer programming

