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Abstract— We present a type-based approach to statically de-
rive symbolic closed-form formulae that characterize the bounds
of heap memory usages of programs written in object-oriented
languages. Given a program with size and alias annotations,
our inference system will compute the amount of memory
required by the methods to execute successfully as well as the
amount of memory released when methods return. The obtained
analysis results are useful for networked devices with limited
computational resources as well as embedded software.

Index Terms— Type System, Object-Oriented Languages,
Memory Management

I. I NTRODUCTION

The proliferation of mobile devices with network con-
nections and limited computing resources poses interesting
problems. It is desirable for those devices to be able to
download and safely execute mobile codes without or with
minimal user intervention. To that end, the device must be able
to assert that downloaded codes are safe to execute. One aspect
of safety is that the codes run within the limited resource
supplies of the device, where resources can be memory, CPU
cycles, network bandwidth, power, etc. This property is also
highly desirable for embedded systems.

There are a number of works that analyze memory usage
bounds of programs written in functional languages [13],
[11], [12]. In [11], Hofmann and Jost develops a method to
automatically derives heap memory bounds for a first-order
functional language with explicit heap management. On the
other hand, the other works typically require hand annotations
from programmers, the systems then verify the correctness of
these annotations.

Given the widespread use of object-oriented languages like
Java and Java Card [16] in mobile and smart card application
development, there is a strong demand to develop analyses
that can derive and verify memory usage bounds for pro-
grams written in object-oriented languages. For object-oriented
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languages, we need to deal with different issues than for
functional counterparts, namely aliasing, mutable states, and
dynamic dispatch. Besides safety guarantees, results of these
analyses can offer guidance to optimize resource usages of
programs.

In [8], we propose a type system that can capture the
bounds of memory usage in object-oriented programs. Mem-
ory bounds are described as symbolic formulae in terms of the
initial sizes of the methods’ parameters.

The key of our proposal is a (size-)polymorphic type system
that uses symbolic constraints based on Presburger arithmetic
to characterize heap usage of each method in programs written
in an object-oriented language. Each method is annotated
with symbolic formulae that state, in terms of the initial
sizes of the method’s input parameters, how much memory
is needed to execute the method successfully, and how much
memory will be returned to the execution platform when the
method finishes. The prototype type checker that we have built
demonstrates that our proposal is viable and practical.

In the current paper, in order to further enhance the practi-
cality of the proposed type system, we develop and formalize
an inference mechanism to automatically derive the memory
effects of methods for a program. We also develop a prototype
implementation of the analysis to confirm its viability and
practicality.

The structure of the paper is as follows. Section II illustrates
the basic ideas via an example. Section III presents the
language we are focusing on. Section IV shows the memory
notations and operations that are going to be used throughout
the paper. Section V presents our inference rules. Section
VI shows how we handle recursive methods. Section VII
discusses related works and section VIII concludes.

II. EXAMPLE

To help predict the memory usage of each program, we
propose asized type system[6], [7], [14] for object-oriented
programs with support for interprocedural size analysis. In this
type system, size properties of both user-defined types and
primitive types are captured. In the case of primitive integer
typeint〈v〉, the size variablev captures its integer value, while
for boolean typebool〈v〉, the size variableb is either0 or 1

denotingfalse or true, respectively. For user-defined class
types, we usec〈n1, . . . , np〉 where φ ; φI with size variables
n1, . . . , np to denote size properties that is defined in size
relationφ, and invariant constraintφI . As an example, consider



a stack class that is implemented with a linked list as shown
below.

class List〈n〉 where n=m+1 ; n≥0 {
Object〈〉@S val;
List〈m〉@U next;

:
class Stack〈n〉 where n=m ; n≥0 {
List〈m〉@U head;

:

List〈n〉 denotes a linked-list data structure of sizen, and
similarly for Stack〈n〉. The size relationsn=m+1 and n=m

define some size properties of the objects in terms of the sizes
of their components, while the constraintn≥0 signifies an
invariant associated with the class type. Due to the need to
track the states of mutable objects, our type system requires the
support of alias controls of the formA=U | S | R | L. We useU
andS to mark each reference that is (definitely)unaliasedand
(possibly) shared, respectively. We useR to mark read-only
fields which must never be updated after object initialization.
We use L to mark unique references that are temporarily
borrowed by a parameter for the duration of its method’s
execution.

Methods in the target language are annotated with memory
bounds as follows:

t mn(t1 v1, . . . , tn vn) where φpr; φpo; εc; εr {e}
φpr and φpo denote the pre-condition and post-condition

of the method, expressed in terms of constraints on its size
variables. These constraints can provide precise size relations
for the parameters and return value of the declared method.
The memory effect is captured byεc andεr. εc denotesmemory
requirement, i.e., the maximum memory space thatmay be
consumed, while εr denotesnet release, i.e., the minimum
memory space thatwill be recoveredat the end of method
invocation. Memory effects (consumption and recovery) are
expressed using a bag notation of the form{(ci, αi)}m

i=1, where
ci is a class type, whileαi denotes its symbolic count.

class Stack〈n〉 where n=m ; n≥0 {
List〈m〉@U head;

L || void〈〉@S push(Object〈〉@S o)
where true; n′=n+1; {(List, 1)}; {}

{ List〈〉@U tmp=this.head; this.head=new List(o, tmp)}

L || void〈〉@S pop() where n>0; n′=n−1; {}; {(List, 1)}
{ List〈〉@U t1 = this.head; List〈〉@U t2 = t1.next;

t1.dispose(); this.head = t2}

L || void〈〉@S push3pop2(Object〈〉@S o)
where true; n′=n+1; {(List, 2)}; {(List, 1)}

{ this.push(o); this.push(o); this.pop();
this.push(o); this.pop()}}}

Fig. 1. Methods for theStack Class

Fig 1 shows the fully annotated classStack. Methods
are annotated with, amongst other things, symbolic memory
consumption and memory release. These annotations allow
the memory effects of a method to be determined in a
straightforward manner once the sizes of the input parameters
are known. The notation (A || ) prior to each method captures
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Fig. 2. push3pop2: Heap Consumption and Recovery

the alias annotation of the currentthis parameter. We use the
primed notation, advocated in [10], [15], to capture imperative
changes on size properties. For thepush method, n′=n+1

captures the fact that the size of the stack object has increased
by 1; similarly, the post-condition for thepop method,n′=n−1,
denotes that the size of the stack is decreased by 1 after
the operation while its preconditionn > 0 ensures thatpop is
not invoked on an empty stack. The memory requirement for
the push method,{(List, 1)}, captures the fact that oneList
node will be consumed. For thepop method,εr = {(List, 1)}
indicates that oneList object will be recovered. For the
push3pop2 method, heap requirement is{(List, 2)}, while the
net release is{(List, 1)}. This is illustrated by Fig. 2.

Our inference accepts the example above, less the memory
annotations, which will be automatically derived.

III. L ANGUAGE AND ANNOTATIONS

We focus on a kernel object-oriented language called
MEMJ. The syntax of the source language is given in Fig 3.
Memory effect annotations shall be inferred automatically.
Note that the suffix notationy∗ denotes a list of zero or
more distinct syntactic terms that are suitably separated. For
example,(t v)∗ denotes(t1 v1, . . . , tn vn) where n≥0. Local
variable declarations are supported by block structure of the
form t v = e1; e2 with e2 denoting the result.

We assume a call-by-value semantics forMEMJ, where
values (primitives or references) are passed as arguments to
parameters of methods. For simplicity, we do not allow the
parameters to be updated (or re-assigned) with different values.
There is no loss of generality, as we can always copy such
parameters to local variables for updating, without altering the
external behaviour of method calls.

To support sized typing, our types and methods are aug-
mented with size variables and constraints. For size con-
straints, we presently restrict to Presburger form, as decidable
(and practical) constraint solvers exist, e.g. [17]. For simplicity,
we are only interested in tracking size properties of objects.
We therefore restrict the relationφ in each class declaration
of c1〈n1, . . . , np〉 which extendsc2〈n1, . . . , nq〉 to the form∧p

i=q+1 ni = αi whereby V(αi) ∩ {n1, . . . , np} = ∅. Note that
V(αi) returns the set of size variables that appeared inαi. This
restricts size properties to depend solely on the components
of their objects. Size constraints between components, such
as those found for balancing the heights of AVL trees are
disallowed here, but may be placed inφI instead.

Note that each class declaration has a set of instance
methods whose main purpose is to manipulate objects of the
declared class. For convenience, we also provide a set of static
methods with the same syntax as instance methods, except for
access to a receiver object.



P ::= def∗ meth∗

def ::= class c1〈n1..p〉 extends c2〈n1..q〉 whereφ ; φI {fd∗ (A ||m)∗}
fd ::= t f

m ::= t mn((t v)∗) where φpr; φpo {e}
t ::= τ〈n∗〉@A

A ::= U | L | S | R

τ ::= c | prim

prim ::= int | bool | void | float

w ::= v | v.f

e ::= (c) null | k | w | w = e | t v = e1 ; e2 | new c(v∗)
| v.mn(v∗) | mn(v∗) | if v then e1 else e2

| v.dispose()

φ ∈ F (Presburger Size Constraint)

::= b | φ1 ∧ φ2 | φ1 ∨ φ2 | ¬φ | ∃n · φ | ∀n · φ
b ∈ BExp (Boolean Expression)

::= true | false | α1 =α2 | α1 <α2 | α1≤α2

α ∈ AExp (Arithmetic Expression)

::= kint | n | kint ∗ α | α1+α2 | −α
| max(α1,α2) | min(α1,α2)

wherekint ∈ Z is an integer constant

n ∈ SV is a size variable

f ∈ Fd is a field name

v ∈ Var is an object variable

Fig. 3. Syntax of the language

One important characteristic ofMEMJ is that memory
recovery is done explicitly. In particular, dead objects may
be reclaimed via av.dispose() primitive. We provide an
analysis to insert these calls safely and automatically based
on uniqueness information.

A. Alias Checking

We introduce four alias control mechanismsU | S | R | L
adopted from [3], [4], [1]. These alias mechanisms shall be
used to support precise size tracking in the presence of mutable
objects, and also for the explicit recovery of memory space
when unique objects become dead. For size-tracking, we in-
troduceR-mode fields to allow size-immutable properties to be
accurately tracked for all objects. For example, an alternative
class declaration for the list data type is given below, where
its next field is marked as read-only (or immutable). Note that
the val field remains mutable.

class RList〈n〉 where n=m+1 ; n≥0 {
Object〈〉@S val;
RList〈m〉@R next;

:

The size property of such anRList type can be analysed at
compile-time, while allowing its objects to be freely shared.
However, this comes at the cost of mutability and the lost of
uniqueness.

We make use ofL-mode parameters, with thelimited unique
(or lent-once) property [4], to capture unique references that
are temporarily lent out to method calls. They allow the

preservation of uniqueness together with precise size-tracking
across methods. Consider the following method with twoList

parameters.

void〈〉@S join(List〈m〉@L x, List〈n〉@U y)
where n > 0; m′=n+m; · · ·

{ if isNull(x.next) then x.next = y
else join(x.next, y) }

The first parameter is annotated aslent-onceand can thus be
tracked for size properties without loss of uniqueness. How-
ever, the second parameter is markeduniqueas its reference
escapes the method body (into the tail of the first parameter).
In other words, the parametery can have its uniqueness
consumed but notx, as reflected in the body of the above
method declaration. Given two unique lists,a and b, the call
join(a, b) would consume the uniqueness ofb but not that
of a. Our lent-once policy is more restrictive than the policy
of normal lending [1] as we require each lent-once parameter
to be unaliased within the scope of its method. For example,
join(a, a) is allowed by the type rules of [1], but disallowed
by our lent-once’s policy.

In our alias type system, uniqueness may be
transferred (by either assignment or parameter-passing)
from one location (variable, field or parameter)
to another location. Consider a type environment
{x::Object〈〉@U,y::Object〈〉@U, z::Object〈〉@S} where variables
x and y are unique, whilez is shared. In the following
code, {x = y; z = x}, the uniqueness ofy is first transferred
to location x, followed by the consumption of uniqueness
of x that is lost to the shared variablez. Alias subtyping
rules (shown below) allow unique references to be passed to
shared and lent-once locations (in addition to other unique
locations), but not vice-versa.

A ≤a A U ≤a L U ≤a S

A key difference of our alias checking rules, when compared
to [1], is that we do not require an external “last-use” analysis
for variables . Neither do we need to change the underlying
semantics of programs to nullify each location whose unique-
ness is lost. We achieve this with a special set of references
whose uniqueness have been consumed, calleddead-setof the
form {w∗} wherew = v | v.f . This dead-set is tracked flow-
sensitively in our system.

IV. M EMORY USAGE SPECIFICATION

To allow memory usage to be precisely specified, we
propose a bag abstraction of the form{(ci, αi)}n

i=1 where
ci denotes its classification, whileαi is its cardinality. For
instance,Υ1 = {(c1, 2), (c2, 4), (c3, 3)} denotes a bag withc1

appearing twice,c2 appearing four times andc3 appearing
thrice. We provide the following two basic operations for bag
abstraction to capture both the domain and the count of its
element, as follows:

dom(Υ) =df {c | (c, n) ∈ Υ}
Υ(c) =df

{
n, if (c, n) ∈ Υ
0, otherwise



We define several operations (union, difference, exclusion)
over bags. These operations combine two bags to produce a
new bag:

Υ1 ]Υ2 =df {(c, Υ1(c)+Υ2(c)) | ∀c ∈ dom(Υ1) ∪ dom(Υ2)}
Υ1 −Υ2 =df {(c, Υ1(c)−Υ2(c)) | ∀c ∈ dom(Υ1) ∪ dom(Υ2)}
Υ \ X =df {(c, Υ(c)) | ∀c ∈ dom(Υ)− X}

We also define operations that compare two bags. These
operations are used during inference to generate memory
adequacy constraints:

Υ1wΥ2 =df

∧
c∈Z Υ1(c) ≥ Υ2(c)

whereZ = dom(Υ1) ∪ dom(Υ2)
Υ1 =Υ2 =df

∧
c∈Z Υ1(c) = Υ2(c)

whereZ = dom(Υ1) ∩ dom(Υ2)

V. M EMORY INFERENCE

The inference phase analyzes the methods in the program,
propagating size and memory usage information, and collect-
ing memory adequacy constraints. These constraints are then
solved, with the help of fixpoint computation when recursion
is present, and memory requirement and memory release are
derived from solution to the constraints.

The inference works in a bottom-up order of the call graph,
processing one strongly connected component at a time. The
processing of each strongly connected component consists of
the following steps:

1) Calculating symbolic program state, building constraint
abstractions, and collecting memory adequacy con-
straints

2) Solving constraint abstractions using fixpoint
3) Deriving memory requirement and memory release

based on the computed invariant and collected memory
adequacy constraints

The type inference rule for expressions has the following
form:

Γ;∆; Υ ` e :: t, ∆′, Υ′, Φ

where type environmentΓ maps variables to their annotated
types,Υ(Υ′) are memory available before and after evaluation
of e, respectively,∆(∆′) are the size constraints before and
after evaluation of expressione, respectively.Φ is a set of
(∆, ϕ) pairs whereϕ is the constraint that enforces memory
adequacy and∆ is the size context at the program point where
ϕ is generated. We need to carry the size context along so that
we can generate memory requirement and to suitably combine
them.

The inference rule for methods has the following form:

Γ `meth meth↪→ meth’ | Q
whereΓ is empty for static methods and contains one single

entry forthis for instance methods. The methodmeth’ is the
transformed version ofmethwhere memory effects annotations
are added. The constraint abstractionQ captures the relations
between the sizes of the method’s parameters and the memory
effects of the method.

Fig. 4 presents our rules for memory effects inference. In
the following subsections, we will take a closer look at the
more important inference rules.

A. Notations

This subsection defines the notations that we use when
formulating the inference. We use functionV to return size
variables in a size formula, e.g.,V(x′=z+1∧y=2) = {x′, y, z}
We extend it to annotated type, type environment, and memory
specification.

The functionprime takes a set of size variables and returns
their primed version, e.g.prime({s1, . . . , sn}) = {s′1, . . . , s′n}.
This operation is idempotent, namelyv′′ = v′. We extend it to
annotated type, type environment, memory, and substitution.

Often, we need to express a no-change condition on a set
of size variables. We define anoX operation as follows which
returns a formula for which the original and primed variables
are made equal.

noX ({}) =df true noX ({x} ∪X) =df (x′ = x) ∧ noX (X)

We usen∗ = fresh() to generate new size variablesn∗. We
extend it to annotated type, so thatt̂ = fresh(t) will return a new
type t̂ with the same underlying type ast but with fresh size
variables instead. The functionequate(t1, t2) generates equality
constraints for the corresponding size variables of its two argu-
ments, usually when both arguments share the same underlying
type. For example, we haveequate(Int〈r〉 , Int〈s′〉) = (r = s′).

Conditional is expressed asξ1 ¢ b ¤ ξ2 =df

{ ξ1 if b
ξ2 otherwise.

The functionrename(t1, t2) returns an equality substitution, e.g.
rename(Int〈r〉, Int〈s′〉)=[r 7→ s′]. The operator∪ combines two
domain-disjoint substitutions into one.

The functionfdList is used to retrieve a full list of fields for
a given class, together with its size relation. The functioninv is
used to retrieve the size invariant that is associated with each
type. This function shall also be extended to type environment
and list of types.

Imperative size changes occur in the presence of assignment
and are captured by the sequential operator, which is defined
as:

∆ ◦Y φ =df ∃ r1 · · · rn · ρ2(∆) ∧ ρ1(φ)
where Y = {s1, . . . , sn} ; {r1, . . . , rn} = fresh()

ρ1 = [si 7→ ri]
n
i=1 ; ρ2 = [s′i 7→ ri]

n
i=1

For example, if we havex = 2; x = x + 1, then size changes
can be captured as:

∆ ≡ x′ = 2 ◦{x} x′ = x + 1
≡ ∃r · r = 2 ∧ x′ = r + 1
≡ x′ = 3

The result correctly reflects the state of variablex after the
code sequence.

B. Memory Operations

Heap space is directly changed by thenew and dispose

primitives. [NEW] generates constraints to ensure that suffi-
cient memory is available for consumption bynew. [DISPOSE]
credits back space relinquished bydispose, thus no constraint
is generated. The memory effect is accumulated according to
the flow of computation. The following example illustrates
these rules. SupposeΓ = {x :: List〈x〉@U, y :: List〈y〉@U},
Υ = {(List, c)}.



[NEW]

fdList(c〈n∗〉) = ([(t̂i fi)]
p
i=1, φ′) r∗ = fresh()

ti = prime(Γ(vi)) ` ti <: [R 7→ S]t̂i, ρi i∈1..p
X =

⋃p
i=1 V(t̂i) ρ = [n∗ 7→ r∗]∪⋃p

i=1ρi

Φ = {(∆, Υw{(c, 1)})} Υ1 = Υ−{(c, 1)}
Γ;∆;Υ ` new c(v1..p) :: c〈r∗〉@U, ∆∧(∃X·ρφ′), Υ1, Φ

[DISPOSE]

Γ(v) = c〈n∗〉@U Υ1 = Υ ] {(c, 1)}
Γ;∆; Υ ` v.dispose() :: void〈〉@S, ∆, Υ1, {(∆, true)}

[IMI]

` (A || t̂ mn((t̂i v̂i)i:1..p) where φpr; φpo; εc; εr {e}) ∈ c〈n∗〉
t = fresh(t̂) t0 = c〈n∗〉@A Γ(vi) = ti i∈0..p

` ti <: t̂i, ρi i∈1..p ρp =
⋃p

i=1 ρi L =
⋃p

i=0 V(ti)
X =

⋃p
i=1V(t̂i) Φ1 = {(∆, Υwεc)}

ρ = rename(t̂, t)∪ρp∪prime(ρp) Y = X∪ prime(X)
∆′

1 =∆◦L∃Y · ρ(φpr∧φpo) Υ1 = Υ−εc] εr

∆1 =(∆′
1 ∧Υ=prime(εc)) ¢ isRec(mn)¤ ∆′

1

Γ;∆;Υ ` v0.mn(v1..p) :: t, ∆1, Υ1, Φ1

[SMI]

` (t̂ mn((t̂i v̂i)i:1..p) where φpr; φpo; εc; εr {e}) ∈ P
t = fresh(t̂) Γ(vi) = ti i∈1..p

` ti <: t̂i, ρi i∈1..p ρp =
⋃p

i=1 ρi L =
⋃p

i=1 V(ti)
X =

⋃p
i=1V(t̂i) Φ1 = {(∆, Υwεc)}

ρ = rename(t̂, t)∪ρp∪prime(ρp) Y = X∪ prime(X)
∆′

1 =∆◦L∃Y · ρ(φpr∧φpo) Υ1 =Υ−εc] εr

∆1 =(∆′
1 ∧Υ=prime(εc)) ¢ isRec(mn)¤ ∆′

1

Γ;∆; Υ ` v0.mn(v1..p) :: t, ∆1, Υ1, Φ1

[IF]

Γ(v) = bool〈b〉@S Φ = Φ1 ∧ Φ2

Γ;∆ ∧ b′=1;Υ ` e1 :: t1, ∆1, Υ1, Φ1

Γ;∆ ∧ b′=0;Υ ` e2 :: t2, ∆2, Υ2, Φ2

t3, ∆3, Υ3 = msst(t1, t2, ∆1, ∆2, Υ1, Υ2)

Γ;∆;Υ ` if v then e1 else e2 :: t3, ∆3, Υ3, Φ

[METH]

md= t̂ mn((t̂i vi)i:1..p) where φpr; φpo {e}
Γ1 = Γ∪{(vi :: t̂i)i:1..p} ∆ = noX (Γ1)∧φpr∧inv(Γ1)

εr={(c, fresha) | c∈ relC(e)} εc={(c, fresha) | c∈conC(e)}
Q = {mn〈W 〉 = ∆1} W = V(Γ1)∪V(t̂)∪V(εc)∪V(εr)

Γ1;∆; εc ` e :: t, ∆1, Υ1, Φ1 (ε′c, ε
′
r) = solve(Φ)

Φ=Φ1∪ {(true, εcw∅ ∧Υ1wεr)}
md’ = t̂ mn((t̂i vi)i:1..p) where φpr; φpo∧mn〈W 〉; ε′c; ε′r {e}

Γ `meth md ↪→ md’ | Q
Fig. 4. Memory Inference Rules

Φ1 = {(∆, Υw{(List, 1)})} = {(∆, c ≥ 1)}
∆1=∆◦{x}x

′=x+1 Υ1 = Υ−{(List, 1)}
Γ;∆;Υ ` x = new List(o, x) :: void〈〉@S, ∆1, Υ1, Φ1

Υ2=Υ1]{(List, 1)}
Γ;∆1; Υ1 ` y.dispose() :: void〈〉@S, ∆1, Υ2, Φ1

Γ;∆;Υ ` x=new List(o, x);y.dispose()::void〈〉@S, ∆1, Υ2, Φ1

The new operation consumes aList node, while thedispose
operation releases back aList node. The net effect is that
available memoryΥ is unchanged, i.e.Υ2 = Υ. However, due
to the order of the two operations, we require that there must
be at least oneList node initially. This is captured by the
following memory adequacy constraint:

ϕ = Υw{(List, 1)} = c ≥ 1

C. Method Invocation

For method invocation, parameter passing is modelled by
substitution. This process replaces size variables of formal
parameters by that of actual ones. Those size variables that
cannot be tracked due to global sharing are removed by
existential quantifier. To ensure memory adequacy, the rule
generates constraints that force available memory to be no
less than what is needed for the callee.

D. Methods

The inference rule for method ([METH]) generates a fresh
memory variable for each class of which objects may be
allocated or released by the method. These variables are place-
holders for the amount of memory available at the start of the

method. Our inference then builds a constraint abstraction that
captures the relation between these memory variables and the
sizes of the method input parameters.

Some auxiliary functions are used in this rule.conC(e)
returns the sets of object classes that may be consumed by
expressione; relC(e) returns the sets of object classes that
may be released by expressione. These sets can be computed
separately by a simple bottom-up effect analysis.

To illustrate how the rule works, we consider thepush
method of theStack class. This method allocates newList
node, so the[METH] generates its initial memory asεc =
{(List, cl)}. While checking the method body, thenew op-
erator generates the constraintεcw{(List, 1)} ≡ cl ≥ 1. Hence
we can derive the memory requirement for thepush method
as{(List, 1)}.

E. Generating Memory Effects
Generated preconditions can be combined to reduce the size

of the memory effects. This process strengthens the precon-
ditions, and makes them more compact. This is important
for scalability. The idea is that if the conjunction of the
precondition of one branch and the size context of another
branch implies the precondition of the latter, then the latter’s
precondition is redundant. In this case the precondition of the
former suffices for both. More formally, this is described as
follows:

reduce((∆1, pre1), (∆2, pre2)) =df

if ∆1 ∧ pre2 =⇒ pre1 then
{(∆1 ∨∆2, pre2)}

else if∆2 ∧ pre1 =⇒ pre2 then
{(∆1 ∨∆2, pre1)}

else
{(∆1, pre1), (∆2, pre2)}



VI. M EMORY ANALYSIS FOR RECURSIVEMETHODS

A. Deriving Memory Invariant

For each recursive method, we construct a constraint ab-
straction that relates the sizes of the input parameters, the
amount of memory available at the beginning of the method
to the sizes of the parameters of passed to the recursive call
and the amount of memory available just prior to the recursive
call. This one-step relation is subjected to a fixpoint procedure
to compute the multi-step relation. LetI〈n∗,m∗, n̂∗, m̂∗〉 be
the one-step relation, the fixpoint computation is formulated
as follows [20]. Note thatn∗ and m∗ are the sizes of the
input parameters and memory available at the beginning,
respectively, whereaŝn∗ andm̂∗ are that of the recursive call.

I1〈n∗,m∗, n̂∗, m̂∗〉 = I〈n∗,m∗, n̂∗, m̂∗〉
Ii+1〈n∗, m∗, n̂∗, m̂∗〉 = Ii〈n∗,m∗, n̂∗, m̂∗〉∨

∃n∗0,m∗
0 · Ii〈n∗0, m∗

0, n̂
∗, m̂∗〉 ∧ I〈n∗,m∗, n∗0,m

∗
0〉

For the computation to converge, we may need to apply
approximation techniques such as hulling and widening [9],
[20].

B. Deriving Memory Requirement
The technique we use to derive memory requirement is

similar to that used to derive precondition for array bound
checks [20]. A memory adequacy constraintϕ is turned into a
memory requirement by the following steps. First we compute
pre≡ ∆ ≈> ϕ. ∆ is the size state at the program point where
memory constraintϕ is generated. The operator≈> is defined
as:
∆ ≈> ϕ = (∆ =⇒ ρ ϕ) where ρ = s1 7→ s′1, . . . , sn 7→ s′n

s1, . . . , sn = V(ϕ)

Then we projectpre into the sizes of the method’s parameters
by using the ↓V operator, which is defined as follows:

φ ↓V = ∀W · φ where W = V(φ)− V

What the ↓V operator does is it eliminates all free size
variables in a formulaeφ by means of universal quantifier,
except for those specified inV .

C. Deriving Memory Release

To derive memory release, we build a constraint abstraction
that relates the amount of memory available at the end of
the method with the amount of memory available at the
beginning and the sizes of the method parameters. We then
solve this constraint abstraction by fixpoint method to get a
safe approximation of the relation. This solved form will allow
us to determine the amount of memory released when the
method returns.

In general, given a constraint abstraction for a recursive
method

q〈n∗, o〉 = φ0 ∨ φ1[q〈n∗1, o1〉, q〈n∗2, o2〉]

where φ0 represents the base case, and
φ1[q〈n∗1, o1〉, q〈n∗2, o2〉] represents the recursive case,
postcondition can be derived as follows [9]:

q0〈n∗, o〉 = false
qi+1〈n∗, o〉 = φ0 ∨ φ1[qi〈n∗1, o1〉, qi〈n∗2, o2〉]

VII. R ELATED WORK

Past research on improving memory models for object-
oriented paradigm have focused largely on efficiency, mini-
mization and safety. We are unaware of any prior work on
analysing memory usage by OO programs for the purpose
of checking for memory adequacy. The closest related work
on memory adequacy are based on first-order functional
paradigm, where data structures are mostly immutable and
thus easier to handle. We shall review two recent works in
this area before discussing other complimentary works.

Hughes and Pareto [13] proposed a type and effect system
on space usage estimation for a first-order functional lan-
guage, extended with region language constructs of Tofte’s and
Talpin[19]. Their sized-region type system maintains upper
bounds on the height of the run-time stack, and on the memory
used by regions. The use of region model facilitates recovery
of heap space. However, as each region is only deleted when
all its objects become dead, more memory than necessary may
be used, as reported by [2]. Stack usage has been modelled
in Hughes and Pareto’s work, but tail-call optimization is not
supported.

More recently, Hofmann and Jost [11] proposed a solution
to obtain linear bounds on the heap space usage by first-
order functional programs. A key feature of their solution is
the use of linear typing which allows the space of each last-
use data constructor (or record) to be directly recycled by a
matching allocation. As a consequence, memory recovery can
be supported within each function, but not across functions
unless memory tokens are explicitly passed. Also, stack usage
is not covered by their model. To infer memory bounds of
functions, they derive a linear program based on the function’s
typing derivations and the fact that all type annotations in their
system are non-negative. The solution of the generated linear
program directly yields suitable memory bounds required.

This derivation technique can be put under the more general
framework by Rugina and Rinard [18]. They transform the
bounds of accessed memory regions, including pointers and
array accesses, into linear programs. The derived results can
be used in a number of analyses, including parallelization, data
race detection, array bound check elimination.

Another recent work on resource verification is [5]. They
use a combination of both static checks to be verified by com-
pilers and dynamic checks to be verified by runtime systems.
Dynamic checks are associated with operations that reserve
resources from execution environments whereas static checks
are associated with operations that consume the reserved
resources. The reserve operations may fail at runtime due to
resource insufficiency. The static checks ensure that, once the
reserve operations succeed, the consumption operations never
fail due to insufficiency of resources.

VIII. C ONCLUSION

We have proposed a type-based analysis to automatically
derive the memory effects of methods in object-oriented pro-
grams. The analysis can derive both memory consumption and
release. Analysis of recursive methods is carried out with the
help of fixpoint analysis of derived constraint abstractions. The



memory effects of methods are propagated interprocedurally.
Moreover, the ideas presented here can be applied to analyze
other kind of computational resource usages as well.

Although constraints used in the analysis are limited by
the linear nature of Presburger arithmetic, memory effects
are not necessarily onesingle linear combination of the sizes
of method’s parameters. Instead we can have multiple linear
formulae, each representing the memory effects of one or more
execution paths through the method’s body, thereby allowing
more expressiveness and better accuracy.
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