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Abstract— Electroosmotic flow is a convenient mechanism for
transporting polar fluid in a microfluidic device. Theflow is
generated through the application of an external electric
field that acts on the free charges that existsin a thin Debye
layer at the channel walls. The charge on the wall is due to
the chemistry of the solid-fluid interface, and it can vary
along the channel, e.g. due to maodification of the wall. This
investigation focuses on the simulation of theelectroosmotic
flow (EOF) in a cylindrical microchannel with step changein
zeta potential. The modified Navier-Stoke equation
governing the velocity field and a non-linear two-
dimensional Poisson-Boltzmann equation governing the
electrical double-layer (EDL) field distribution are solved
numerically using finite control-volume method.
Continuities of flow rate and electric current are enforced
resulting in a non-uniform electrical field and pressure
gradient distribution along the channel. The resulting
parabolic velocity distribution at the junction of the step
changein zeta potential, which is moretypical of a pressure-
driven velocity flow profile, is obtained.

Keywords— Electroosmotic flow, Electrica double-layer,
Pressure-driven flow, Zeta potential.

[. INTRODUCTION

I nterests in fluid flow in microfluidic devices have
received significant attention over the past decade by its
potential applications in analytical and biocanalytical
chemistry [1-2]. Examples of fluid manipulations include
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dynamic cell separations [3-4], surface patterning of cells
and proteins [5], mass spectrometer delivery modules [6]
and mixing of two different analytes. Flows driven by an
external electric field based on electroosmosis [8] and
applied pressure gradient [9] are two methods commonly
used for continuous flow in microchannel devices.
Electroosmotic flow has wide applications as it has a
uniform flow velocity profile and no moving parts[10].

The driving force for electroosmotic flow in microchannels
depends on the local net-charge density and strength of
the externally applied electrical field. The net-charge
density is dependent on the EDL field and hence on zeta
potential. Generally, zeta potential is a function of theionic
valence, the ionic concentration of the electrolyte solution,
and the surface properties of the microchannel wall. For a
system with a simple electrolyte solution and a
homogenous channel wall, zeta potential is considered
constant. However, the charge on the wall is a function of
the chemistry of the solid-fluid interface and can vary along
the channel either by design or surface modification, which
can cause different zeta potential distribution. Assuch, ina
first step to understand the flow behaviour in such a
situation, we model the flow behaviour where thereis a step
changein zeta potential.

Yang et. al. [11-12] considered pressure-driven flow in a
rectangular microchannel. A two-dimensional electric
potential model was proposed, and was solved both
analytically using the Debye-Huckel linear approximation
and numerically. A Green's function approach was
developed to obtain a close-form solution of the flow field
[11]. They studied the microchannel flow in the fully
developed region and avoided the entry region effects and
pressure gradient term in the modified Navier-Stokes
equations. Patankar et. al. [13] employed a similar model to
investigate 3D microchannel flow.

Several researchers [14-18] have studied the effects of
variable zeta potential on electroosmotic flow. Anderson et.
a. [14] developed an infinite-series solution for flow in a
cylindrical microchannel with a zeta potential varying as a
cosine or sine function in the flow direction. Potocek et. al.
[15] studied the influence of the discrete step change in
zeta potential on the velocity profile of the electroosmotic



flow by considering the zeta potential change between two
steps. Long et. a. [16] considered a similar type of zeta
potential variation in planar ad cylindrical capillaries and
developed  approximations by  considering the
heterogeneity as small perturbations to the velocity.
Stroock et. al. [I7] studied two types of surface-charge
variation along a direction perpendicular to the applied
electricd fidd, which generates a two-directional
electroosmotic flow. By having surface-charge variation
along a direction parallel to the electrica field, a
recirculating flow is generated. Herr at. da. [18]
experimentally investigated the electroosmotic flow field
and the sample dispersion rate in open capillaries with a
step change in zeta potential and presented a simple model
for the fluid velocity and the dispersion rate. Thethin EDL
assumption is valid only for systems with high ionic
concentrations. The above-mentioned investigation all
assumed thin electrical double layer and, hence, did not
completely consider the effects of EDL field. It is known
that the electrical body force responsible for electroosmotic
flow depends on the local net-charge density. Therefore, a
more genera treatment to the effects of zeta potential or
EDL variation on electroosmotic flow should consider the
change of local net-charge density along the channel. This
requires solving for the Poisson-Boltzmann equation, which
governs the EDL field. Li et. a. [19-20] and Yang et. al [21-
22] studied the variation of the EDL field and step change
of zeta potential on the velocity field by adopting the
Nernst-Planck equations. However, their works did not
consider completely the continuity of electrical current.

In this study, we investigated numerically electroosmotic
flow in a cylindrical microchannel with step changein Zeta
potential. The modified Navier-Stoke equation governing
the velocity field and a non-linear two-dimensional
Poisson-Boltzmann equation governing the electrical
double-layer (EDL) field distribution. In the junction region
of the step change in zeta potential, the changes in
parameters are solved numerically by using finite control-
volume method. Unlike other models, the continuities of
both flow rate and electric current were enforced.

Il MATHEMATICAL FORMULATIONS

A. Governing equations

Figure 1 shows a cylindrical microchannel of radius
aand length | and a Cartesian wordinate system for the
analysis of the electroosmotic flow. The liquid in the
microchannel is assumed to be an incompressible,
Newtonian, symmetric electrolyte (1:1) of constant
density r and viscosity h. To consider EDL and

electrostatic field effects on fluid flow through the
microchannel, the distribution of electrical potential and net
charge density in the cylindrical microchannel must be
evaluated. Our mathematical model is based on the Navier-
Stokes equation, including a term for electrokinetic effect.
There are three sets of equations to be solved
simultaneously

a). Electrical Field

The step change in zeta potential was considered for a
cylindrical microchannel, as shown in Figurel. For
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Figure 1 A cylindrical microchannel with a step change in zeta
potential.

simplicity, we neglected the differences in permittivity and
considered only the deviations of electric field strength.
According to the theory of electrostatic, the EDL potential
in the cylindrical microchannel is governed by the two-
dimensional Poisson equation, given as:

g tyolle Vo I n
ze Mzg rre  Mrg e,

where e, is the dielectric constant of the electrolyte, y is
the electrostatic potential, and e is the permittivity of

vacuum. The axial and edial coordinates are zand r,
respectively. Thetotal net electric charge, r is given by

re=¢&Z,n,+Z.n) @

where e isthe elementary charge and Z, and Z_ ae
valences of the co-ions and counter-ions, respectively.
n,and n_are the co-ion and counter-ion number

concentrations respectively . In thermodynamics equilibrium
where the chemical potential is balanced by the electrical
potential, it can be shown that both n,and n_ follow the

Boltzmann distributions[23]:
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Tis the absolute
temperature, and ng is the bulk ionic number concentration
of the electrolyte. The total local charge density,

where K,is the Boltzmann constant,

r.fora
symmetric electrolyte (i.e. the co-ions and counter-ions
have the same charge valence, |Z,|=|Z.|=2,), is given

by:
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Combining Egs. (1) and (4), we can obtain the Possion-
Boltzmann equation:
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However, in the presence of hydrodynamic flow, the n, and
n. ionic number concentration distributions are described
by the more general Nernst-Planck equations [23]:
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where D, and D. are the diffusion coefficients of the
n, and n_, respectively. u and v arethe velocitiesin the

axial and radial direction respectively.

b) Hydrodynamic Field

The axia electric field will induce a body force and the
modified Navier-Stokes equation becomes
Continuity equation:

_r+'ﬂ(ru) +iﬂ(”")=o

It 9z rqr ®

Modified Navier-Stokes equation:
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where r and h are the density and viscosity of the fluid
respectively, pis the hydraulic pressure. In eguation (9),
E is the electrical field strength which is yet to be

obtained. The electrical field strength for each section will
be different and can be determined by

:Lﬁ (11)

| isthe electrical
current. R is the electrical resistance of the ith section of

where L, is the length of the ith section,

the electrolyte solution, given as
R=—"— (12)

where C, is the concentration of the ith section, A isthe

cross-sectional area of the cylindrical capillary and | ; isthe
molar conductivity of theith section and is given as:
| =1,n, +1_n (13)

where | , and | _ are the electric conductivity of cations

and anions, respectively. When the total electrical voltage
applied to the capillary and electrical resistance are known,
the electrica current through the capillary can be
determined by:
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where V, is the total electrical voltage applied to the
capillary, which is constant during the process. R, isthe

total electrical resistance, which isthe sum of the resistance
of the two sections.



¢) Boundary condition

The boundary conditions at the inlet, outlet, wall and and
the junction of the step change in zeta potential can be
specified as:

Poisson equations:

(Inlet):y (r-L;)=0 (15a)
(Outlet): Ty @r.tp) =0 (15b)
9z
(wal):y (a,2)=0, zEO
y (a,2)=x, z>0 (15¢)
(Symmetric centerline): w =0 (1d)
Nernst-Planck equations:
(Inlet) : n,(r,-Ly)=n, (16a)
©Outlet): T=(:L2) _ (16b)
91z
(Wall): N, (a,2) = exp(- Z, —=) (160)
K, T
(Symmetric centerline): % =0 (16d)

The pressure boundary conditions are given at both inlet
and outlet in the microchannel for solving the momentum
equations:

(Infet): p(r- L) =py, v(r,-L,)=0 (17a)
(Outlet) : p(r,L,)= pz,% =0 (17b)
(wall): u(a,2)=v(a,2) =0 (17c)
(Symmetric centerling: MO.2 _ g v0.2=0  (7d)

qr

where X is the zeta potential which is a measurable
electrical potential at the boundary between the compact
and diffuse layer of the EDL, p,and p, arethe pressure at

point A and B, respectively.

B. Numerical solution

The coupled electrical field governed by the Possion-
Boltzmann equation (1) and Nernst-Planck equations (6-7),
and the hydrodynamics field governed by the modified
Navier-Stoke equation (8-10) are solved numericaly by
finite volume method (FVM). In FVM, the computational
domain is discretized by rectangular elements which are
named as control volume. The grid point is located at the
center of a control volume. The dependent variables, i.e.
pressure, are stored at the grid point. The staggered grid
system is used for the velocity components. The governing
equations integrated over each control volume generating a
set of algebraic equationswhich are solved by using aline-
by-line Tri-Diagonal-Matrix Algorithm (TDMA). The
combined convection-diffusion effect in the governing
equation is modeled by power-law scheme. The pressure-
velocity coupling in the momentum equations ©-10) are
solved by SIMPLER algorithm [24]. In this study, a
numerical solution is considered to have converged as the
imbalance of mass flow rate in the continuity equation (8) is
less than 10°°.

C.Analytical solution for electroosmotic flow with a step
changein zeta potential

Taking a similar approach of Herr et. al. [18], the pressures
at points A and B in the region of the zero zeta potential
and non-zero zeta potential respectively, depicted in Fig. 1,
can be obtained by assuming that fluid flow outside of the
junction region (i.e. outside of -L,<z£L,) is steady,

fully developed and with athin charged double-layer. It can
be described by:

8Ee, |1 ,x
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P2 = Pout _2r—12 (19)
a(ly+1y)

where p,,and p,, are the pressures at the inlet and
outlet, respectively. Once the pressures at point A (p;)
and B (p,) are solved analytically, the perturbation of

electroosmotic flow at the junction region of a step change
in zeta potential shown in Fig. 1 can be solved numerically.

I1l. RESULTS AND DISCUSSIONS

In this study, NaCl was used as the working fluid of
electrolyte solution, and its bulk ionic concentration was



chosen as 10 M. The temperature of the solutionwas kept
at 293K. Theradius and length of the cylindrical capillary
are 5mm and 80mm, respectively. The measurable zeta
potential near the wall of the channel is 40mV. The
pressures at inlet and outlet were assumed to be
atmospheric pressure. All other constants, therma and
physical properties employed in the computations are
listedin Table 1.

Table 1, Material constants thermal and physical properties

Variable Unit Vdue

D, (Eq.5) mol/| 1.334°10°°
D. (Eq.6) mol/| 2.032°10°°
e (Eq.2) c 1.602° 10" %
Ky, (Eq. 3) JIK 1.381°10°%
e (Eq.1) 80

€, (Eq. 1) C/vm 8854 10712
|, (Eqg.13) m?xS/ mol 50.080 " 10°*
| (Eq.13) m?xS/ mol 76.310" 10°*
r (Eg.8) kg/ nt 998

h (Eq.9) N>s/m?2 1.005° 1073

The appropriate dimensionless forms of the variables can
be defined as:

Dimensionless coordinates: Z == , T = r (20a)
a a
Dimensionless electrical potential: y— :% (20b)
b
_ _n
Dimensionlessionic concentration: n, =— (20c)
No
. . o u __ Vv
Dimensionlessvelocity: U =—, V =— (20d)
Uin Uin
Dimensionless electrical net charge density:
_ _Z.n,+Z.n.
QeI (200)
oMo
where for a symmetric monovalence electrolyte,

Z,=-2 =2,=1

Asshownin Fig. 1, the microchannel has a step change of
zeta potential at z=0. The non-zero zeta potential region is
between 0£z£1, + L, , and the body force is non-zero. In

the zero zeta potential region (i.e., - (I, +L,) £z£0) the

zeta potential is zero and hence the body force is also zero.
The electroosmotic flow isfluid flow driven by an applied
external electrical potential, and there is no externaly
applied pressure difference.

Figs. 2(@Q) and 2(b) show the distributions of the
dimensionless electrical potential (Eq. 20(b)) and net charge
density (Eq. 20(e)) in the microchannel. It can be
observed that both the electrical potential and the net
charge density obtained from Boltzmann distributions vary
in  the non-zero zeta potential region and its EDL
reaches a constant thickness in accordance to the
implicit assunption of a Boltzmann distribution for an
equilibriumcharge distribution.
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Fig. 2(a) Distribution of dimensionless electrical potential (y ) in
microchannel with step change of zeta potential.
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Fig. 2(b) Distribution of dimensionless charge density ( Tg) in
microchannel with step change of zeta potential.

Fig. 3 shows the distributions of both the co-ions and
counter-ions (Eg. 20(c)) at two different locations in the
non-zero zeta potential region. The EDL development can
also be reflected from this cross-sectional distribution of
co-ions and counter-ions. Large portion of the channel is
occupied by ion concentrations which are the same as the
bulk concentration. There is an abrupt change in the ion
concentrations near the channel wall due to the existence of
zeta potential. As the flow proceeds, there is little variation
of ion concentrationas z3 0.1.
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Fig. 3(a) Distribution of concentration of co-ions (1, ) and counter-
jons(m. )at z=0.1
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Fig. 4(a) Distribution of dimensionless velocity in non-zero zeta
potential region of the microchannel.

Fig. 4 shows the evolution of the predicted velocity
profiles at different positions along the flow directionin the
microchannel. In the non-zero zeta potential region, the flow
motion is driven by a body force produced by an
externally applied electrical field which acts on the net fluid
charge near the wall. The velocity distribution of the fluid
motion near the wall is shown in Fig. 4 (a). The velocity is
low near the center at the exit of the channel due to the
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Fig. 3(b) Distribution of concentration of co-ions (1. ) and
counter-ions (1. ) at z>0.1.
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Fig. 4(b) Distribution of dimensionless velocity in the zero zeta
potential region of the microchannel.

small driving force there. With the length of non-zero zeta
potential region increases, the viscous drag effect
increases. This produces higher velocity near the center of
the channel. In the zero zeta potentia region, the flow
motion is driven by a suction effect produced by a flow
motion in the non-zero zeta potential region due to charge
density distribution. This produces a parabolic velocity
profile, see Fig. 4(b).



Fig. 5 Induced pressure field distribution along the center-line of
microchannel.

Fig.5 shows the induced pressure field distribution along
the center-line of the mcrochannel with a step change in
zeta potential. It is observed that a negative pressure
gradient exists in the region with zero zeta potential but
positive pressure gradient in the region with non-zero zeta
potential. Fig.5 shows that pressure decreases from the
entrance to a minimum pressure at the junction of the step
change in zeta potential at z=0. The velocity near the wall
increases as shown in Fig. 4(a). In the region with non-zero
zeta potential, the positive pressure gradient reduces the
velacity, as shown in Fig. 4(b). Assuch, the requirement of
constant flow rate for mass continuity is satisfied.

Fig. 6 shows the pressure distribution along the radial
direction at both sides of the junction with a step changein
zeta potential. Fig. 6(a) indicates that a non-uniform cross-
sectional pressure distribution exists at z=0.1. The pressure
is positive near the wall, which provides the driving force

for fluid flow. Negative non-uniform pressure distribution
is observed at z=-0.1, which isin the region with zero zeta
potential and is driven by the drag force from the EDL of
the downstream fluid in the non-zero zeta potential region.

IV. CONCLUSIONS

This study investigated numerically the effects of a step
change in zeta potentiad in a microchannel on
electroosmotic flow. A negative pressure gradient is
generated in the region with zero zeta potential, which
increases the velocity. The velocity profile is parabolic,
which is similar to a pressure-driven flow. Conversely, a
positive pressure gradient exists in the region with non-
zero zeta potential, which decreases the velocity and leads
to adistorted velocity profile.

Fig. 6(a) Pressure distribution at Z=0.1along the radial directionin
microchannel.
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Fig. 6(b) The pressure distribution at Z=- 0.1for the cases along the
radial direction in the microchannel.
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