
 
 

  
Abstract—  Electroosmotic flow is a convenient mechanism for 
transporting polar fluid in a microfluidic device. The flow is 
generated through the application of an external electric 
field that acts on the free charges that exists in a thin Debye 
layer at the channel walls. The charge on the wall is due to 
the chemistry of the solid-fluid interface, and it can vary 
along the channel, e.g. due to modification of the wall. This 
investigation focuses on the simulation of the electroosmotic 
flow (EOF) in a cylindrical microchannel with step change in 
zeta potential . The modified Navier-Stoke equation 
governing the velocity field and a non-linear two-
dimensional Poisson-Boltzmann equation governing the 
electrical double-layer (EDL) field distribution are solved 
numerically using finite control-volume method. 
Continuities of flow rate and electric current are enforced 
resulting in a non-uniform electrical field and pressure 
gradient distribution along the channel. The resulting 
parabolic velocity distribution at the junction of the step 
change in zeta potential, which is more typical of a pressure-
driven velocity flow profile, is obtained.  
 
Keywords—  Electroosmotic flow, Electrical double-layer, 
Pressure-driven flow, Zeta potential. 

I.  INTRODUCTION 

 
 nterests in fluid flow in microfluidic devices have  
received significant attention over the past decade by its 

potential applications in analytical and bioanalytical 
chemistry [1-2]. Examples of fluid manipulations include 
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dynamic cell separations [3-4], surface patterning of cells 
and proteins [5], mass spectrometer delivery modules [6] 
and mixing of two different analytes. Flows driven by an 
external electric field based on electroosmosis [8] and 
applied pressure gradient [9] are two methods commonly 
used for continuous flow in microchannel devices. 
Electroosmotic flow has wide applications as it has a 
uniform flow velocity profile and no moving parts [10].  
The driving force for electroosmotic flow in microchannels 

depends on the local net-charge density and strength of 
the externally applied electrical field. The net-charge 
density is dependent on the EDL field and hence on zeta 
potential. Generally, zeta potential is a function of the ionic 
valence, the ionic concentration of the electrolyte solution, 
and the surface properties of the microchannel wall. For a 
system with a simple electrolyte solution and a 
homogenous channel wall, zeta potential is considered 
constant. However, the charge on the wall is a function of 
the chemistry of the solid-fluid interface and can vary along 
the channel either by design or surface modification, which 
can cause different zeta potential distribution. As such, in a 
first step to understand the flow behaviour in such a 
situation, we model the flow behaviour where there is a step 
change in zeta potential.  
  Yang et. al. [11-12] considered pressure-driven flow in a 
rectangular microchannel. A two-dimensional electric 
potential model was proposed, and was solved both 
analytically using the Debye-Huckel linear approximation 
and numerically. A Green’s function approach was 
developed to obtain a close-form solution of the flow field 
[11]. They studied the microchannel flow in the fully 
developed region and avoided the entry region effects and 
pressure gradient term in the modified Navier-Stokes 
equations. Patankar et. al. [13] employed a similar model to 
investigate 3D microchannel flow.   
Several researchers [14-18] have studied the effects of 

variable zeta potential on electroosmotic flow. Anderson et. 
al. [14] developed an infinite-series solution for flow in a 
cylindrical microchannel with a zeta potential varying as a 
cosine or sine function in the flow direction. Potocek et. al. 
[15] studied the influence of the discrete step change in 
zeta potential on the velocity profile of the electroosmotic 
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flow by considering the zeta potential change between two 
steps.  Long et. al. [16] considered a similar type of zeta 
potential variation in planar ad cylindrical capillaries and 
developed approximations by considering the 
heterogeneity as small perturbations to the velocity. 
Stroock et. al. [17] studied two types of surface-charge 
variation along a direction perpendicular to the applied 
electrical field, which generates a two-directional 
electroosmotic flow. By having surface-charge variation 
along a direction parallel to the electrical field, a 
recirculating flow is generated. Herr at. al. [18] 
experimentally investigated the electroosmotic flow field 
and the sample dispersion rate in open capillaries with a 
step change in zeta potential and presented a simple model 
for the fluid velocity and the dispersion rate. The thin EDL 
assumption is valid only for systems with high ionic 
concentrations. The above-mentioned investigation all 
assumed thin electrical double layer and, hence, did not 
completely consider the effects of EDL field. It is known 
that the electrical body force responsible for electroosmotic 
flow depends on the local net-charge density. Therefore, a 
more general treatment to the effects of zeta potential or 
EDL variation on electroosmotic flow should consider the 
change of local net-charge density along the channel. This 
requires solving for the Poisson-Boltzmann equation, which 
governs the EDL field. Li et. al. [19-20] and Yang et. al [21-
22] studied  the variation of the EDL field and step change 
of zeta potential on the velocity field by adopting the 
Nernst-Planck equations. However, their works did not 
consider completely the continuity of electrical current.  
  In this study, we investigated numerically electroosmotic 
flow in a cylindrical microchannel with step change in Zeta 
potential. The modified Navier-Stoke equation governing 
the velocity field and a non-linear two-dimensional 
Poisson-Boltzmann equation governing the electrical 
double-layer (EDL) field distribution. In the junction region 
of the step change in zeta potential, the changes in 
parameters are solved numerically by using finite control-
volume method. Unlike other models, the continuities of 
both flow rate and electric current were enforced.   
 

II. MATHEMATICAL FORMULATIONS 

 

A. Governing equations 

 
Figure 1 shows a cylindrical microchannel of radius 

a and length l and a Cartesian coordinate system for the 
analysis of the electroosmotic flow. The liquid in the 
microchannel is assumed to be an incompressible, 

Newtonian, symmetric  electrolyte   ( 1:1 )    of    constant  
density  ρ     and    viscosity η .    To   consider EDL    and  

electrostatic field effects on fluid flow through the 
microchannel, the distribution of electrical potential and net 
charge density in the cylindrical microchannel must be 
evaluated. Our mathematical model is based on the Navier-
Stokes equation, including a term for electrokinetic effect. 
There are three sets of equations to be solved 
simultaneously   

 
a). Electrical Field 
 
The step change in zeta potential was considered for a 

cylindrical    microchannel,   as   shown   in   Figure 1.   For 
 

 
 
Figure 1 A cylindrical microchannel with a step change in zeta 
potential. 

 
simplicity, we neglected the differences in permittivity and 
considered only the deviations of electric field strength. 
According to the theory of electrostatic, the EDL potential 
in the cylindrical microchannel is governed by the two-
dimensional Poisson equation, given as:   
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where rε is the dielectric constant of the electrolyte, ψ is 

the  electrostatic potential, and oε is the permittivity of 

vacuum. The axial and radial coordinates are z and r , 
respectively. The total net electric charge, eρ is  given by 

 
)( −−++ += nZnZeeρ                                 (2) 

 
where e  is the elementary charge and +Z  and −Z  are 
valences of the co-ions and counter-ions, respectively. 

+n and −n are the co-ion and counter-ion number 

concentrations respectively. In thermodynamics equilibrium 
where the chemical potential is balanced by the electrical 
potential, it can be shown that both +n and −n  follow the 

Boltzmann distributions [23]: 
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where bk is the Boltzmann constant, T is the absolute 

temperature, and 0n is the bulk ionic number concentration 

of the electrolyte. The total local charge density, eρ for a 

symmetric electrolyte (i.e. the co-ions and counter-ions 

have the same charge valence, 0ZZZ == −+ ), is given 

by: 
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Combining Eqs. (1) and (4), we can obtain the Possion-
Boltzmann equation: 
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However, in the presence of hydrodynamic flow, the +n and 

−n  ionic number concentration distributions are described 

by the more general Nernst-Planck equations [23]: 
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where +D  and −D  are the diffusion coefficients of the 

+n and −n , respectively. u  and v  are the velocities in the 

axial and radial direction respectively.  
 

b) Hydrodynamic Field 

 
The axial electric field will induce a body force and the 
modified Navier-Stokes equation becomes 
Continuity equation: 
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Modified Navier-Stokes equation: 
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where ρ and η are the density and viscosity of the fluid 

respectively, p is  the hydraulic pressure. In equation (9), 

E  is the electrical field strength which is yet to be 
obtained. The electrical field strength for each section will 
be different and can be determined by 
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where iL is the length of the ith section, I is the electrical 

current. iR  is the electrical resistance of the ith section of 

the electrolyte solution, given as 
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where iC is the concentration of the ith section, A  is the 

cross-sectional area of the cylindrical capillary and iλ is the 

molar conductivity of the ith section and is given as: 
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where +λ  and −λ  are the electric conductivity of cations 

and anions, respectively. When the total electrical voltage 
applied to the capillary and electrical resistance are known, 
the electrical current through the capillary can be 
determined by: 
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where tV is the total electrical voltage applied to the 

capillary, which is constant during the process. tR  is the 

total electrical resistance, which is the sum of the resistance 
of the two sections.  
 



 
 

c) Boundary condition 

 
The boundary conditions at the inlet, outlet, wall and and 
the junction of the step change in zeta potential can be 
specified as: 
 
Poisson equations: 
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Nernst-Planck equations: 
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The pressure boundary conditions are given at both inlet 
and outlet in the microchannel for solving the momentum 
equations: 
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where ξ  is the zeta potential which is a measurable 
electrical potential at the boundary between the compact 
and diffuse layer of the EDL, 1p and 2p  are the pressure at 

point A and B, respectively.  

B. Numerical solution 

 
  The coupled electrical field governed by the Possion-
Boltzmann equation (1) and Nernst-Planck equations (6-7), 
and the hydrodynamics field governed by the modified 
Navier-Stoke equation (8-10) are solved numerically by 
finite volume method (FVM). In FVM, the computational 
domain is discretized by rectangular elements which are 
named as control volume. The grid point is located at the 
center of a control volume. The dependent variables, i.e. 
pressure, are stored at the grid point. The staggered grid 
system is used for the velocity components. The governing 
equations integrated over each control volume generating a 
set of algebraic equations which are solved by using a line-
by-line Tri-Diagonal-Matrix Algorithm (TDMA). The 
combined convection-diffusion effect in the governing 
equation is modeled by power-law scheme. The pressure-
velocity coupling in the momentum equations (9-10) are 
solved by SIMPLER algorithm [24]. In this study, a 
numerical solution is considered to have converged as the 
imbalance of mass flow rate in the continuity equation (8) is 
less than 10-6.  
 

C. Analytical solution for electroosmotic flow with a step 
change in zeta potential 

 
  Taking a similar approach of Herr et. al. [18], the pressures 
at points A and B in the region of the zero zeta potential 
and non-zero zeta potential respectively, depicted in Fig. 1, 
can be obtained by assuming that fluid flow outside of the 
junction region (i.e. outside of 21 LzL ≤<− ) is steady, 

fully developed and with a thin charged double-layer. It can 
be described by: 
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where inp and outp  are the pressures at the inlet and 

outlet, respectively. Once the pressures at point A ( 1p ) 

and B ( 2p ) are solved analytically, the perturbation of 

electroosmotic flow at the junction region of a step change 
in zeta potential shown in Fig. 1 can be solved numerically. 
 

III.  RESULTS AND DISCUSSIONS 
 
In this study, NaCl was used as the working fluid of 

electrolyte solution, and its bulk ionic concentration was 



 
 

chosen as 10-4 M. The temperature of the solution was kept 
at 293K. The radius and length of the cylindrical   capillary  
are 5µm and 80µm, respectively. The measurable zeta 
potential near the wall of the channel is  40mV. The 
pressures at inlet and outlet were assumed to be 
atmospheric pressure. All other constants , thermal and 
physical properties employed in the comp utations are 
listed in Table 1. 

   
Table 1, Material constants, thermal and physical properties 

Variable Unit  Value 

+D   (Eq. 5) lmol/  910334.1 −×  

−D  (Eq. 6) lmol/  910032.2 −×  
e   (Eq. 2) C  1910602.1 −×  

bk  (Eq. 3) KJ /  2310381.1 −×  

rε  (Eq. 1)  80 

0ε  (Eq. 1) VmC /  1210854.8 −×  

+λ  (Eq. 13) molSm /2 ⋅  410080.50 −×  

−λ  (Eq. 13) molSm /2 ⋅  410310.76 −×  
ρ  (Eq. 8) 3/ mkg  998 
η  (Eq. 9) 2/msN ⋅  310005.1 −×  

   
The appropriate dimensionless forms of the variables can 
be defined as: 
 

Dimensionless coordinates: 
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Dimensionless electrical potential:   
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Dimensionless electrical net charge density: 
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where for a symmetric monovalence electrolyte, 

10 ==−= −+ ZZZ  
   

As shown in Fig. 1, the microchannel has a step change of 
zeta potential at z=0. The non-zero zeta potential region is 
between 220 Llz +≤≤ , and the body force is non-zero. In 

the zero zeta potential region (i.e., 0) ( 11 ≤≤+− zLl ) the 

zeta potential is zero and hence the body force is also zero. 
The electroosmotic flow is fluid flow driven by an   applied  
external electrical potential, and there is no externally 
applied pressure difference. 
 
Figs. 2(a) and 2(b) show the distributions of the 

dimensionless electrical potential (Eq. 20(b)) and net charge 
density (Eq. 20(e)) in the microchannel.  It can    be 
observed that both the electrical potential and the net 
charge density obtained from Boltzmann distributions vary  
in   the non-zero zeta potential   region   and   its EDL   
reaches   a   constant thickness in accordance to the  
implicit   assumption   of a Boltzmann distribution for an 
equilibrium charge distribution.  
 

   
 

 
Fig. 2(a) Distribution of  dimensionless electrical potential (ψ ) in   

microchannel with step change of zeta potential. 

 
 

 
 

Fig. 2(b) Distribution of  dimensionless charge density ( eρ ) in 

microchannel with step change of zeta potential. 

 
Fig. 3 shows the distributions of both the co-ions and 

counter-ions (Eq. 20(c)) at two different locations in the 
non-zero zeta potential region. The EDL development can 
also be reflected from this cross-sectional distribution of 
co-ions and counter-ions. Large portion of the channel is 
occupied by ion concentrations which are the same as the 
bulk concentration. There is an abrupt change in the ion 
concentrations near the channel wall due to the existence of 
zeta potential. As the flow proceeds, there is little variation 
of ion concentration as 1.0≥z . 
 



 
 

 

 
 

Fig. 3(a) Distribution of concentration of co-ions ( +n ) and counter-

ions ( −n ) at 1.0=z  
 
 
 
 

 
 

Fig. 4(a) Distribution of  dimensionless velocity in non-zero zeta 
potential region of the microchannel. 

 

 
 

  Fig. 4 shows the evolution of the predicted velocity 
profiles at different positions along the flow direction in the 
microchannel. In the non-zero zeta potential region, the flow 
motion is driven by a body force produced by an    
externally applied electrical field which acts on the net fluid 
charge near the wall. The velocity distribution  of   the fluid 
motion near the wall is shown in Fig. 4 (a). The velocity is 
low near the center at the exit of the channel  due     to    the 

 

 

 
 

Fig. 3(b) Distribution of concentration of co-ions  ( +n ) and 

counter-ions ( −n ) at 1.0>z .  

 

 
  

 
 

Fig. 4(b) Distribution of  dimensionless velocity in the zero zeta 
potential region of the microchannel. 

 
 
small driving force there. With the length of non-zero zeta 
potential region increases, the viscous drag effect 
increases. This produces higher velocity near the center of 
the channel.  In the zero zeta potential region, the flow 
motion is driven by a suction effect produced by a flow 
motion in the non-zero zeta potential region due to charge 
density distribution. This produces a parabolic velocity 
profile, see Fig. 4(b). 



 
 

 
 

Fig. 5 Induced pressure field distribution along the center-line of  
microchannel. 

 
  Fig.5 shows the induced pressure field distribution along 
the center-line of the microchannel with a step change in 
zeta potential. It is observed that a negative pressure 
gradient exists in the region with zero zeta potential but 
positive pressure gradient in the region with non-zero zeta 
potential.  Fig.5 shows that pressure decreases from the 
entrance to a minimum pressure at the junction of the step 
change in zeta potential at z=0. The velocity near the wall 
increases as shown in Fig. 4(a). In the region with non-zero 
zeta potential, the positive pressure gradient reduces the 
velocity, as shown in Fig. 4(b).  As such, the requirement of 
constant flow rate for mass continuity is satisfied.   
 
  Fig. 6 shows the pressure distribution along the radial 
direction at both sides of the junction with a step change in 
zeta potential. Fig. 6(a) indicates that a non-uniform cross-
sectional pressure distribution exists at z=0.1. The pressure  
is positive near the wall, which provides the driving force 

for fluid flow.  Negative non-uniform pressure distribution 
is observed at z=-0.1, which is in the region with zero zeta 
potential and is driven by the drag force from the EDL of 
the downstream fluid in the non-zero zeta potential region. 
 

IV. CONCLUSIONS 
 

This study investigated numerically the effects of a step 
change in zeta potential in a microchannel on 
electroosmotic flow. A negative pressure gradient is 
generated in the region with zero zeta potential, which 
increases the velocity. The velocity profile is parabolic, 
which is similar to a pressure-driven flow. Conversely, a 
positive pressure gradient exists in the region with non-
zero zeta potential, which decreases the velocity and leads 
to a distorted velocity profile.  

 
 
 

Fig. 6(a) Pressure distribution at 1.0=z along the radial direction in  
microchannel. 

 
 

 
 
 

Fig. 6(b) The pressure distribution at 1.0−=z for the cases along the 
radial direction in the microchannel. 
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