
Project 4-2 6.172 - Performance Engineering Fall 2009


Project 4-2 

Parallel Programming with Cilk II

Out: Thursday, 29 Oct 2009


Due: Friday 10AM, 13 Nov 2009


In this project you will optimize a graphical screensaver program using the Cilk parallel programming 
environment. 

Introduction 

With the recent revolution in mobile computing prompted by Apple’s iPhone and Google’s Android, 
Snailspeed is actively trying to enter the mobile computing market. Alyssa’s boss is starting a new 
project with the goal of developing a screensaver for a mobile phone. 

Since mobile processor trends indicate that mobile processors will soon switch to multi-core architec­
tures, Alyssa’s boss wants her to develop a screensaver that is parallelized and multi-core ready. Your job 
is to help Alyssa with this task. 

1 Optimizing Collision Detection 

In this part of the project, you will be optimizing a simple screensaver. This screensaver consists of a 
2D virtual environment filled with colored line segments. These line segments bounce around with some 
simple physics. 

Currently, the screensaver uses an extremely inefficient algorithm to detect collisions between line 
segments. At each time step, the screensaver iterates through all pairs of line segments, testing each pair 
to see if they’ve collided. This is fairly expensive as it requires θ(n2) collision tests. 

Your job is to optimize how collision detection works. You will be using quadtrees to improve the 
efficiency of collision detection. Note that you will not be using Cilk for this part of the project. The 
screensaver will be parallelized using Cilk in the next part. 

Running the Screensaver 

The screensaver can be executed both with and without a graphical display. 

Usage: ./Line.64 [-g] [-i] <numFrames>

-g : show graphics

-i : show first image only (ignore numFrames)


NOTE: While collecting performance data, make sure to execute the screensaver without graphical display. 
This will lead to more accurate performance results. 

Quadtrees 

Quadtrees are trees with two important properties. First, quadtrees are used to partition two-dimensional 
spaces. A quadtree partitions a two- dimensional space by recursively subdividing it into four quadrants. 
Figure 1 illustrates how a quadtree might partition a two-dimensional space. 

1 



Project 4-2 6.172 - Performance Engineering Fall 2009


Figure 1: Two-dimensional space partitioned by a quadtree 

Second, given elements to store in a 2D space, quadtrees attempt to partition the 2D space such that 
each partition contains at most N elements. Partitions containing more than N elements are recursively 
subdivided into four quadrants until each partition contains at most N elements. 

Figure 2 illustrates how subdivisions are used to achieve the desired N elements per partition. In 
areas where elements are dense, more subdivisions are introduced, ensuring that each partition contains 
at most N elements. In Figure 2, each partition is limited to containing only three points (N = 3). 

Implementing a quadtree is fairly simple. A quadtree simply consists of quadtree nodes. Each node 
represents a region in 2D space. Each node stores information on the region that it represents. Each node 
also stores all of the elements that fall within its region. Initially, the quadtree starts out with only the 
root node. The root node represents the entire 2D space. As such, the root node initially stores all of the 
elements in the 2D space. 

For each leaf containing more than N elements, the leaf’s region is subdivided into four quadrants. 
The leaf creates four children, one for each of the four quadrants. The elements stored in the leaf are 
then redistributed to the four children. The leaf becomes an inner node and the four children become 
new leaves. This process is repeated for any leaf that contains more than N elements. Note that this also 
applies to the root node since it is the very first leaf in the tree. 

This process of subdivision grows the quadtree downwards until all of the leaves contain at most N 
elements. The final partitioning of the 2D space is represented by the regions in the leaves of the quadtree. 
Because all leaves contain at most N elements by the end of recursive subdivision, the final partitioning 
of 2D space contains at most N elements in each partition. 

Note that upon subdivision, all of the elements within a node are (usually) passed down to the node’s 
four children. This actually collects all of the elements at the bottom of the tree, in the leaves. This makes 
sense as the leaves represent the final partitions for the 2D space. Important Message: The most important 
thing to realize about quadtrees is that given the way 2D space is partitioned, spatially-related elements 
are placed together in the same partition. This is extremely helpful in collision detection. Collisions 
are localized events. In order for two elements to collide, they must both be within the same quadtree 

2




Project 4-2 6.172 - Performance Engineering Fall 2009


Figure 2: Quadtree partitioning where each partition contains at most three points 

partition. Corresponding, if two elements are in different quadtree partitions, they cannot possibly collide. 
With this knowledge, you can use quadtrees to limit the number of interactions that you need to 

consider. For example, to look for colliding line segments, you only need to look at pairs of line segments 
within the same partition. You can ignore all of the line segments that are in a different partition. While 
you still need to do θ(n2) collection tests within the partition, n is much smaller since you’re considering 
only the line segments in one partition instead of all the line segments simultaneously. 

Exercises 

1.1 

Run the unmodified screensaver on a cagnode machine using PNQ and report its runtime for 4000 frames. 
Also report the number of collisions detected during the screensaver’s execution. Make sure to be run the 
program without the graphics flag to get accurate performance results. 

1.2 

Figure 2 illustrates that quadtrees can readily handle points, and Figure 3 suggests that line segments 
can at least sometimes be handled by quadtrees. However, in Figure 4 one of the line segments can’t fit 
into any of the partitions. Is this a problem for the quadtree? What can you do about it? Can you still 
use quadtrees to effectively speed up collection detection? 

Hint: Do all line segments need to be stored in leaf nodes? 

1.3 

Using a quadtree, rewrite collision detection to be much more efficient. Note that you should use 
intersect() from IntersectionDetection.cpp to test if two line segments will intersect in the next 

3




Project 4-2 6.172 - Performance Engineering Fall 2009


Figure 3: Quadtree storing line segments


Figure 4: Broken quadtree? 

4 



Project 4-2 6.172 - Performance Engineering	 Fall 2009


time step. 
To simplify your implementation, consider destroying the quadtree and reconstructing it at each time 

step. This way, you will not need to worry about updating the quadtree when line segments move to new 
positions. 

Measure and report how long it takes for the program to execute with the more efficient collision 
detection. Compare with the original runtime. Was the speedup what you expected? 

Record the number of collisions detected during the screensaver’s execution. These numbers should 
be close to the numbers you recorded for the unmodified code. Since the simulation is sensitive to the 
order in which collisions are resolved and the calculations are done in floating point, your new results may 
not be exactly the same as the original version’s. 

1.4 

Describe any design decisions you made while rewriting collision detection to use a quadtree. For example, 
once you built a quadtree, how did you use it to extract collisions? How did you store line segments in 
each quadtree node? 

1.5 

Vary the maximum number of elements a quadtree node can store before it needs to be subdivided. 
Measure the performance impact that this has on the runtime. Briefly comment on why this did or did 
not have a performance impact. 

1.6 

Implement a maximum depth for the quadtree. Vary the maximum depth and measure the performance 
impact this has on the runtime. Briefly comment on why this did or did not have a performance impact. 

1.7 

Look for other opportunities for optimization within the screensaver and describe what you did. Here are 
some optimization ideas to help you get started: 

•	 A large percentage of calculations are repeated with each time step. For example, the collision 
detection code recalculates the length of each line segment in each time step. This is an expensive 
calculation that is unnecessarily repeated in each time step. For calculations that are repeated in 
each time step, it might be worthwhile to precompute these calculations and store results for reuse. 

•	 To simplify the implementation, we suggested that you destroy and recreate the quadtree on each 
time step to avoid having to figure out how to effectively update the quadtree. While this does 
make things simple, it is a bit wasteful. You can try finding an effective way to update the quadtree 
so that you don’t need to destroy it. 

•	 Our method for testing if two lines intersect is fairly efficient. However, you could try finding a 
more efficient way of testing if two lines intersect. 

5




Project 4-2 6.172 - Performance Engineering Fall 2009


2 Parallelization 

2.1 

Before beginning, it is useful to profile your application to determine where you should focus your time 
when parallelizing your code. The goal is to identify a large region of code that comprises of a large 
percentage of the total execution time, yet still offers a large degree of coarse grained parallelism. To 
do this, build a version of the binary without Cilk or graphics support by typing pnqsub make vtune, 
then profile the program using the VTune call graph profiling activity. You must use PNQ to compile the 
binary so that VTune can locate the correct shared objects. 
Hint: When selecting the program in VTune, be sure to set the working directory so that the application 
can find its input file line.in. Unless you set a small number of frames to compute, the activity will 
take a long time – you may stop the activity early after 20 seconds or so. 

Once profiled, examine the results ordered by Total Time. Collapse all of the modules other than 
Line.64.vt in the results window. This gives you the amount of time spent in each function, including 
any time spent in called functions. The top of this list gives you the names of functions that, if parallelized, 
could offer significant performance improvements to the running time of the application as a whole. List 
the top six functions in the Line.64.vt module. 

Unfortunately, since many functions do not contain code that can be executed concurrently, not all 
functions are good candidates for parallelization. 

2.2 

As it turns out, the current code does not have many hot functions that contain lots of parallelism. At 
first glance, in would appear that detectIntersections is both frequently executed and contains lots of 
parallelism. However, a significant problem is caused by the fact that collisionSolver is called immedi­
ately after it is determined that two lines will intersect in the next time step. Because collisionSolver 
updates the velocities of each of the two lines, the lines may now be susceptible to further intersections 
with other lines and thus further updates to their velocities. Since these updates are not commutative (or 
even associative), they cannot be executed in parallel without changing the semantics of the program. 

Fortunately, the code represents only one of many approximations to simulating the interactions 
between floating lines. As is often common when parallelizing an application, you will need to modify the 
semantics of the program slightly in order to expose some parallelism, while still meeting the specifications 
of the application (in this case, to create a semi-realistic simulation of lines bouncing off of each other). 

To do this, you can delay the calls to collisionSolver until after you obtain a list of all lines that 
will intersect with each other during the next time step. In this way, you will only need to execute the 
calls to collisionSolver sequentially, freeing you to execute parts of detectIntersections in parallel. 

Make this change to your sequential program. You should store the list of intersections in a STL list 
of type list<IntersectionInfo>, where IntersectionInfo a struct defined as: 

extern "C++" { 
struct IntersectionInfo { 

Line *l1; 
Line *l2; 
IntersectionType intersectionType; 

IntersectionInfo(Line *l1, Line *l2, IntersectionType

intersectionType) {


this->l1 = l1;


6 

http:line.in


2.3 

Project 4-2 6.172 - Performance Engineering Fall 2009


this->l2 = l2;

this->intersectionType = intersectionType;


}

};


}


Be sure to include the extern "C++" block as it will be necessary for Cilk later. Now simply add to 
the list whenever you detect a future intersection between two lines, and call collisionSolver on each 
item in the list once all intersections have been found. 

Execute the graphical version of the simulation to verify that the new semantics of the application 
continue to meet the specifications of the screensaver program (the lines continue to bounce off of each 
other in a semi-realistic manner). 

Before inserting any cilk spawn and cilk sync keywords, you will need to make any accesses to your 
list of intersecting lines thread-safe. Without such a change, your parallel code may see two threads 
attempting to concurrently insert an element into the list causing a data race. One solution is to protect 
the accesses to the list using a lock; however, this solution is undesirable because 1) the lock will quickly 
become contended, limiting scalability, and 2) the order of items in the list will become non-deterministic. 
A better approach is to use Cilk reducers. 

Cilk solves the problem of accumulating results by providing a unique programming construct called a 
reducer. Conceptually, a reducer is a variable that can be safely used by multiple Cilk strands running in 
parallel. When multiple Cilk strands access a reducer, each strand is given a private copy of the reducer. 
Each strand can update its private copy as much as it wants. When strands are synchronized (using 
cilk sync), the private copies are merged together into a single variable. 

Because each strand has a private copy of the reducer, the possibility of a race is eliminated. In 
addition, because private copies are merged together during synchronization, results from multiple strands 
can be accumulated and merged in the same order as when the program is executed sequentially. 

Reducers are each defined with the following operations: 

• Identity - the default value for a reducer 

• Update - one or more operations which updates a reducer’s stored value 

• Reduce - the operation which merges two reducers when two strands join 

Cilk comes with a number of predefined reducers. For example, Cilk defines a summation reducer. The 
default value for the reducer is 0. Cilk strands can update private copies of the reducer using arithmetic 
operators. Private copies are merged during synchronization via summation. 

Another example of a Cilk reducer is the list concatenation reducer. The default value for the reducer 
is an empty list. Cilk strands can update private copies of the reducer by appending to the list. Private 
copies are merged by appending lists to each other. 

Reducers have a number of attractive properties: 

• Multiple strands can access a reducer without races. 

• Reducers are shared without the need for locks, which would normally result in loss of parallelism. 

• Reducers can be used without significantly restructuring existing code. 

7 



Project 4-2 6.172 - Performance Engineering	 Fall 2009


•	 Defined and used correctly, reducers retain serial semantics. The result of a Cilk++ program that 
uses reducers is the same as the serial version, and the result does not depend on the number of 
processors or how the workers are scheduled. 

•	 Reducers are implemented very efficiently, incurring little or no runtime overhead. 

Usage Example: Assume we wish to traverse an array of objects, performing an operation on each 
object and accumulating the result of the operation into an STL list variable: 

int compute(const X& v);

int test()

{


const std::size_t ARRAY_SIZE = 1000000;

extern X myArray[ARRAY_SIZE];

// ...

std::list<int> result;

for (std::size_t i = 0; i < ARRAY_SIZE; ++i) {


result.push_back(compute(myArray[i]));

}

std::cout << "The result is: ";

for (std::list<int>::iterator i = result.begin(); i != result.end();


++i) { 
std::cout << *i << " " << std::endl;


}

return 0;


} 

Changing the for to a cilk for will cause the loop to run in parallel, but doing so will create a data 
race on the result list. The race is solved by changing result to a reducer list append hyperobject: 

int compute(const X& v);

int test()

{


const std::size_t ARRAY_SIZE = 1000000;

extern X myArray[ARRAY_SIZE];

// ...

cilk::hyperobject<cilk::reducer_list_append<int> > result;

cilk_for (std::size_t i = 0; i < ARRAY_SIZE; ++i) {


result().push_back(compute(myArray[i]));

}

std::cout << "The result is: ";

const std::list &r = result().get_value();

for (std::list<int>::iterator i = r.begin(); i != r.end(); ++i) {


std::cout << *i << " " << std::endl;

}

return 0;


} 

Replace your STL list with the Cilk++ list appending reducer of type: 

8 



Project 4-2 6.172 - Performance Engineering	 Fall 2009


cilk::hyperobject<cilk::reducer list append<IntersectionInfo> > 
and update the accesses to this object accordingly. Verify that the number of intersections remains the 
same as before. 

Note: The list append reducer does not have an simple way of deleting all the elements in the list. 
Thus, you will have to create a new reducer for every time step. 

2.4 

Parallelize your code by inserting cilk spawn and cilk sync keywords to the regions of code you have 
identified as worth parallelizing. 

If you do not see much code suitable for parallelization using the Cilk++ primitives, you may want 
to modify your intersection detection code so that it performs a recursive depth-first-search through your 
quad tree. 

You will find that cilk for does not work with loops using STL iterators. To parallelize these, you 
can manually code up the divide and conquer strategy employed by the Cilk++ complier, or modify the 
loops to eliminate the iterators. Doing the former can be more desirable as it allows you to control the 
point at which you would like to quit spawning off new tasks. 

Describe the changes you have made and verify that your code performs the same number of collisions 
when executing in parallel and sequentially (remember, you may specify the number of workers using the 
-cilk set worker count=N command line argument). Additionally, verify that the code is race free by 
running it through the CilkScreen data race detector. 

2.5 

Determine the span and work of your parallel code by executing it through CilkView. How much par­
allelism do you see? Vary the parameters of your quad tree (such as the max depth and max number 
of nodes per quadrant), as well as any other spawn cut offs you have used in your code. What is the 
maximum amount of parallelism you can achieve? 

2.6 

Tune your code so that it executes as fast as possible when running with 8 threads. Describe any decisions, 
trade offs, and further optimizations that you made. 

Evaluation 

Please remember to explicitly add all new files to your repository before committing and 
pushing your final changes. Your grade will be based on all of the following: 

•	 Correctness – To receive full points your code should: 

–	 Compute collisions correctly. When running in graphical mode, the collisions should look 
semi-realistic as in the code given to you originally. 

–	 Yield the same number of collisions when running sequentially and when running with 8 
threads. 

–	 Contain no data races. 

You will receive partial credit for each of these requirements. 

9 



Project 4-2 6.172 - Performance Engineering	 Fall 2009


•	 Performance – As with the previous projects, your performance grade will be computed by comparing 
the performance of your submission to the highest performance achieved by a group in the class 
during the initial submission. 

•	 Style – You code should be decomposed into functions and classes and use as few global variables 
as possible. It should have plenty of comments throughout, describing the general parallelization 
strategy as well as low level details of your optimizations. 

•	 Methodology of Performance Optimizations – You are required to submit a group write up discussing 
the work that you performed. You should answer all questions asked in this handout and include 
the following: 

–	 Provide a clear and concise description of your parallelization strategy and implementation. 

–	 Discuss any experimentation and optimizations performed. 

–	 Justify the choices you made. 

–	 Discuss what you decided to abandon and why. 

–	 Provide a breakdown of who did what work. 

10




MIT OpenCourseWare 
http://ocw.mit.edu 

6.172 Performance Engineering of Software Systems 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



