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Abstract

In this thesis we study the event shapes variable thrust. Event shape variables are
observables that characterize the shape of the distribution of the final state particles
of a reaction. We take advantage of the formalism of Soft Collinear Effective Theory
(SCET), an effective theory of the strong interactions appropriate for describing en-
ergetic jets. We give a factorization theorem for the process e+e- to hadrons, valid in
the whole range of thrust values. This factorization theorem resums large logarithms
at the N3 LL accuracy and contains the full O(a) result for the fixed order cross
section. In order to be able to describe the whole range of thrust values, we define
the profile functions, which are thrust-dependent factorization scales which smoothly
interpolate between regions where resummation of large logarithms is important and
where it is not. To determine non perturbative effects, we fit renormalon-free non-
perturbative matrix elements of operators defined in field theory, Q1. We perform
a global analysis to all available thrust data in the tail region, where a two param-
eter fit to a,(mz) and the first power correction Q1 suffices. We find cr(mz) =
0.1135 i (0.0002)expt ± (0.0005)hadr ± (0.0009)pert, with X2 /dof(= 485) = 0.91, where
the displayed 1-sigma errors are the total experimental error, the hadronization un-
certainty, and the perturbative theory uncertainty, respectively. Furthermore, we
perform a global analysis to all available data on the first moment of the thrust dis-
tribution. This analysis is a partially independent check of the tail fit, in fact it
probes different regions of the thrust distribution and the analysis of experimental
systematic uncertainties was conducted independently with respect to the data for
the distribution. We find a,(mz) = 0.1141 i (0.0004)exp ± (0.0014)hadr ± (0.0007)pert
with X2 /dof(= 45) = 1.33. We also consider pp collisions, in particular the Drell-Yan
process. Here we calculate analytically the beam thrust logarithms of the relevant
beam functions and of the coefficient function at O(a2). This is a necessary ingredient
for the calculation of the nonsingular terms in resummed predictions.
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Chapter 1

Introduction

1.1 Strong Interaction and Phenomenology

In the era of the Large Hadron Collider (LHC), it is impossible to overestimate the

relevance of the theory of the Strong Interactions, also known as Quantum Chromo-

dynamics (QCD). QCD is, among Gravity, Electricity and Magnetism, and the Weak

Interactions, one of the four fundamental forces known in Nature, and it is responsible

for binding quarks and gluons into observable mesons and hadrons. QCD is one of the

building blocks of the Standard Model of Particle Physics, and it has been extensively

tested in the last fifty years of experiments. A great variety of experiments have been

set up to test the predictions of the Standard Model (SM). A set of experiments,

which will be relevant for this thesis, have been conducted at the Large Electron-

Positron Collider (LEP), at CERN, where the detector was in operation from 1989

to 2000. In a first stage (LEPI), it collected precision electroweak measurements at

the Z resonance, mz = 91.2 GeV, and in a second stage (LEP2) the center of mass

energy was increased first to the W-pair production threshold and then to the limit

of the machine, Q = 210 GeV. These experiment were able to test the predictions

of the Standard Model showing a remarkable agreement. An important prediction of

the SM, which still lacks experimental verification is the presence of the Higgs boson,

a scalar particle which, in the Model, plays a crucial role in giving the observed mass

to the fundamental particles.
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Figure 1-1: Cross Sections for Specific Physics Processes from the ATLAS TDR
(2003), [101]. The dotted lines show the energies of two hadron collider (The Tevatron
at 1.96 TeV, and The LHC at 14 TeV). The discontinuities are due to the difference
in parton content between pi and pp collisions.

Evidence for a signal compatible with the Higgs boson has been looked for in recent

experiments conducted by the Tevatron at Fermilab, but without significant results.

The LHC has been built with the aim to find the Higgs boson and to test differ-

ent scenarios of physics behind the Standard Model. The LHC is currently colliding

protons at a center of mass energy of 7 TeV, and it is designed to reach a center of

mass energy of 14 TeV. However, as shown in Fig. 1.1, the cross section to produce

the Higgs boson is 10 orders of magnitude smaller than the total cross section. This

means that in order to isolate the signal, it is necessary to separate it from the back-

ground. Since the background is mainly due to QCD, now more than ever it is crucial

to have the best possible predictions from the theory of strong interactions. QCD

is an asymptotically free theory, meaning that the strong coupling constant is small

16
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at very high energies, and is very large at small energies, where the theory exhibits

confinement. This in turns implies that the degrees of freedom of the theory are not

physically observable and in fact particles charged under QCD, referred to as colored

particles, have never been directly observed in experiments. For this reason, QCD is

a very complicated theory and different approaches have been developed in order to

perform calculations of experimentally observable quantities.

The main object of this thesis is a precision determination of the strong coupling

constant at the scale of the mass of the Z boson, a, (mz). In order to accomplish that,

we will consider only e+ e- annihilation events. The reason for this choice is that, in

these collisions, QCD is involved only in the final state of the reaction, therefore they

provide a very clean environment to study QCD itself. The reaction can be described

as follows: the electron and positron collision happens at the center of mass energy

Q of these initial state particles and colored particles are formed in the interaction.

A characteristic of QCD is that colored particles evolve by branching into additional

colored particles, ending up in collimated beams of hadrons, called jets, whose energy

scale is the jet energy scale. Jets must be formed by color neutral objects, and there

will be an exchange of soft radiation between different jets in order to change the

color structure of these objects and make them color neutral. We see therefore that

e+e- annihilation processes are characterized by the presence of three different scales,

the center of mass energy, called the hard scale pH, the jet energy scale, ptj, and the

scale of the soft radiation, the soft scale is. A convenient approach to face a problem

where different scales are involved is the Effective Field Theory Approach.

In the next sections, we will give a brief overview of Effective Field Theories in

general, and in particular, of Soft Collinear Effective Theory, the tool we use in this

thesis. We will then introduce event shape variables and in particular thrust, which

is the observable under study in this thesis.

17



1.2 Effective Field Theory

A very important concept in Physics is the concept of Effective Field Theory, EFT.

Its importance relies on the fact that even though the world is incredibly rich with

interesting phenomena at every scale we look at, from the age of the universe, about

1018 seconds, to the lifetime of the W or Z boson, about 10-25 seconds, it is often

possible to isolate a set of phenomena from the rest, so that we can describe them

without having to understand everything. In the words of Georgi, [88], we can divide

up the parameter space of the world into different regions, in each of which there is a

different appropriate description of the important physics. EFTs are the tools we use

to describe the appropriate description of the important physics in a given region of

the parameter space. A very simple example of this concept is Newtonian Mechanics,

which is an EFT of Special Relativity valid in a region of parameter space in which all

velocities are small as compared to the speed of light. This example illustrates that

it is not always necessary to use EFT, because in some cases the more fundamental

theory may be known. However, even in such cases, sometimes it is very convenient

to follow an approach based on EFTs. In Particle Physics the relevant parameters are

the distance scales. The EFT strategy is to take features of the physics that are small

compared to the relevant scales of the problem and shrink them to zero size. The

finite size effects that have been ignored in this way, are small and can be included as

perturbations. The process of shrinking to zero size small distance physics is referred

to as integrating out the corresponding modes, and the procedure of including these

effects as perturbations is referred to as matching the EFT onto the fundamental

theory.

Several EFTs have been developed to study QCD in different regions of the pa-

rameter space, in this thesis we will make use of the Soft Collinear Effective Field

Theory.

18



1.3 Soft Collinear Effective Theory

Soft Collinear Effective Theory (SCET) [20, 22, 27, 26, 21] is an EFT for QCD appro-

priate for describing energetic jets ( SCET1 ), and and energetic hadrons ( SCETr1 ),

and in general for describing the interaction of soft and collinear particles. In this

thesis we will work within the context of SCET, and we will refer to it as SCET.

As mentioned before, the EFT approach to a problem consists in first identifying the

physics we want to describe and the scale at which it happens, then shrinking to

zero size the physics associated with distances small in comparison to it, and find the

minimal set of degrees of freedom to appropriately describe the physics. In this thesis

we study the process of annihilation of electrons and positrons and the subsequent

creation of jets. In particular we study an observable which depends on the distribu-

tion of the particles in the final state. The important physics happens at the scale Uj,

and therefore it is convenient to integrate out the physics associated with the hard

scale pLH and take it into consideration as perturbations. In SCET we integrate out

modes corresponding to virtualities of the order p2  2  2 Q2

mensionless parameter that will be discussed in more detail later) allowing us to give

a description which is appropriate for this task and is extremely convenient because it

does so taking advantage of the underlying structure of collinear and soft singularities

of QCD. In this subsection we will briefly describe the formalism of SCET, introduc-

ing light-cone coordinates and the degrees of freedom of SCET, the factorization of

soft and collinear degrees of freedom and the resummation of large logarithms. All

these aspects play a fundamental role in the results described in this thesis.

It is convenient to work with light cone coordinates, where every four-vector p is

decomposed as

6g9 nA
pP = n -p - + z -p - + p", (1.1)

2 2

where n and h are two light cone vectors such that n 2 =2 = 0 and n - h = 2, and pl

is expressed in the Minkowskian notation so that p2 = ji 1
2. It is conventional to

define p+ = n -p and p- = ii-p so that the particle's invariant mass is p2 pP+ p+p

19



n-collinear (A2 , 1, A) Q
ri-collinear (1, A2, A) Q

soft (A2, A2, A2)Q

Table 1.1: Degrees of freedom in SCET, and associated scaling. In the literature,
the modes referred here to as soft are sometimes called ultrasoft, the term soft being
reserved for momenta scaling as (A, A, A)Q. Since we do not need soft modes, we will

refer to the ultrasoft modes as soft for brevity.

This is convenient because in these coordinates a boost corresponds to a multiplicative

factor for the p+ components, such that p+ p- is invariant. Highly energetic particles

collinear to the direction n have momentum that scales as

(P+, P-,P 2, 1, A) p~, (1.2)

where p- - p1H, A < 1 is the SCET power counting parameter, and corresponds

parametrically to pi/p-. This scaling results from taking a particle with homogeneous

scaling (A, A, A)pH in its rest frame and boosting it in the n-direction, so that p+ _

Ap+ and p- -+ A-p-. The minimal set of degrees of freedom that describes the

relevant physics and does not spoil the power counting is summarized in Table 1.1

The momentum p ~ (A2 , 1, A)Q of the generic QCD field 4 after integrating out

modes with virtualities larger than p 2  A2 Q 2 is split as

p'I =pj + p" (1.3)

where pe = (0, 1, A) Q is called label momentum and represents a discrete n-collinear

momentum and p, - (A2 , A2 , A2 )Q is called residual momentum.

We split the generic quark field V) in QCD, into an n-collinear field in and a

subleading field On

l+ i (1.4)

20



with

00 4'0.(1.5)
4 4

The subleading field Of is integrated out via its equation of motion, and the n-collinear

field is written

in = eiP n,p,(x), (1.6)

separating the large collinear component from the soft residual one, i aB n,pe, A2  n

Observe that the value of the label momentum pe must be different from 0 for the

field to be considered collinear. Defining an operator P such that

P' n,,, P pfn,p,, (1.7)

we can write the n-collinear field & as

n(X) = e-ip E X n,,,(x) = e-ip P n(X). (1.8)
PIA

The gluon field AA is split into a collinear field An with collinear scaling, and an

ultrasoft A.,, field with ultrasoft scaling. Integrating out hard offshell fluctuations and

constructing gauge invariant structures in SCET, it is necessary to include collinear

Wilson lines W., defined as

Wn(y) = P exp ig dsi -An(si + Y)), (1.9)/00

where the P stands for path ordering. At the leading order in the power counting

parameter A, it turns out that the soft degrees of freedom can be decoupled from the

collinear degrees of freedom using the BPS field redefinition, [26],

(n,, (x) -+ Y(x) (n,,(x) An, -- Y (x) An,,(x) Y(x), (1.10)
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with

Y(x) = P exp (ig ds n - As(sn + x)) . (1.11)

A very important consequence of this decoupling is that, within SCET, it is possible

to derive factorization theorems. These consist in equations where the contribution

of each scale involved in the process is represented by a factor which is independent

from the physics coming from different scales. A simplified version of the factorization

theorem we use in this thesis is

do-s
d () = Q 0o HQ (Q, p) ds J (s, I) S (QT - ,). (1.12)

Here we have a hard function HQ, a jet function J, and a soft function S,. Each

of these factors have simple expressions only if evaluated at their natural scales, PH,

pj and pLS respectively. However, in the factorization theorems as Eq.(1.12) they

appear at a common factorization scale, p. It turns out that this implies that the

cross section contains logarithms of the form log "., log / and log ". In the case

of the thrust observable, Eq. (1.12), the jet and soft scales are proportional to the

thrist itself, as explained in detail in Chapter 2, and these logarithms are of the form

log r. Indicating with L any of these logarithms, the general structure of the cross

section is

~exp L (asL) + [-E asL
0- k=1 LL k=1 NLL

± [a (s L)] -NL [O(Lk1 ±+. -}-. (1.13)-E= NNLL -k0 -N3LLk=O k=O N L

Whenever the scales which enter in the logarithms are such that aL ~ 1, the pertur-

bative expansion breaks down, and in order to be able to give reliable predictions, we

need to resum a whole tower of logarithms. Resummation of the first bracket in Eq.

1.13 is called leading log resummation (LL), resummation of the second bracket is

called next-to-leading log resummation (NLL), and resummation of the k-th bracket
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is called next-to-next-- - - -leading log resummation (NkLL). These resummations are

obtained using the renormalization group equations (RGE) to derive evolution factors

which contain the logarithmic dependence at the required logarithmic accuracy. The

factorization theorem after having performed resummation is

-(T) =Q-o HQ(Q, pH) UH(Q, 1 H,p, pJ)Uj(s-S', y, pg)dT

x Jdk' U;(k', y, ps)S (QT - - k', Ps), (1.14)

where the evolution factors U(pa, pb) perform the resummation of the logarithms of

the form log L up to the specified logarithmic accuracy, and the hard, jet and soft
jAb

function are evaluated at their natural scales, where they don't have large logarithms

and can be calculated in perturbation theory.

1.4 Event Shape Observables: Thrust Distribu-

tion

The aim of an Event Shape Observable [133] is to define a quantity which characterizes

the shape of an event, for example whether the distribution of hadrons is pencil-like,

planar, spherical etc. The procedure is to define a quantity e which measures some

particular aspect of the shape of the hadronic final states. The distribution do-/de

can be measured and compared with the theoretical calculation. For the latter to

be calculable in perturbation theory, the variable should be Infra-Red (IR) safe, i.e.

insensitive to the emission of soft or collinear gluons. In particular, if ' is any

momentum occurring in the definition of e, the latter must be invariant under the

branching

S + A(1.15)

whenever ' and Pk are parallel or one of them is small. Quantities made out of linear

sums of momenta meet this requirement. In this thesis we analyze the thrust [77] for
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hadronic final state in e+e- annihilation. It is an event shapes observable defined as

T=max Ei-T- (1.16)

where pA, denotes the three momentum of particle i, with the sum running over all

particles. The unit vector t is varied to find the thrust direction iT that maximizes

the expression in parenthesis. Algorithms to calculate numerically the thrust in an

efficient way can be found in [148]. The range of values that T, to which we will refer

to as thrust in this thesis, changes depending on the number of particles in the final

state1 :

" a two-particle final state has T = 0 and a thrust axis equal to one of the two

particles' direction.

" a three-particles final state has 0 < T < 1/3. The maximum thrust is reached

when the particle 3-momenta point towards the vertices of an equilateral trian-

gle, and the thrust axis is one of the direction of the particles.

" a four-particle final state has 0 < T < 1 - 1/v/5. The maximum thrust is

reached in a configuration where the particles point toward the vertices of a

regular tetrahedron, and the thrust axis is obtained summing the directions of

any two particles.

" a five-particle final state has 0 < r < 1 - 2v2/5. The maximum thrust is

reached when all the particles have the same momentum, three particles point

to the vertices of an equilateral triangle and the other two are perpendicular to

the plane defined by the triangle and opposite to each other. The thrust axis

in this case is the sum of the directions of the particle moving perpendicular to

the triangle and of one of the particles in the plane where the triangle lies.

" for a final state with infinitely many particles uniformly distributed on the

sphere, spherical symmetry tells us that any direction can be taken as thrust

'These ranges are strictly true for massless particles.
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Figure 1-2: Experimental data on e+e- colliders at the center of mass energy equal to

the mass of the Z boson, Q = mz. In the picture is shown data from ALEPH(blue),
DELPHI(red), L3(cyan), OPAL(green) and SLD(grey).

axis, so taking t = (0, 0, 1) and i = (sin 0 cos #, sin 0 sin #, cos 0) we have

== 2f d cos 0 f* d4 cos0 1
T= 00 (71.17)

Ejj1|pi| I fl d cos 0 f| do 2

In the limit in which r - 0, it is possible to express thrust as

m2 + M2
T ~% , I Q 0 (1.18)

where M2,2 are called hemisphere invariant masses, and are defined as

M2 = :P)2,(.9
iEa

where the sum is carried over the four momenta of all particles that belong to hemi-

sphere a. The two hemispheres are separated by the plane passing through the origin

and perpendicular to the thrust axis.

The thrust distribution collected at electron-positron colliders at center-of-mass

energy Q = mz is shown in Figure 1.4. The range of the thrust distribution is typically

split in three regions: the peak, the tail and the multijet or far tail. The peak region is
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characterized by the presence, in the final state, of two jets and soft radiation. Here,

denoting with Q the center of mass energy, we have that Q2 > Q% > (Q-) 2 ~ A CD-

We will see later on in the factorization theorem in Chapter 2 that the scale Q2 7 is

associated with the jet scale p2,, the scale Q2
T

2 with the soft scale pi, and Q2  2

In the tail region there are events with two or three jets and soft radiation, and

Q2  Q2-r (QT) 2 > A2CD. The multijet region is composed by events with

more than three jets in the final state. Here Q2 , Q2,T _ (QT) 2 > AQCD. Since

in the peak region r AQCD/Q, we observe that the position of the peak is a Q
dependent quantity and therefore so is the splitting between peak and tail region.

The splitting between the tail and the multijet region instead, is well defined by

the value of r = 1/3, which is the maximum thrust a three particle final state can

have. Since the scales in the problem have different relations between each other in

different thrust regions, the best way to theoretical describe the data has to change

accordingly. In the peak region, the scales are widely separated, meaning that in

order to avoid large logarithms of these scales, resummation has to be performed.

Moreover, the soft scale ps = Qr ~ AQCD, and therefore this region is sensitive to

non perturbative physics. In the tail region, the scales are much larger than AQCD and

are widely separated, so again resummation is a necessary ingredient to an appropriate

description of this region. In order to describe the effects of the soft radiation, it is

necessary to correctly include the first 1/Q power correction. Finally, in the multijet

region, the scales are of the same order and the data can be described with fixed

order perturbation theory with power corrections. Because of this complex structure,

the appropriate theoretical description of the thrust distribution changes depending

on which region we want to focus on. A great amount of data have been collected

about event shapes in e+e- collisions in experiments conducted at LEPI and LEP2

(collaborations: ALEPH, DELPHI, OPAL, L3), SLAC (SLD collaboration), DESY

(TASSO, JADE collaborations) and KEK (AMY collaboration). At these colliders,

the different collaborations provided binned values for the thrust distributions at

various center of mass energies. In Figure 1.4 we show the experimental data at Q =

mz. However, due to the theoretical limitations we mentioned above, all these data
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have previously not been subjected to a global analysis. Typical analyses focused on

the tail region of a subset of the whole experimental data. The state of the art before

the work described in this thesis was published in Ref. [1] was that the full set of O(a3)

to the 2-,3-,and 4-jet final states was determined and made available in the program

package EERAD3[86], resummation of large logarithms at N3LL accuracy in SCET

for thrust was performed in Ref. [31] and at NLL following the classic exponentiation

techniques of Ref. [51]. In this thesis, we resolve the theoretical problems mentioned

above, giving a theoretical description of the thrust distribution which is appropriate

in the peak, tail and multijet region. Our factorization theorem provides also a

field theoretical description of the non perturbative parameter Q1 which determines

the first power correction, giving a contribution of the order of O(Q1/Q) to the

cross section. Our analysis allows us to define a global dataset which includes all

experimental data. For ease of comparison to previous analyses, we consider, in

Chapter 3, the thrust distribution in the tail region and we perform a 2 parameter fit

for a,(mz) and Q1.

The JADE, OPAL, ALEPH, DELPHI and L3 collaborations provided also exper-

imental data for moments of event shapes. This set of data is analyzed independently

from the binned distributions, and has been used to perform separate determina-

tions of a,(mz). In Chapter 4, we apply our formalism to perform a global analysis

of the moments of the thrust distribution, determining a value for c,(mz) and Q1

compatible with the analysis in Chapter 3.

In the next section we will describe the main ingredients of our analysis, high-

lighting the improvements with respect to previous analyses.

1.5 Precision measurement of cs(mz)

In this thesis we extend the event shape formalism in the SCET framework. The

formula we derive has a N3 LL order summation of logarithms for the partonic singular

a, Ink(T)/r terms, and O(a.) fixed-order contributions for the partonic nonsingular

terms. Our theoretical improvements beyond earlier work include:
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" A factorization formula that can be simultaneously applied to data in the peak

and the tail regions of the thrust distribution and for multiple c.m. energies Q,
as well as being consistent with the multijet thresholds in the far-tail region.

" In the factorization formula a nonperturbative soft function defined from field

theory is implemented using the method of Ref. [95] to incorporate hadroniza-

tion effects.

" In the tail region the leading power correction to do-/dr is determined by a

nonperturbative parameter P1 that appears through a factorization theorem

for the singular distribution. Q1 is a field theory matrix element of an operator,

and is also related to the first moment of the nonperturbative soft function.

" Defining the matrix element Q1 in MS, the perturbative cross section suffer

from an O(AQCD) renormalon. In our analysis this renormalon is removed by

using an R-gap scheme for the definition of Q1 [95]. This scheme choice induces

subtractions on the leading power MS cross section which simultaneously remove

the renormalon there. Large logarithms in the subtractions are summed to all

orders in a, using R-evolution equations given in Refs. [92, 93].

" Finite bottom quark mass corrections are included using a factorization theorem

for event shapes involving massive quarks, derived in Refs. [79, 80].

" QED corrections at NNLL order are incorporated, counting aem ~ a2. This

includes QED Sudakov effects, final state radiation, and QED/QCD renormal-

ization group interference.

" The 3-loop finite term h3 of the quark form factor in MS is extracted using the

results of Ref. [18], and is included in our analysis.

" The most important corrections from the axial anomaly are included. The

anomaly modifies the axial-vector current contributions at O(ac) by terms in-

volving the top quark mass.
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For the numerical analyses carried out in this work we have created within our

collaboration two completely independent codes. One code within Mathematica [147]

implements the theoretical expressions exactly as given in this thesis, and one code

is based on theoretical formulae in Fourier space and realized as a fast Fortran code

suitable for parallelized runs on computer clusters. These two codes agree for the

thrust distribution at the level of 10~6.

While the resulting theoretical code can be used for all values of r, in Chapter 3

of this thesis we focus our numerical analysis on a global fit of e+e- thrust data in

the tail region, for c.m. energies Q between 35 and 207 GeV, to determine a,(mz), 2

and we show the predictions of the results of this fit for the peak and far-tail regions.

Our global fit exhibits consistency across all available data sets, and reduces the

overall experimental uncertainty. For a single Q we find a strong correlation between

the effect of a,(mz) and Q1 on the cross section. This degeneracy is broken by fitting

data at multiple Qs. The hadronization uncertainty is significantly decreased by our

simultaneous global fit to a(mz) and Q1. To estimate the perturbative uncertainty

in the fit we use a random scan in a 12-dimensional theory parameter space. This

space includes 6 parameters for p-variation, 3 parameters for theory uncertainties

related to the finite statistics of the numerical fixed-order results, one parameter for

the unknown 4-loop cusp anomalous dimension, and two parameters for unknown

constants in the perturbative 3-loop jet and 3-loop soft functions. We also analyze in

detail the dependence of the fit results on the range in r used in the fit.

In Chapter 4 we use our code to perform a global fit of e+e- thrust moment data

to determine a(mz). Moments Ma,

M = ma-- / 2 dr -r' d- (1.20)

probe different regions of the distribution than the tail fit and it is therefore impor-

tant that our code is predictive in the whole thrust range. Experimental results are

available for many center-of-mass energies Q, and the analysis of systematic uncer-

2Throughout this thesis we use the MS scheme for a, with five light flavors.
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tainties is to a large extent independent from that for the binned distribution. Thus,

the outcome for a fit of data for the first moment M 1 to a, (mz) and Q1 serves as an

important cross check of the results obtained in Chapter 3. The M moments are not

sensitive to large logarithms, and so provide also a non-trivial check on whether the

N3 LL+O(a3) full spectrum results, which contains the resummation of logarithms

can reproduce this property. In this chapter we also discuss the structure of higher

order power corrections in moments.

1.6 Outline

The outline of this thesis is the following: In Chapter 2 we will describe in detail the

theoretical ingredients of the factorization theorem for thrust. In Chapter 3 we will

discuss the numerical analysis we performed to determine the value of a,(mz) and

Q1.

In Chapter 4 we will analyze the moments of the thrust distribution and provide

a determination of a,(mz) and Q1.

In Chapter 5 we will discuss pp collision. In particular, we will consider the

Initial State Radiation (ISR) in the Drell-Yan process with 0-jets and calculate the

contributions of order a2 to the coefficient functions.
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Chapter 2

Factorization Theorem for Thrust

2.1 Introduction

In this Chapter we present the factorization theorem for thrust explaining in detail all

the elements that have been highlighted in Chapter 1.5. This work has been published

in [1].

2.2 Formalism

2.2.1 Overview

The factorization formula we use for the fits to the experimental thrust data is

do- (d&s d&ns Ad&b\ ( k
-= dk - + + r--
dT dT dr dr Q

xSmoa ( -2A(R, ps)) + 0 (O- as Aco).(2.1)

Here d&,/dT contains the singular partonic QCD corrections a [Ink (r)/T]+ and aj o(r)
with the standard plus-functions as defined in Eq. (A.22). It also contains the singular

partonic QED corrections depending on aem which are discussed in Sec. 2.2.8. This

d&,/dr term accounts for matrix element corrections and the resummation of ln r

terms within the SCET formalism up to N3 LL order, which we discuss in Sec. 2.2.3.
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Our definition of N3LL, N3 LL', and other orders is discussed in detail in Sec. 2.2.2

(see also Tab. 2.1).

The term d&,y/dr, which we call the nonsingular partonic distribution, con-

tains the thrust distribution in strict fixed-order expansion with the singular terms

oc ac Ink(r)/r subtracted to avoid double counting. The most singular terms in

d&ns/dr scale as lnk r for r -+ 0.1 Our implementation of nonsingular terms is dis-

cussed in detail in Sec. 2.2.5.

Finally, Addb/dr contains corrections to the singular and nonsingular cross sec-

tions due to the finite mass of the bottom quark. The b-mass corrections are imple-

mented as a difference of the massive and massless cross sections computed at NNLL

order as discussed in Sec. 2.2.7.

The function S," that is convoluted with these partonic cross sections in Eq. (2.1)

describes the nonperturbative effects from soft gluons including large angle soft radi-

ation [107, 37]. The definition of S,1od also depends on the hemisphere prescription

inherent to the thrust variable. This is a hadronic function that enters in a universal

way for both massless and massive cross sections, and is independent of the value

of Q. The universality of Sod in Eq. (2.1) follows from the leading power thrust

factorization theorem [107, 79, 136], and the thrust factorization theorem for mas-

sive quarks in Refs. [79, 801. Our treatment of the convolution of Slo with d&ns/dr

yields a consistent treatment of multijet thresholds and the leading power correction

to the operator expansion for the first moment of thrust. Details of our implementa-

tion of power corrections and nonperturbative corrections are discussed in Sec. 2.2.4

and Sec 2.4. The function Sod is normalized to unity and can be determined from

experimental data. Its form depends on a gap parameter A and additional moment

parameters Qj which are discussed below.

The factorization formula given in Eq. (2.1) can be applied simultaneously in the

peak, tail, and the far-tail regions, i.e. for all r values. In the peak region d^/dr

is significantly smaller than d&s/dr, and the full analytic form of the soft nonpertur-

'For d&ns/dr the resummation of In -r terms is currently unknown. These terms could be deter-
mined with subleading factorization theorems in SCET.
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bative function SPod(k) is relevant to determine the r-distribution since ps ~ AQCD-

Because pH > pg > ps, the summation of logarithms of r is also crucial to achieve

an accurate theoretical description.

For much of the tail region the summation of In-r terms remains important, al-

though this is no longer the case when we reach -r 1/3. Likewise, the dominance of

the singular partonic contributions remains as long as r < 1/3, but the nonsingular

terms become more important for increasing r (see Fig. 2-4 below). Near T ~ 1/3

the nonsingular terms become equal in size to the singular terms with opposite sign.

Since ps > AQCD in the tail region the effects of Sm' can be parameterized in terms

of the moments

Qj = Jdk ()STod(k - 2A), (2.2)

where Qo = 1 since Sfod is normalized. Their importance is determined by Qi/(Qr)i

as discussed in Sec. 2.2.4, so the first moment Q1 parameterizes the dominant power

correction and higher moments provide increasingly smaller corrections. The first

moment is defined by

Q,=- 1 Tt 0 0

Q1 A±N (0tr F, (O)Y,()i&Y0*(O)Y |0), (2.3)

where Yt (0) = P exp (ig fo ds n - A(ns)), 4Y is similar but in the 3 representation,

and we trace over color. Here

iN a =_(in -a-in -a) in -a + 0(in - a-in -a) in -a, (2.4)

is a derivative operator 2 involving light-like vectors n = (1, i) and h = (1, -i). Q1

is the field theory analog of the parameter ao employed in the low-scale effective

coupling approach to power corrections. Since the renormalon subtractions depend

on a cutoff scale R and the renormalization scale ps, all moments £2 (R, ps) as well

2Note that i& is defined in the c.m. frame of the colliding e+e-. One may also write i$ =
fd7 eH17I&T(77) where ET(7j) measures the sum of absolute transverse momenta at a given rapidity
,q with respect to the thrust axis i [107, 32].
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as A(R, ps) are scale and scheme dependent quantities. The scheme we use to define

Q, (R, ps) is described in Sec. 2.2.6. In our fit to experimental data we use the R-gap

scheme, and extract the first moment at a reference scale RA = pA = 2 GeV, i.e.

we use A(RA, [LA) and hence Q1 = Q1(RA, pA). In the factorization theorem the gap

appears evaluated at A(R, ps) and the scales (R, ps) are connected to the reference

scales (RA, pA) using renormalization group equations.

Finally, in the far-tail regionT ~0.3 the singular and the nonsingular partonic

contributions d&s/dT and d&3,/dT become nearly equal with opposite signs, exhibit-

ing a strong cancellation. This is due to the strong suppression of the fixed-order

distribution in the three- and four-jet endpoint regions at T > 1/3 in fixed-order per-

turbation theory. In this region the summation of logarithms of T must be switched

off to avoid messing up this cancellation. Here our Eq. (2.1) reduces to the pure

fixed-order partonic thrust distribution supplemented with power corrections coming

from the convolution with the soft function. All three regions are smoothly joined

together in Eq. (2.1). The proper summation (or non-summation) of logarithms is

achieved through T-dependent renormalization scales, [Lj(T), [ps(T), and R(r) which

we call profile functions. They are discussed in detail in Sec. 2.3.

In the following subsections various ingredients of the factorization formula of

Eq. (2.1) are presented in more detail. Compact results for the corresponding analytic

expressions for massless quarks in QCD are given in App. A. In Secs. 2.2.7 and 2.2.8

we describe how finite bottom mass and QED corrections are included in our analysis.

The full formulae for these corrections will be presented in a future publication.

2.2.2 Order Counting

In the classic order counting used for fits to event shape distributions it is common to

separately quote orders for the summation of logarithms and the fixed-order matching

contributions. For fixed-order contributions the O(a,) contributions are called LO,

the O(a2) contributions are called NLO, etc. This counting is motivated from the

fact that at tree level the fixed-order thrust distribution vanishes for T > 0. For the

summation one refers to LL (leading-log) summation if the one-loop cusp anomalous
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cusp non-cusp matching 0[a,] nonsingular 7j' 6
LL 1 - tree 1 - - -

NLL 2 1 tree 2 - - -

NNLL 3 2 1 3 1 1 1
N3LL 4Pa* 3 2 4 2 2 2
NLL' 2 1 1 2 1 1 1

NNLL' 3 2 2 3 2 2 2
N3LL' 4 pade 3 3 4 3 3 3

Table 2.1: Loop orders j for perturbative corrections of O(a,). Here cusp, non-cusp,
and ' refer to anomalous dimensions, while matching, nonsingular, and the gap
subtraction 6 refer to fixed-order series. For convenience in our numerical analysis we
use the four-loop beta function for the as running in all orders displayed.

peak (any k) tail and far-tail (k = 0, 1, 2)

d& a i lnjr Qk in r k

P.. sAQCD asAQCD

p~c. ac s

Qi Q

Table 2.2: Nonperturbative corrections included in da/dr with implicit sums over i
and k. All powers k/(Qr)k can be included in the peak region with the function Sm1od,
while only a fixed set of power correction parameters are included in the tail and far-
tail regions. The row labeled p.c. shows the scaling of the the first power correction
that is not entirely determined by the earlier rows and hence yield corrections to
Eq. (2.1).

dimension is used to sum the double Sudakov logs, and NLL (next-to-leading-log)

if the two-loop cusp and the one-loop non-cusp anomalous dimension terms are also

included.

In our analysis the summation orders (LL, NLL, ...) match the classical language.

For the fixed-order contributions we account for the tree level 6(r) in LL and NLL, and

we include O(as) corrections at NLL' and NNLL, etc, as shown in Tab. 2.1. In SCET

the summation can be carried out at both NNLL and N3 LL [31]. The corresponding

loop orders for the anomalous dimensions are also shown in Tab. 2.1. Within SCET

the summation of logarithms is achieved by renormalization group evolution and the

fixed-order corrections enter as series evaluated at each of the transition scales pH,
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p[, and ps which we refer to as matching or matrix element corrections. The logs in

the singular thrust cross section exponentiate to all orders if we use y, the Fourier-

transformed variable to T. The orders we consider correspond to summing the terms

ln [ ~ L L (aL)k +[ ([]NL) L (2.5)
± E I- LL - k1 NLL

k=O NNLL - 0 N3LL

where L = ln(iy), and the series in the exponent makes clear the structure of the

large logs that are summed at each order.

The nonsingular counting in Tab. 2.1 for the fixed-order series in d&8 /dr must

be the same as for the matching and matrix element corrections to ensure that we

exactly reproduce the fixed-order cross section when the resummed result is expanded.

Since the relative importance of the log resummation and the nonsingular terms varies

depending on the T-region, we also consider an alternative "primed" counting scheme.

In the primed counting all series for fixed-order quantities are included to one higher

order in as. In this counting scheme the O(a3) fixed-order results occur in N3 LL,

which is the order we use for our final analysis.

Also shown in Tab. 2.1 are columns for the fixed-order gap subtractions J =

6(R, p), and the gap anomalous dimensions n'. These terms are required to re-

move the leading O(AQCD) renormalon from the perturbative corrections, while still

maintaining the same level of log resummation for terms in the cross section. The

resummation of these large logarithms is missing in the recent analysis of Ref. [64]

and is discussed further in Sec. 2.2.6.

A crucial aspect of our analysis is the inclusion of power corrections in a rigorous

manner through field theoretic techniques. In the effective theory there are several

types of power corrections which arise from the possible ratios of the scales [pH, /pJ,

ps, and AQCD:

A A 2
1)AC _ QCD QCD AQCD

ps Q'r Qyp
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Any AQCD/pJ power correction can be taken as a cross-term between types 1) and 2)

for the purpose of enumeration. The type 1 power corrections are enhanced by the

presence of the soft scale and are encoded by the moments Qk ~ AQCD of the soft

function. Type 2 are kinematic power corrections that occur because of the expansion

about small r, and can be computed with perturbation theory. The importance of

these first two types depends on the region considered in 1.4, with all terms in type

2 becoming leading order for the far-tail region. Type 3 are non-enhanced power

correction that are of the same size in any region. There are also cross-terms between

the three types.

In our analysis we keep all power corrections of types 1 and 2, and the dominant

terms of type 3. Our treatment of the nonsingular cross section also includes cross-

terms between 1 and 2 in a manner that is discussed in Sec. 2.2.4. For the different

thrust regions we display the relevant terms kept in our analysis in Tab. 2.2. The

nonsingular cross section corrections fully account for the power corrections of type

2. The factor [AQCD/ (Q7)]k in the peak region denotes the fact that we sum over

all type 1 power corrections from the leading soft function. In the tail and multijet

regions we only consider the first three orders: k=0 (partonic result), k=1 (power

correction involving Q1) and , k=2 (power correction involving Q2). Here k = 2 terms

are used in our error analysis for our simultaneous fit to a(mz) and Q1. The leading

power correction that is not fully captured in all regions is of type 3, and are of

O(aAQCD/Q). Since our analysis is dominated by Q = mz or larger, parametrically

this gives an uncertainty of

[-- AQ D ~ 0.3% (2.7)
ais IP.C. Q

in our final fit (taking AQCD = 0.3GeV to obtain the number here). This estimate

has been validated by running our fits in the presence of an additional aAQCD/Q

power correction. 3

3To perform this test we include an a, (pm,)A 1 /Q correction in the normalized thrust cross section,
vary A1 = t1.0 GeV, and perform our default fit to a,(mz) and 91 as described in Sec. 3.1. This
variation causes only a t0.1% change to these fit parameters, which is smaller than the estimate in
Eq. (2.7).
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2.2.3 Singular Partonic Distribution

The singular partonic thrust distribution d&,/dT contains the most singular terms

oc ai lnk(r)/r and ao6(T) that arise from perturbation theory. Using SCET one can

derive a factorization theorem for these terms which allows for the resummation of

the logarithmic terms to all orders in perturbation theory. In massless QCD the

factorization formula for the perturbative corrections involving a. reads

d8s~cD (r) =Q S o H- (Q, pH) UH (Q, PH, p) ds ds'

x Jr(s',. p) U(s - S', y, pj) Jdk' U;(k', t, ps)

x e- Sp"* (Qr - Q-k', p .S (2.8)

Here o- is the total partonic e+e- cross section for quark pair production at tree

level from a current of type I = {uv, dv, by, ua, da, ba} as explained below. Large

logs are summed by the renormalization group factors UH between the hard scale

and p, UJ between the jet scale and p, and U between the soft scale and t. The

choice of p is arbitrary and the dependence on y cancels out exactly when working at

any particular order in the resummed expansion. Short distance virtual corrections

are contained in the hard function H'. The term J, is the thrust jet function.

The term Spart is the partonic soft function and the 6(R, ps)-dependent exponential

implements the perturbative renormalon subtractions. There are four renormalization

scales governing the factorization formula, the hard scale pUH - Q, the jet scale pj,

the soft scale ps, and the renormalon subtraction scale R. We have R -- ps to

properly sum logarithms related to the renormalon subtractions, and there is also a

renormalization group evolution in R. The typical values for pj, ps, and R depend

on -r as discussed in Sec. 2.3.

The total tree level partonic e+e- cross section ao = o-j (Q, mz, Fz) depends on

the c.m. energy Q, the Z-mass, and Z-width, and has six types of components,

o"uv ou", o-d", o-da, ob", o, where the first index denotes flavor, u = up + charm,

d = down+strange, and b = bottom, and the other index denotes production through
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the vector (v) and axial-vector (a) currents. For QCD corrections we have the hard

functions H =H H He&"', Hg", H, and Hg, where the vector current

terms do not depend on the flavor of the quark. For massless quark production the

axial-vector hard functions differ from the vector due to flavor singlet contributions.

All six o s and HI's are relevant for the implementation of the b-mass and QED

corrections. Since we use data taken for energies close to the Z pole we adopt i/(q 2 -

mz + i Q2 Pz/mz) as the Z-boson propagator which is the form of the width term

used for thrust data analyses. The modifications of Eq. (2.8) required to include

QED effects are discussed in Sec. 2.2.8. The hard factor HQ contains the hard QCD

effects that arise from the matching of the two-jet current in SCET to full QCD. For

!H = Q we have H6(Q, Q) = 1+E 1_ h1[as(Q)/4r]i, and the full hard function with

ln(puH/Q) dependence is given in Eq. (A.8). For the flavor nonsinglet contributions

where the final-state quarks are directly produced by the current one can obtain

the matching coefficient from the on-shell quark vector current form factor, which is

known to O(a3) [120, 119, 83, 122, 113, 18]. Converting the bare result in Ref. [113]

(see also Refs. [18, 90]) to the MS scheme and subtracting 1/EMR divergences present in

SCET graphs, the three-loop non-singlet constant, which is one of the new ingredients

in our analysis, is

C3 ~_ 460((3) 1407r2((3) 5599 43397r 2  3461r4

h3 =±CF2_(3)2 ± 1328((5) - 6+ 3 - 1
3 6 36 15

274037r6  002 [ 52564((3) 16907r2((3) 592((3)2 5512((5) 824281
±170101 AF 27 9 3 9 324

4065077r2  922377r4  14787r6  [505087((3) 11687 2((3) 2272((3) 2

972 + 2430 1701 +  C F9 9

868((5) 51082685 5965137 2  430374  478476  02 26080((3) 14872( (3)
9 26244 2187 - 4860 25515 +Cn 81 9

832((5) 56963 137057r2  14637r4  8576((3) 14872((3) 8((5)
9 486 ± 243 243 LC n 27 9 3

3400342 2017497r 2  357r4 2[ 832((3) 190931 16127 2  867r4

+ - - + CFnf + +
6561 2187 243 243 6561 243 1215]

= 20060.0840 - 2473.4051nf + 52.2009n 2  (2.9)f-
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Figure 2-1: Two-loop singlet correction to the axial current. Its cuts contribute to
the hard coefficient and nonsingular terms.

For ng = 5 we have h3 = 8998.080, which is the value used for our analysis.4

The axial-vector hard functions Hg" and Hd are equal to H' up to additional

singlet corrections that enter at O(a') and O(a3). The fact that the SCET hard

functions have these singlet corrections was discussed in Ref. [138]. At O(ac) only the

axial-vector current gets a singlet correction. It arises from the axial-vector anomaly,

from suitable cuts of the graph shown in Fig. 2-1 where each axial current is connected

to a triangle. Summing over the light quarks u, d, s, c gives a vanishing contribution

from this graph, but it does not vanish for heavy quarks due to the large bottom-top

mass splitting [104]. Since for the Qs we consider top-pairs are never produced, the

required terms can be obtained in the limit mb/mt -+ 0. For the axial current the hard

correction arises from the bb cut and gives HU' = Hg = H, and Hba =A i HH "**

where

H H ns(/t 12 (t) (2.10)

Here rt = Q2/(4m2) and the function 12(rt) from Ref. [104] is given in Eq. (A.9).

Throughout our analysis we use mt = 172 GeV. H'"'et is a percent level correction

to the cross section at the Z peak and hence is non-negligible at the level of precision

of our analysis. (The uncertainty in the top mass is numerically irrelevant.) At O(a3)

the singlet corrections for vector currents are known [18], but they are numerically

tiny. We therefore neglect the O(a3) vector current singlet corrections together with

the unknown O(a3) singlet corrections for the axial-vector current. Likewise we do

not account for O(a3) singlet corrections to the nonsingular distributions discussed

4The analytic expression for h3 in Eq. (2.9) is consistent with Eq. (7.3) given in Ref. [82].
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in Sec. 2.2.5.

The full anomalous dimension of J is known at three-loops, O(a) [140, 119, 122].

It contains the cusp anomalous dimension, responsible for the resummation of the

Sudakov double logarithms, and the non-cusp anomalous dimension. To determine

the corresponding hard renormalization group factor UH at the orders N3 LL' and

N3 LL we need the O(ac) cusp anomalous dimension PF'U" which is still unknown

and thus represents a source of theory error in our analysis. We estimate the size of

Pusp from the order [1/1] Pad6 approximant in a, built from the known lower order

coefficients, which is within 13% of the two other possible Pad6 approximants, [0/2]

and [0/1]. For our theory error analysis we assign 200% uncertainty to this estimate

and hence scan over values in the range 17""' = 1553.06 ± 3016.12.

The thrust jet function J, is the convolution of the two hemisphere jet functions

that describe collinear radiation in the i and -f directions,

J'(s, [Z) = ds' J(s', p) J(s - s', p) = A 2 Jn[a8 (p)]L(s/p2 ). (2.11)
n=-1

Here the coefficients Ja are multiplied by the functions

L-1(x) =6(x), n(x) = n , (2.12)

where n > 0. Here LEn>o(x) are the standard plus-functions, see Eq. (A.22). At O(C)

only J_ 1 (a8 ) through J5(as) are nonzero. The results are summarized in Eq. (A.21).

In SCET the inclusive jet function is defined as

J(Qr+, r) N Im i d 4x eir.x (0|T{Xn(0)Xn(x)}|0 , (2.13)

where the Xn are quark fields multiplied by collinear Wilson lines. The hemisphere

jet function has been computed at O(a.) [117, 25] and O(a2) [29]. Its anomalous

dimension is known at three loops, and can be obtained from Ref. [121]. At the

order N3 LL' we need the O(a) corrections to the jet function. From the anomalous

dimension we know the logarithmic terms, J to J- 5 in Eq. (2.11), at three loops.
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In the non-logarithmic term J- 1 at O(a) there is an unknown coefficient ja (which

we define as the constant non-logarithmic 3-loop coefficient in the position space

hemisphere jet function). We estimate a range for ja from the largest value obtained

from the three Pad6 approximations for the position space hemisphere jet function

that one can construct from the available results. This gives j3 = 0 t 3000 for the

range of variation in our theory error analysis. We note that for the O(a) coefficient

h3 the corresponding Pad6 estimate h3 = 0 ± 10000 covers the exact value given in

Eq. (2.9).

The renormalization group factors of the thrust jet function UJ and thrust soft

function U§ sum up large logs involving the jet and the soft scales. The required cusp

and non-cusp anomalous dimensions are fully known at three-loops, but again there

is dependence on the four-loop cusp anomalous dimension I"*. This dependence is

included when we scan this parameter as described above in our description of the

hard evolution.

The hadronic thrust soft function S, describes soft radiation between the two jets.

It is defined by

S, (k, p)= (0trY Yn 5(k - i$)YV*0), (2.14)

where Y = Y(0) and Yi = FY(0) are defined below Eq. (2.3). The soft function

factorizes into a partonic perturbative part S.'* and a nonperturbative part Smod,

S, = Sf?* g Syod, as discussed in detail in Sec. 2.2.4. This factorization has already

been used above in Eqs. (2.1) and (2.8).

At the partonic level the soft function is

S-P (k, p)= Sn[a,9(p)],(k/p), (2.15)
Sn=-1

where S-1 to S5 are the only nonzero coefficients at O(a), and Cn(X) is defined

in Eq. (2.12). Results for these Sk(a.) are summarized in Eq. (A.16). Sp*rt was

calculated at 0(a,) in Ref. [136, 79]. At O(a2) the non-logarithmic correction was
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determined in Refs. [31, 94] using numerical output from EVENT2 [49, 50]. The

numerical constant that appears in the non-logarithmic O(a) term S_1 is referred

to as 82 (which is defined as the constant 2-loop coefficient in the logarithm of the

position space soft function). We use s2 = -39.1 ± 2.5 [94], and this uncertainty is

taken into account in our theory error analysis. 5 The anomalous dimension of the

soft function is a linear combination of the anomalous dimensions of the hard and jet

functions which can be obtained from the consistency conditions [80, 31]. As for the

jet function we need the O(ci) corrections to SP'. From its anomalous dimension

we know the logarithmic terms at three loops, namely So to S5 in Eq. (2.15). The

only unknown is the O(a3) non-logarithmic correction in S_1, referred to as S3 (which

is defined as the constant non-logarithmic term in the logarithm of the position space

hemisphere soft function). Just like for the constant j3 we estimate a value for 83

from the largest value obtained from the three possible Pad6 approximations to the

position space soft function that one can construct from the available results. This

yields the range S3 = 0 ± 500, which we scan over in our theory error analysis.

As already mentioned, in Ref. [31] an analytic expression for the resummed singu-

lar thrust distribution was presented. Their derivation relies on the Laplace transform

of the jet and soft functions. In our analysis we have derived the resummed cross

section using two independent procedures, performing all convolutions either in mo-

mentum space (as presented in App. A), or in Fourier space. These two approaches

have been implemented in two independent codes and we have checked that they give

exactly the same results. We note that the Fourier transform method is equivalent to

the Laplace procedure used by Becher and Schwartz in Ref. [31] through a contour

deformation, and we find agreement with their quoted N3 LL formula including matrix

elements and anomalous dimensions. Furthermore, we also agree with their result for

the fixed-order singular terms up to O(a).

In summary, the singular terms in the thrust factorization theorem are known at

N3 LL order, up to the unknown constant 1c3". The effect of the cusp anomalous

dimension at 4-loops is much smaller than one might estimate, so for numerical pur-

5Note that in Ref. [94] our s2 was called si.
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poses the cross section is known at this order. The constants S3 and 3 only enter for

our N3 LL' order. For the singular terms they predominantly affect the peak region

with spread into the tail region only due to RG evolution. Thus in the tail region the

numerically dominant N3LL' terms are all known. The uncertainties from " s3,

and j 3 are discussed more explicitly in Sec. 3.2

2.2.4 Q1 and Nonperturbative Corrections

In this section we discuss nonperturbative corrections to the thrust distribution in-

cluded in our analysis, as shown in Tab. 2.2. We focus in particular on those associated

to the first moment parameter Q1. Our analysis includes the operator product ex-

pansion (OPE) for the soft function in the tail region, and combining perturbative

and nonperturbative information to smoothly connect the peak and tail analyses. We

also discuss our treatment of nonperturbative corrections in the far-tail region, and

for the nonsingular terms in the cross section.

In the tail region where k - QT > AQCD we can perform an operator product

expansion of the soft function in Eq. (2.14). At tree level this gives [110, 111]

Sr (k, p) = 6(k) - 6'(k) 201 +... . (2.16)

where the nonperturbative matrix element Q1 is defined in the MS scheme as

21= c(0tr 17 (0)Y(0) iY(0)V*(0)|0). (2.17)

Dimensional analysis indicates that Qni - AQCD. When the OPE is performed beyond

tree level we must add perturbative corrections at a scale yi ~ k to Eq. (2.16). The

first operator in the OPE is the identity, and its Wilson coefficient is the partonic soft

function. Thus 6(k) -+ Sat(k, y) when the matching of the leading power operator

is performed at any fixed order in perturbation theory. Here we derive the analog for
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the Wilson coefficient of the Qi matrix element and prove that

dSpart (k)
Sr (k, pt) = Sf"*t(k) - __ 2Q1+, . (2.18)dk

This result implies that the leading perturbative corrections that multiply the power

correction are determined by the partonic soft function to all orders in perturbation

theory. The proof of Eq. (2.18) is given in App. A.1. The uniqueness of the leading

power correction ni to all orders in the perturbative matching can be derived following

Ref. [110], and we carry out an all orders matching computation to demonstrate that

the Wilson coefficient is dSP't(k)/dk. At first order in ni/k < 1 Eq. (2.18) shows

that the perturbative corrections in the OPE are consistent with a simple shift to

S,(k-2Q1 , [t). This type of shift was first observed in the effective coupling model [73].

To smoothly connect the peak and tail regions we use a factorized soft function [95,

106, 116]

S,(k, p) = Jdk' Sra t (k - k', p) Srod(k'), (2.19)

where SP't is a fixed-order perturbative MS expression for the partonic soft function,

and Sod contains the nonperturbative ingredients. In the tail region this expression

can be expanded for k' < k and reduces to precisely the OPE in Eq. (2.18) with the

identification

20 1 = dk' k' STcd (k'), (2.20)

and normalization condition f dk' Srod(k') = 1 [95]. All moments of S'Iod(k') exist

so it has an exponential tail, whereas the tail for SPt(k) is a power law. In the peak

region the full nonperturbative function Smod(k) becomes relevant, and Eq. (2.19)

provides a nonperturbative function whose yt dependence satisfies the MS renormal-

ization group equation for the soft function. In position space the convolution in

Eq. (2.19) is a simple product, making it obvious that Eq. (2.19) provides a com-

pletely general parametrization of the nonperturbative corrections. The complete
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basis of functions used to parameterize Smod(k) in the peak region is discussed in

Sec. 2.4.

The expression in Eq. (2.19) also encodes higher order power corrections of type

1 from Eq. (2.6) through the moments 2' Q = f dk k Srod(k), which for tree level

matching in the OPE can be identified as the matrix elements

(0|trY (0)Y(0) (_) Y§()(0)|10) /Nc. For i > 2 perturbative a, corrections to the

soft function OPE would have to be treated in a manner similar to App. A.1 to

determine the proper Wilson coefficients, and whether additional operators beyond

the powers (i0)i start contributing. The treatment of perturbative corrections to

these higher order nonperturbative corrections is beyond the level required for our

analysis.

Using Eq. (2.19) the hadronic version of the singular factorization theorem which

involves S, immediately yields Eq. (2.8) and the first term in Eq. (2.1). The conversion

of SP"(k) and i1 from MS to a renormalon-free scheme is discussed in Sec. 2.2.6.

Next we turn to the effect of AQCD power corrections on the nonsingular terms in

the cross section in Eq. (2.1). The form of these power corrections can be constrained

by factorization theorems for subleading power corrections when r < 1, and by

carrying out an OPE analysis for power corrections to the moments of the thrust

distribution. In the following we consider both of these.

Based on the similarity of the analysis of power corrections to thrust with those

in B -> X,-y [112, 132], the factorization theorems for the nonsingular corrections

involves subleading hard functions, jet functions and soft functions. They have the

generic structure H(Q, ) ® @ $4)(syx;) ® Slb)(Qr, s3 /Q), where the xi and s3

are various convolution variables. Here S() includes the leading order soft function

in Eq. (2.14) as well as power suppressed soft functions. Neglecting nonperturba-

tive corrections the nonsingular cross section yields terms we refer to as kinematic

power corrections of type 2 in Eq. (2.6). If we do not wish to sum large logs in the

nonsingular partonic terms, they can be treated in fixed-order perturbation theory

and determined from the full fixed-order computations. In the tail region these r-

suppressed terms grow and become much more important than the AQCD/Q power
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corrections of type 3 from subleading soft functions. In the transition to the far-tail

region, near T = 1/3, they become just as important as the leading perturbative

singular terms. In this region there are large cancellations between the singular and

nonsingular terms (shown below in Fig. 2-4), and one must be careful with the treat-

ment of the nonsingular terms not to spoil this.

We require the nonsingular cross section terms to yield perturbative corrections

at leading power in AQCD that are consistent with the fixed-order results and with

multijet thresholds. Our treatment of power corrections in the nonsingular terms is

done in a manner consistent with these goals and with the OPE for the first moment

of the thrust distribution. To achieve this we use

fdk' d"" -' , S"od (k'), (2.21)

where d&3,s/dT is the partonic nonsingular cross section in fixed-order perturbation

theory, whose determination we discuss in Sec. 2.2.5. Eq. (2.21) is independent of

the renormalization scale pa, order by order in its series expansion in a,(pas). The

convolution with the same S" (k') as the singular terms allows the perturbative

corrections in d&,/dT + d&cn/dT to smoothly recombine into the fixed-order result in

the far-tail region as required by the multijet thresholds. Eq. (2.21) yields the second

term in Eq. (2.1). We will treat the conversion of ni and S,"d to a renormalon-

free scheme in the same manner as for the singular cross section, which again for

consistency requires a perturbative subtraction for the partonic d&ns/dT that we treat

in Sec. 2.2.6.

Note that Eq. (2.21) neglects the fact that not all of the r dependence in d ^ /dT

must necessarily be convoluted with Sfod. This causes a deviation which is

as-rAQcD/(QT) and hence is at the same level as other power corrections that we

neglect. The largest uncertainty from our treatment of d&s/dr arises from the fact

that we do not sum ln r terms, which would require anomalous dimensions for the

subleading soft and hard functions for these nonsingular terms. These logs are most

important in the peak region, and less relevant in the tail region. The size of miss-
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ing higher order nonsingular terms such as log enhanced terms will be estimated by

varying the scale ynS.

Our setup is also consistent with the OPE for the first moment of the thrust

distribution. Eq. (2.1) yields

/ do- f d&8  d&is y 2n1
Id'rT = drr- + ± Zo-o +... , (2.22)

d-r d d7 ( Q

where the ellipses denote O(aAQCD/Q) and O(ACD /Q 2) power corrections. In

App. A.1.1 we demonstrate that a direct OPE computation for the thrust moment

also gives the same result, and in particular involves precisely the same matrix element

ni at this order. The theoretical expression in Eq. (2.1) simultaneously includes

the proper matrix elements that encode power corrections in the peak region, tail

region, and for moments of the thrust distribution. This implies a similar level of

precision for the multijet region. Although Eq. (2.1) does not encode all aAQCD/Q

corrections, it turns out that the ones it does encode, involving Q1, numerically give

an accurate description of the multijet cross section. (This is visible in Fig. 3-9 and

will be discussed further in Sec. 3.2.) This agreement provides additional support

for our treatment of nonperturbative corrections in the nonsingular cross section in

Eq. (2.21).

2.2.5 Nonsingular Distribution

The nonsingular partonic thrust distribution d&8a/dr accounts for contributions in

the thrust distribution that are kinematically power suppressed. We write

d&ns 
(2.23)I

with the same superscript I notation for different currents as in Eq. (2.8). The

presence of the 6(R, ps)-dependent exponent arises because S"'od depends on Q1 and

we use the same renormalon-free definition for Q1 as for the singular terms. In our

numerical evaluation we integrate by parts so that the 0/r derivative acts on Sod
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in Eq. (2.1). This exponent is discussed in detail in Sec. 2.2.6.

In this section we discuss our determination of the functions ft in pure QCD

with massless quarks, while the generalization to include mb effects is discussed in

Sec. 2.2.7 and to include QED effects in Sec. 2.2.8. For pure QCD there is one function

fqd = fqc= - fd - fbvd for the vector current, and functions fd q and fqbcd
q J qcd -J qcd curent qcd-. nd

for the axial-vector currents. In general f' is the partonic fixed-order distribution

where the singular terms which are already contained in d&,-/dr are subtracted to

avoid double counting. Setting the renormalization scale p,, = Q they have the form

fVT )~f(T±a 2  33

f7e 1 27r)2 (27r)3

ffl(Td 1 q d qcdf~~(, ) f7(T, 1)=fcd (T, 1),

a2

fqcd = fqcd(T, 1) + ( 2 ) 2 singlet T, t) , (2.24)

where here a, = a,(Q) and rt = Q 2/(4m2). The required results for f'(T, p_1"./Q) can

be obtained by shifting a,(Q) to a,(p.) using the fixed-order relation between these

couplings at O(a).

The full O(a8 ) partonic thrust distribution has been known analytically for a long

time [76]. For the one-loop nonsingular distribution it gives

fi(r) = -T4 [(- 6r2+6T - 4)log (-2
3-r (T - 1)

+93 -3r2 - 9+3 0 -T) + 4[3+4log(r)]. (2.25)

This result is plotted in Fig. 2-2(a). The kink at T = 1/3 appears because the full

one-loop distribution vanishes at this value with a nonzero slope, and there is an exact

cancellation between the fixed-order singular and nonsingular one-loop expressions.

For T > 1/3 the one-loop nonsingular distribution is precisely the negative of the

one-loop fixed-order singular distribution.

The 0(a,) and 0(a') QCD distributions are available in numeric form from

the Fortran programs EVENT2 [49, 50] and EERAD3 [86] (see also Ref. [85, 143,
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Figure 2-2: Nonsingular Thrust Distribution. (a) 0(a,) nonsingular thrust distri-

bution. (b) O(a2) nonsingular thrust distribution. (c) O(a3) nonsingular thrust
distribution. For simplicity we only show the data binned with 0.01 bin size.

144]), respectively. These programs are used to derive results for our f 2 (r) and f 3(r)

nonsingular distributions in a manner discussed below. At O(a2) there is also the

singlet correction fsingiet (r, r) for the axial-vector contribution arising from the large

bottom-top mass splitting. The three-parton quark-antiquark-gluon cut from Fig. 2-1

contributes to the nonsingular distribution, and we have included this contribution

analytically [89]. The formula for fsingiet (r, r) is given in Eq. (A.46). There is also

a contribution from the four-parton cut. Its contribution to fsingiet(T, r) is unknown,

but it is tiny for the total cross section [104] and can therefore be safely neglected.

At O(a2) we use linear binned EVENT2 results for r > 0.095 and log-binning

results for r < 0.095 each obtained from runs with 1010 events and infrared cutoff

yo = 10-8. For r > 0.095 (using a 0.005 bin size) the resulting statistical uncer-

tainties in the nonsingular distribution are always below the percent level and neg-
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ligible and we can use an interpolation of numerical tables for f 2 (T). For T < 0.095

the singular terms dominate the distribution which leads to large cancellations and

an enhancement of the statistical uncertainties. Here we use the ansatz f 2 (T) =

E=O ailn'r + T ± l-T 2 bil n' T and fit the coefficients a and bi to the EVENT2 out-

put, including the constraint that the integral over the full distribution reproduces

the known O(a,) coefficient for the total cross section. The result has the form

f 2 (T) + 262 (T), where f2 represents the best fit and 62 is the 1-sigma error function

with all correlations included. The term 62 is a parameter which we vary during

our ao-Q 1 fit procedure to account for the error. Here f2 and 62 also depend on the

coefficient s2 in the partonic soft function S, which is known only numerically. In

Fig. 2-2(b) we plot the EVENT2 data we used, along with our f2(T) with s2 = -39.1.

The dashed curves show the result for C2 = ±I, with the region inbetween corre-

sponding to the 1-sigma error band.

For the determination of f3 at 0(a 3) we implement a similar approach as for f2,

using results from EERAD3 [86] computed with 6 x 10' events for the three leading

color structures and 107 events for the three subleading ones, using an infrared cutoff

yo = 10-5. We employ linearly binned results with 0.01 bin size for r > 0.315 (keeping

the statistical error below the percent level) and with 0.005 bin size for T < 0.315.

For the fit for r < 0.315 our ansatz function has the form f 3 (r) = E ci ln' - and

the result has the form f3 (T) + 63 63 (T), with f3 being the best fit and 63 the 1-

sigma error function. The constant 63 is the analog of E2 and is varied in the error

analysis. We note that f3 and 63 depend on the constant s2 and on the constants s3

and j3 that account for the unknown non-logarithmic terms in the O(a3) soft and

jet functions. This dependence is included in our error analysis. In Fig. 2-2(c) we

plot the EERAD3 data with bin size 0.01, along with our f 3 (T) with s2 = -39.1,

h3 = 8998.08, ja = 83 = 0. The dashed curves show the result for 63 = ±I, with the

region inbetween corresponding to the 1-sigma error band.

In our analysis we use the values -1, 0, 1 for E2 and E3 to account for the numerical

uncertainties of our fit functions in the small r region. The nonsingular partonic

distribution depends on one common renormalization scale pm which is varied in our
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theory error analysis as given in Sec. 2.3.

2.2.6 Gap Formalism

The partonic soft function SP't(k) computed perturbatively in MS has an O(AQCD)

renormalon ambiguity. The same renormalon is present in the partonic MS thrust

cross section with or without resummation. This is associated with the fact that

the partonic threshold at k = 0 in Spat (k) is not the same as the physical hadronic

threshold for the distribution of soft radiation that occurs in S7 (k). One can see this

explicitly in the large-30 approximation, where it is associated to a pole at u = 1/2

in the Borel transform [95]

B [Sart(k, p)] (u = p -5/6 Sft(k, p). (2.26)
2 7roo (u -2) Ak

This result shows that Srart(k) in the MS scheme suffers from the renormalon am-

biguity for all k > 0. The MS matrix element Q1 defined in Eq. (2.17) also has an

O(AQCD) renormalon ambiguity. Together, the renormalon in this power correction

and in the perturbative series for SP't(k) combine to give a soft function S,(k) that

is free from this O(AQCD) renormalon. If left unsubtracted this renormalon ambigu-

ity leads to numerical instabilities in perturbative results for the thrust distribution

and in the large order dependence for the determination of the soft nonperturbative

function Smod. In this section we resolve this problem by switching to a new scheme

for Q1. This scheme change induces subtractions on dUpa/dr that render it free of

this renormalon. We start by reviewing results from Ref. [95].

Consider a class of soft nonperturbative functions with a gap parameter A, which

only have support for k > A, so SPod(k) _ Sod(k - 2A). Here the MS moment

relation in Eq. (2.20) becomes

2A + Jdk k od(k) = 20 1 , (2.27)

where A accounts for the complete renormalon ambiguity contained in 01. We can
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now obtain a renormalon-free definition for Q1 by splitting A into a nonperturbative

component A(R, ps) that is free of the O(AQCD) renormalon, and a suitably defined

perturbative series 6(R, ps) that has the same renormalon ambiguity as f 1 . The pa-

rameter A is scheme and renormalization group invariant, while A and 6 individually

depend on the subtraction scale R and in general also on the soft scale ps. Writing

A = A(R, ps) + S(R, ps), (2.28)

the factorization of perturbative and nonperturbative components in Eq. (2.19) be-

comes

ST(k, p s) =Jdk' S ps) S(od(k'-25)

=Jdk' e26 Sart(k -k', Ps)] S '(k'-2A). (2.29)

Here the exponential operator induces perturbative subtractions (in powers of as(ps))

on the MS series in S*art(k) that render it free of the renormalon. This exponential

modifies perturbative results for the cross section in the manner we have shown earlier

in Eqs. (2.8) and (2.23). The convolution of the nonsingular cross-section with Sfod

in Eq. (2.21) now becomes

Jdk' d rns (k' , ) Sod(k' - 2A). (2.30)

Furthermore, with Eq. (2.29) the result in Eq. (2.27) becomes

2A(R, ps) + Jdk k Srod(k) = 2Q1 (R, ps), (2.31)

where here Q1 (R, ps) is renormalon-free. Combining Eqs. (2.31) and (2.27) we see

that the scheme conversion formula from MS to the new scheme is

Q, (R, p's) = Q1 - 6(R, ps) . (2.32)
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Thus, the precise scheme for Q,(R, ps) is specified by the choice of the subtraction

series 6(R, ps). Note that in general the gap parameter A is an additional non-

perturbative parameter that can be determined together with other parameters in

the function Smod from fits to experimental data. However, in the tail region the

power corrections are dominated by a single parameter, Qi (R, ps), which encodes the

dependence on A.

In Ref. [94] a convenient scheme for 6(R, ps) was derived (based on a scheme

proposed in Ref. [100]) where

6(R, p) = R e7E d [nS(x, p) (2.33)
2 d ni)x=(iRe'YE)-1

Here S,(x, p) is the position space partonic soft function, and the fact that we write

this result for S, rather than for the hemisphere soft function explains the extra

factor of 1/2 relative to the formula in Ref. [94]. The cutoff parameter R, having

mass dimension 1, is a scale associated with the removal of the infrared renormalon.

To achieve the proper cancellation of the renormalon in Eq. (2.29) one has to expand

6(R, ps) together with Spa,,(k, ps) order by order in a,(ps). The perturbative series

for the subtraction is

00

6(R, ps) = eYER 7 E(ts) 6i(R, ps) (2.34)
i=1

where the 6 i2 depend on both the adjoint Casmir CA = 3 and the number of light

flavors in combinations that are unrelated to the QCD beta function. For five light

flavors the one, two, and three-loop coefficients are [94]

61(R, is) = -0.8 4 882 6LR ,

62(R, ps) = -0.156279 - 0.46663LR - 0.517864L2

63(R, ps) = 0.0756831 + 0.01545386 S2 - 0.622467LR

- 0.777219L 2 - 0.421261L , (2.35)
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with LR = ln(pis/R). We will refer to the scheme defined by Eq. (2.33) as the R-gap

scheme for Q1 .

From the power counting ni - AQCD one expects that a cutoff R ~1 GeV should

be used, such that 1 - AQCD and perturbation theory in a(R) remains applicable.

We refer to this as the power counting criterion for R. Since in the tail region

ps ~ Qr > 1 GeV the factors of LR in Eq. (2.35) are then large logs. To avoid large

logarithms in the subtractions 6i(R, ps) it is essential to choose R - ps, so that the

subtraction scale R is dependent on T much like the soft scale ps. We refer to this

as the large-log criterion for R. To resolve the conflict between these two criteria,

and sum the large logs while keeping A(R, ps ~ R) renormalon-free, we make use

of R-evolution [92, 93]. Formulas for the gap case were given in Ref. [94] and are

reviewed here. In this scheme A(R, p) satisfies an R-RGE and 1 -RGE

d a c (e (R) n+1
R A(R, R) = -RE

n=O
d ~00 nl

y A(R, p) = 2Re7 E( cusp (c ) ()

so that 7. = -2e7EpcuspI[a,. For five flavors the anomalous dimension coefficients up

to three loops are

7YO = 0 , yf = -43.954260, -y =1615.42228 + 54.6195541 s 2, (2.37)

while the coefficients F~"P are given in Eq. (A.36). The solution of Eq. (2.36) at NkLL

is

AX(R, p) =A (RA, pA) + Re7EW[FCUSP, y , R] + RAeYEW[FUSP, RA, [A

+A (k) D ( Lk) L

Q+ D [a,(R) as(RA)] (2.38)

where the resummed w[FCUSP, y, po] is given in Eq. (A.28) and the resummed D(k)[a,(R), a,(RA)]

is given in Eq. (A.47). Both the gap subtraction and R-evolution equations at O(a3)

depend on the constant S2 which we vary within its errors in our theory error scan. In
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Figure 2-3: The running of Q1 (R, R) with R = R(r), plotted as a function of T for
Q = 35, 91.2, 207 GeV.

our analysis, when quoting numerical results, we always use the parameter A(RA, PA)

at the reference scales RA = pA = 2 GeV to satisfy the power counting criterion for R.

We then use Eq. (2.38) to run up to the scale R ~ ps in order to satisfy the large-log

criterion. The precise R value is a function of r, R = R(r), and given in Sec. 2.3 with

our discussion of the profile functions. The RGE solution for A(R, ps) in Eq. (2.38)

yields a similar solution for a running Q, (R, ps) using Eq. (2.31). In Fig. 2-3 we show

the result for the running Q1(R, R) with the boundary value %1(RA, PA) = 0.323 GeV.

The anomalous dimension and R(T) profile function cause an increase in the size of

the power correction for increasing r and for increasing Q.
Note that our R-gap subtraction scheme differs from the subtractions in the low-

scale effective coupling model of Ref. [73], which is not based on the factorization of

the soft large angle radiation but on the assumption that the O(AQCD) renormalon

ambiguity is related entirely to the low-energy behavior of the strong coupling as. In

the effective coupling model the subtractions involve logarithms, ln(p/p), where 1 is

the usual renormalization scale of perturbation theory and p' is the low-momentum

subtraction scale, which is set to pi = 2 GeV. The scale p, plays a role very similar to

the scale R in the R-gap scheme. These logarithms are the analogs of LR in Eq. (2.35)

and, since p oc Q these logarithms also become large. In the effective coupling model

an appropriate resummation formalism for large logs in the subtractions remains an
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Figure 2-4: Components of the pure QCD cross section. Here Q1 = 0.35 GeV and
as(mz) = 0.114.

open question.

In Fig. 2-4 we plot the absolute value of four components of our cross section for

our complete QCD result at N3 LL' order in the R-gap scheme at Q = mz. The cross

section components include the singular terms (solid blue), nonsingular terms (dashed

blue), and separately the contributions from terms that involve the subtraction co-

efficients os, for both singular subtractions (solid red) and nonsingular subtractions

(dashed red). The sum of these four components gives the total cross section (solid

black line). The subtraction components are a small part of the cross section in the

tail region, but have an impact at the level of precision obtained in our computation.

In the peak region at very small T the solid red singular subtraction grows to be the

same size as the solid blue singular term, and is responsible for yielding a smooth

positive definite total cross section. In both the peak and tail regions the singular

cross section dominates over the nonsingular cross section. But as we approach the

threshold r - 1/3 for the far-tail region they appear with opposite signs and largely

cancel. This is clear from the figure where individually the singular and nonsingular

lines are larger than the total cross section in this region. The same cancellation

occurs for the singular subtraction and nonsingular subtraction terms.
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2.2.7 Bottom Mass Effects

In this work we implement bottom mass effects using the SCET factorization frame-

work for massive quarks [79, 80]. We include mb-dependence in the kinematics, which

starts at tree level, and in the O(a,) corrections in the partonic singular and non-

singular distributions. We also account for the resummation of large logs and for

hadronization effects in the mb-dependent terms. The mass dependent factorization

theorem implies that the renormalization group summation of logarithms is identical

to the one for massless quarks, and that all power corrections of type 1 from Eq. (2.6)

are described by the nonperturbative soft function Sm' already defined for the mass-

less case [79, 80]. We have already indicated this with the convolution Ad&b/dr0Srod

shown in Eq. (2.1). Since for the numerical analysis in this work we fit to data in the

tail region, where Qr > 6 GeV, and since the massive quark thrust factorization the-

orem implies for the soft scale ps ~ Qr > 6 GeV, we do not have to account for any

flavor threshold in the renormalization group evolution and can always use nf = 5.

The mass dependent factorization theorem further implies that the only nontrivial

mb-dependence in the singular distribution arises in the thrust jet function. Thus

the jet scale pU ~ Qvj > mb for the region of our fit and we use the MS bottom

mass rib(pJj) to parameterize the mb corrections with rnb(rnb) = 4.2 GeV as our input

value. Using the MS mass rather than the pole mass avoids the appearance of large

higher order effects related to the O(AQCD) pole mass renormalon.

We implement the partonic bottom mass corrections as an additive term to the

massless partonic N3 LL' cross section. These corrections come from the production

of bottom quarks by the virtual y or Z,

Addb d&b dafnb=Ob (2.39)
dT d-r dr

where both d&b/dr and d&'b=o/dr are computed at NNLL. Because the effect of

rnb = 0 in Ad^b/dr is expected to be a percent level correction to the tail cross

section, we anticipate that the NNLL level of precision suffices. (This is also justified

a posteriori by the relatively small effect of the mb corrections on our fit results.)
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An important aspect in the discussion of the finite quark mass effects is in which

way hadron and heavy quark masses need to be accounted for in the definition of

thrust in Eq. (1.16). In the experimental analyses Monte Carlo generators are used

to convert the actual measurements to the momentum variables needed to compute T,

and this conversion depends on hadron masses. Since the final state stable hadrons

are light, these effects are related to nonperturbative physics. Theoretically they

are therefore implicitly encoded within our fit of the nonperturbative corrections.

In the partonic theoretical computation light hadron masses are neglected in the

computation of the r distribution, and it is consistent to set EZ lp = Q in the

denominator of Eq. (1.16).

To understand how the heavy quark masses affect the definition of thrust in

Eq. (1.16) we recall that the partonic computation relies on the inclusive nature of

the measurements and that, experimentally, only light and long-lived hadrons reach

the detectors and are accounted for in the jAi momenta that enter in computing T.

Thus for heavy hadrons containing bottom (or charm) quarks, it is their light and

long-lived hadronic decay products that enter the particle sum E>. Due to energy

conservation it is therefore necessary to set E|j Il = Q in the denominator of the

thrust definition of Eq. (1.16) for the leading power partonic computations involving

heavy quarks. On the other hand, due to three-momentum conservation, it is con-

sistent to use the heavy quark three-momentum in the numerator of Eq. (1.16) for

the partonic computations. This makes the partonic thrust computations involving

heavy quarks simple because we do not need to explicitly account for the heavy quark

decay in the calculations. Together with the relation E& |pi| = Q in the denominator

of Eq. (1.16) this induces a shift of the observed thrust distribution for b quarks to

larger r values. Comparing to the massless quark situation, the small-T endpoint is

moved from 0 to

r- min = 1 - 1 - 4fii /Q 2 , (2.40)

where here mb = nb(pj). At tree level this shifts 6(T) - 6(r - r"'"). For the
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fixed-order result at 0(a,) the three-jet endpoint is moved from 1/3 to r be -

5/3 - 4/3/1 - 3fhi /Q 2. At leading order in ?ie/Q 2 < 1 we have rli" = 2f /Q 2 +

O(el/Q4) and rF-et = 1/3 + 2 b/Q2 + 0(in/Q 4), so the shift is the same for both

endpoints. Numerically, for rnb = 4.2 GeV and Q = (35, 91.2, 207) GeV, T is shifted

by (0.029, 0.004, 0.0008). This shift is also observed experimentally in flavor tagged

thrust analyses [12, 48, 3].

In the following we outline the method used to compute the partonic d&b/dT. Like

for the massless case the distribution is divided into singular and nonsingular parts

d& d&s d& ns-- =b- (2.41)
dT dr dr

The implementation of the bottom mass effects into the singular distribution d&'/dr

follows the NLL' analysis in Ref. [80], except that the evolution in the present work is

incorporated fully at NNLL order and that the exact partonic threshold at r = rlbi"

is accounted for,

d =Q o M) H(Q p) UH (Q, H,m)] dsds' Jrb(s', fb, PJ) UJ(s - S', y, pJ)

2 6(R,gs) k t Qbi
x d k U;( k, y, ps)e-2 17 S*r Q li - - k, ps)

+ (MS-pole mass scheme change terms), (2.42)

where o (x) = o'V - 4x2(1 + 2X2) + oa(1 - 4X2)3/2. Perturbative bottom mass

effects in the soft function start at two loops, so at 0(a,) Spart remains unchanged.

Since we have fib/Q < 1, only the thrust jet function for bottom quark production,

Jrb(S, flub, P) [43], receives modifications from the finite mb. These modifications lead

to a shift of the partonic threshold of the thrust jet function from invariant mass

p2 = 0 to p2 = bu. In Job(S, rnb, p) the variable s = p2 - finb, and the presence of

the mass leads to Ti"" in Eq. (2.42). It also gives a more complicated form for 0(a,)

corrections in Jrb involving regular functions of mb/s in addition to singular terms

oc 6(s) and [ln(s/2)/(s/t2)]+ familiar from the massless quark jet function. More

details and explicit formulae can be found in Refs. [79, 80].
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The bottom quark mass effects in the nonsingular partonic distribution d&s/dT

are more complicated since finite mass effects at 0(a,) differ for vector and axial-

vector current induced jet production,

d& "" -S(RAs> M 'ns 'b /ns
b e Q 87 v ab

d-, .eI f T Q 7Q ) a ( Q, Q _

+ (MS-pole mass scheme change terms) . (2.43)

In our analysis we implement analytic expressions for the nonsingular functions fv
and fb. The full O(a8 ) distributions for T > 0 can be obtained from integrating the

known double differential bb energy distribution for vector-induced and axial-vector-

induced production, respectively, see e.g. Refs. [99, 128].6 The corresponding 0(a,)

coefficient of the 6 (T - T5"") term is obtained using the one-loop correction to the

total bb cross section as a constraint. To determine the nonsingular distributions fvA

we proceed much like for the massless case and subtract the singular contributions

expanded to 0(a,,) from the full 0(a,) distribution. Further details and explicit

formulas for f "'" will be given in a future publication.

2.2.8 QED Corrections

For the electroweak corrections to the thrust distribution we can distinguish purely

weak contributions and QED effects. The dominant effects to jet production from

the purely weak interactions are given by virtual one-loop corrections to the hard

Wilson coefficient HQ. Since the contribution of the singular thrust distribution

d&,/dT dominates in the r ranges we use for our fits as well as in the total cross

section -tot = f dr do/dT (see Fig. 2-4), the purely weak corrections largely drop out

when the distribution is normalized to the total cross section. This is consistent with

the explicit computations carried out in Refs. [66, 67], where purely weak corrections

were found to be tiny. In our analysis we therefore neglect purely weak effects.

For QED corrections the situation is more complicated because, apart from virtual

'Results for bottom mass corrections at O(oa) were determined in Refs. [46, 125, 134], but are
not used in our analysis due to the small effect the bottom mass corrections have in our fits.
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effects which again largely cancel in the normalized distribution, one also has correc-

tions due to initial state and final state radiation. In addition, one has to account

for the fact that the treatment of QED effects in the thrust measurements depends

on the experiment. In general, using Monte Carlo simulations, all experimental data

were corrected to eliminate the effects from initial state radiation. However, they

differ concerning the treatment of final state photon corrections, which were either

eliminated or included in the corrected data sets. In Sec. 3.1 we review information

on the approach followed by the various experimental collaborations. Since many

experiments did not remove final state radiation, we have configured a version of

our code that adds final state photons and QED Sudakov effects, and does so on an

experiment by experiment basis. A parametric estimate of the potential impact of

these QED effects on the measurement of a,(mz) is ~ -0.244 aem/(CFas) -~%,

where 0.244 is the average of the square of the electromagnetic charges for the five

lightest flavors.

We implement the leading set of QED corrections to all components that go

into the main factorization formula of Eq. (2.1) in the massless quark limit counting

aem ~ a' to make a correspondence with Tab. 2.1 and remembering to include cross

terms such as terms of 0(aemas). Exceptions where QED corrections are not included

are the gap subtraction 6(R, ps) and the R-evolution equation for the gap parameter

A. This is because QED effects do not lead to O(AQcD) infrared renormalon ambigu-

ities. Most of the required QED results can be obtained in a straightforward manner

from modifications of the known QCD corrections.

Our implementation of QED effects is briefly described as follows: For the evolu-

tion of the strong coupling we included the 0(oaew) corrections to the QCD beta

function. There are also effects from the evolution of the QED coupling aem(p) which

we define in the MS scheme. In the beta function for the QED coupling aem we

account for the dominant O(aim) and the next-to-leading 0(amas) contributions.

For the full singular partonic distribution which includes both QCD and QED effects
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we have

d =Q 0' HQ(Q, pH) UjJ(Q, PH, y)Jds ds' x J (s', p A) UJ'(S - S1, [U)

x Jdk UjI(k, y, ps)e-2Qo Sarr (Q T - - k, PS) (2.44)

where all factors now depend on the index I due to their dependence on the electro-

magnetic charges qI=uvua = +2/3 and qI=dv"d'bvba = -1/3. We implement one-loop

QED corrections in the hard factor Hj, the jet function J4 and the soft functions

SpartI. In the renormalization group evolution factors U-r, U', Ur' we account for the

one-loop QED corrections to the cusp and the non-cusp anomalous dimensions. In the

nonsingular partonic distribution d&as/dr the same approach is employed. Here the

O(aem) contributions that are analogous to the 0(a,) terms are included by writing

the full functions fI to be used in Eq. (2.23) as

f( ") - fq'cd(T, + ) .8 (2.45)
Q Q8r

The 1% parametric estimate and the moderate size of the QED effects we observe

from the results of our fits justifies the neglect of higher order QED effects. A more

precise treatment of QED effects is also not warranted given the level of accuracy

of the Monte Carlo generators used to correct the experimental data. More details

and explicit formulae for the QED corrections discussed here will be given in a future

publication.

2.3 Profile functions

The factorization formula for the singular partonic distribution d&6/dr in Eq. (2.8)

is governed by three renormalization scales, the hard scale pn,, the jet scale pj, and

the soft scale p-s. To avoid large logarithms appearing in the corrections to the hard

coefficient HQ, the jet function J, and the soft function ST, the corresponding scales
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must satisfy the following theoretical constraints in the three T regions:

1) peak: PH - Q , pJ ~ V/AQCDQ, p SAQCD,

2) tail: PH ~ Q, J ~ Qf, IIs ~ QT,

3) far-tail: PH = p = IpIs ~ Q . (2.46)

In the peak region, where the full nonperturbative function Sdi is relevant we have

pH >> pj > ,s - AQCD. In the tail region, where the nonperturbative effects are

described by a series of moments of the soft function we have pH > pi > Ps > AQCD-

To achieve an accurate theoretical description, we resum logarithms of T in the peak

and tail region where pH, p, and Ls are separated. Finally, in the far-tail region

the partonic contributions are described by usual fixed-order perturbation theory,

and a proper treatment of fixed order multijet thresholds requires that the three y

parameters merge close together in the far-tail region and become equal at T = 0.5,

with pH = pj = ps ~ Q > AQCD. Thus in the far-tail region logarithms of r are not

summed. The merging of PH, pj, and ps in the far-tail region is of key importance for

the cancellations between singular and nonsingular cross sections shown in Fig. 2-4.

To obtain a continuous factorization formula that is applicable in all three regions

we use r-dependent renormalization scales, which we call profile functions. These are

smooth functions of r which satisfy the theoretical constraints listed in Eq. (2.46).

In addition to the three renormalization scales of the singular partonic distribution

there are two more scales, pm and R. The renormalization scale p, governs the per-

turbative series for the function f' contained in the nonsingular partonic distribution

d8m/dr. The subtraction scale R arises when we implement the gap subtractions

in the R-gap scheme for Q, that remove the O(AQCD) renormalon contained in the

MS soft function. This R also corresponds to the endpoint of the R-evolution for

A(R, ps) given in Eq. (2.38). To avoid large logarithms in the subtraction 6(R, Ps),

the value of R needs to be chosen of order ps and is therefore also a function of -.

The factorization formula (2.1) is formally invariant under 0(1) changes of the

profile function scales, that is, changes that do not modify the hierarchies. The
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residual dependence on the choice of profile functions constitutes one part of the

theoretical uncertainties and provides a method to estimate higher order perturbative

corrections. We adopt a set of six parameters that can be varied in our theory error

analysis which encode this residual freedom while still satisfying the constraints in

Eq. (2.46).

For the profile function at the hard scale, we adopt

I'H = eH Q, (2.47)

where eH is a free parameter which we vary from 1/2 to 2 in our theory error analysis.

For the soft profile function we use the form

po + A 2, 0 < -r < t1 ,

PS (7) = br + d, t1 < -r < t2, (2.48)
PH ~ 1-2 2, t2 < r <

Here, ti and t 2 represent the borders between the peak, tail and far-tail regions. po

is the value of Is at r = 0. Since the thrust value where the peak region ends

and the tail region begins is Q dependent, we define the Q-independent parameter

ni = ti (Q/1 GeV). To ensure that ps(r) is a smooth function, the quadratic and

linear forms are joined by demanding continuity of the function and its first derivative

at T = t1 and r = t2 , which fixes b = 2 (PH - Po)I(t 2 - ti + 1) and d = [po(t2 + ) -

PH t1] / (t 2 - ti + 1). In our theory error analysis we vary the free parameters n1 , t 2

and po.

The profile function for the jet scale is determined by the natural relation between

the hard, jet, and soft scales

y j(T) = (1+ -(T) 2) V/pH pS (T). (2.49)

The term involving the free 0(1)-parameter ej implements a modification to this

relation and vanishes in the multijet region where r = 1/2. We use a variation of
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ej to include the effect of such modifications in our estimation of the theoretical

uncertainties.

For the subtraction scale R the choice R = ps(T) ensures that we avoid large

logarithms in the J;(R, ps) subtractions for the soft function. In the peak region,

however, it is convenient to deviate from this choice so that the O(a,) subtraction

term Ji(R, ps) = -0.8488261n(is/R) is nonzero (see Eq. (2.35)). We therefore use

the form

R(fr) Ro + plT + -2T 2 , 0 < r < t 1, (2.50)
P (s), t 1 < T < 0.5.

Imposing continuity of R(r) and its first derivative at T = ti requires 1t = (2d -

2Ro + bt1)/ti and p2 = (-d + Ro)/t2. The only free parameter is RO which sets the

value of R at T = 0. We take Ro = 0.85po to give the one loop subtraction Ji(R, pis)

the appropriate sign to cancel the renormalon in the peak region. Since our focus

here is not the peak region, we leave further discussion of the appropriate choice of

Ro to a future publication.

In our theory error analysis we vary t, to account for our ignorance on the

resummation of logarithms of r in the nonsingular corrections. We account for the

possibilities

1H, n,=1,

pns() { (r), n. = 0, (2.51)

1([zj () + p-s(T)), n, = -1.

We do not include the choice pm = ps since we find that the choice of this small scale

enhances the nonsingular contributions in an unnatural way.

In total, we have introduced six free parameters which we vary to account for

renormalization scale uncertainties. In our analysis we use the following central values

and variations: lo = 2t+_ GeV, ni = 5+3 t 2 = 0.25tg.5, ej = Ot1, eH = 2 h with

h = O+ and n, = (-1, 0, 1). In Fig. 2-5 we show the form of the profile functions for
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Figure 2-5: Profile functions for the renormalization scales pU(T), ps(r), and sub-

traction scale R(r) that appear in the factorization theorem. Shown are results for

the central parameter values at Q = mz.

Q = mz = 91.2 GeV and all profile parameters at their central values. The dashed

lines represent the functions Q~f~ and Q-r which were the central choices for y1 j(T)

and ps(T) used in Ref. [31], but which do not meet in the multijet region. In order

for our profile for pis(T) to join smoothly onto PH and pj(r) it is necessary for pg(r)

to have a slope ~ 2QT in the tail region. Since ln 2 is not large our profiles sum the

same ln r's as with the choice in Ref. [31], but satisfy the criteria necessary to treat

the multijet thresholds. 7

2.4 Nonperturbative Model Function

The soft nonperturbative function Sm' (k) parameterizes the dominant nonpertur-

bative hadronic effects in the thrust distribution. It describes the hadronization

contributions that arise from how soft hadrons that are radiated in between the jets

enter the thrust variable in Eq. (1.16). It is normalized, has the property S(O) = 0,

is positive definite and has support for k > 0. To keep the representation of Smod

as much as possible independent of a particular analytic parametrization we adopt

the approach of Ref. [116] and write the soft nonperturbative function as a linear

'In Ref. [64] where NLL resummation is achieved by exponentiation, the log resummation is
turned off at a predefined threshold -max with the log-R method [51]. In this approach the transition
to fixed order results in the multijet region differs from ours.
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combination of an infinite set of basis functions which can in principle describe any

function with the properties mentioned above. The model function we use has the

form

S od(k, A, {ci}) = n (k)] (2.52)
n=o

where the basis functions are [116]

2z3(2n + 1)-2fn(z) = 8 3  e2zP(g(z)),

3(
g(z) = 3 - e-4z (3 ± 12z ± 24z2 ± 32z3)) - 1, (2.53)

and Pn are Legendre polynomials. For EZ c? = 1 the norm of S,"d (k) is unity, Qo = 1.

The choice of basis in Eqs. (2.52) and (2.53) depends on specifying one dimensionful

parameter A which is characteristic of the width of the soft function. With N = oo the

parameter A would be redundant, but in practice we truncate the sum in Eq. (2.52)

at a finite N, and then A is effectively an additional parameter of the model function.

In this work we fit to experimental thrust data in the tail region where the predomi-

nant effects of the soft model function are described by its first moment Q, (A, A, {ci}).

As explained below, we use the second moment Q 2 (A, 6, {ci}) to validate our error

analysis and confirm the validity of neglecting this parameter in the fit. Since in the

tail region the exact form of the soft model function is not relevant, we take N = 2

setting Cn>2 = 0. Variations of the parameter ci are highly correlated with variations

of A and are hence not necessary for our purposes, so we set ci = 0. For this case

Q1=n±+ [c2 + 0.201354coc 2 + 1.10031c2]

Q2 =A 2 +AA [c + 0.201354coc 2 + 1.10031c2]

+ - [1.25c2 + 1.03621coc 2 + 1.78859c2] , (2.54)

and the normalization condition co+ c2 =1 can be used to eliminate co > 0. Recall

that in the soft model function in the factorization theorem we must use Sm (k -
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2A(R, ps), A, {ci}) where R = R(r) and ps = ps (T) are determined by the profile

functions. When we quote numbers for parameters we use A = A(RA, pA) and hence

Q1,2 = Q1,2(RA, pA) with reference scales yA = RA = 2 GeV. The running between

the scales (R, ps) and (RA, pA) is determined by Eq. (2.38).

For our default fit in the tail region only the parameter Q1 is numerically relevant

so without loss of generality we can take co = 1, c2 = 0, and set A(RA, pA) =

0.05 GeV. In this case all higher moments Q,> are determined as a function of Q1

and A. For example we have Q2 = (A 2 - 2AQ 1 + 5Q2)/4 for the second moment.

In Sec. 3.2 we analyze the dependence of our fit results on changes of Q2 . Because

c2 has a rather strong correlation to Q2, we implement these Q2 variations by using

Eq. (2.54) and setting c2 to nonzero values. In this case we can hold Q1 fixed by a

suitable choice of A for a given c2.

To obtain results from our code that do not include nonperturbative corrections

we can simply turn them off by setting Sod(k) = 6(k) and A = 6 = 0.

2.5 Normalization and Convergence

The experimental data is normalized to the total number of events. In our prediction

we therefore need to normalize the distribution to the total cross section, i.e. we have

to calculate (1/o)d/dr. Since the factorization formula in Eq. (2.1) is valid for all

thrust values we have the option to use either the integral of our da/d-r distribution

for the norm, or the available fixed-order result for the total hadronic cross section.

The fixed-order total cross section is

UoF -= uoR', RUV = Rdv = Ru" = R& = RHad,

a
2

Rba = RHad + RA+ 3 7r2 I(rt) R" = RHaa+Rv. (2.55)

Here RHa is the pure QCD cross section for massless quarks, RA,V are mass correc-

tions depending on mb/Q, and I(rt) is the isosinglet correction from the axial anomaly

and large top-bottom mass splitting [104]. Setting p = Q the QCD cross sections for
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Figure 2-6: Theory scan for errors in pure QCD with massless quarks. The panels
are a) fixed-order, b) resummation with no nonperturbative function, c) resummation
with a nonperturbative function using the MS scheme for Q1 without renormalon
subtraction, d) resummation with a nonperturbative function using the R-gap scheme
for Q1 with renormalon subtraction.

massless quarks at three loops is

RHad = 1 ± 0.3183099 as (Q) 0-.1427849ca(Q) ~ O-411757al(Q). (2.56)

We refer to the review in Ref. [551 for a discussion of the fixed-order hadronic cross

section. We note that the a, series for the fixed-order hadronic cross section exhibits

an excellent and fast convergence. At 0(a') the perturbative uncertainty is much

below the permille level and hence entirely negligible for the purpose of our analysis.

In the R-gap scheme in pure QCD, from a numerical analysis at Q = mz, we
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find at N3 LL' order that the integrated norm of the thrust distribution for the default

setting of all theory parameters (see Tab. 3.1) gives about 0.99 tot at 0(a3). However

we also find that the perturbative uncertainty of the integrated norm (determined by

the theory scan as described in Sec. 3.1) is about t2.5%, which is substantially

larger than for the fixed-order cross section. This larger uncertainty is due to the

perturbative errors of the thrust distribution in the peak region. At N3LL' order we

therefore employ the fixed order cross section to normalize the thrust distribution we

use for the fits.

At the lower orders in the R-gap scheme (N3LL, NNLL', NNLL, NLL') we find

that the integrated norm for central theory parameters is more appropriate since

the order-by-order convergence to ort is substantially slower than that of the rapid

converging fixed-order QCD result in Eq. (2.56). Again we find that the large pertur-

bative uncertainties in the peak region render the perturbative errors of the integrated

norm larger than those of the fixed-order norm. We therefore evaluate the integrated

norms at the lower orders with the theory parameters fixed at their default values (see

Tab. 3.1). This means that to estimate the theoretical errors in our fits to experimen-

tal data at orders below N3 LL' in the R-gap scheme, we vary the theory parameters

only for the distribution and not for the norm computation. In the MS scheme for

Qi we also adopt the integrated norm at all orders. When we evaluate the thrust

distribution with log-resummation but without nonperturbative effects we use the

same normalization choices as for the R-gap scheme, which makes comparison to ear-

lier work in Sec. 3.4 easier. For the situation where the cross-section is evaluated at

fixed-order, without resummation or nonperturbative effects, we use the appropriate

fixed order normalization at each order.

As discussed in Sec. 3.1, to compare with the binned experimental data we in-

tegrate our theoretical expression for the distribution (1/o-)(do-/dr) over each bin

[1r1, -r2]. A potential alternative is to use theoretical results for the cumulant

E(-r) = dr- (rT') . (2.57)
o o- d-r
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Here one sums large logs of T rather than r', and the SCET based cumulant has T

dependent profiles, E(, pi(r)). The presence of pi(r) implies that the derivative of

the cumulant is not precisely equal to the distribution,

d 1 do dyi(r) & fT do
-- E (, pi(r)) - - (, Pi(T)) + di(T) a dT' , (T', 1(T)) . (2.58)

dT o dr dr pi o dTr

The difference coming from the second term in Eq. (2.58) can be numerically im-

portant for certain observables. To test this we consider using for the cross-section

integrated over the bin [Ti, T2] the theoretical expression

E,- (Pii(, Pi()) , (2.59)

and will examine several choices for hi,2-

One simple possibility is to use -1 = T and -2 = T2, so that E(T2 , pi(T2 )) -

E(Ti, pi(Ti)) is used. In this case there is a spurious contribution from outside the

[T1, T2] bin associated to the second term in Eq. (2.58),

E(ri, pi(T2)) - E(Ti, Pi(T1)) ~ (72 - T1)di(T) dr'-( Pi()) , (2.60)
dT alpi fo dT'

where the ~ holds under the approximation that the derivative do not change very

much across the bin. With our default setup the deviation of this simple choice for the

cumulants from our integrated result for the distribution is 2% to 8% for T E [0.1, 0.3],

bin-size T2-T1 = 0.01, and Q = 91.2 GeV.8 In the far-tail region T1 E [0.3, 0.45], where

the cross-section becomes small, the deviation grows from 8% to 1000%. The size of

the spurious contribution is not reduced by increasing the bin-size to T2 - T1 = 0.05,

and is only mildly dependent on Q. Any choice in Eq. (2.59) where -i / i 2 leads to

a spurious contribution from 7 E [0, '7i].

If we instead use ;i = ;2 = (Ti +-F2)/2 then the spurious contribution is identically

zero. In this case the difference between Eq. (2.59) and our integrated thrust distri-

8 For the profile functions used by Becher and Schwartz [31], discussed in section 3.4, this deviation
has similar size but opposite sign.
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bution is reduced to 0.5% for ri E [0.1, 0.3] and for T1 E [0.3, 0.45] grows from 0.5% to

only 20%. Although dramatically reduced, the difference to the integrated distribu-

tion in the far-tail region is still quite sizeable. This discrepancy occurs because only

for the distribution (1/o)(do-/dr) can the pi(T) profile functions be constructed such

that they satisfy exactly the criteria discussed in Sec. 2.3. Due to the above issues,

and since the binned datasets are intended as representations of the thrust distribu-

tion, we have determined that our approach of integrating the thrust distribution is

conceptually the best.

In the rest of this section we discuss the perturbative behavior of the thrust

distribution in the tail region. The values of the physical parameters used in our

numerical analysis are collected in Eq. (A.4). For our lower order fits we always

use the four-loop beta function in the running of the strong coupling constant, as

mentioned in the caption of Tab. 2.1. Furthermore, we always consider five active

flavors in the running and do not implement bottom threshold corrections, since our

lowest scale in the profile functions (the soft scale ps) is never smaller than 6 GeV in

the tail where we perform our fit.

In Fig. 2-6 we display the normalized thrust distribution in the tail thrust range

0.15 < r < 0.30 at the different orders taking a,(mz) = 0.114 and Q1(RApA) =

0.35 GeV as reference values, and neglecting mb and QED corrections. We display the

case Q = mz where the experimental measurements from LEP-I have the smallest

statistical uncertainties. The qualitative behavior of the results agrees with other

c.m. energies. The colored bands represent the theoretical errors of the predictions

at the respective orders, which have been determined by the scan method described

in Sec. 3.1.

In Fig. 2-6a we show the O(a,) (light/yellow), O(a) (medium/purple) and O(ac)
(dark/red) fixed-order thrust distributions without summation of large logarithms.

The common renormalization scale is chosen to be the hard scale PH. In the fixed-

order results the higher order corrections are quite large and our error estimation ob-

viously underestimates the theoretical uncertainty of the fixed-order predictions. This

panel including the error bands is very similar to the analogous figures in Refs. [85]
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and [144]. This emphasizes the importance of summing large logarithms.

In Fig. 2-6b the fully resummed thrust distributions at NLL' (yellow), NNLL

(green), NNLL' (purple), N3LL (blue) and N3LL' (red) order are shown, but without

implementing the soft nonperturbative function S1od or the renormalon subtractions

related to the R-gap scheme. The yellow NLL' error band is mostly covered by the

green NNLL order band, and similarly the purple NNLL' band is covered by the blue

N3 L L one. Moreover the blue N3 LL band is within the purple NNLL band. Compared

to the fixed-order results, the improvement coming from the systematic summation of

large logarithms is obvious. In particular we see that our way of estimating theoretical

uncertainties is appropriate once the logarithms are properly summed. At N3 LL and

at N3 LL' order the relative uncertainties of these resummed thrust distributions in

the tail region T E [0.1, 0.3] are about ± 7.8% and ± 4.6%, respectively.

The results shown in Fig. 2-6c are very similar to panel b but now include also

the soft nonperturbative function S,,od without renormalon subtractions, where ni is

defined in the MS scheme. In the tail region the soft nonperturbative function leads

to a horizontal shift of the distribution towards larger thrust values by an amount

or oc 2Q1/Q. This is clearly visible by comparing the values at r = 0.15 where the

curves intersect the y-axis. Concerning the uncertainty bands and the behavior of

predictions at the different orders the results are very similar to those in panel b.

Finally, in Fig. 2-6d we show the results with summation of large logarithms

including the soft model function with renormalon subtractions, where Q1 is defined

in the R-gap scheme. In the R-gap scheme the convergence of perturbation theory is

improved, and correspondingly the size of the uncertainties from the same variation

of the theory parameters is decreased. The decrease of the uncertainties is clearly

visible comparing the blue N3 LL and the red N3 LL' uncertainty bands with panel c.

The relative uncertainties of the thrust distribution at N3LL and at N3LL' order in

the tail region r E [0.1, 0.3] are now about ± 3.4% and ± 1.7%, respectively. This

improvement illustrates the numerical impact of the O(AQCD) renormalon contained

in the partonic soft function and shows the importance of eliminating the O(AQCD)

renormalon.
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Chapter 3

Analysis of Thrust Distribution:

Tail fit

3.1 Experimental data and fit procedure

Experimental data for thrust are available for various c.m. energies Q between 14 and

207 GeV. In our analysis we fit the factorization formula (2.1) in the tail region to

extract a, and Q1. As our default data set we use the thrust range 6/Q < r < 0.33,

and we only employ data from Q > 35 GeV. The lower boundary 6/Q removes

data in the peak where higher order moments become important, while the upper

boundary of 0.33 removes data in the far-tail region where the aSAQCD/Q power

corrections become more important. We take Q > 35GeV since a more sophisti-

cated treatment of b quark effects is required at lower energies. The data we use are

from TASSO with Q = {35,44} GeV [47], AMY with Q = 55.2 GeV [115], JADE

with Q = {35,44} GeV [124], SLC with Q = 91.2 GeV [8], L3 with Q = {41.4,

55.3, 65.4, 75.7, 82.3, 85.1, 91.2, 130.1, 136.1, 161.3, 172.3, 182.8, 188.6, 194.4, 200.0,

206.2} GeV [12, 14], DELPHI with Q = {45, 66, 76, 89.5, 91.2, 93, 133, 161, 172, 183,

189, 192, 196, 200, 202, 205, 207} GeV [6, 10, 146, 9], OPAL with Q = {91, 133, 161,

172, 177, 183, 189, 197} GeV [5, 13, 4] and ALEPH with Q = {91.2, 133, 161, 172,

183, 189, 200, 206} GeV [91]. (For TASSO and AMY we have separated statistical

and systematic errors using information from the experimental papers.) All data is
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given in binned form, and we therefore integrate Eq. (2.1) over the same set of bins

to obtain appropriate theory results for the fit to the experimental numbers. For the

case that either r = 6/Q or r = 0.33 are located within an experimental bin, that bin

is excluded from the data set if more than half of it lies outside the chosen interval.

For the Q > mz data we removed five bins with downward fluctuations that were

incompatible at the > 10-sigma level with the cross section implied by neighboring

data points and other experimental data in the same region. The list of these bins is:

L3 (136.1 GeV): [0.25,0.275], DELPHI (161 GeV): [0.32,0.40], DELPHI (183 GeV):

[0.08,0.09], DELPHI (196 GeV): [0.16,0.18], ALEPH (200 GeV): [0.16,0.20].1 Our

default global data set contains a total of 487 bins. In the numerical analysis per-

formed in Sec. 3.2 we also examine alternative global data sets with different T-ranges.

The data sets were corrected by the experiments to eliminate the QED effects

from initial state radiation using bin-by-bin correction factors determined from Monte

Carlo simulations. The primary aim of these corrections was to eliminate the effective

reduction of the c.m. energy available for the production of the hadronic final state.

In addition, in the data sets from the TASSO, L3 and ALEPH collaborations the

effects from final state radiation of photons were eliminated, while they have been

fully included in the data sets from the AMY, JADE, SLC, DELPHI and OPAL

collaborations. It should also be noted that the approaches used by the experiments

to treat photon radiation were dependent on the c.m. energy Q. For the Q = mz

data any radiation of initial state photons is naturally suppressed as the effective c.m.

energy for the hadronic final state gets shifted away from the Z pole. Therefore no

specific photon cuts were applied for the Q = mz data prior to the application of the

bin-by-bin correction factors. For the data taken off the Z pole for either Q < mz

or Q > mz the effects of initial state radiation are substantial and explicit hard

photon cuts were applied in the data taking prior to the application of the bin-by-bin

correction procedure. We therefore consider the Q = mz data sets as more reliable

concerning the treatment of QED effects.

'Four out of these bins lie in our r E [6/Q, 0.33] default fit range. If they are included in the
default dataset then for our final fit in Eq. (3.5) the X2 = 439 increases by +81 and the central fit
values show a slight decrease to a.(mz) = 0.1132 and a slight increase to fh = 0.336 GeV.
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Since the size of the QED effects we find in the measurements of c and the

soft function moment Q1 is comparable to the experimental uncertainties (see the

results and discussions in Sec. 3.2), a less Monte Carlo dependent treatment of QED

radiation would be certainly warranted. (See Ref. [67] for a recent discussion of QED

radiation based on full one-loop matrix elements.) However, given that the impact

of QED corrections we find for a, and Q1 is still smaller than the current theoretical

uncertainties from QCD, we use for our default numerical analysis the theory code

with QED effects switched on, as described in Sec. 2.2.8. In Sec. 3.2 we also present

results when QED corrections are neglected for all data sets, and for the case when

they are neglected only for the TASSO, L3 and ALEPH data sets.

For the fitting procedure we use a X2-analysis, where we combine the statistical

and the systematic experimental errors into the correlation matrix. We treat the

statistical errors of all bins as independent. The systematic errors of the bins are

correlated, but - unfortunately - practically no information on the correlation is given

in the experimental publications. We therefore have to rely on a correlation model.

For our analysis we assume as the default that within one thrust data set, i.e. for

the set of thrust bins obtained by one experiment at one Q value, the systematic

experimental errors are correlated in the minimal overlap model used by the LEP

QCD working group [91, 5]. In the minimal overlap model the off-diagonal entries of

the experimental covariance matrix for the bins i and j within one data set are equal

to [min(AY, A78 )]2 , where AoS are the systematic errors of the bins i and j. This

model implies a positive correlation of systematic uncertainties within each thrust

data set. As a cross check that our default correlation model does not introduce a

strong bias we also carry out fits were the experimental systematic errors are assumed

to be uncorrelated. Details are given in Sec. 3.2.

To estimate the theoretical errors in the a,-Q1 plane at any order and for any

approximation used for the factorization formula (2.1), we carry out independent fits

for 500 different sets of theory parameters which are randomly chosen in the ranges

discussed in the previous sections and summarized in Tab. 3.1. We take the area

covered by the points of the best fits in the as-Q1 plane as the theory uncertainty
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parameter default value range of values

yo 2GeV 1.5 to 2.5 GeV
n1 5 2 to8

t2 0.25 0.20 to 0.30
ej 0 -1,0,1
eH 1 0.5 to 2.0
ns 0 -1,0,1
s2 -39.1 -36.6 to -41.6

3cusp 1553.06 -1553.06 to +4569.18

j 0 -3000 to +3000
S3 0 -500 to +500
62

63

0
0

-1,0,1
-1,0,1

Table 3.1: Theory parameters relevant for estimating the theory uncertainty, their
default values and range of values used for the theory scan during the fit procedure.

Q = 35 GeV
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Figure 3-1: Difference between default cross section and the cross section varying
only one parameter as a function of T. We vary a,(mz) by ± 0.001 (solid red curves),
2Q1 by ± 0.1 (dashed blue curves) and c2 by ± 0.5 (dash dotted green curves). The
plot is shown for three different values of the center of mass energy: (a) Q = 35 GeV,
(b) Q = 91.2 GeV, (c) Q = 206 GeV.
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treated like 1-sigma.2 We emphasize that this method to estimate theoretical errors is

more conservative than the error band method [102] employed for example in Refs. [31,

68]. However, our method required considerably more computer power and it was

necessary to use the Tier-2 centers at Garching and MIT, as well as clusters at the

MPI and the University of Arizona. In Sec. 3.2 we also present the outcome of other

ways to estimate the theoretical error.

It is an important element of our analysis that we carry out global fits to the data

from all values of Q > 35 (and all experiments). This is motivated by the strong

degeneracy between az and Q1 in the tail region which can only be lifted when data

from different Q values are simultaneously included in the fits.3 In Fig. 3-1 the

difference du/dr - (da/dr)default is displayed for 0.08 < -r < 0.30 and Q = 35, 91.2

and 206 GeV. Here (do/dT)default is the cross section for the default setting of the

theory parameters with a,(mz) = 0.114 and Q1 = 0.35 GeV and for du/dr we vary

either o, (mz) by ± 0.001 (solid red curves) or 2Q 1 by ± 0.1 GeV (dashed blue curves)

from their default values. The figures show that in the tail region changes in c can

be compensated by changes in Q1. This degeneracy makes it impossible to determine

a. and Q1 simultaneously with small uncertainties from tail fits that use data from

one Q value (or from a narrow range of Q values). On the other hand, we see that

the correlation is Q dependent when considering a large enough range of Q values.

In our fits it is particularly important to include, apart from the data from Q = mz,

the low-energy data from JADE, TASSO, and AMY, and the high energy data from

the LEP-I experiments. Although the errors in these analyses are larger than from

the high-statistics Q = mz run at LEP-I these data sets are essential for breaking

the degeneracy and simultaneously extracting c and Q 1 .
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Figure 3-2: Distribution of best fit points in the a,(mz)-2Q1 and a,(mz)-2ni planes.

Panel (a) shows results including perturbation theory, resummation of the logs, the

soft nonperturbative function and Q1 defined in the R-gap scheme with renormalon

subtractions. Panel (b) shows the results as in panel a, but with 0 1 defined in the
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3.2 Numerical Analysis

Having explained all ingredients of the factorization formula (2.1) and the fit proce-

dure we are now in the position to discuss the numerical results of our analysis based

on a global fit to the experimental data for Q > 35 GeV in the tail region. In the

tail region the dominant power corrections are encoded in the first moment Q1, see

Eq. (2.3), so we can determine a,(mz) and Q1 from a simultaneous fit. In this section

we examine in detail the numerical results of our fits concerning the treatment of the

perturbative, hadronization and experimental errors, QED and bottom mass correc-

tions and their dependence on the choice of the data set. We note that the values

quoted for Q1 in the R-gap scheme are given for reference scales RA = pA = 2 GeV,

see Sec. 2.2.6.

Theory Scan

In Fig. 3-2 the best fit points of the theory parameters scan in the a,-2Q1 plane are

displayed at NLL' (brown), NNLL (magenta), NNLL' (green), N3 L L (blue) and N3 LL'

(red) order. The fit results at N3LL' order include bottom mass and QED corrections.

In Fig. 3-2a the results in the R-gap scheme with renormalon subtractions are shown,

and in Fig. 3-2b the results in the MS scheme without gap subtractions are given.

At each order 500 fits were carried out with the theory parameters randomly

chosen in the ranges given in Tab. 3.1. As described in Sec. 3.1, we take the size of the

area in the a,-2Q1 plane covered by the best fit points as a measure for the theoretical

uncertainties. To visualize the theoretical uncertainties we have colored the respective

areas according to the orders. The fit results clearly show a substantial reduction of

the theoretical uncertainties with increasing orders. Explicit numerical results for

the respective central values (determined by the mean of the respective maximal and

minimal values) and the theory errors (determined by half of the difference between

maximal and minimal values) for a, and Q1 are given in Tabs. 3.2 and 3.3, respectively.

2This corresponds to a 1-sigma error (68% CL) in a, as well as in Q1 .
3The presence of this degeneracy is presumably also related to why Monte Carlos that are tuned

to LEP data tend to have smaller hadronization corrections at Q = mz than at larger Q values. See
Sec. 3.4.
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order
NLL'
NNLL
NNLL'
N3LL

N3L L' (full)
N3L L'(QCD+mb)
N3L L'(pure QCD)

as(mz) (with ajs)
0.1203 ± 0.0079
0.1222 t 0.0097
0.1161 t 0.0038
0.1165 ± 0.0046
0.1146 ± 0.0021
0.1153 ± 0.0022
0.1152 ± 0.0021

ax(mz) (with QI)
0.1191 ± 0.0089
0.1192 ± 0.0060
0.1143 ± 0.0022
0.1143 i 0.0022

0.1135 i 0.0009
0.1141 i 0.0009
0.1140 & 0.0008

Table 3.2: Theory errors from the parameter scan and central values for a,(mz) at

various orders. The N3 LL' value above the horizontal line is our final scan result,
while the N3 LL' values below the horizontal line show the effect of leaving out the

QED corrections, and leaving out both the b-mass and QED respectively. The central

values are the average of the maximal and minimal values reached from the scan.

order
NLL'

NNLL
NNLL'
N3LL

N3L L' (full)
N3 LL'(QCD+mb)

N3 LL'(pure QCD)

Q1 (MS)
0.264 ± 0.213
0.256 ± 0.197
0.283 ± 0.097
0.274 ± 0.098
0.252 ± 0.069
0.238 ± 0.070
0.254 ± 0.070

Q1 (R-gap)
0.293 ± 0.203
0.276 ± 0.155
0.316 ± 0.072
0.313 ± 0.071

0.323 ± 0.045
0.310 ± 0.049
0.332 ± 0.045

Table 3.3: Theory errors from the parameter scan and central values for Q1 defined at
the reference scales RA = pA = 2 GeV in units of GeV at various orders. The N3LL'
value above the horizontal line is our final scan result, while the N3LL' values below
the horizontal line show the effect of leaving out the QED corrections, and leaving
out both the b-mass and QED respectively. The central values are the average of the
maximal and minimal values reached from the scan.

We will consider these theory errors as 1-sigma. At N3LL' order with Q1 in the R-

gap scheme the theory error for a,(mz) is ±0.0009 compared to ±0.0021 with 01 in

the MS scheme. Also at NNLL' and N3LL we see that the removal of the O(AQCD)

renormalon leads to a reduction of the theoretical uncertainties by about a factor

of two in comparison to the results with 01 in the MS scheme without renormalon

subtraction. The proper treatment of the renormalon subtraction is thus a substantial

part of a high-precision analysis for Q1 as well as for ca.

It is instructive to analyze the minimal X2 values for the best fit points shown in

Fig. 3-2. In Fig. 3-3 the distributions of the best fits in the a8 -Xmin/dof plane are

shown using the color scheme of Fig. 3-2. Figure 3-3a displays the results in R-gap
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Figure 3-4: Thrust distribution at N3 LL' order and Q = mz including QED and mb

corrections using the best fit values for a,(mz) and Q1 in the R-gap scheme given in

Eq. (3.5). The pink band represents the perturbative error determined from the scan

method described in Sec. 3.1. Data from DELPHI, ALEPH, OPAL, L3, and SLD are

also shown.

scheme, and Fig. 3-3b the ones in the MS scheme. For both schemes we find that the

X . values and the size of the covered area in the a,-Xin/dof plane systematically

decrease with increasing order. While the analysis in the MS scheme for Q1 leads to

Xin/dof values around unity and thus an adequate description of the entire global

data set at N3 LL' order, we see that accounting for the renormalon subtraction in

the R-gap scheme leads to a substantially improved theoretical description having

XJn/dof values below unity already at NNLL' and N3 LL orders, with the N3 LL' order

result slightly lower at X n/dof ~ 0.91. This demonstrates the excellent description

of the experimental data contained in our global data set. It also validates the smaller

theoretical uncertainties we obtain for a, and Q1 at N3 L L' order in the R-gap scheme.

As an illustration of the accuracy of the fit, in Fig. 3-4 we show the theory thrust

distributions at Q = mz for the full N3 LL' order with the R-gap scheme for Q1, for

the default theory parameters and the corresponding best fit values shown in bold in

Tabs. 3.2 and 3.3. The pink band displays the theoretical uncertainty from the scan

method. The fit result is shown in comparison with data from DELPHI, ALEPH,

OPAL, L3, and SLD, and agrees very well. (Note that the theory values displayed
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Band Band Our scan
method 1 method 2 method

N3L L' with Qgap 0.0004 0.0008 0.0009
N3LL' with of' 0.0016 0.0019 0.0021
N3LL' without STPd 0.0018 0.0021 0.0034
O(a3) fixed-order 0.0018 0.0026 0.0046

Table 3.4: Theoretical uncertainties for a,(mz) obtained at N3LL' order from two
versions of the error band method, and from our theory scan method. The uncertain-
ties in the R-gap scheme (first line) include renormalon subtractions, while the ones in
the MS scheme (second line) do not and are therefore larger. The same uncertainties
are obtained in the analysis without nonperturbative function (third line). Larger
uncertainties are obtained from a pure O(c) fixed-order analysis (lowest line). Our
theory scan method is more conservative than the error band method.

are actually binned according to the ALEPH data set and then joined by a smooth

interpolation.)

Band Method

It is useful to compare our scan method to determine the perturbative errors with

the error band method [102] that was employed in the analyses of Refs. [68, 31, 69].

In the error band method first each theory parameter is varied separately in the

respective ranges specified in Tab. 3.1 while the rest are kept fixed at their default

values. The resulting envelope of all these separate variations with the fit parameters

ac(mz) and Q1 held at their best fit values determines the error bands for the thrust

distribution at the different Q values. Then, the perturbative error is determined by

varying a,(mz) keeping all theory parameters to their default values and the value

of the moment Q1 to its best fit value. The resulting perturbative errors of a,(mz)

for our full N3LL' analysis in the R-gap scheme are given in the first line of Tab. 3.4.

In the second line the corresponding errors for a,(mz) in the MS scheme for Q1 are

displayed. The left column gives the error when the band method is applied such

that the a,(mz) variation leads to curves strictly inside the error bands for all Q

values. For this method it turns out that the band for the highest Q value is the most

restrictive and sets the size of the error. The resulting error for the N3LL' analysis in

the R-gap scheme is more than a factor of two smaller than the error obtained from
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our theory scan method, which is shown in the right column. Since the high Q data

has a much lower statistical weight than the data from Q = mz, we do not consider

this method to be sufficiently conservative and conclude that it should not be used.

The middle column gives the perturbative error when the band method is applied

such that the a8 (mz) variation minimizes a X2 function which puts equal weight to

all Q and thrust values. This second band method is more conservative, and for

the N3LL' analyses in the R-gap and the MS schemes the resulting errors are only

10% smaller than in the scan method that we have adopted. The advantage of the

scan method we use is that the fit takes into account theory uncertainties including

correlations.

Effects of QED and the bottom mass

Given the high-precision we can achieve at N3LL' order in the R-gap scheme for Q1,

it is a useful exercise to examine also the numerical impact of the corrections arising

from the nonzero bottom quark mass and the QED corrections. In Fig. 3-5 the

distributions of the best fit points in the a,-2Q1 plane at N3LL' in the R-gap scheme

is displayed for pure massless QCD (light green points), including the bottom mass

corrections (medium blue points) and the bottom mass as well as the QED corrections

(dark red points). The distribution of the best fit points with bottom mass and QED

corrections (dark red points) was already shown in Fig. 3-2a. The large black dots

represent the corresponding central values. The corresponding numerical results are

shown at the bottom of Tabs. 3.2 and 3.3.

We see that the QED and bottom quark mass effects are somewhat smaller than

the theoretical errors of the N3LL' analysis but not negligible. Moreover we find

that the qualitative impact of the QED and the bottom quark mass effects is quite

intuitive: The nonzero bottom quark mass primarily causes a horizontal shift of the

thrust distribution towards larger T values, since the small-r threshold for massive

quark production is moved to a finite r value. Here this is compensated primarily by

a reduced value of Q1. Concerning QED effects, they cause an effective increase of

the coupling strength in the final state interactions leading primarily to a decrease of
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Figure 3-5: Distribution of best fit points at N3LL' order with Q1 in the R-gap
scheme in pure QCD (light green), including mb effects (medium blue) and including
mb effects and QED corrections (dark red). Solid circles indicate the central points
for these three cases. The hollow circle represents the central point from the global
fit with QED corrections neglected for the data from TASSO, L3 and ALEPH, but
included for all other data sets.

a, in the fit.

As explained in Sec. 3.1 the experimental correction procedures applied to the

AMY, JADE, SLC, DELPHI and OPAL data sets were designed to eliminate initial

state photon radiation, while those of the TASSO, L3 and ALEPH collaborations

eliminated initial and final state radiation. It is straightforward to test for the effect

of these differences in the fits by using our theory code with QED effects turned on

or off depending on the data set. Since our X2 procedure treats data from different

experiments as uncorrelated it is also easy to implement this technically. Using our

N3LL' order code in the R-gap scheme we obtain the central values a8 (mz) = 0.1136

and 01 = 0.318 GeV, indicated by the hollow circle in Fig. 3-5. Comparing to our

default results given in Tabs. 3.2 and 3.3, which are based on the theory code were

QED effects are included for all data sets, we see that the central value for a, is larger

by 0.0001 and the one for 01 is smaller by 0.006 GeV. This shift is substantially smaller
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than our perturbative error, and justifies our choice to use the theory code with QED

effects included as the default code for our analysis.

Hadronization and Experimental Error

An important element in the construction of the x2 function used for our fit procedure

is the correlation model for the systematic uncertainties given for the experimental

thrust bins. The results discussed above rely on the minimal overlap model for the

systematic experimental errors explained in Sec. 3.1. The 1-sigma ellipse based on

the central values of Eq. (3.1) and centered around (a,, 2Q1 ) = (0.1135, 0.647 GeV) is

shown in Fig. 3-6 by the red solid ellipse. This ellipse yields the experimental errors

and hadronization uncertainty related to Q1 in our analysis. We find that the size

and correlation coefficients of the 1-sigma error ellipses at N3LL' order of all fits made

in our theory scan are very similar, and hence we can treat the theory error and these

hadronization/experimental errors as independent.

The correlation matrix of the red solid error ellipses is (ij = as, 2Q 1)

Vii =2' P a 2 (3.1)
(Ta., 201 PaQ 072Q1

3.29(16) - 10- 7  -2.30(12) - 10- GeV

-2.30(12) - 10-' GeV 1.90(18) . 10-3 GeV 2

where the correlation coefficient is significant and reads

paa = -0.9176(60). (3.2)

The numbers in the parentheses represent the variance from the theory scan. From

Eq. (3.1) it is straightforward to extract the experimental error for a, and Q1 and
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Figure 3-6: Experimental 1-sigma standard error ellipse (red solid) in the a,-2Q1
plane. The larger ellipse shows the total uncertainty including theory errors (blue
dashed). The fit is at N3LL' order in the R-gap scheme for Q1 using the central
values of the correlation matrix given in Eq. (3.1). The center of the ellipse are the
central values of our final result given in Eq. (3.5).

the error due to variations of Q1 and a,, respectively:

oexp = - 1-pn =0.0002,

exp = j
= -pa= 0.009 GeV,

orQ = oa jpo l = 0.0005,

o0g = a, |pc l = 0.020 GeV. (3.3)

For c, the error due to Q1 variations is the dominant part of the hadronization

uncertainty. The blue dashed ellipse in Fig. 3-6 shows the total error in our final

result quoted in Eq. (3.5) below.

The correlation exhibited by the red solid error ellipse in Fig. 3-6 is indicated by

the line describing the semimajor axis

= 0.1213 - a,(mz).
41.5 GeV

(3.4)
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Note that extrapolating this correlation to the extreme case where we neglect the

nonperturbative corrections (Q1 = 0) gives a,(mz) -* 0.1213. This value is consistent

with the fits in Refs. [68, 69] shown in Tab. 3.6, which are dominated by Q = mz

where the Monte Carlo hadronization uncertainties are smallest.

Individual Theory Scan Errors

It is a useful exercise to have a closer look at the size of the theory uncertainties caused

by the variation of each of the theory parameters we vary in our fit procedure in order

to assess the dominant sources of theory errors. In Fig. 3-7 two bar charts are shown

for the variation of the best fit values for a,(mz) and Q1(RA, pA) at N3 LL' order

in the R-gap scheme with our default theory parameters. The bars show individual

up-down variations of each of the theory parameters in the ranges given in Tab. 3.1.

The changes of the best fit values related to up variations of the theory parameters

are given in dark blue and those related to down variations are given in light green.

We see that the dominant theory uncertainties are related to variations of the

profile functions (ni, t2 , ej, eH) and the renormalization scale parameter (n,) for the

nonsingular partonic distribution d&Br/dr . The uncertainties related to the numerical

errors of the perturbative constants (82, S3, j3) as well as the numerical errors in the

extraction of the nonsingular distribution for small T values, (,2, E3 ) are - with the

exception of s 2 - much smaller and do not play an important role. The theory

error related to the unknown 4-loop contribution to the cusp anomalous dimension is

negligible. Adding quadratically the symmetrized individual errors shown in Fig. 3-7

for each parameter, we find 0.0006 for c and 0.029 for Q1 . This is about 2/3 of

the theoretical uncertainty we have obtained by the theory parameter scan, and it

demonstrates that the theory parameter scan represents a more conservative method

to estimate the theory error.

In Fig. 3-7 we have also shown the variation of the best fit values for a,(mz)

and Q1 (RA , [LA) due to variations of the second soft function moment parameter Q 2.

Our default choice for the parametrization of the soft function Snod uses co = 1 and

c,,o = 0 with A(RA, LA) = 0.05 GeV. In this case A is the only variable parameter of
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the soft model function Smod, and Q2 is predetermined by Eq. (2.54) with c2 = 0. As

explained in Sec. 2.4 we modify Q2 by setting c2 to nonzero values. It is instructive

to discuss the Q2 values one should consider. From the Cauchy-Schwarz inequality

one can show that Q2/Q2 > 1, giving a strict lower bound on Q2. This bound can

only be reached if S~Pod is a delta-function. Moreover, if Smod is positive definite,

vanishing at k = 0, has a width of order AQCD, has its maximum at a k value of

order AQCD, and has an exponential fall-off for large k, then one finds i2 /G < 1.5.

We therefore adopt the range 1 < 0 2/Q2 < 1.5 as a conservative Q2 variation to

carry out an error estimate. For our default parametrization we have Q2/G2 = 1.18

and changing c2 between ±0.5 gives a variation of Q2/Q2 between 1.05 and 1.35.

We find that the best fit values for a, and Q1 are smooth linear functions of Q2 / Q
which allows for a straightforward extrapolation to the conservative range between

1.0 and 1.5. The results for the variations of the best fit values for a8 (mz) and Q1

for Q2/Q2 = 1.18+0:12 read (6a0(mz)).2 1:g17 and (6Q 1 )=2 =0.:1 and are also

shown in Fig. 3-7. The symmetrized version of these errors are included in our final

results. For our final results for a(mz) we add the uncertainties from Q1 and the

one from Q2 quadratically giving the total hadronization error. For Q1(RA, [pA) we

quote the error due to Q2 separately.

Final Results

As our final result for a, (mz) and Q, (RA, pA), obtained at N3LL' order in the R-gap

scheme for Q1, including bottom quark mass and QED corrections we obtain

a8 (mz) = 0.1135 ± (0.0002)exp ± (0.0005)hadr ± (0-0009)pert,

Q1(RA, pLA) = 0.323 ± (0.009)exp ± (0.013)Q2 ± (0.020)aS(mz) I (0.045)pert GeV,

(3.5)

where RA = [pA = 2 GeV and we quote individual 1-sigma errors for each parameter.

Eq. (3.5) is the main result of this work. In Fig. 3-6 (blue dashed line) and Fig. 3-2a

(thick dark red line) we have displayed the corresponding combined total (experimen-
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Figure 3-7: Variations of the best fit values for a(mz) and Q1 from up (dark shaded
blue) and down (light shaded green) variations for the theory parameters with respect
to the default values and in the ranges given in Tab. 3.1. For the variation of the
moment 22 we use /2 = 1.18tg as explained in the text.

tal+theoretical) standard error ellipse. To obtain the combined ellipse we take the

theory uncertainties given in Tabs. 3.2 and 3.3 together with the Q2 uncertainties,

adding them in quadrature. The central values in Eq. (3.5) are determined by the

average of the respective maximal and minimal values of the theory scan, and are very

close to the central values obtained when running with our default theory parameters.

The fit has x 2 /dof = 0.91 with a variation of t0.03 for the displayed scan points.

Having added the theory scan and Q2 uncertainties reduces the correlation coefficient

in Eq. (3.2) to poal = -0.212. As a comparison we have also shown in Fig. 3-2b the

combined total (experimental+theoretical) error ellipse at N3LL' in the MS scheme

for ni where the O(AQCD) renormalon is not subtracted.

Since our treatment of the correlation of the systematic experimental errors is

based on the minimal overlap model, it is instructive to also examine the results

treating all the systematic experimental errors as uncorrelated. At N3LL' order

in the R-gap scheme the results that are analogous to Eqs. (3.5) read ae(mz) =

0.1141± (0.0002)exp ±(0.0005)hadr± (0-0010)pert and Qi (RA, pA) = 0.303± (0.006)exp ±
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Figure 3-8: The smaller elongated ellipses show the experimental 39% CL error (1-
sigma for a8 ) and best fit points for different global data sets at N3 LL' order in the

R-gap scheme and including bottom quark mass and QED effects. The default theory

parameters given in Tab. 3.1 are employed. The larger ellipses show the combined
theoretical plus experimental error for our default data set with 39% CL (solid, 1-

sigma for one dimension) and 68% CL (dashed).

(0.013)02 ± (0.022)a, i (0.055)pert GeV with a combined correlation coefficient of

ptOal = _0.180. The results are compatible with the results of Eqs. (3.5) and indicate

that the ignorance of the exact correlation of the systematic experimental errors does

not crucially affect the outcome of the fit.

Data Set Choice

We now address the question to which extent the results of Eqs. (3.5) depend on

the thrust ranges contained in the global data set used for the fits. Our default

global data set accounts for all experimental thrust bins for Q > 35 in the intervals

[Tmin, rmax] = [6/Q, 0.33]. (See Sec. 3.1 for more details.) This default global data set

is the outcome of a compromise that (i) keeps the r interval large to increase statistics,

(ii) sets Tmin sufficiently large such that the impact of the soft function moments Rj
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with i > 2 is small and (iii) takes Tmax sufficiently low to exclude the far-tail region

where the missing order asAQCD/Q corrections potentially become important.

In Fig. 3-8 the best fits and the respective experimental 39% and 68% CL error

ellipses for the default values of the theory parameters given in Tab. 3.1 are shown for

global data sets based on different 7 intervals. The results for the various r intervals

are each given in different colors. The results for our default global data set is given in

red color, and the subscript "strict" for some intervals means that bins are included

in the data set if more than half their range is contained within the interval. For

intervals without a subscript the criterion for selecting bins close to the boundaries

of the r interval is less strict and generically, if the Irmin and Tma values fall in such

bins, these bins are included. The numbers in superscript for each of the r intervals

given in the figure refers to the total number of bins contained in the global data set.

We observe that the main effect on the outcome of the fit is related to the choice of

rmin and to the total number of bins. Interestingly all error ellipses have very similar

correlation and are lined up approximately along the line

= 0.1200 - a,(mz). (3.6)
50.2 GeV

Lowering rmin increases the dependence on Q2 and leads to smaller C and larger Q1

values. On the other hand, increasing rmin leads to a smaller data set and to larger

experimental error ellipses, hence to larger uncertainties.

It is an interesting but expected outcome of the fits that the pure experimental

error for az (the uncertainty of a, for fixed central Q1 ) depends fairly weakly on

the r range and the size of the global data sets shown in Fig. 3-8. If we had a

perfect theory description then we would expect that the centers and the sizes of the

error ellipses would be statistically compatible. Here this is not the case, and one

should interpret the spread of the ellipses shown in Fig. 3-8 as being related to the

theoretical uncertainty contained in our N3 LL' order predictions. In Fig. 3-8 we have

also displayed the combined (experimental and theoretical) 39% CL standard error

ellipse from our default global data set which was already shown in Fig. 3-2a (and is
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a 8(mz)±(pert. error) X2/(dof)
N3 LL' with QOgap 0.1135 ± 0.0009 0.91
N3LL' with GMs 0.1146 ± 0.0021 1.00
N3LL' without S.od 0.1241 ± 0.0034 1.26

O (a3) fixed-orderSfdode 0.1295 ± 0.0046 1.12
without Spod

Table 3.5: Comparison of global fit results for our full analysis to a fit where the

renormalon is not canceled with f1, a fit without STod (meaning without power

corrections with Spod(k) = 6(k)), and a fit at fixed order without power corrections

and log resummation. All results include bottom mass and QED corrections.

1-sigma, 68% CL, for either one dimensional projection). We also show the 68% CL

error ellipse by a dashed red line, which corresponds to 1-sigma knowledge for both

parameters. As we have shown above, the error in both the dashed and solid larger

ellipses is dominated by the theory scan uncertainties, see Eqs. (3.5). The spread of

the error ellipses from the different global data sets is compatible with the 1-sigma

interpretation of our theoretical error estimate, and hence is already represented in

our final results.

Analysis without Power Corrections

Using the simple assumption that the thrust distribution in the tail region is propor-

tional to a, and that the main effect of power corrections is a shift of the distribution

in r, we estimatethat a 300 MeV power correction will lead to an extraction of a,

from Q = mz data that is 6aOs/a, ~ (-9 ± 3)% lower than an analysis without

power corrections. In our theory code we can easily eliminate all nonperturbative

effects by setting Si d(k) = 6(k) and A = 6 = 0. At N3 LL' order and using our

scan method to determine the perturbative uncertainty a global fit to our default

data set yields a,(mz) = 0.1241 ± (0.0034)pert which is indeed 9% larger than our

main result in Eq. (3.5) which accounts for nonperturbative effects. It is also inter-

esting to do the same fit with a purely fixed-order code, which we can do by setting

pS = PJ = PH to eliminate the summation of logarithms. The corresponding fit

yields a,(mz) = 0.1295 ± (0.0046)pert, where the displayed error has again been de-

termined from the theory scan which in this case accounts for variations of PH and
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Figure 3-9: Thrust distributions in the far-tail region at N3 LL' order with QED and

mb corrections included at Q = mz together with data from ALEPH. The red solid
line is the cross section in the R-gap scheme using a,(mz) and Q1 obtained from fits
using our full code, see Eq. (3.5). The light red band is the perturbative uncertainty
obtained from the theory scan method. The red dashed line shows the distribution
with the same a, but without power corrections. The light solid blue line shows the
result of a full N3 LL' fit with the BS profile that does not properly treat the multijet
thresholds. The short dashed green line shows predictions at N3LL' with the BS
profile, without power corrections, and with the value of a,(mz) obtained from the
fit in Ref. [31]. All theory results are binned in the same manner as the experimental
data, and then connected by lines.

the numerical uncertainties associated with 62 and 63. (A comparison with Ref. [68

is given below in Sec. 3.4.)

These results have been collected in Tab. 3.5 together with the a, results of our

analyses with power corrections in the R-gap and the MS schemes. For completeness

we have also displayed the respective X2/dof values which were determined by the

average of the maximal and the minimum values obtained in the scan.

3.3 Far-tail and Peak Predictions

The factorization formula (2.1) can be simultaneously used in the peak, tail, and far-

tail regions. To conclude the discussion of the numerical results of our global analysis

in the tail region, we use the results obtained from this tail fit to make predictions in
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Figure 3-10: Thrust cross section for the result of the N 3LL' fit, with QED and mb
corrections included at Q = mz. The red solid line is the cross section in the R-gap
scheme using a,(mz) and 01 obtained from fits using our full code, see Eq. (3.5).
The red dashed line shows the distribution with the same a, but without power
corrections. The short-dashed green line shows predictions at N3 LL' with the BS
profile, without power corrections, and with the value of a,(mz) obtained from the
fit in Ref. [31]. Data from ALEPH, DELPHI, L3, SLD, and OPAL are also shown.

the peak and the far-tail regions.

In Fig. 3-9 we compare predictions from our full N3 LL' code in the R-gap scheme

(solid red line) to the accurate ALEPH data at Q = mz in the far-tail region. As

input for a,(mz) and Q1 we use our main result of Eq. (3.5) and all other theory

parameters are set to their default values (see Tab. 3.1). We find excellent agreement

within the theoretical uncertainties (pink band). Key features of our theoretical

result in Eq. (2.1) that are important in this far-tail region are i) the nonperturbative

correction from Q1, and ii) the merging of ps(r), pUj(r), and PH toward ps = pi = pH

at r = 0.5 in the profile functions, which properly treats the cancellations occurring at

multijet thresholds. To illustrate the importance of Q1 we show the long-dashed red

line in Fig. 3-9 which has the same value of a, (mz), but turns off the nonperturbative

corrections. To illustrate the importance of the treatment of multijet thresholds in

our profile function, we take the BS profile which does not account for the thresholds

(the BS profile is defined and discussed below in Sec. 3.4), and use the smaller a,(mz)

and larger Q1 that are obtained from the global fit in this case. The result is shown by
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the solid light blue line in Fig. 3-9, which begins to deviate from the data for T > 0.36

and gives a cross section that does not fall to zero at T = 0.5. The fact that a,(mz)

is smaller by 0.0034 for the light blue line, relative to the solid red line, indicates

that the proper theoretical description of the cross section in the far-tail region has

an important impact on the fit done in the tail region. The final curve shown in

Fig. 3-9 is the short-dashed green line, which is the result at the level of precision of

the analysis by Becher and Schwartz in Ref. [31]. It uses the BS profile, has no power

corrections, and has the value of a, obtained from the fit in Ref. [31]. It also misses

the Q = mz data in this region. The results of other O(a') thrust analyses, such as

Davison and Webber [64] and Dissertori et al. [68, 69], significantly undershoot the

data in this far-tail region.4 To the best of our knowledge, the theoretical cross section

presented here is the first to obtain predictions in this far-tail region that agree with

the data. Note that our analysis does include some O(a'AQCD/Q) power corrections

through the use of Eq. (2.21). It does not account for the full set of O(aAQcD/Q)

power corrections as indicated in Eq. (2.1) (see also Tab. 2.2), but the agreement

with the experimental data seems to indicate that missing power corrections may be

smaller than expected.

Unbinned predictions for the thrust cross section at Q = mz in the peak region

are shown in Fig. 3-10. The green dashed curve shows the result at the level of

precision in Becher and Schwartz, that is N3 LL', with the BS profile, without power

corrections, and with the value of a,(mz) = 0.1172 obtained from their fit. This

purely perturbative result peaks to the left of the data. With the smaller value of

a,(mz) obtained from our fit, the result with no power corrections peaks even slightly

further to the left, as shown by the long-dashed red curve. In contrast, the red solid

curve shows the prediction from our full N3 LL' code in the R-gap scheme with our

central fit values of a,(mz) and Q1 given in Eq. (3.5). It clearly indicates that the

value of Q1 obtained from the fit in the tail region shifts the theory prediction in the

peak region much closer to the experimental data. The residual difference between

4 See the top panel of Fig. 9 in Ref. [64], the top left panel of Fig. 4 in Ref. [68], and the left panel
of Fig. 2 in Ref. [69].
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the solid red theory curve and the experimental data can be attributed to the fact

that the peak is sensitive to power corrections from higher moments, Qk>2, which

have not been fit in our analysis. In our theoretical cross section result this would

correspond to fitting A(RA, pA), and a subset of the higher coefficients ci>1 . The Ci;>1

were all set to zero in the curves shown here, and we leave the presentation of results

of this extended fit to a future publication.

3.4 Cross checks and Comparisons

The result for a,(mz) we obtain from our global N3 LL' analysis in the R-gap scheme

with 487 bins given in Eq. (3.5) is consistent at 1-sigma with the result of Davison and

Webber [64] (a,(mz) = 0.1164 ± (0.0022)hadr+exp ± (0-0017)pert). They also carried

out a global thrust analysis with a total of 430 experimental bins. In their theory

formula, nonperturbative effects were included as a power correction in the effective

coupling model which was fit from the experimental data, and their approach also

accounts for a renormalon subtraction of the perturbative distribution. In these re-

spects their analysis is similar to ours. However, it differs as their theory formula

contains only resummation of logarithms at NLL order, and it also uses a different

renormalon subtraction scheme which is based on the running coupling approxima-

tion for the subtraction corrections and does not account for the resummation of large

logarithms. Moreover the separation of singular and nonsingular perturbative contri-

butions and method to turn off the log resummation at large r is not equivalent to the

one we employ. The difference between their central value and perturbative error and

our Eq. (3.5) can be attributed to these items. Their combined hadronization and

experimental uncertainty utilizes an error rescaling using the value Xmin/dof = 1.09

obtained for their best fit.

On the other hand, our main result for a,(mz) given in Eq. (3.5) is smaller than the

results of Dissertori et al. [68] by 2.9-sigma, of Dissertori et al. [69] by 2.2-sigma, and

of Becher and Schwartz [31] by 1.6-sigma. (These results are displayed in Table 3.6.)

In these analyses a,(mz) was determined from fits to data for individual Q values and
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sum logs power corrections as (mz)

Ref. [68] no Monte Carlo (MC) 0.1240 i 0.0034*
Ref. [31] N3 L L uncertainty from MC 0.1172 ± 0.0021*
Ref. [64] NLL effective coupling 0.1164 t 0.0028#

model
Ref. [38] NLL Monte Carlo 0.1172 ± 0.0051**
Ref. [69] NLL Monte Carlo 0.1224 i 0.0039*

Table 3.6: Recent thrust analyses which use the O(a3) fixed-order results. The

theoretical component of the errors were determined as indicated, by either: * the

error band method, ** variation of the renormalization scale p, or # by a simultaneous

fit to a,(mz) and ao (see text for more details). The analyses of Refs. [31, 64] used

thrust data only, while Refs.[68, 38, 69] employed six different event shapes.

nonperturbative corrections and their associated uncertainty were taken from Monte

Carlo generators in Dissertori et al., or left out from the fit and used to assign the

hadronization uncertainty for the final result in Becher and Schwartz. It is possible

to turn off pieces of our theoretical code to reproduce the perturbative precision of

the codes used in Refs. [68]5 and [31]. It is the main purpose of the remainder of this

section to show the outcome of the fits based on these modified theory codes. We

show in particular, that the main reason why the above results for a,(mz) are higher

than our result of Eq. (3.5) is related to the fact that the nonperturbative corrections

extracted from Monte Carlo generators at Q = mz are substantially smaller than

and incompatible with the ones obtained from our fit of the field theory power cor-

rection parameter Q1. The use of e+e- MC generators to estimate power corrections

is problematic since the partonic contributions are based on LL parton showers with

at most one-loop matrix elements, complemented by hadronization models below the

shower cutoff that are not derived from QCD. The parameters of these models have

been tuned to LEP data, and thus unavoidably encode both nonperturbative effects

as well as higher order perturbative corrections. Hence, one must worry about double

counting, and this makes MC generators unreliable for estimating nonperturbative

corrections in higher order LEP analyses.

We start with an examination related to the code used by Becher and Schwartz [31],

5We do not attempt to reproduce the NLL/O(a) code of Ref. [69] as the final outcome is similar
to Ref. [68].
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Experiment Energy results [31] profile profile

ALEPH 91.2 GeV 0.1168(1) 0.1170 0.1223
ALEPH 133 GeV 0.1183(37) 0.1187 0.1235
ALEPH 161 GeV 0.1263(70) 0.1270 0.1328
ALEPH 172 GeV 0.1059(80) 0.1060 0.1088
ALEPH 183 GeV 0.1160(43) 0.1166 0.1205
ALEPH 189 GeV 0.1203(22) 0.1214 0.1260
ALEPH 200 GeV 0.1175(23) 0.1182 0.1224
ALEPH 206 GeV 0.1140(23) 0.1149 0.1185
OPAL 91 GeV 0.1189(1) 0.1198 0.1251
OPAL 133 GeV 0.1165(38) 0.1175 0.1218
OPAL 177 GeV 0.1153(33) 0.1160 0.1200
OPAL 197 GeV 0.1189(14) 0.1197 0.1241
average 0.1172(10) 0.1180 0.1221

global fit all Q 0.1188 0.1242
(stat)
global fit all Q 0.1192 0.1245
(stat+syst)

Table 3.7: Comparison of the results for a,(mz) quoted by Becher and Schwartz

in Ref. [31] with results we obtain from our adapted code where power corrections,
the mb and QED corrections, the O(a2) axial singlet corrections are neglected. The

O(a3) nonlogarithmic constants h3 and s 3 are set to the values used in Ref. [31] as

described in the text. We follow the fit approach of Ref. [31] and employ their profile

functions for the nonsingular, hard, jet and soft scales, with results shown in the

column labeled "our BS profile". In the last column we show results with this same

code, but using our default profile functions. The errors in the third column are the

statistical experimental uncertainty.

which has N3 LL' accuracy but does not include power corrections or renormalon sub-

tractions. This treatment can be reproduced in our factorization formula by turning

off the nonperturbative soft nonperturbative function by setting Smod(k) = 6(k) and

A = 6 = 0. Moreover they used the central scale setting pf = Q, pj = Qv/R and

ps = QT. We can reproduce this from our profile functions for po = ni = ej = 0,

t= 3/2 and eH = = 1, which we call the BS profile setting. The BS profile

functions for pj(r) and pus(r) are shown by dashed curves in Fig. 2-5. (Note that the

BS profile setting does not cause ps, pj, and PH to merge in the far-tail region and

become equal at T = 0.5, which is needed to switch off the SCET resummation of

logarithms in the multijet region to satisfy the constraints from multijet thresholds.)
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Becher and Schwartz set the O(a3) nonlogarithmic correction in the Euclidean hard

factor C(-q 2 ) to zero (with HQ = |C(q2 )12 for q2 = 2 > 0), which in our notation

corresponds to h3 = 11771.50 (somewhat larger than the now known h3 ). We also

set s 2 = -40.1 (see Ref. [94, 31]) and s 3 = -324.631 for the non-logarithmic O(a,)

and O(a3) constants in the soft function (both within our range of uncertainties).

The value for s 3 corresponds to setting the O(a3) nonlogarithmic corrections in the

expanded position space soft function to zero. Finally, we also turn off our QED and

bottom quark mass corrections and the O(a,) axial singlet corrections, and use the

fixed-order normalization from Eq. (2.56). For the fit procedure we follow Becher and

Schwartz and analyze all ALEPH and OPAL data for individual Q values in the T

ranges given in their work and account only for statistical experimental errors in the

X2 functions. The outcome of the fits for a,(mz) at N3 LL' order is given in the fourth

column of Tab. 3.7. The third column shows their central values and the respective

statistical experimental errors as given in Ref. [31]. The numbers we obtain are 0.0001

to 0.0011 higher than their central values, and we attribute this discrepancy to the

nonsingular contributions.6 (Becher and Schwartz also used a difference of cumulants

for their fits, as in Eq. (2.59) with the choice ri = r1 and ;F2 = T2 , rather than integrat-

ing do-/dr as we do for the table. The spurious contribution induced by this choice

has a significant effect on the x 2 values, but a small effect on a,(mz), changing the

values shown in the table by < 0.0003. For cumulants that use -1 = ;2 = (T + 2 )/2

with no spurious contribution, the difference from our integrated distribution results

is reduced to < 0.0001 for a,(mz), and x 2 values are almost unaffected.)

The numbers obtained at N3 LL' above are significantly larger than our central

fit result a,(mz) = 0.1135 shown in Eq. (3.5) obtained from our full code. These

differences are mainly related to the nonperturbative power correction and partly

due to the BS profile setting. To distinguish these two and other effects we can take

the purely perturbative code described above and turn back to our default setting

6Becher and Schwartz uncovered a numerical problem with the original EERAD3 code at very
small r, which correspondingly had an impact on the nonsingular function used in their analysis
which was extracted from EERAD3. When their nonsingular distribution is updated to results from
the new EERAD3 code they become significantly closer to ours, differing by < 0.0002. We thank
M. Schwartz for correspondence about this and for providing us with their new fit values.
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for the profile functions with the parameters given in Tab. 3.1. The results are

shown in the fifth column in Tab. 3.7 using again only statistical experimental errors

in the x2 functions. The a(mz) values using our default profile functions are by

0.0028 to 0.0058 larger than for the BS profile setting in the fourth column. 7 (The

fifth column results again integrate the distribution over each bin rather than using

differences of cumulants, which for our profile is important for the reasons discussed

in Sec. 2.5.8) A similar difference arises from a global fit to our default data set of

Sec. 3.1 using the same fit procedure: For the BS profile setting we obtain a,(mz) =

0.1189, while the default profile setting gives a,(mz) = 0.1242 (second to last line

of Tab. 3.7). Using instead the X2-analysis of our main analysis which includes the

experimental systematical errors we obtain a,(mz) = 0.1192 for the BS profile setting

and a,(mz) = 0.1245 for the default profile setting (last line of Tab. 3.7). The latter

result is by 0.0110 larger than our 0.1135 central fit result in Eq. (3.5). This 10%

effect is almost entirely coming from the power correction Q1. The difference of 0.3%

to the full perturbative result of a,(mz) = 0.1241 given in Table 3.5 illustrates the

combined effect of the QED, the bottom quark mass and the O(a,) axial singlet

corrections and the O(a3) hard constant h3.

Finally, let us examine the results related to the code used by Dissertori et al. in

Ref. [68], which uses the fixed-order O(a') results without a resummation of loga-

rithms, but accounts for nonperturbative corrections determined from the difference

of running Monte Carlo generators in parton and hadron level modes. Since in this

work we are not concerned with extracting the parton-hadron level transfer matrix

from Monte Carlo generators, we use in the following our code neglecting power cor-

rections by setting Smod(k) = 6(k), setting A = 6 = 0, and setting pH = pJ = fLS.

The latter switches off the log resummation factors in Eq. (2.1) such that only the

o(a3) fixed order expression remains. We also include the mb corrections, but neglect

7With our full code, which accounts in particular for power corrections and renormalon subtrac-
tions, the shift due to the modified profile functions becomes smaller; shifts in a,(mz) of 0.005
become 0.003.

8Using the cumulant method with fi = 71 and f2 = -2 in Eq. (2.59), which has a spurious
contribution, changes the values in the fifth column of Tab. 3.1 by about -0.003 to -0.005. On
the other hand, using the cumulant method without a spurious contribution, -i = 2 = (r 1 -r 2)/2,
changes the values in the fifth column by < 0.0001.
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Dissertori et al. Our fixed
Experiment Energy results [68] order code

ALEPH 91.2 GeV 0.1274(3) 0.1281
ALEPH 133GeV 0.1197(35) 0.1289
ALEPH 161 GeV 0.1239(54) 0.1391
ALEPH 172 GeV 0.1101(72) 0.1117
ALEPH 183 GeV 0.1132(32) 0.1247
ALEPH 189 GeV 0.1140(20) 0.1295
ALEPH 200 GeV 0.1094(22) 0.1260
ALEPH 206 GeV 0.1075(21) 0.1214

Table 3.8: Comparison of the thrust results quoted in Ref. [68] with our numerical

reproduction. For this numerical exercise we have used their procedure to get the error

matrix for the experimental data. This amounts to considering only the statistical

errors in an uncorrelated way, with the resulting experimental error shown in the

third column. Whereas in the code of Ref. [68] hadronization corrections are included

determined from Monte Carlo simulations our numbers are based on a pure partonic

code neglecting nonperturbative effects. We use the default value for the scale setting,
i.e. p = Q.

QED effects. Since these modifications give us a code that does not contain nonper-

turbative corrections, the differences to Ref. [68] we obtain will serve as a quantitative

illustration for the size of the hadronization corrections obtained by a transfer ma-

trix from the Monte Carlo generators PYTHIA, HERWIG, and ARIADNE, tuned to

global hadronic observables at mz.

For the fits for a,(mz) we follow Dissertori et al. [68] analyzing ALEPH data

for individual Q values in the r ranges given in their work and accounting only for

statistical experimental errors in the X' functions. The results of Dissertori et al. and

the outcome for our best fits are given in the third and fourth column of Tab. 3.8,

respectively. We have also quoted the respective statistical errors from Ref. [68]. For

the high statistics data at Q = mz our a,(mz) result is larger than theirs, but the

discrepancy amounts to only 0.0007 which is a 0.5% shift in a,(mz). This illustrates

the small size of the nonperturbative hadronization corrections encoded in the Monte

Carlo transfer matrix at Q = mz. This is clearly incompatible with the size of

the nonperturbative correction we have obtained from simultaneous fits of a, and

Q1, confirming the concerns on Monte Carlo hadronization corrections. Interestingly,

with the exception of Q = 172GeV, our fixed-order results for all Q are relatively
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Figure 3-11: Comparison of selected determinations of a,(mz) defined in the MS
scheme.

stable and close to the result at Q = mz, while their a,(mz) values, which use the

transfer matrix for nonperturbative effects, are systematically lower for Q > mz by 7

to 13%. Thus the nonperturbative effects from the Monte Carlo transfer matrix are

substantially larger for Q > mz. 9 The same behavior is also visible in the results of

Ref. [69], which includes NLL resummation of logarithms. Since the transfer matrix is

obtained from Monte Carlo tuned to the more accurate Q = mZ data, we believe that

this issue deserves further investigation. To complete the discussion we use the same

fixed-order theory code to quote results for a global fit to our default data set. Using

the fit procedure as described in Sec. 3.1 we obtain a,(mz) = 0.1300 ± (0.0047)pert.

(The corresponding errors obtained from the error band method are given in the

fourth line of Tab. 3.4.)

3.5 Conclusions

In this work we have provided a factorization formula for the thrust distribution in

e+e- annihilation which incorporates the previously known O(a) and O(a3) per-

9Note that the weighted average of the Q > mz thrust results of Dissertori et al. is acx(mz) =
0.1121 and is consistent with our result in Eq. (3.5) within the larger uncertainties. Also note that
the Q dependence of our Q, (R, R) /Q power correction is affected by its anomalous dimension, cf.
Fig. 2-3.
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turbative QCD corrections and summation of large logarithms at N3LL order for the

singular terms in the dijet limit where the thrust variable = 1 - T is small. The

factorization formula used here incorporates a systematic description of nonpertur-

bative effects with a soft function defined in field theory. The soft function describes

the dynamics of soft particle radiation at large angles. We have also accounted for

bottom mass and QED photon effects for fixed-order contributions as well as for the

summation of QED logarithms. With specifically designed T-dependent profile func-

tions for the renormalization scales the factorization formula can be applied in the

peak, tail and far-tail regions of the thrust distribution. It has all nonperturbative

effects accounted for up to terms of O(aAQCD/Q), which is parametrically smaller

than the remaining perturbative uncertainty (< 2% for Q = mz) of the thrust distri-

bution predictions in the tail region where we carried out the fits to the experimental

data.

In the tail region, 2AQCD/Q < T < 1/3, the dominant effects of the nonpertur-

bative soft function are encoded in its first moment 01, which is a power correction

to the cross section. Fitting to tail data at multiple Qs as we did in this work, the

strong coupling a,(mz) and the moment Q1 can be simultaneously determined. An

essential ingredient to reduce the theoretical uncertainties to the level of < 2% in

the thrust distribution is our use of a short-distance scheme for Q1, called the R-

gap scheme, that induces subtractions related to an O(AQCD) renormalon contained

in the MS perturbative thrust cross section from large angle soft gluon radiation.

The R-gap scheme introduces an additional scale that leads to large logarithms in

the subtractions, and we carry out a summation of these additional logarithms with

renormalization group equations in the variable R. The R-gap scheme reduces the

perturbative uncertainties in our best highest order theory code by roughly a factor

of two compared to the pure MS definition, Q1, where renormalon effects are not

treated.

The code we use in this analysis represents the most complete theoretical treat-
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ment of thrust existing at this time. As our final result we obtain

as(mz) = 0.1135 ± 0.0011,

Q1(RA, pA) = 0.323 i 0.051 GeV, (3.7)

where a, is defined in the MS scheme, and Q1 in the R-gap scheme at the reference

scales RA = pA = 2 GeV. Here the respective total 1-sigma errors are shown. The

results with individual 1-sigma errors quoted separately for the different sources of

uncertainties are given in Eq. (3.5). Neglecting the nonperturbative effects incorpo-

rated in the soft function, and in particular Q1, from the fits gives a,(mz) = 0.1241

which exceeds the result in Eq. (3.7) by 9%.

Analyses of event shapes with a simultaneous fit of a, and a power correction have

been carried out earlier with the effective coupling model. Davison and Webber [64]

analyzed the thrust distribution and determined a,(mz) = 0.1164 ± 0.0028 also using

O(a3) fixed-order input, but implementing the summation of logarithms only at NLL

order (for further discussion see Sec. 3.4). Recently Gehrmann et al. [84] analyzed

moments of different event shape distributions, also with the effective coupling model,

and obtained a(mz) = 0.1153 i 0.0029 using fixed-order perturbation theory at

O(ac). Both analyses neglected bottom mass and QED corrections. Our result in

Eq. (3.7) is compatible with these analyses at 1-sigma, but has smaller uncertainties.

These results and our result for as (mz) in Eq. (3.7) are substantially smaller than

the results of event shape analyses employing input from Monte Carlo generators to

determine nonperturbative effects. We emphasize that using parton-to-hadron level

transfer matrices obtained from Monte Carlo generators to incorporate nonpertur-

bative effects is not compatible with a high-order theoretical analysis such as ours,

and thus analyses relying on such Monte Carlo input contain systematic errors in the

determination of a, from thrust data. The small effect of hadronization corrections

on thrust observed in Monte Carlo generators at Q = mz and the corresponding

small shift in a,(mz) do not agree with the 9% shift we have obtained from our fits

as mentioned above. For the reasons discussed earlier, we believe Monte Carlo should
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not be used for hadronization uncertainties in higher order analyses.

Although our theoretical approach represents the most complete treatment of

thrust at this time, and all sources of uncertainties known to us have been incorpo-

rated in our error budget, there are a number of theoretical issues related to sub-

leading contributions that deserve further investigation. These issues include (i) the

summation of logarithms for the nonsingular partonic cross section, (ii) the struc-

ture of the O(aSAQCD/Q) power corrections, (iii) analytic perturbative computations

of the O(az) and O(ai) nonlogarithmic coefficients s 2 and s 3 in the partonic soft

function, the O(a3) nonlogarithmic coefficient ja in the partonic jet function, and

the 4-loop QCD cusp anomalous dimension j"SP. Concerning issue (i) we have in-

corporated in our analysis the nonsingular contributions in fixed-order perturbation

theory and estimated the uncertainty related to the higher order logarithms through

the usual renormalization scale variation. Further theoretical work is needed to de-

rive the renormalization group structure of subleading jet, soft, and hard functions

in the nonsingular contributions and to use these results to sum the corresponding

logarithms. Concerning issue (ii) we have shown that our theoretical description for

the thrust distribution contains a remaining theoretical uncertainty from nonpertur-

bative effects of order O(asAQCD/Q). Parametrically, this uncertainty is substantially

smaller than the perturbative error of about 1.7% for the thrust distribution in the

tail region at LEP-I energies that is contained in our best theory code. Furthermore,

our predictions in the far-tail region at Q = mz appear to indicate that the dominant

corrections of this order are already captured in our setup. Nevertheless a systematic

analysis of these subleading effects is certainly warranted.

Apart from investigating these theoretical issues, it is also warranted to apply the

high-precision approach using soft-collinear effective theory to other event shape dis-

tributions in order to validate the result in Eq. (3.7). Event shapes that can be clearly

treated with similar techniques are: heavy and light jet masses, the C-parameter, and

the angularities [36, 96]. For many of these event shapes it has been proven field the-

oretically that the same parameter Q1 describes the leading power corrections in the

tail region [110], although there might be caveats related to the experimental treat-
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ment of hadron masses [135, 81]. Thus, one has the potential to extend the analysis

done here to include additional data without additional parameters. An analysis for

the heavy jet mass accounting for perturbative contributions at N3 LL in MS with dif-

ferent profile functions and a simple soft function model for power corrections without

renormalon subtractions, was recently carried out in Ref. [56], providing a first step

in this direction.

To conclude this work we cannot resist comparing our result for a,(mz) with the

results of a selection of analyses using other techniques and observables, as shown in

Fig. 3-11. We include a N3 LO analysis of data from deep inelastic scattering in the

nonsinglet channel [42110, the recent HPQCD lattice determination based on fitting

Wilson loops and the T-T' mass difference [63], the result from fits to electroweak

precision observables based on the Gfitter package [78], analyses of r-decay data

using fixed-order [35] and contour-improved perturbation theory [62], together with

an average of r results from Ref. [40]. Finally we also show a collection of a,-averages

from Refs. [40, 39, 149]. The DIS result is consistent with our fit result, whereas

the deviation from HPQCD is 3.5a. It is interesting to note that the high energy

extractions from thrust and DIS appear to be smaller than the low energy extractions

from Lattice and r decays.

ioAnalyses studying a, with data that depends also on the gluon PDF have been carried out in
Refs. [118, 17, 65, 108].
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Chapter 4

Determination of as(mZ) from

Thrust -Moments

4.1 Introduction

We will use the full r range results to analyze moments M, of the thrust distribution

in e+e- -+ jets,

1 m =1/2 do-
M 1 = J d r -r" d-. (4.1)

Unlike for tail fits, the entire physical r range contributes, providing sensitivity to a

different region of the spectrum. Experimental results are available for many values

of Q, and the analysis of systematic uncertainties is to a large extent independent

from that for the binned distributions. Thus the outcome for a fit of data for the

first moment M 1 to a,(mz) and Q1 serves as an important cross check of the results

obtained in Ref. [1]. The M, moments are also not sensitive to large logarithms, and

hence provide a non-trivial check on whether the N3LL + O(a3) full spectrum results,

which contain a summation of logarithms of r with a substantial numerical effects for

small r values, can reproduce this property. We explore this issue both for central

values and for theory uncertainty estimates.

The second purpose of this work is to discuss the structure of higher order power
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corrections in thrust moments. We find that cumulant moments M' (cumulants) are

very useful, since they allow for a cleaner separation of the subleading nonperturbative

matrix elements compared to the M, moments of Eq. (4.1). Cumulants include the

variance M2 and skewness M3, and we will consider the first five:

M' =M 1 , (4.2)

M =M 2 -M

M = M 3 - 3M 2M1 + 2 M 3 ,

M4 = M 4 -4M 3M1 - 3M 2 +12 M 2 M2 -6 M,

M5 = M 5-5M 4 M1 -10M 3 M 2 + 20M 3 M2

+30M2M 1 - 60M1 M 2 + 24 M
5 .

In the leading order thrust factorization theorem the power correction matrix elements

for the moments Mn are called Q2m while for the cumulants M' they are called Q'.

[The Q' are also related to the Qm by Eq. (4.2) with Mn -* Q,.] In particular,

the invariance of the cumulants to shifts in r implies that the M,>2 moments are

completely insensitive to the leading thrust power correction parameter Q1, and hence

can provide non-trivial information on the higher order power corrections which enter

as Q'/Q" and as 1/Q 2 power corrections from terms beyond the leading factorization

theorem. In contrast, for each Mn>2 there is a term ~ aoQ,/Q that for larger Qs

dominates over the Om/Qm terms.1 This work has been presented in [2].

4.1.1 Review of Experiments and Earlier Literature

Dedicated experimental analyses of thrust moments have been reported by various

experiments: JADE [124] measured the first moment at Q = 35, 44 GeV, and in [131]

reported measurements of the first five moments at Q = 14, 22, 34.6, 35, 38.3, 43.8

GeV; OPAL [5] measured the first five moments at Q = 91, 133, 177, 197 GeV, and

'The cumulant moments begin to differ for n > 4 from the so-called central moments, ((r- M)").

Both cumulant and central moments are shift independent, but the cumulants are slightly preferred

because they are only sensitive to a single moment of the leading order soft function in the thrust

factorization theorem.
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there is an additional measurement of the first moment at Q = 161 GeV [13]; ALEPH

[91] measured the first moment at Q = 91.2, 133, 161, 172, 183, 189, 196, 200, 206

GeV; DELPHI [6] has measurements of the first moment at Q = 45.2, 66, 76.3 GeV,

measurements of the first three moments at Q = 183, 189, 192, 196, 200, 202, 205,

207 GeV [7], and at Q = 91.2, 133, 161, 172, 183 GeV [9]; and L3 [11] measured

the first two moments at Q = 91.2 GeV and other center of mass energies which are

superseded by the ones in [12] at Q = 41.4, 55.3, 65.4, 75.7, 82.3, 85.1, 130.1, 136.1,

161.3, 172.3, 182.8, 188.6, 194.4, 200.2, 206.2 GeV. Finally, the variance and skewness

have been explicitly measured by DELPHI [9] at Q = 133, 161, 172, 183 GeV; and

OPAL [13] at Q = 161 GeV. All of these experimental moments will be used in our

fits, with the exception of the results in Ref. [131].

In principle the JADE results in Ref. [131] supersede the earlier analysis of this

data reported in Ref. [124]. In the more recent analysis the contribution of primary

bb events has been subtracted using Monte Carlo generators.2 Since the theoretical

precision of these generators is significantly worse than our N3LL ± O(a) treatment

of massless quark effects and our NNLL +0 (a,) treatment of mb-dependent cor-

rections, it is not clear how our code should be modified consistently to account

for these subtractions. The effect may be significant. For example, comparing the

old versus new JADE data at Q = 44 GeV one finds M1 = 0.0860 ± 0.0014 versus

M1 = 0.0807 ± 0.0016. This corresponds to a 3.4 o change assuming 100% correlated

uncertainties (or a 2.6 o- change with uncorrelated uncertainties). For this reason our

default dataset incorporates only the older JADE moment data. We will report on

the change that would be induced by using the new JADE data if we simply ignore

the fact that the bb events were removed. Overall in our analysis we find that the

older JADE data provides consistent results when employed in a combined fit with

data from the other experiments (related to smaller x2 values).

Event shape moments have also been extensively studied in the theoretical litera-

ture. The O(a3) QCD corrections for event shape moments have been calculated in

Ref. [87, 145]. The leading A/Q power correction to the first moment of event shape

2We thank C. Pahl for clarifying precisely how this was done.
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distributions were first studied in [74, 15, 16, 126] often with the study of renormalons

(see [33] for a review). Hadronization effects have also been frequently considered in

the framework of the dispersive model for the strong coupling [74, 73, 71]. In this

approach an IR cutoff irti is introduced and the strong coupling constant below the

scale pt, is replaced by an effective coupling aeff such that perturbative infrared effects

coming from scales below pLL. are subtracted. In the dispersive model the term IIao is

the analog of the QCD matrix element Q1 that is derived from the operator product

expansion (OPE). Since in the dispersive model there is only one nonperturbative pa-

rameter, it does not contain analogs of the independent nonperturbative QCD matrix

elements Qn>2 of the operator product expansion. Thus measurements of '2Q' can be

used as a test for additional nonperturbative physics that go beyond this framework.

The dispersive model has been used in Refs. [41, 5, 129] together with O(a2) fixed

order results to analyze event shape moments, fitting simultaneously to a,(mz) and

ao. Recently these analyses have been extended to O(a) in Ref. [84], based on code

for nf = 5 massless quark flavors, using data from [5, 131] and fitting to the first five

moments for several event-shape variables. Our numerical analysis is only of thrust

moments, but with a global dataset from all available experiments. A detailed com-

parison with Ref. [84] will be made at appropriate points in the paper. Theoretically

our analysis goes beyond their work by using a formalism that has no large logarithms

in the renormalon subtraction, includes the analog of the "Milan factor" [72, 71] in

our framework at O(a3) (one higher order than [84]), and incorporates higher or-

der power corrections beyond the leading shift from Q1. We also test the effect of

including resummation.

4.1.2 Outline

This article is organized as follows: We start out by defining moments and cumulants

of distributions, and their respective generating functions in Sec. 4.2, where we also

discuss the leading and subleading power corrections of thrust moments in an OPE

framework. In Sec. 4.3 we present and discuss our main results for a,(mz) from fits

to the first thrust moment M 1 . In Sec. 4.6 we analyze higher moments M> 2. Sec. 4.7
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contains an analysis of subleading power corrections from fits to cumulant moment

data. Our conclusions are presented in Sec. 4.8.

4.2 Formalism

4.2.1 Various Moments of a Distribution

The moments of a probability distribution function p(k) are given by

Mn = (k") = Jdk p(k) k". (4.3)

The characteristic function is the generator of these moments and is defined as the

Fourier transform

_ y _ik (-iy)
P(y) = (e- = dkp(k) e- = =WMn, (4.4)

j ~ ~~n=0 n Jn

with Mo = 1. The logarithm of P(y) generates the cumulants (or connected moments)

M' of the distribution

ln p(y) = M'E, (4.5)
n=1

and is called the cumulant generating function. For n > 2 the cumulants have the

property of being invariant under shifts of the distribution. Replacing p(k) -- p(k-ko)

takes P(y) -+ e-"kO P(y), which shifts M' -> Mj+ko while leaving all M unchanged.

Writing

0 _____ (-y0, 00 Hiy)jR (M7\R
Zx N ! _i Ril j! j (4.6)NMN = exp iMJ ,1(4.6

N=0 =1 n=j R=O 
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one can derive an all-n relation between moments and cumulants of a distribution:

p(N) N M9Kii

MN =N!47)
.! Kij! (j!)o3
i=1 j=1

Here the sig are non-negative integers which determine a partition of the integer N

through EN i ®j i = N, and p(N) is the the number of unique partitions of N. [A

partition of N is a set of integers which sum to N. Here sig is the number of times

the value j appears as a part in the i'th partition, and corresponds to R in Eq. (4.6).]

As an example we quote the relation for N = 4 which has five partitions, p(4) = 5,

giving

M4 =M4+ 4 M3 Mj' + 3M22 +6M2 M12 + Mj'4 . (4.8)

In the fourth partition, i = 4, we have K41 = 2, K42 = 1, and I43 = r44 = 0, and

the factorials give the prefactor of 6. Eq. (4.7) gives the moments Mi in terms of the

cumulants Mi, and these relations can be inverted to yield the formulas quoted for the

cumulants in Eq. (4.2). M2 > 0 is the well known variance of the distribution. Higher

order cumulants can be positive or negative. The skewness of the distribution M3

provides a measure of its asymmetry, and we expect M3 > 0 for thrust with its long

tail to the right of the peak. The kurtosis M4 provides a measure of the "peakedness"

of the distribution, where M4 > 0 for a sharper peak than a Gaussian. 3

The shift independence of the cumulants M', make them an ideal basis for studying

event shape moments. In particular, since the leading O(AQCD/Q) power correction

acts similar to a shift to the event shape distribution [74, 73, 75, 110, 111], we can

anticipate that M> 2 will be more sensitive to higher order power corrections. We

will quantify this statement in the next section by using factorization for the thrust

distribution to derive factorization formulae for the thrust cumulants in the form of

an operator product expansion.

3The cumulants of a Gaussian are all zero for n > 2, and the cumulants of a delta function are
all zero for n > 1.
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4.2.2 Thrust moments

We will first make use of the leading order factorization theorem, do/dr = f dp (d&/dT) (T-

p/Q)F,(p), which is valid for all T. It separates perturbative d&/dr and nonpertur-

bative F,(p) contributions to all orders in az and AQCD/(Q T), but is only valid at

leading order in AQCD/Q. For this factorization theorem we follow Ref. [1] (except

that here we denote the nonperturbative soft function by Fr).4 We will then extend

our analysis to parameterize corrections to all orders in AQCD/Q.

Taking moments of the leading order do/dr gives 5

M =j d-r' dp rIKT -P F,(p) (4.9)

fo~~6 d- dr
= ddp 0 r - + _nId&(r) F, - 7T(P)

- n[ (2) ()n-e 1  (n]-EA) (B

where & is the perturbative total hadronic cross section and all hatted quantities are

perturbative. In the last line of Eq. (4.9) we used 0(rm - r - p/Q) = 6(rm - r)[1 -

0(p/Q - rm) - O(Tm - p/Q) 9(p/Q + r - rm)] to obtain the three terms. In Eq. (4.9)

the term in square brackets is our desired result containing the perturbative Mn and

nonperturbative Qn moments

n = f d. nr" d& (T), Mo = 1, (4.10)
o o- dT

n= dp (P) F(p), Qo = 1.

4Earlier discussions of shape functions for thrust can be found in Refs. [107, 106].
5This manipulation is valid when the renormalization scales of the jet and soft function which

implement resummation are pi = pi(r - p/Q), rather than the more standard pi(r) used in [1].

Both choices are perturbatively valid, and we have checked that the difference is 0.4% for M 1 , rising

to 0.8% for M 5 , and hence is always well within the perturbative uncertainty.
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The small "error" terms in Eq. (4.9) are given by

p() F, (p), (4.11)
t__ Qr

TiM d1 p nr 1 d&~
E(B) = jf dp r)F

o Q(m-) Q dT

For the contribution E (A) the p-integral is smaller than 10-30 for any Q for the first

five moments, and hence E() 0. This occurs because FT(p) falls off exponentially

for p > 2 Q1 - 2AQCD, and hence values p ;> QTm = Q/2 are already far out on

the exponential tail. The En") term gives a small contribution because the integral

is suppressed by either F, or d/dr: near the endpoint r ~ rm - 2 AQCD/Q the

p-integration is not restricted and F (p) - 1, but d&/dr is highly suppressed. For

smaller r the p-integration is restricted and the exponential tail of F(p) suppresses

the contribution. We have checked numerically that at Q = 91.2 GeV [Q = 35 GeV],

for the first moment the relative contribution of E B) compared to the term in square

brackets in Eq. (4.9) is 0(10-7) [0(10-6)], while for the fifth moment E(B) it is

0(10-6) [(0(10-4)]. This suppression does not rely on the model used for Fr(p).

Thus En(B) can also be safely neglected.

Within the theoretical precision we conclude that the leading factorization theo-

rem for the distribution yields an operator product expansion that separates pertur-

bative and nonperturbative corrections in the moments

Mn () (nnA. (4.12)
e=O

For Mn the terms that numerically dominate are Mn and Mn 1Q 1 /Q. However for

the cumulants M' there are cancellations, and Eq. (4.12) does not suffice due to our

neglect so far of (AQCD/Q)j suppressed terms in the factorization expression for the

thrust distribution.

To rectify this we parameterize the (AQCD/Q)j power corrections by a series

of power suppressed nonperturbative soft functions, Aj- 1 F,j(p/A) ~ A 1 Here
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A- 1F,o(p/A) = F(p) is the leading soft function from Eq. (4.9). We introduced the

parameter A = 400 MeV ~ AQCD to track the dimension of these subleading soft

functions. This parameterization is motivated by the fact that subleading factoriza-

tion results can in principle be derived with SCET [112], and at each order in the

power expansion will yield new soft function matrix elements.

Both the factorization analysis and calculation of cumulants is simpler in Fourier

space, so we let

0(y) dd e-yr (r), (4.13)/ dT

F,, (z A) A e~ F, ,A)

and likewise for the leading power partonic cross section d&/dT(T) -+ &o(y). The

factorization-based formula for thrust is then

1 1 0* A i yY r A)
0-- (y) = -, (4.14)

where &a>o(y) accounts for perturbative corrections in the (AQCD/Q)j power correc-

tion. The j = 0 term is equivalent to the result used in Eq. (4.9), F, (p) = AF,,o (p/A),

and the normalization condition for the leading nonperturbative soft function is

F,,o(z = 0) = 1. The terms in Eq. (4.14) beyond j = 0 are schematic since

in reality they may involve convolutions in more variables in the nonperturbative

soft functions (as observed in the subleading b -+ s -y factorization theorem results

[24, 23, 114, 112, 45, 34]). Nevertheless the scaling is correct, and Eq. (4.14) will

suffice for our analysis where we only seek to classify how various power corrections

could enter higher moments.

The identities o(y = 0)/o- = 1 and &o(y = 0)/& = 1 together with Eq. (4.14)

imply

Fr,j(y = 0) = 0 , for j > 1. (4.15)
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Using the Fourier-space cross section the moments are

Mn = indn O-(y)] (4.16)
dy n [a _=

=in ( I ( ) - FMj (y\ )dy o- _r Y Q Q Y=O

j=O e=o

which extends the OPE in Eq. (4.12) to parameterize the (AQcD/Q)j power correc-

tions. Here the perturbative and nonperturbative moments are defined as

=n' n d;:[ I j(Y)]
-n d n

Q j n - [A F,, (z A) ] (4.17)

where Mn, is a dimensionless series in a(p) and Qn4 ~ A'+QD. In order for Mnj t0

exist it is crucial that our &j(y) and its derivatives do not contain ln(y) dependence

in the y --+ 0 limit at any order in as. In r-space the perturbative coefficients have

support over a finite range, 7 E [0,1/2], and

/1/20^j (y) =o jdr e-i-r &j(T)0 (4.18)

Therefore the existence of f/2 dr &(r), which is the total perturbative cross section

for j = 0, implies a well defined Taylor series under the integrand in Eq. (4.18), and

hence the existence of Mn,j. From Eq. (4.15) we have Qo,j>o = 0, and furthermore

Qn,O = Q, and Mn,0 = Mn.

For the first moment, Eq. (4.16) yields

= j+2~ Q, r0 2 Ql,1 +j
M1 1 + + ,1+7 Q2 +j (4.19)

j=O

where the first two terms are determined by the leading order factorization theorem,
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while the last term identifies the scaling of contributions from (AQCD /Q)2+j power

corrections. Two properties of Eq. (4.19) will be relevant for our analysis: first, there

is no perturbative Wilson coefficient for the leading 2 Q1 /Q power correction; and sec-

ond, terms from beyond the leading factorization theorem only enter at O(ACD /Q 2)

and beyond. For higher order moments, n> 2, we have

2nQ01  n(ni - 1)Q 2M. = Mn + 2 , y_1 + n~ )2 Mn-2Q Q2

+ 2 '1 AnQ1 -1,1 +o(-) (4.20)
Q2  Q3

Next we derive an analogous expression for the n-th order cumulants for n > 2,

which are generated from Fourier space by

d4 F(y)]
=idy" In . (4.21)

Eq. (4.14) can be conveniently written as the product of three terms

1 1 yA (A - A
-o(y) = - &o(Y) F1+ ( , (4.22)

where bars indicate the ratios

&g(y) - Fr(x)
FT (y) = , , F,j(x) F,o (x) (4.23)

From Eq. (4.15) we have 7,,j(x = 0) = 0 for all j > 1. Taking the logarithm of

Eq. (4.22) expresses the thrust cumulants by the sum of three terms

+ 2 * . i d n0 (-1)k+1
M' = M' + Q - E' i y k

k=1

X The(y) frFtrrsnvlvteerur2t) cu

The first two terms involve the perturbative cumulants M' and the cumulants of the
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leading nonperturbative soft functions Q',

= i- In - &o(y) , (4.25)
Mn dyn 0~ -y-O

Q/ i" d*n
'"- dz In Fr,o(zA) .

2' dZ. I I z=0

The third term in Eq. (4.24) represents contributions from power-suppressed terms

that are not contained in the leading thrust factorization theorem. These terms start

at O(ACD /Q 2). At this order only F,, 1 has to be considered. The terms F,i>2 do

not contribute due to explicit powers of AQCD/Q. Concerning rP,2, it must be hit by

at least one derivative because Fr,2 (0) = 0, and hence does not contribute as well.

Performing the n-th derivative at y = 0 and keeping only the dominant term from

the power corrections gives the OPE

Q n Q 2  QC1M' = M' + 2 " + n17-1,1 2- A .3 (4.26)

Here Q1,1 is defined in Eq. (4.17). The perturbative coefficient is

Mil, 1 = i 1 1(Y) (4.27)

and so far unknown.

The majority of our analysis will focus on M1 where terms beyond the leading order

factorization theorem are power suppressed. For our analysis of Mn>2 we consider

the impact of both aQ 1 /Q corrections, and power corrections suppressed by more

powers of 1/Q. When we analyze M,>2 we will consider both 1/Qn and 1/Q 2 power

corrections in the fits.

4.3 Results for M1

In this section we present the main results of our analysis, the fits to the first mo-

ment of the thrust distribution and the determination of a,(mz) and Q1. Prior to
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Figure 4-1: Theoretical computations at various orders in perturbation theory for
the total hadronic cross section at the Z-pole normalized to the Born-level cross
section oo. Here the small blue points correspond to fixed order perturbation theory,
green squares to resummation without renormalon subtractions, and red triangles to
resummation with renormalon subtractions.

presenting our final numbers in Sec. 4.3.4 we discuss various aspects important for

their interpretation. In Sec. 4.3.1 we discuss the role of the log-resummation con-

tained in our fit code, the perturbative convergence for different kinds of expansion

methods, and we illustrate the numerical impact of power corrections and the renor-

malon subtraction. We also briefly discuss the degeneracy between a,(mz) and Q1

that motivates carrying out global fits to data covering a large range of Q values.

In Sec. 4.3.2 we present the outcome of the theory parameter scans, on which the

estimate of theory uncertainties in our fits are based, and show the final results. We

also display results for the fits at various levels of accuracy. Sec. 2.2.8 briefly discusses

the effects of QED and bottom mass corrections. Sec. 4.4 shows the results of a fit in

which renormalon subtractions and power corrections are included, but resummation

of logs in the thrust distribution is turned off.

For our moment analysis we use the code developed in Ref. [1], where a detailed

description of the various ingredients may be found. We are able to perform fits with

different level of accuracy: fixed order at O(a 3), resummation of large logarithms to

N3LL accuracy6 , power corrections, and subtraction of the leading renormalon ambi-

guity. Recently the complete calculation of the 0(a2) hemisphere soft function has

become available [103, 97, 123], so the code is updated to use the fixed parameter

6Throughout this publication N"LL corresponds to the same order counting as N"LL' in Ref. [1].
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Figure 4-2: Theoretical prediction for the first three moments at the Z-pole at various
orders in perturbation theory. The blue circles correspond to fixed order perturba-
tion theory (normalized with the total hadronic cross section) at 0(as), 0(a) and

) green squares correspond to resummed predictions at NLL, NNLL, and N3 LL
normalized with the total hadronic cross section, and red triangles correspond to re-
summation normalized with the norm of the resummed distribution. For these plots
we use a,(mz) = 0.114.

s2= -40.6804 from Refs. [103, 123]. A feature of our code is its ability to describe

the thrust distribution in the whole range of thrust values. This is achieved with the

introduction of what we call profile functions, which are r-dependent factorization

scales. In the e+ e- annihilation process there are three relevant scales: hard, jet and

soft, associated to the center of mass energy, the jet mass and the energy of soft radi-

ation, respectively. The purpose of T-dependent profile functions for these scales is to

smoothly interpolate between the peak region where we must ensure that Pi > AQCD,

the dijet region where the summation of large logs is crucial, and the multijet region

where regular perturbation theory is appropriate to describe the partonic contribu-

tion [1]. The major part of the higher order perturbative uncertainties are directly

related to the arbitrariness of the profile functions, and are estimated by scanning the
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space of parameters that specify them. For details on the profile functions and the

parameter scans we refer the reader to App. B. We note that our distribution code

was designed for Q values above 22 GeV.

4.3.1 Ingredients

The theoretical fixed order expression for the thrust moments contain no large log-

arithms, so we might not expect that the resummation of logarithms in the thrust

spectrum will play a role in the numerical analysis. We will show that there is nev-

ertheless some benefit in accounting for the resummation of thrust logarithms. This

is studied in Fig. 4-1 and 4-2, where for Q = mz we compare the theoretical value

of moments of the thrust distribution obtained in fixed order with those obtained in-

cluding resummation. (The error bars for the fixed order expansion arise from varying

the renormalization scale y between Q/2 and 2 Q and those for the resummed results

arise from our theory parameter scan method.)

In Fig. 4-1 we show the total hadronic cross section o from the fixed order a,

expansion (blue points with small uncertainties sitting on the horizontal line) and

determined from the integral over the log-resummed distribution with/without renor-

malon subtractions (red triangles and green squares). Both expansions are displayed

including fixed order corrections up to order a(mz), a2(mz) and a3(mz), as indi-

cated by the orders 1, 2, 3, respectively. We immediately notice that the resummed

result is not as effective in reproducing the total cross section as the fixed order

expansion. Predictions that sum large logarithms have a substantial (perturbative)

normalization uncertainty. On the other hand, as shown in Ref. [1], the resummation

of logarithms combined with the profile function approach leads to a description of

the thrust spectrum that converges nicely over the whole physical T range when the

norm of the spectrum is divided out, a property not present in the spectrum of the

fixed order expansion.

In Fig. 4-2 the expansions of the partonic moments M1 , M 2 , and M 3 are displayed

in the fixed order expansion (blue circles) and the log-resummed result with either

the fixed order normalization (green squares) or a properly normalized spectrum (red
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Figure 4-3: Theory scan for uncertainties in pure QCD with massless quarks. The
panels are fixed order (top-left), resummation without the nonperturbative correction
(top-right), resummation with a nonperturbative function using the MS scheme for
II1 (bottom.-left), resummation with renormalon subtraction and a nonperturbative
function in the Rgap scheme for Q1 (bottom-right).

triangles). We observe that the fixed order expansion has rather small variations from

scale variation, but shows poor convergence indicating that its renormalization scale

variation underestimates the perturbative uncertainty. For M1 the fixed order and

log-resummed expressions with a common fixed-order normalization (blue circles and

green squares) agree well at each order, indicating that, as expected, large logarithms

do not play a significant role for this moment. On the other hand, the expansion based

on the properly normalized log-resurnmed spectrum exhibits excellent convergence,

and also has larger perturbative uncertainties at the lowest order. In particular,

for the red triangles the higher order results are always within the 1-o uncertainties

of the previous order. The result shows that using the normalized log-resummed

spectrum for thrust, which converges nicely for all r, also leads to better convergence
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Figure 4-4: Difference between theoretical predictions with default parameters for
the first moment as function of Q when varying one parameter at a time. The red
solid line corresponds to varying Aa,(mz) = ±0.001 and the blue dashed lines to
varying A( 1 = t0.1, with respect to the pure QCD best-fit values. There is a strong
degeneracy of the two parameters in the region Q > 100 GeV, which is obviously
broken when considering values of Q below 70 GeV.

properties of the moments. At third order all the fixed order and resummed partonic

moments are consistent with each other. Since the log-resummed moments exhibit

more realistic estimates of perturbative uncertainties at each order, we will use the

normalized resummed moments for our fit analysis.7

In Fig. 4-3 we show how the inclusion of various ingredients (fixed order con-

tributions, log resummation, power corrections, renormalon subtraction) affects the

convergence and uncertainty of our theoretical prediction for the first moment of the

thrust distribution as a function of Q. From these plots we can observe four points:

i) Fixed order perturbation theory does not converge very well. ii) Resummation

of large logarithms in the distribution, when normalized with the integral of the re-

summed distribution, improves convergence for every center of mass energy. iii) The

inclusion of power corrections has the effect of a 1/Q-modulated vertical shift on the

value of the first moment. iv) The subtraction of the renormalon ambiguity reduces

7For our most complete theory set up, following Ref. [1] we normalize the distribution with the
fixed-order total hadronic cross section since it is faster and in this case the norm of the distribution
and total hadronic cross section are fully compatible.
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the theoretical uncertainty. This picture for the first moment is consistent with the

results of Ref. [1] for the thrust distribution.

Another important element of our analysis is that we perform global fits, simulta-

neously using data at a wide range of center of mass energies Q. This is motivated by

the fact that for each Q there is a complete degeneracy between changing a,(mz) and

changing Q1, which can be lifted only through a global analysis. Fig. 4-4 shows the

difference between the theoretical prediction of M 1 as a function of Q, when a, (mz)

or 1 are varied by ± 0.001 and ± 0.1 GeV, respectively. We see that the effect of

a variation in a,(mz) can be compensated with an appropriate variation in Q1 at a

given center of mass energy (or in a small Q range). This degeneracy is broken if we

perform a global fit including the wide range of Q values shown in the figure.

Finally, in Fig. 4-5 we show a,(mz) extracted from fits to the first moment of the

thrust distribution at three-loop accuracy including sequentially the different effects

our code has implemented: O(a') fixed order, N3 LL resummation, power corrections,

renormalon subtraction, b-quark mass and QED. The error bars of the first two points

at the left hand side do not contain an estimate of uncertainties associated with the

power correction. Though smaller, the resummed result is compatible at the 1--

level with the fixed order result. The inclusion of the power correction is the element

which has the greatest impact on a,(mz); for the MS definition of Q1 it reduces

the central value by 7%. The subtraction of the renormalon ambiguity in the Rgap

scheme reduces the theoretical uncertainty by a factor of 3, while b-quark mass and

QED effects give negligible contributions with current uncertainties.

4.3.2 Uncertainty Analysis

In Fig. 4-6 we show the result of our theory scan to determine the perturbative

uncertainties. At each order we carried out 500 fits, with theory parameters randomly

chosen in the ranges given in Table 3.1 of App. B (where further details may be

found). The left panel of Fig. 4-6 shows results with renormalon subtractions using

the Rgap scheme for Q1, and the right-panel shows results in the MS scheme without

renormalon subtractions. Each point in the plot represents the result of a single fit.
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As described in App. B, in order to estimate perturbative uncertainties, we fit an

ellipse to the contour of best-fit points in the a,-2Q1 plane, and we interpret this

as 1-o- theoretical error ellipse. This is represented by the dashed lines in Fig. 4-6.

The solid lines represent the combined (theoretical and experimental) standard error

ellipses. These are obtained by adding the theoretical and experimental error matrices

which determined the individual ellipses. The central values of the fits, collected in

Tables 4.1 and 4.2, are determined from the average of the maximal and minimal

values of the theory scan, and are very close to the central values obtained when

running with our default parameters. The minimal X2 values for these fits are

quoted in Table 4.3 as well. The best fit based on our full code has X2/dof = 1.325 ±

0.002 where the range incorporates the variation from the displayed scan points at

N3 LL. The fit results show a substantial reduction of the theoretical uncertainties

with increasing perturbative order. Removal of the O(AQCD) renormalon improves

the perturbative convergence and leads to a reduction of the theoretical uncertainties

at the highest order by a factor of 2 in Q1, and factor of 3 in a,(mz)

To analyze in detail the experimental and the total uncertainties of our results,

a'(mz) from global first moment thrust fits

0.135 - All errors: a,(mz)= 0.1141 ± 0.0016

as(mz) O(a3) fixed-order
0.1302*0.0038

0.130 --

. 1+ N3LL summation
- 0.1243 ± 0.0038 -

0.125 - * -+ perturbative error

+ Power Correction

0.120 - 0.1156 ± 0.0022

+ R-scheme

± p-*nerturbative error I0.1143 ±0.0007 +b-mass&QED
S 0.1141 ± 0.0007

0.115-

Figure 4-5: Evolution of the best-fit values for ac,(mz) from thrust first moment fits
when including various levels of improvement with respect to fixed order QCD. Only
points at the right of the vertical dashed line include nonperturbative effects.
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Figure 4-6: Distribution of best-fit points in the a,(mz)-2 Q1 and a,(mz)-2N1 planes.
The left panel shows results including perturbation theory, resummation of the logs,
the soft nonperturbative function, and f21 defined in the Rgap scheme with renormalon
subtractions. The right panel shows the same results, but with ?1 defined in the

MS scheme, and without renormalon subtractions. In both panels the dashed lines
corresponds to an ellipse fit to the contour of the best-fit points to determine the
theoretical uncertainty. The respective total (experimental + theoretical) 39% CL
standard error ellipses are displayed (solid lines), which correspond to 1-o- (68% CL)
for either one-dimensional projection.

c,(mz) (with U1s) c,(mz) (with QRgap)

NLL 0.1174(82)(13) 0.1173(82)(13)
NNLL 0.1160(41)(14) 0.1135(19)(13)

N3LL (full) 0.1153(21)(15) 0.1141(07)(14)
N 3 LL(QCD+m)

N3 L L(pure QCD)

0.1160(21)(15)
0.1156(22)(15)

0.1146(07)(14)
0.1143(07)(14)

Table 4.1: Central values for a, (mz) at various orders with theory uncertainties from
the parameter scan (first value in parentheses), and experimental and hadronic error
added in quadrature (second value in parentheses). The bold N3 LL value above the
line is our final result, while values below the line show the effect of leaving out the
QED and b-mass corrections.

we refer now to Fig. 4-7. Here we show the error ellipses for our highest order fit,

which includes resummation, power corrections, renormalon subtraction, QED and

b-quark mass contributions. The green dotted, blue dashed, and the solid red lines

represent the standard error ellipses for, respectively, experimental, theoretical, and

combined theoretical and experimental uncertainties. The experimental and theory
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Figure 4-7: Experimental AX2 = 1 standard error ellipse (dotted green) at N3 LL
accuracy with renormalon subtractions, in the c-2 Q plane. The dashed blue ellipse
represents the theory uncertainty which is obtained by fitting an ellipse to the contour
of the distribution of the best-fit points. This ellipse should be interpreted as the 1-
- theory uncertainty for 1-parameter (39% confidence for 2-parameters). The solid

red ellipse represents the total (combined experimental and perturbative) uncertainty
ellipse.

order
NLL

NNLL
N3LL (full)

N 3 LL(QMc+Mb)

N3LL<Pu. QcOD)

U1 (MS) [GeV]
0.498(156)(47)
0.401(82)(49)
0.315(75)(51)
0.306(74)(51)
0.344(67)(51)

Q1 (Rgap) [GeV]
0.495(154)(47)
0.408(42)(46)
0.372(39)(46)
0.364(38)(46)
0.397(35)(46)

Table 4.2: Central values for Q1 at the reference scales RA = pA = 2 GeV and for 11
and at various orders. The parentheses show theory uncertainties from the parameter
scan, and experimental and hadronic uncertainty added in quadrature, respectively.
The bold value above the line is our final result, while the N3LL values below the
horizontal line show the effect of leaving out the QED and b-mass corrections.

error ellipses are defined by Ax 2 = 1 since we are most interested in the 1-dimensional

projection onto a,. The correlation matrix of the experimental, theory, and total error
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N3 LL with Q1gap

N3 LL with 1
N3LL no power corr.
O(a3) fixed order

no power corr.

0.1141(07)(14)

0.1153(21)(15)
0.1234(38)(03)

0.1302(38)(04)

Table 4.3: Comparison of first moment fit results for analyses with full results and

Q1 = QRgap, with U1 and no renormalon subtractions, without power corrections, and

at fixed order without power corrections or log resummation. The first number in

parentheses corresponds to the theory uncertainty, whereas the second corresponds

to the experimental and hadronic uncertainty added in quadrature for the first two

rows, and experimental uncertainty for the last two rows.

ellipses are (i, j = a, 2 Q)

theo _

Y (3

2-.cT 1 pQ 4or2

2.02(16). 10-6 -1.25(12) -10-4 GeV

-1.25(12) . 10-4 GeV 0.85(12) . 10-2 GeV 2

5.06. 10~7 1.39. 10-1 GeV

1.39 - 10-5 GeV 5.99. 10- 3 GeV2

2.53(16)- 10-6

(4.28)

)
-1.11(12) - 10-4 GeV

-1.11(12) . 10- 4 GeV 1.45(12) - 10-2 GeV 2

where the experimental correlation coefficient is significant and reads

, = - 0.95(12). (4.29)

Adding the theory scan uncertainties reduces the correlation coefficient in Eq. (3.2)

to

pto=al - 0.58(7). (4.30)

In both Eqs. (3.2) and (4.30) the numbers in parentheses capture the range of values

130

X 2 /(dof)
1.33

1.33
1.99

2.47

as mz)



obtained from the theory scan. From ViX in Eq. (4.28) it is possible to extract the

experimental uncertainty for az and Q1 and the uncertainty due to variations of Q1

and as, respectively:

exp = -as 1- = 0.0004, (4.31)

o p = -_1 pc2 = 0.013 GeV,

o7a = oa. pool = 0.0014,

o = o-Q IpaIl = 0.044 GeV.

Fig. 4-7 shows the total uncertainty in our final result quoted in Eq. (3.5) below.

The correlation exhibited by the green dotted experimental error ellipse in Fig. 4-7

is given by the line describing the semimajor axis

4 G = 0.1250 - a,(mz). (4.32)34.03 GeV

Note that extrapolating this correlation to the extreme case where we neglect the

nonperturbative corrections (Q1 = 0) gives a,(mz) -+ 0.1250.

4.3.3 Effects of QED and the b-mass

The experimental correction procedures applied to the AMY, JADE, SLC, DELPHI

and OPAL data sets were typically designed to eliminate initial state photon radiation,

while those of the TASSO, L3 and ALEPH collaborations eliminated initial and final

state photon radiation. It is straightforward to test for the effect of these differences

in the fits by using our theory code with QED effects turned on or off depending on

the data set. Using our N3 LL order code in the Rgap scheme we obtain the central

values a,(mz) = 0.1143 and Q1 = 0.371 GeV. Comparing to our default results

given in Tabs. 4.1 and 4.2, which are based on the theory code were QED effects are

included for all data sets, we see that the central value for a, is larger by 0.0002 and

the one for Q1 is smaller by 0.001 GeV. This shift is substantially smaller than our

perturbative uncertainty. Hence our choice to use the theory code with QED effects
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Figure 4-8: First moment of the thrust distribution as a function of the center of mass
energy Q, using the best-fit values for a,(mz) and Q1 in the Rgap scheme as given
in Eq. (4.33). The blue band represents the perturbative uncertainty determined by
our theory scan. Data is from ALEPH, OPAL, L3, DELPHI and JADE.

included everywhere as the default for our analysis does not cause an observable bias

regarding experiments which remove final state photons.

By comparing the N3 LL (pure massless QCD) and N3 LL (QCD + mb) entries in

Tabs. 4.1 and 4.2 we see that including finite b-mass corrections causes a very mild

shift of ~ +0.0003 to a,(mz), and a somewhat larger shift of ~ -0.033 GeV to 01.

In both cases these shifts are within the 1-o theory uncertainties. In the N3 LL (pure

massless QCD) analysis the b-quark is treated as a massless flavor, hence this analysis

differs from that done by JADE [131] where primary b quarks were removed using

MC generators.
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4.3.4 Final Results

As our final result for a(mz) and Q1, obtained at N3LL order in the Rgap scheme

for Q, (RA, [pA), including bottom quark mass and QED corrections we obtain

a8 (mz) = 0.1141 i (0-0004)exp ± (0.0014)hadr ± (0.0007)pert, (4.33)

Q1(RA,I-pa) = 0.372 ± (0. 0 1 3 )exp t (0.044)aS(mz) ± (0.039)pert GeV,

where RA = pA = 2 GeV and we quote individual 1-o- uncertainties for each param-

eter. Here X2/dof = 1.33. Eq. (4.33) is the main result of this work.

In Fig. 4-8 we show the first moment of the thrust distribution as a function of the

center of mass energy Q, including QED and mb corrections. We use here the best-fit

values given in Eq. (4.33). The band displays the theoretical uncertainty and has

been determined with a scan on the parameters included in our theory, as explained

in App. B. The fit result is shown in comparison with data from ALEPH, OPAL, L3,

DELPHI and JADE. Good agreement is observed for all Q values. It is interesting

to compare the result of this analysis with the result of our earlier fit of thrust tail

distributions in Ref. [1]. This is shown in Fig. 4-9. Here the red upper shaded area

and corresponding ellipses show the results from fits to the first moment of the thrust

distribution, while the blue lower shaded area and ellipses show the result from fits

of its tail region. Both analyses show the theory (dashed lines) and combined the-

oretical and experimental (solid lines) standard error ellipses, as well as the ellipses

which correspond to Ax 2 = 2.3 (68% CL for a two-parameter fit, wide-dashed lines).

We see that the two analyses are compatible.

4.4 Fixed Order Analysis of M

It is interesting to compare the result of our best fit with an analysis where we do

not perform resummation in the thrust distribution, but where power corrections and

renormalon subtractions are still considered. This is achieved by setting the scales

pH, pS, Y, pns in our theoretical prediction all to a common scale y ~ Q. We use R
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Figure 4-9: Comparison of a,(mz) and Q1 determinations from thrust first moment

data (red) and thrust tail data (blue). The plot corresponds to fits with N3 LL ac-

curacy and in the Rgap scheme. The tail fits are performed with our improved code

which uses a new nonsingular two-loop function, and the now known two-loop soft

function. Dashed lines correspond to theory uncertainties, solid lines correspond to

AX 2 = 1 combined theoretical and experimental error ellipses, and wide-dashed lines

correspond to AX2 = 2.3 combined error ellipses (corresponding to 1-o- uncertainty

in two dimensions).

for the scale of the renormalon subtractions and renormalization group evolved power

correction. Finally we will neglect QED and b-mass corrections in this subsection. Up

to the treatment of power corrections and perturbative subtractions, the fixed order

results used for this analysis are thus equivalent to those used in Ref. [84].

The OPE formula for the first moment in the Rgap scheme for this situation is

given by

1 , = 1R gap n(,) 2 R, (4.34)

Q,( )= E2~1 + A (R,.p) - A (RA,/IA),
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In Eq. (4.34), the Q1 with no arguments is the value determined by the fits, which

is in the Rgap scheme at the reference scale PA = RA = 2 GeV. Here A(R, p) is the

running gap parameter, and A(R, pt) - A(RA, pA) is used to sum logarithms from

(RA, pA) to (R, p) in Eq. (4.34). The analytic expression for A(R, p) - A(RA, pA)

can be found in Eq. (41) of Ref. [94, 1]. The perturbative M1" is related to the

perturbative MS result by

M R ~ 26J(R, pt)
M ap"(R, p) = s(p) + , (4.35)

3

6(R, [p) = e'YER as (I) (R, p)

where the subtractions terms are [94, 1]

61 (R, p) = -0.848826LR , (4.36)

62 (R, p) = -0.156279 - 0.46663LR - 0.517864L 2

63 (R, p) = - 0.552986 - 0.622467LR - 0.777219L 2 - 0.421261L ,

with LR = ln(p/R). In Eq. (4.35) 6(R, p) cancels the O(AQCD) renormalon in

Af((p), and it is crucial that the coupling expansions in both these objects are

done at the same scale, a,(L), for this cancellation to take place. The relation to the

MS scheme power correction is ?1 = Q + 6(RA, [A), and the OPE in the MS scheme

at this level is

M1= SS 4 (437)

In the MS result there are no perturbative renormalon subtractions (and thus no log

resummation related to the renormalon subtractions) and the parameter K!1 has a

AQCD renormalon ambiguity.

We will perform fits to the experimental data following the same procedure dis-

cussed in the previous section. Using Eq. (4.34) we consider two cases, i) R ~ Q

where Q1 is renormalization group evolved to R and there are no large logarithms in
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order O(c ) (ac)
(i) Rgap R-RGE 0.1160(27)(15) 0.1146(06)(14)
(ii) Rgap FO Subt. 0.1185(63)(15) 0.1138(20)(14)
(iii) MS for - 1  0.1279(124)(19) 0.1186(38)(15)

Table 4.4: MS scheme values for a(mz) obtained from various fixed order analyses.

The first value in parentheses is the uncertainty from higher order perturbative cor-

rections (obtained by the method described in the text), while the second value is the

combined experimental and hadronization uncertainty.

order O(C) O(a3)
(i) Rgap R-RGE 0.403(13)(47) 0.395(13)(47)
(ii) Rgap FO Subt. 0.204(126)(62) 0.337(76)(62)
(iii) MS for Q1 0.383(62)(47) 0.355(54)(46)

Table 4.5: Q1 or U1 values obtained from fixed order analyses at various orders. The

first value in parentheses is the uncertainty from higher order perturbative corrections

(obtained by the method described in the text), while the second value is the combined

experimental and hadronization uncertainty.

the renormalon subtractions, and ii) fixing R at the reference scale, R = 2 GeV, in

which case large logarithms are present in the renormalon subtractions. We will also

consider a third case, iii), using the MS-OPE of Eq. (4.37). Results for these fits are

shown in Tabs. 4.4 and 4.5. For all cases X2/dof ~ 1.32.

For case i) we take R ~ p ~ Q, so there are no large logarithms in the 6(R, pL)

of Eq. (4.34), and all large logarithms associated with renormalon subtractions are

summed in A(R, p) - A(RA, pA). Here we estimate the perturbative uncertainty in

a8 (mz) and Q1 by varying the renormalization scale t and the scale R independently

in the range {2 Q, Q/2}. We use one-half the maximum minus minimum variation as

the uncertainty, and the average for the central value. The results for both as(mz)

and Q1 are fully compatible at 1-o- to our final results shown in Eq. (3.5). The agree-

ment is even closer to the central values for the fits without QED or b-mass corrections

in Tabs. 4.1 and 4.2, namely a,(mz) = 0.1143(07)(14) and Q1 = 0.397(35)(46). The

one difference is that the perturbative uncertainty for Q1 in Tab. 4.5 is a factor of

three smaller. The case i) results in the table also exhibit nice order-by-order con-

vergence, and if one plots Mi versus Q (analogous to Fig. 4-2) the uncertainty bands

are entirely contained within one another. In order to be conservative, we take our
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resummation analysis in Eq. (3.5) as our final results (with its larger perturbative

uncertainty and inclusion of QED and b-mass corrections).

For case ii) we take R ~ 2 GeV and y - Q as typical values, so there are large

logarithms, ln(R/Q), in the 6(R, p) renormalon subtractions. The central value for

ac(mz) at O(a3) is again fully compatible with that in Eq. (3.5). Here we estimate

the perturbative uncertainty in a,(mz) by varying p E {2 Q, Q/2} and R = 2±1 GeV.

Due to the large logarithms the perturbative uncertainty in a, (mz) for case ii), shown

in Tab. 4.4, is three times larger than for case i). It is also compatible with the dif-

ference between central values at O(a2) and O(a3). To estimate the uncertainty for

i1 we only vary p, which leads to the rather large error estimate for Q1 shown in

Tab. 4.5. The contrast between the precision of the results in case i), to the results

in case ii), illustrates the importance of summing large logarithms in the renormalon

subtractions.

For case iii), where the ?1 power correction is defined in MS we do not have

renormalon subtractions (and hence no large logs in subtractions). Due to the poor

convergence of the fixed order prediction for the first moment, seen from the blue fixed

order points in Fig. 4-2, it is not clear whether varying At in the range {2 Q, Q/2} gives

a realistic perturbative uncertainty estimate. Hence we determine the perturbative

uncertainty for case iii) in Tabs. 4.4 and 4.5 by varying p in the range {2 Q, Q/2} and

multiply the result by a factor of two. The perturbative uncertainties for a8 (mz) are

a factor of two larger than in case ii). The central values for a, (mz) in case iii) are

also larger, but are compatible with those in case ii) and Eq. (3.5) within 1-o-.

It is interesting to compare our results to those of Ref. [84], which also performs

a fixed order analysis at O(a3), and incorporates subtractions based on the disper-

sive model.8 Here the subtractions contain logarithms, ln(pAt/p), where p-I ~ 2 GeV

and y ~ Q, that are not resummed. From a fit to M1 in thrust they obtained

ac(mz) = 0.1166 ± 0 .0 0 1 5 exp 0.00 3 2 th where the first uncertainty is experimental

80n the experimental side, Ref. [84] uses only the new JADE data from [131] and OPAL data.
In our analysis the new JADE was excluded, but we utilized a larger dataset that includes ALEPH,
OPAL, L3, DELPHI, and older JADE data. This may have a non-negligible impact on the outcome
of the comparison.
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Figure 4-10: Experimental data for the first moment of thrust. The solid line corre-
sponds to the result from Eq. (3.5).

and the second is theoretical. Our corresponding result is the one in case ii), and the

central values and uncertainties for a,(mz) are fully compatible. The perturbative

uncertainty they obtain is a factor of 1.6 larger than ours. It arises from varying the

renormalization scale t E {2 Q, Q/2}, the O(aC) Milan factor M by 20%, and the

infrared scale pr = 2 ± 1 GeV in the dispersive model. In our analysis there is no

precise analog of the Milan factor because our subtractions and Rgap scheme for Q1

fully account for two and three gluon infrared effects up to O(a) that are associated

to thrust. Other that this, the difference can be simply attributed to the differences

in subtraction schemes which have an impact on the t scale uncertainty. Finally, note

that we have implemented the analytic results of Ref. [84] and confirmed their y and

y, uncertainties.

4.5 JADE Datasets

As discussed in Sec. 4.1 our global dataset includes thrust moment results from

ALEPH, OPAL, L3, DELPHI, and the JADE data from Ref. [1241. In this sec-
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Figure 4-11: Fit results when using ALEPH, DELPHI, OPAL and L3, but no JADE
data (upper blue ellipse), when also including JADE data from Ref. [124] (red central
ellipse) [our default data set], and when instead including the JADE data from
Ref. [131] (green lower ellipse).

tion we discuss the impact on the results in Secs. 4.3 and 4.4 of replacing the JADE

data from Ref. [124] with moment results from an updated analysis carried out in

Ref. [131], which removes the contributions from primary bb pair production and pro-

vides in addition measurements at Q = 14 and 22 GeV. In Fig. 4-10 we show the data

for M1, including the JADE results from Refs. [124] and [131]. The most significant

difference occurs at Q = 44 GeV. Our analysis will treat these datasets on the same

footing without attempting to account for the effect of removing the bb's.

For our analysis in Sec. 4.3 with theory results at N3LL + O(a3) we continue to

exclude center of mass energies Q < 22 GeV. The dependence of the global fit result

on the data set for M1 is shown in Fig. 4-11. Theoretical uncertainties are analyzed

again by the scan method giving the central dots and three inner ellipses, while the

139

I



outer three ellipses show the respective combined 1-o total experimental and theo-

retical uncertainties. Using all experimental data but excluding JADE measurements

entirely gives the fit result shown by the upper blue ellipse. This result is compat-

ible at 1-o- with the central red ellipse which shows our default analysis, using the

Ref. [124] JADE M 1 measurements. Replacing these two JADE data points by the

four Q > 22 GeV JADE M 1 results from Ref. [131] yields the lower green ellipse

(whose center is ~ 1.5-o- from the central ellipse). For this fit the X 2/dof increases

from 1.33 to 1.52 demonstrating that there is less compatibility between the data.

For this reason, together with the concern about the impact of removing primary bb

events with MC simulations, we have used only JADE data from Ref. [124] in our

main analysis.

A similar pattern is observed using the fixed order fits of M 1 discussed in Sec. 4.4.

In this case it is also straightforward to include the Q = 14,22 GeV JADE data from

Ref. [1311. If these two points are added to our default dataset (which contains Q = 35

and 45 GeV as the lowest Q results for M 1 ) then we find a,(mz) = 0.1156 ± 0.0013

and Q1 = 0.353 ± 0.038 GeV with X2/dof = 1.3. This is compatible at 1-o- with our

final pure QCD result in Tab. 4.1. If we include the entire set of JADE data from

Ref. [131] instead of those from Ref. [124] then we find a,(mz) = 0.1170t0.0012 and

Q1 = 0.287 ± 0.035 GeV with X2 /dof = 1.5, very similar to the values observed for

the green lower ellipse in Fig. 4-11. Hence, overall the fixed order analysis does not

change the comparison of fits with the two different JADE datasets.

4.6 Higher Moment Analysis

In this section we consider higher moments, Mn>2 , which have been measured experi-

mentally up to n = 5. From Eq. (4.20) we see that these moments have power correc-

tions oc 1/Qk for k > 1. Since for the perturbative moments we have Mn/Mn+1 ~ 4-9,

we estimate that the 1/Q 2 power corrections are suppressed by 9AQcD/Q which varies

from 1/8 to 1/44 for the Q-values in our dataset, Q > 35 GeV. Hence, for the analysis

in this section we can safely drop the 1/Q 2 and higher power corrections and use the

140



form

2n i-1
Mn = Mn + 2 n-1. -(4.38)

By using our fit results for a,(mz) and Q1 from Eq. (3.5) we can directly make

predictions for the moments M 2,3,4 ,5 . This tests how well the theory does at calculating

the perturbative contributions M 2,3,4 ,5 . The results for these moments are shown in

Fig. 4-12 and correspond to X2/dof - 1.3,2.6,0.8, 1.2 for n - 2, 3, 4, 5 respectively,

indicating that our formalism does quite well at reproducing these moments. The

larger X2 /dof for n = 3 is related to a quite significant spread in the experimental

data for this moment at Q > 190 GeV. Note that we also see that the relation

Mn,/Mn+1 ~ 4-9 is satisfied by the experimental moments.

An alternate way to test the higher moments is to perform a fit to this data.

Since we have excluded the new JADE data in Ref. [131], we do not have a significant

dataset at smaller Q values for the higher moments. With our higher moment dataset

the degeneracy between a, (mz) and Q1 is not broken for n > 2, and one finds very

large experimental errors for a two-parameter fit already at n = 2. However we can

still fit for a, (mz) from data for each individual Mn>2 by fixing the value of Q1 to

the best fit value in Eq. (3.5) from our fit to M 1 . For this exercise we use our full

N3 L L + O(a3) code, but with QED and mass effects turned off. The outcome is shown

in Fig. 4-13 and Tab. 4.6. We find only a little dependence of a. on n, and all values are

compatible with the fit to the first moment within less than 1-o-. This again confirms

that our value for Q1 and perturbative predictions for Mn;>2 are consistent with the

higher moment data. In Ref. [84] a two-parameter fit to higher thrust moments was

carried out using OPAL data and the latest low energy JADE data. For n = 2 to

n = 5 the results increase linearly from a,(mz) = 0.1202 ± (0.001 8)e, i (0.0046)th

to as,(mz) = 0.1294 ± (0.0027)exp ± (0.0070)th respectively, and the weighted average

for the first five moments of thrust is a,(mz) = 0.1208 ± 0.0 0 18exp ± 0.0045th-

The results are fully compatible within the uncertainties, and there is an indication

of a trend towards larger a,(mz) extracted from higher moments. In our analysis
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Figure 4-12: Predictions for the higher moments M 2 , M 3 , M 4 , M 5 using the best

fit values from Eq. (3.5), and our full N3 LL + O(ac) code in the Rgap scheme, but

with QED and mass effects turned off. The central points use different symbols for

different moments.

n a,(mz) Ath[as Aexp[,] X2 /dof

2 0.1150 0.0009 0.0005 1.24
3 0.1158 0.0009 0.0005 1.87
4 0.1152 0.0011 0.0010 0.39
5 0.1157 0.0015 0.0010 0.23

Table 4.6: Numerical results for a, from one-parameter fits to the Mn moments. The

second column gives the central values for a8 (mz), the third and fourth show the

theoretical and experimental errors, respectively. Since %1 was fixed for this analysis

we do not quote a hadronization error.

we do not observe this trend, but our results should not be directly compared since

we have only performed a one parameter fit. After further averaging over results

obtained from event shapes other than thrust Ref. [84] obtained as their final result
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Figure 4-13: One-parameter fits for a,(mz) to the first five moments. We use our
full set up with power corrections and renormalon subtractions, with QED and mass
corrections turned off. The value of Q1 is fixed from Eq. (3.5). The error bars include
theoretical and experimental errors added in quadrature (not including uncertainty
in Q1).

a,(mz) = 0.1153 ± 0 .0 0 1 7exp i 0.0023th. This is again perfectly compatible with

our result in Eq. (3.5).

4.7 Higher power corrections from Cumulant Mo-

ments

In this section we use cumulant moments as defined in Eq. (4.26) to discuss the pres-

ence of higher power corrections and their constraints from experimental data. There

are two types of power corrections that are relevant for the cumulants, those defined

rigorously by QCD matrix elements which come from the leading thrust factorization
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theorem, Q', and those from our simple parameterization of higher order power cor-

rections in Eq. (4.14), QO,, 1 . For the latter a systematic matching onto QCD matrix

elements has not been carried out and the corresponding perturbative coefficients

have not been determined.

For the second cumulant M2 both types of power correction contribute to the

leading 1/Q 2 term in the combination

2= 2 ± H, %, . (4.39)

Without a calculation of the perturbative coefficient M1 we cannot argue that either

one dominates, and hence we keep both of them. In terms of this parameter the OPE

with its leading power correction for the second cumulant becomes simply

M2 = M 2 42 (4.40)

where M2 is computed from our leading order factorization theorem, see Eq. (4.10).

For the third cumulant M3 the power correction from the leading thrust factorization

theorem is 1/Q 3 , while that from the subleading factorization theorem is 1/Q 2, so

6 M2,1  8 '3
± Q3+ (4.41)

M 3 Q2 Q3

We will keep both of these power corrections. For our analysis we will assume that

the perturbative coefficients M1,1 and M2,1 get contributions at tree-level, and hence

that their logarithmic dependence on Q is a,-suppressed. Thus for fits to M2,3 we will

consider the three parameters ' H2 ,1 MQ 1,, and Q'. Our theoretical expectations are

that (Ql')l/ ~ AQCD and (Q,, 1 )1 /2 _(Q)i/n.

Since most of the experimental collaborations provide measurements only for mo-

ments we computed the cumulants using Eq. (4.2). To propagate the errors to the

n-th cumulant one needs the correlations between the first n moments, both statistical

and systematical. Following experimental procedures we will estimate the statistical

correlation matrix from Monte Carlo simulations. These matrices are provided in
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Figure 4-14: Prediction of cumulants using our best-fit values for as(mz) and Q1
from the fit to the first thrust moment. The band includes only the theoretical

uncertainty from the random scan. The theory prediction includes QED and mass

corrections, and uses our default model, which translates into the following values

for higher nonperturbative power corrections: 2Q = Q2/4, Q' = Q /8, Q' = 3 Q'/32,

5 = 3 1/32.

Ref. [130] for Q = 14, 91.3, 206.6 GeV. 9 The computation of these matrices does not

depend on the simulation of the detector and hence can be a priory employed on

the data provided by any experimental collaboration. It was found that statistical

correlation matrices depend very mildly on the center of mass energy, and our ap-

proach is to use the matrix computed at 14 GeV for Q < 60 GeV, the one computed

at 91.3 for 60 GeV < Q < 120 GeV and the one at 206.6 GeV for Q ;> 120 GeV. The

systematic correlation matrix for the moments is estimated using the minimal overlap

model based on the systematic uncertainties, and then converted to uncertainties for

the cumulants. We use this method even for the few cases in which experimental

collaborations provide uncertainties for the cumulants directly, since we want to treat

all data on the same footing. In these cases we have checked that the results are very

9We thank Christoph Pahl for providing details on the use of correlation matrices for moments.
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X2central Ath Aexp (of

()1/2 0.74 0.09 0.11 0.72

(62)1/2 1.21 0.10 0.22 0.93
(6 3 )1/3  -2.61 0.15 1.51

Table 4.7: Determination of power corrections from fits to M2 and M3. All values in

the table are in GeV. Columns two to four correspond to central value, theoretical
uncertainty, and experimental uncertainty, respectively (the latter includes both sta-
tistical and systematic errors added in quadrature). The values displayed correspond
to the linear combinations in Eq. (4.42), which for M3 diagonalize the experimental
error matrix.

similar.

To some extent the prescription we employ lies in between two extreme situa-

tions: a) moments are completely uncorrelated, and b) cumulants are completely

uncorrelated. Situation a) corresponds to the naive assumption that the moments

are independent. Situation b) is motivated by considering that properties like the

location of the peak of the distribution (- M 1 ), the width of the peak (~ M2), etc

are independent. By assuming moments are uncorrelated one overestimates the errors

of the cumulants. This would translate into larger experimental errors for our fit re-

sults and very small X2/dof. Assuming that cumulants are uncorrelated induces very

strong positive correlations between moments, which then leads to small uncertain-

ties for the cumulants, especially for the variance, and larger X2/dof values. With the

adopted prescription we use one finds a weaker positive correlation among moments,

which translates into a situation between these two extremes. 10  For our analysis

we use our highest order code as described in Sec. 4.3, but without QED and b-mass

effects, and take the value o,(mz) = 0.1143 obtained in our fit to the first moment

data with this code (see Tab. 4.1). Since we are analyzing cumulant moments M> 2

the value of Q1 is not required, and there is no distinction between having this param-

eter in MS or the Rgap scheme. Hence in order to fit for higher power corrections we

use our purely perturbative code in the MS scheme. Thus all of the power correction

1 0 0ne might also construct the correlation matrices using the statistical and systematic errors
from the thrust distributions themselves. Bins in distributions are statistically independent and

systematic correlations are estimated using the minimal overlap model. Unfortunately this often

introduces strong biases, and we thank Christoph Pahl for clarifying this point.
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Figure 4-15: Determination of power corrections from fits to data. On the vertical
axes we display the n-th experimental cumulant with the perturbative part subtracted
M' - M. The error bars shown are experimental (statistical and systematic com-

bined) added in quadrature with perturbative errors from the random scan over the
profile parameters. The top-left panel shows the fit to n'/Q 2 , and the top-right
panel shows the fit to M 2,1 01,1/Q 2 and £'3/Q 3 through the linear combinations in
E2,3. The bottom two panels for n = 4,5 show a simple fit to M 3,1Q 1 ,1 and M 4,1 Q 1,1
taking Q' = Q' = 0.

parameters extracted in this section are in the MS scheme, and in particular we do

not carry out renormalon subtractions beyond O(AQCD). The perturbative error is

estimated as in Sec. 4.3, by a 500 point scan of theory parameters (see App. B).

Before we fit for the higher power corrections, we will check how well our factoriza-

tion theorem predicts the experimental cumulants using a simple exponential model

for the nonperturbative soft function (the model with only one coefficient cO = 1 from

Refs. [1, 1161). This model has higher power corrections that are determined by its

one parameter 01: '2 = Q2 /4, Q' = Q'/8, Q' = 3 Q/32, Q' = 3 Q5/32. Results are

shown in Fig. 4-14, where good agreement between theory and data is observed.

For the M' in Fig. 4-14 we also observe that M's 1/M' ~ 1/10, so the (n + 1)-th
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order cumulant is generically one order of magnitude smaller than the n-th order

cumulant.

Next we will fit for the power correction parameters 2'2, M 2 ,1 Q1,1 , and Q'. To

facilitate this we consider the difference between the experimental cumulants M' and

the perturbative theoretical cumulants M', namely M2 - M6 and M3 - M3. From

Eqs. (4.40) and (4.41) these differences are determined entirely by the power correc-

tion parameters we wish to fit. The results are shown in Tab. 4.7 and the upper two

panels of Fig. 4-15. From the M2 -M2 fit a fairly precise result is obtained for (')1/2.

Its central value of 740 MeV is compatible with ~ 2 AQCD, and hence agrees with naive

dimensional analysis. Interestingly, we have checked that including a constant and

1/Q term in the second cumulant fit one finds that their coefficients are compatible

with zero, in support of the theoretically expected 1/Q 2 -dependence.

For the fit to M3 - f3 there is a strong correlation between Q' and M 2 ,1 1,1 even

though they occur at different orders in 1/Q. Since the X2 is quadratic in these two

parameters we can determine the linear combinations that exactly diagonalize their

correlation matrix:

82 6 M2 ,1  + (0.3105 GeV- 1 ) Q', (4.42)
0.07 J 4

- (0.3105 GeV) .62 Q]
63 Q3 . 0.07 14*

Note that these combinations arise solely from experimental data. We have presented

the coefficients of these combinations grouping together a factor of [6M 2 ,1/0.07], which

is close to unity if 6M 2,1 ~ M 1 . The results in Tab. 4.7 exhibit a reasonable uncer-

tainty for 9 2 , but a large uncertainty for 6 3. Hence, at this time it is not possible

to determine the original parameters ' and M 2,1 Q1,1 independently. As in the pre-

vious case, the fit does not exhibit any evidence for a 1/Q correction, confirming the

theoretical prediction for this cumulant.

In Fig. 4-15 we also show results for cumulant differences M' - M' versus Q

for n = 4 and n = 5. In all cases n = 2, 3,4,5 the perturbative cumulants M'

are the largest component of the cumulant moments M', as can be verified by the
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reduction of the values by a factor of 2-3 in Fig. 4-15 compared to the values in

Fig. 4-14. We also observe an order of magnitude suppression between the (n + 1)'th

and n'th terms, (Mn+1 - M'+1)/(M' - MI') ~ 1/10. For n = 4,5 the OPE formula

in Eq. (4.26) involves both 2"Q' /Qn terms and terms with non-trivial perturbative

coefficients: (2n Mn_1 ,1 1, 1 )/Q 2 +... (where here the ellipses are terms at 1/Q 3 and

beyond). If the former dominated we would expect a suppression by 2 AQCD/Q for

the (n + 1)'th versus n'th term, which is not observed. The observed suppression by

1/10 is consistent with domination by the 1/Q 2 power correction terms in the n = 4,5

cumulant differences. This would imply [(n + 1)Mn,1]/[nMn-1,1] - 1/10 and could in

principle be verified by an explicit computation of these coefficients. In Fig. 4-15 we

show fits to a 1/Q 2 power correction, which are essentially dominated by the lowest

energy point at the Z-pole. The results are 8M 3 ,1 1,1 = 0.20 ± 0.08 from fits to

M and 10 M 4 ,1 Q1,1 = 0.07 ± 0.06 from fits to M5. These findings nicely confirm

our expectation of the ~ 1/10 suppression for the Mn,1 matrix elements.

In this section we have determined the 1/Q 2 power correction parameter n' with

25% accuracy, and find it is 3.8 o different from zero. For the higher moments there

are important contributions from a Q1,1/Q 2 power correction, which appears to even

dominate for n > 4. Clearly experimental data supports the pattern expected from

the OPE relation in Eq. (4.26).

4.8 Conclusions

In this work we have used a full T-distribution factorization formula developed by

the authors in a previous publication [1] to study moments and cumulant moments

of the thrust distribution. Perturbatively it incorporates O(a43) matrix elements and

nonsingular terms, a resummation of large logarithms, Ink T, to N3 LL accuracy, and

the leading QED and bottom mass corrections. It also describes the dominant non-

perturbative corrections, is free of the leading renormalon ambiguity, and sums up

large logs appearing in perturbative renormalon subtractions.

Theoretically there are no large logs in the perturbative expression of the thrust
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moments, and when normalized in the same way the perturbative result from the full

T code with resummation agrees very well with the fixed order results. Nevertheless,

when the code is properly self normalized it significantly improves the order-by-order

perturbative convergence towards the O(a') result. In particular, the results remain

within the perturbative error band of the previous order, in contrast to what is ob-

served using fixed order expressions. This lends support to the theoretical uncertainty

analysis from the code with resummation.

From fits to the first moment of the thrust distribution, M 1 , we find the results

for a,(mz) and the leading power correction parameter Q1 given in Eq. (3.5). They

are in nice agreement with values from the fit to the tail of the thrust distribution in

Ref. [1]. The moment results have larger experimental uncertainties, and these dom-

inate over theoretical uncertainties, in contrast with the situation in the tail region

analysis of Ref. [1]. Repeating the M1 fit using a fixed order code with no ln r resum-

mation, but still retaining the summation of large logs in the perturbative renormalon

subtractions, yields fully compatible results for a,(mz) and Q1.

Using a Fourier space operator product expansion we have parameterized higher

order power corrections which are beyond the leading factorization formula, and an-

alyzed the OPE both for regular moments M, and cumulant moments M'. In the

regular moments the Q1/Q power correction from the leading factorization theorem

enters with a perturbative suppression in its coefficient, and dominates numerically

over higher 1/Q corrections. In contrast, the cumulant moments M> 2 depend on

higher order cumulant power corrections , /Q"n from the leading factorization theo-

rem, and are independent of Q1 /Q, ... , Q'_ 1/Qn-1. Data on these cumulant moments

appear to indicate that they receive important contributions from a 1/Q 2 power cor-

rection that enters at a level beyond the leading thrust factorization theorem. Thus

the OPE reveals that cumulant moments are appealing quantities for exploring sub-

leading power corrections. We performed a fit to the second cumulant moment and

determined a non-vanishing 2/Q 2 power correction with a precision of 25%.

It would be interesting to extend the analysis performed here, based on OPE

formulas related to factorization theorems, to other event shape moments and cu-
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mulant moments. Examples of interest include the heavy jet mass event shape [59,

54, 60, 52, 56], angularities [36, 961, as well as more exclusive event shapes like jet

broadening [53, 70, 57, 28, 58].
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Chapter 5

Calculation of ISR Logarithms in

Drell-Yan processes

5.1 Introduction

In [138] the hadronic event shapes variable beam thrust r has been introduced to

allow a simple theoretical description of the isolated Drell-Yan process with 0-jets. It

allows for a calculation of thrust in a hadron collider when the thrust axis is taken to

be the beam axis, and is an effective means to veto jets in the central region of the

detector. In [138], the authors derived a factorization theorem for beam thrust and

calculated the coefficient functions at NLO for the isolated Drell-Yan process.

In this Chapter we will first review the Drell-Yan process in section 5.2, we will

define the beam thrust and state its factorization theorem in section 5.3. We will

then discuss the original part of this work, which is the calculation of the logarithms

of the NNLO beam function, section 5.4 and 5.5, and the calculation of the full set of

logarithms of r in the singular part of the NNLO coefficient functions for the isolated

Drell-Yan cross section in sections 5.6 and 5.7. It is important to notice that most

of the known NNLO cross-section results are given in the form of a numerical code.

We present a fully analytic calculation which can be used to test the impact of higher

order logarithms on central values and uncertainties. This calculation is required

for the calculation of the nonsingular terms in resummed predictions, as we did in
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Chapter 2.2.5 for thrust.

5.2 Drell-Yan process and factorization

The Drell-Yan process describes the process pp - Xf+f- or pp -+ Xe+f~. The

kinematics of the process is parameterized as follows

Pa + Pt, = px +ql, (5.1)

where Pa", are the incoming (anti)proton momenta, Ecm = v/(Pa + P) 2 is the total

center-of-mass energy, and q1 is the total momentum of the lepton pair. It is common

to define

q= Y = log p, Xa = Ve , xb = VI e~, (5.2)
Ecm 2 Pa -

where Y is the total rapidity of the leptons with respect to the beam axis, and xa,b

are in one-to-one correspondence with r and Y. The kinematic limits are

0 < T < 1, 21Yl < -logT, r < Xa 5 1, T 5 Xb 5 1. (5.3)

The invariant mass of the hadronic final state is bounded by

m2  p 2  _ Ec2m (1 -) 2. (5.4)

In the case of inclusive Drell-Yan, one sums over all hadronic final states X without

imposing any cuts. The measurement is therefore infrared safe and insensitive to the

details of the hadronic final state itself. In this situation there is a rigorous derivation

of the classic factorization theorem

1 da f fiQaadIGfj(,ndi([l±()AQGD)

odq2dY = HQ 2, A ((a, 1)fy ((b, t)[1 + 0(Q

(5.5)
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where a0 = 4iroe/(3NcEc q2 ), and the integration limits are x, < '(a < 1 and

Xa < (a < 1. The sum is over partons i,j = {g,u,, d,...}, and fi (a) is the

parton distribution function for finding parton i inside the proton with light-cone

momentum fractions (a along the proton direction. The inclusive hard function H~jnl

can be computed in fixed-order perturbative QCD as the partonic cross section to

scatter parton i and j, and is known up to two loops.

5.3 Factorization theorem for Beam Thrust

The Beam Thrust is an event shape observable introduced in [138] to allow a simple

theoretical description of isolated Drell-Yan processes. Here the hadronic final state

is allowed to contain forward energetic radiation in jets about the beam axis, but only

soft wide-angle radiation in the central region, i.e. no central jets. The beam thrust

is defined as

e-Bj (Y) + eB(Y) (
TB- (5.6)

where q2 and Y are the total invariant mass and rapidity of the leptons, Q = .

The hadronic momenta Bf (Y) and B (Y) measure the total momentum of all hadrons

in the final state at rapidities y > Y and y < Y, respectively(where the momenta

are measured in the hadronic center-of-mass frame of the collision and the rapidi-

ties are with respect to the beam axis). Their plus components are defined as

Bt(Y) = ni - Bi(Y), where n" = (1,0,0,1) and nb = (1,0,0, -1) are light-cone

vectors corresponding to the directions of the incoming protons (with the beam axis

taken along the z direction). For rB 1 the hadronic final state contains radiation

with momentum perpendicular to the beam axis of order of Q, while TB < 1 corre-

sponds to two-jets like events with radiation with momentum of order Q only near the

direction of the beams. Requiring TB < exp(-2y"t) essentially vetoes hard radiation

in the rapidity region Iy - Y < y'1t - 1.

In Ref. [138] a rigorous factorization theorem for the Drell-Yan beam thrust cross
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section for small TB has been derived and reads

dq2 d dr S = H ,(q 2 , PH) UH(q 2, pH, pis) dta dtb dti dt'

x Q SB QTB - ta t, y Bi(ta - t',Xa, , pB) UB(t', pB, IS)

x By (t- t',Xb, AB) UB(t', pB, Ps) 1+ (AQCD )TB) - (5.7)

The sum runs over partons i, j = {u i, Iu, dd,.. . }. The hard function Hij (q2 , /_)

contains virtual radiation at the hard scale pff ~ Q. The beam function Bi(ta, Xa, pL)

describes the formation of incoming jets prior to the hard collision due to collinear

radiation form the incoming partons. The soft function SB (k, p) describes the effect

of soft radiation form the incoming partons on the measurement of TB. When working

at a fixed order in perturbation theory (without resummation), it is useful to express

the cross section as

do- (v + a2)(v, + a') - 2Qivive(1 - m z/q 2 )
dq2 dY drB =oo i (1 - m2/q2)2 ± m2]27g/q4

x L Ci , ,a q, f(Xb 2) f, 7 P7 l yb A), (5.8)

where, fi/a( a, y) and fj/b(4b, p) are the PDFs for parton i in proton a and parton j
in (anti-)proton b. In [138], the I-loop fixed order cross section have been calculated,

producing the following results. We decompose the coefficient functions Ciy as

Ci (Za, Zbr, rI) = Cj (Za, Zb,T, ) + CP (a, Zb, T, ) , (5.9)

into singular CG and nonsingular Cg terms. At tree level, the nonzero singular

coefficients are

C (,zq ,) - C-)(zzq2, re,/) = 6 (rB)6(1 - Za)6(1 - Zb). (5.10)
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At one loop,

C"l (za , zb, q2, 2-Br [t6(1 ()C - za) O(zb) 1 -2 [0(BIn- 3+

- 6(B) (4- 6 - zb)

+ [[ )]+ 6(rB) In ][0(1 zb)1 ]
TB + P, - -1-zb+

0(1 - zb) ln(1 - Zb)] (I ± Z2)

+ TB) I + z - +
+ 0(1 - Zb)1 Zb- zb - fIn zb I- (Za + Zb),

1 Zb zb

C") (za, zb, q2 rB, [1) =C s(1) q(za, zb, q2, B

C" )(Za, Zb, q2 TB S() TF (1 - Za)O(Zb) (1 - Zb)

[O )]+ ±6(TB)In 2t] I z~ 2 (1 Zb)]

TB I+A2

+ J(TB) n b b)2] + 2zb(1 zb)

CsNg( za, zb, q2 7 B, P) =C"s$0 (za, zb, q2, TB, t

C zb, q (za, zb, q2, TBq , q2, =t C(Zb, Za, q2, TB, M)- (5.11)

The coefficient Cgg only starts to contribute at two loops. The single logarithms of

q2 2 are multiplied by the QCD splitting kernels and the terms that correspond to

renomalization group evolution of the PDFs. Thus, in fixed-order perturbation theory

the PDFs should be evaluated at the hard scale yt = Q, such that there are no large

logarithms when integrating over 0 < rB < 1. However, if the integration is restricted

to TB <; r< t < 1, the plus distributions in rB produce large logarithms In2 TB

and ln ryt, which make a fixed-order expansion unreliable. These are precisely the

logarithms that are resummed by the combined RGE of hard, jet, and soft functions

in Eq. 5.7.

In this work we calculate the full set of logarithms in r at NNLO, where r is the
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beam thrust defined in the hadronic center-of-mass frame

7 =TCm = Ik,Tle~ I'ki = >(Ek - Ipil), (5.12)
k k

where the sum over k runs over all particles in the final state. Here P'k,T and r/k are

the measured transverse momentum and rapidity of particle k with respect of the

beam axis (taken to be the z axis). All particles are assumed massless for simplicity.

The factorization theorem for this variable is

dcr =(-0 H (q2 'H) UH (q2 , IH), pS a dtbdt' dtabdq 2dYdr 'Th I1j t ab

/ B( eyta + eytbx Q S(QT - " 7 , ps B) (ta - t',Xa, , pB) UB(t', pB, ps)

x Bj (tb - t', Xb, pB) UBb(tbIB,is) pI 1+ ( AQD , T) . (5.13)

Notice that now the soft function depends explicitly on the dilepton rapidity Y,

and Eq. 5.7 is recovered setting the explicit Y dependence to zero. The one loop

coefficients C! X) (Za, Zb, q2 , TB, i.) in Eq. 5.11, are then modified to

Cx) (za, Zb, q2, TB, A) -+ C (Z, z, r, Y, q2, P) (5.14)

where

C)(zzYq2,) = C z , a ) +6C )(z, , Y, q2,). (5.15)

The additional rapidity-dependent terms 6C are

JC1) (za, zb,,Y q2, p) =6(T) CF E(1 ~- Za) Pqq(Zb)Y + 6(1 - Zb)y2

+ (Za +-+ Zb, Y -- > -Y)

6Cq )(za,zaT,Y,q 2 ,pA) = 6(T) TF Pqg(Zb)6 (1 - Za)Y. (5.16)

In Eq. 5.41, the only factor for which we don't know the two loop contribution
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is the beam function B. However, using the evolution factor of the beam functions,

the evolution factors of the parton distribution functions, and the one loop beam

function, it is possible to obtain all the singular contributions of the form Lk(r), with

k > 0. We will now discuss the evolution of the pdfs, present the calculation of the

logarithms of the two loop beam function and the results for the two loop coefficient

functions.

5.4 Expansion of Parton Distribution Functions

We want to expand the pdfs at a generic scale t, so we need to find an evolution

factor U1 such that

fi(,) U ,yo f( ). (5.17)

In order to find such a factor, we recall that the scale dependence of the pdfs is given

by the Altarelli-Parisi equations

y fi( ,Ip) 7 , f (A',,') (5.18)

where

Ni(z.u -7 F 1(zas (1 t)),
k

Pij (z, as(p)) =a-p" )(z),

F (z, as()) =s '). (z), (5.19)
27r2

and the P are defined in Appendix C. Combining Eq 5.17 and Eq. 5.18, it follows

that the evolution factor U/. obeys the following differential equation

dUz, y, po) = y U z , po (5.20)
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with the boundary condition

(5.21)
Uc (z, Po, ao) = li 6(1 - z).g

This equation can be solved iteratively, and its solution is given by

jllI (5.22)

If we are interested in the solution up to the order a , we can write

U(z, y, po) =6i5 6 (1 - z) + U/, (z, y, po) + U (z, y, po), (5.23)

where Uf(1 and Uf are the contributions at order O(a,) and O(a2), respectively.

At order as we have

Uj/N(z, y, po) = ( d log y' as(p')
713 7gr fl

= as(po)

having used

as(Lt) =as(go)-
27 (go)
27r log

y-o
+ s(o) (2#2

At order a2 we have

U (Z ,y_, o) = 2 (PO)
717= 27r 2

~~)()log 2 _,a

S3~i 2 P-(z) log'13 to + log 2 Ap(0)
AoPlO

where

-(0) 0 P (z) =
dzfr-o)

/io
(z )P) (z').z 1 J

All the necessary integrals have been computed and the results are listed in Appendix

C.
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5.5 Beam Function at NNLO

The beam functions can be expanded as

Bi(t, x, B) IX 1
3;

where

Iii t7z, IB 2
-=-i Sp

(5.29)E [S 1(B), Z

where ( is arbitrary. Combining the RGE evolution of the beam function and of the

pdfs, we have

S f('
k p 6 B)I dt'UB(t', A, PB) Bi(t - t', x, y)

Sf U,'B (ty, pB) /Im t -t'\

X J k P, pB (5.30)

where we have defined

fzj
3

< iunas y1, pB ) (5.31)

In order to extract the logarithms at the two loop order, we evaluate this expression

in the Fourier space conjugate of t, and we choose the scale t = yy = (ise~'YE)--1/ 2 (

s being the Fourier variable conjugate to t). This ensures that all the logs come from

the evolution factors and not from -T. We obtain

I dt'B (t - t, x, y.)
UB(ti pyi IB) =

A py, pB g( , IB)qg

+ fqa(/', IpB)iqq' ,

pB pfj(AB) (5.28)

FT

=17
py, pB )

Py i AB )
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d Iij t

, , B (pU , 

dt' I
fA( 7' pB qq
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with

7 2  
'x 1

+ - / y, 5A

-- qg p y, p-B

+ 3 , py, A,

(5.33)

where the factors K and w are defined in Eq.A.28 and Eq.A.29. Expanding out these

functions at O(az2) and Fourier-transforming to the original momentum space, we

obtain the beam functions up to two loops.

qqI(t, Z, IB) = T I,[aS(ApB), z] m
M=-1 Z] TB I1IB

Iqg, (t, Z,B) = E ig[aS(SIB), z]I m( (5.34)
M=-1 B (/t

Note that this procedure allows us to calculate all the logarithmic terms at two loops,

but not the coefficient of the 6(t/lp2 ) term, for which an explicit two-loop calculation

would be necessary.

5.6 Drell-Yan coefficient functions at NNLO

We will now manipulate the factorization theorem in Eq. 5.13

expression for the singular coefficient functions. First, we write

to obtain an explicit

it as

1 do-" - Hig(q2 , IH) UH(q 2 , pH, lS) [dts dtb dt' dtb Q SB (T - Ls

-o dq2dYdTr Q

x Bi(e (ts - tb - t'S), Xa, LB) UB(t' - t', p-B, IS)

x B (e ytb, xb, pB) UB (t', pB, p-S). (5.35)
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Then we use the fact that

dt'UB(ta, AB, AS) UB(t', MB, AS) = EBB( , AB, IS)

(5.36)

with

and ( arbitrary. Here and in the following

kB = KB(PB, PS) =

7 B = 77B(AB, PS) =

J as"s) da, r (a s(As)
acs(B) #(as) Las(AB)

/ as(s)as(B)

da'
d!a's)

da8

Expanding the soft function as

QSB (Qr
t )S Q2

h=-1

with ( arbitrary, and combining it with the beam functions, we have

Jdtsdt' Bi(e (tS - t'), Xa, ILB) B (e t, Xb, MB) Q SB (Qr
- s

- Q , AS)

Q2 0 m+n+1 k+h+1

f (d" , MB) fnh(6, =B) - aS(MB 

m,n,h=-1 k=-1 g=-1

Qius]
khtg )

eY]

(5.40)
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where the V's are defined in Eq. A.24 and Eq. A.25. The factorization theorem can

then be written as

cr0 dq2 dYd-r = S H ,j(q 2 , PH) UH(q 2, fH, YS) S 1'a fi'(a, IB) f{({b, pB)
i'j

Q2
x -EBB G0,i B,i'S)

o m+n+ k+h+1

m,n,h=-1 k=-1 g=-1

rt [Ces (IB)
Xb eye] vkmn vrkh

2 k gk
ABI

(5.41)

Since we are looking for the fixed order terms, we fix pH = IB = ps = p and = 2,

so that we can write Eq. 5.35 as

1 do- f da
r0 dq2dYdr Jxa a

2] Ti [as(p),
3a eYQ2

X2x) b e-YQ 
2

x t las(P), b P

g+1

Vk'n"Vkh V9 (0) C(r)
k=-I

f,( a, y) ft(6b, p) C , , , Y, y,
JX a Xb6

where the coefficient functions are calculated as

Y, y, Q) = Hi,5(q 2, P)
) mn

x lLas(p), -,

g+1

00 m+n+l k+h+1

eYQ 2 ] [ (
A 2 jt[e~)

XVk "Vgkh SV(O).Ci(T).
k=-1

(5.43)

Given the results for Hi,, S and I2" up to O(as), this expression allows us to

calculate the O(a,) contribution to the singular coefficients C,, in the cross section.

164

S BOs (PS),

a B.]

Q-ts]

g+1&B(Q7

x Vi(2rB) fB j .
1=-1

x E
m,n,h=-1

m+n+1 k+h+1

S =- Sg=-1
k=-1 g=-lB[E(A

C;,, ,a Xb
C' t(a 6~

Q ) (5.42)

Xb 
y 2

-d f ( a, p ) ft (6, p)E Hi, (q2,'
X, G i

x I 1, Ias (AB),



5.7 Results

In this section we decompose the singular coefficient functions C , as

CGj(Za, Zb, T, Y, P) = C 1 (Za, Zb, Y, y1) 6(T) + C(Za, Zb, Y, M) Lk(T).
k>O

As stated before, we will provide results for Ckg with k ;> 0.

Symmetries

(5.44)

The DY process involves the annihilation of a quark and an antiquark and in general

we must specify whether the quark comes from beam a or b. We can write the

coefficient as

CJ , , Y, p)=C,' 7 Y p)+Cf' a ,p (5.45)

where in Cj,' the quark q came from beam a and the antiquark q from beam b. Each

of the coefficients has an expansion in as which we write as

Ci± = C 8 (b) a, L) Cg) + () C(2) +---j U + 7r '13 (27) 2 U
x = -1, 0,1, ...

corresponding to the LO, NLO, NNLO contributions. In order to understand the sym-

metries of Cig, we can write schematically (ignoring the complication of convoluting

plus distributions), from Eq 5.43,

Cj; (Za, Zb, Y ~) I (za, eQ 2 )I(Zb, ) (5.47)

In all the cases, we take q as the charge conjugate of q, which can be a quark or

an antiquark. For two quark PDF's, only one of the quarks can change flavor or be

charge conjugated. Otherwise the lowest order in the cross section would consist of

multiplying a two-loop contribution from both beam functions and give an (a4)
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result,

C q(za, Zb, ) = C, (Zb, Za, Y,) (5.48)

For one quark changing flavors we have one independent nonzero coefficient

Cqq, (Za, Zb, Y, p=C (Zb, a, -Y ). (5.49)

If neither of the quarks changes flavor nor is charge conjugated, we have two inde-

pendent nonzero coefficients

Cqi (Za, z, Y, p = q ( a z zb, Y, /1)

C4 (Za, Zb, Y,Ip) = Cq (Zb, Za, -Y, i)

Cqze, zo, Y, y = az, b, Y, =O(a). (5.50)

For one quark and one gluon PDF, the incoming quark must be of the same kind

as the DY quark, otherwise the cross sections starts at O(a3). Now we have one

independent nonzero coefficient

Cqg za, zb, Y, ) = Cgqza,

qg (za,z, Y, p= (Zb, Za, -Y, p) = O(a3). (5.51)

For two gluon PDF's we have one coefficient:

g za, Zb, Y, y = C z, Zb, Y (5.52)
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Quark-quark

When neither of the quark changes flavor or complex conjugates, we get

Cqqj,3(2) (za, Zb, Y,p) =8C2 (1 - za(1 - z),

Cq4l'2% z2 , (Z,Y, p) = 6(1 - za){ -6C2 P(zb) + [3CFo0.0+ 9C 61 -

C4'1 (Za, zb, Y, A) = 6(1 - za)(C}

Zb) } + (Za - Zb) ,

Pqq(Zb) + (Pqq 0 Pqq) (Zb) - 4I56) (zb)]

- 2CFH 1 )J(1 - Zb) - CFO030 + 2L)6(1

+ CFTF(Pqg 9 Pgq) (Zb)

+ [CFCA ( -- 2) +
3/

2CFTFnf] 6(1 - Zb)
9J)

+ CPqq(Za)Pqq(Zb) + (Za +-* z, Y Y) ,

Ci, 0(2) (Za, Zb, Y,A) = 6(1 - Za){P,Q9(Zb)

+CF 8 - 4 2 9L,-6L -3Y 2 +32C)6(1

+ (21r2 + 12Ly + 4L + 3Y + 2Y2) Pq(zb)(3 AT)P ~(h) ~.)z

- Zb)

- (Y + 2Ly (Pq (9 Pg) '(zb) + 12 qq

+ (I- ) 09 Pqq)(Zb) - 3,'6)(Zb)] + CFTF( 1 6 )0 Pgq) (Zb)

- CFTF(Y + 2 Lp) (Pqg 0 Pgq)(Zb)

± CF 00(Y + 2L) + H(1)) Pqq (Zb) -

+ [CF,30 ~~ ~- 4+ L +C

± C F TFnfLy - 3CFH(' J6(1 - Zb)}92

2CF30Tqq6) (Zb)

!FCA 4
110 L
9 P

- 2CLyPq(Za)Pqq(Zb) + C Pqq (Zb)2'I 6 (Za)

+ (Za +-+ Zb, Y -+ -Y) .

where Ik' (z), I 9 0 Pjm(z) and Pi 0 Pjk(z) are discussed in Appendix C and HM

is the one-loop piece of the hard function without a,/2w, which can be extracted
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from Eq. A.7. Here and in the following L. = log(p/Q). We also note that in the

convolutions one can change the order of the convoluted functions without changing

the result. For the case of one quark changing from quark to antiquark we get

Csqqo3("'(za, Zb, Y, p) = 0 ,

C 2qq( a, Zb, Y, p) = 0 ,

Cqb (za ,Y1,) = CFTF6 (1 - Za) (Pqg 0 Pgq) (Zb)

q,(2) (, = P(M
Cqq -za, Zb,Y, p) 6(1 - ZaP) jq (Zb) + CFTF gq) (Zb)

- (Y + 2L) (Pqg 0 Pgq) (zb)] . (5.54)

We get exactly the same result for Cq,, except that P'ij (zb) is replaced by P( (Zb).

Quark-gluon

For the quark-gluon case we have

C s)(za, zb, Y, I) (0 ,

C~2 2) (za, zY, ) = -6CFTF 6 (l - za)qq(Zb),

Cq 1)(Za, Zb,YIp) = 6(1 - Za){CFTF [(Pqq (Pqg) (Zb) - uPqg (Zb)+ 4(Y + 2Ly|Pqg(zb)

- 41,6) (Zb) + CATF (Pqg 0 Pgg) (Zb) + 2CFTFPqq(za)Pqg(Zb),

C '0 (2 )(Za, Zb,Y, p) 6(1 - Za){ P)(Zb) + CATF gg(Zb)

- (Y + 2L)(Pqg 0O Pgg)(Zb)]

± CFTF [- (I(q) Pqg9) (Zb) + (iTq"') 0& Pqg) (Zb)

- (Y + 2Ly.)(PqqO Pqg)(Zb)

+(12Ly+4L2+ 3+3Y + 2Y Pqg(Zb) -3I'(z]

+ TFF()Pqg(Zb)} + CFTF ~4LPqg(Zb)Pqq(Za) + Pqg(zb)IT' 6 )(Za)

+ Pqq(za)I'n6)(zb). (5.55)

168



Gluon-gluon

Cq"2) (Z.,Zb, Y, ) = 0,

Cq,4,(2) (Z, zb, Y, P) = 0 ,

C,(2) (Z., Zb, Y, p) = 2T2 Pqg (Za)Pqg (Zb),

Cq,7,(2) z ,Y p) = T2 4L LPqg (Za)Pqg (zb) + Pqg(Zb)7g') (Za) + Pqg (Za)- '(z) .b)

(5.56)

5.8 Conclusion

In this Chapter we studied the beam functions and we calculated at NNLO the full

set of logarithms of beam thrust defined in the hadronic center-of-mass frame, T.

Using this result, we have then analytically calculated the full set of logarithms of r

in the singular part of the NNLO coefficient functions for the isolated Drell-Yan cross

section. This result is useful for the calculation of the nonsigular terms in resummed

predictions, as we did in Chapter 2.2.5 in the case of thrust in e+e- annihilation.
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Chapter 6

Conclusions

In this thesis we have studied the thrust distribution in electron positron annihilation.

We have extended the event shapes formalism in the SCET framework, where we have

given a factorization theorem for the thrust event shape valid at the N3LL+O(a)

level in all regions of the thrust distribution. This is achieved with the introduction of

what we call profile functions, which are thrust dependent factorization scales. In the

e+e- anihilation process there are three relevant scales: hard, jet, and soft, associated

to the center-of-mass energy, the jet mass and the energy of the soft radiation, respec-

tively. The purpose of r-dependent profile functions for these scales is to smoothly

interpolate between the peak region where we must ensure i > AQCD, the dijet re-

gion where the summation of large logarithms is crucial, and multijet region, where

regular perturbation theory is appropriate to describe the partonic contribution. Our

factorization theorem includes a field theoretical definition of renormalon-free power

corrections. We have applied this factorization theorem to perform a global fit to all

the available experimental data of the thrust distribution to obtain one of the most

precise determination of as(mz), and to obtain the first power correction Q1 from

data. At a given center-of-mass energy, these two parameters are strongly degener-

ate, but the degeneracy is lifted when data at different center-of-mass energies are

combined in a global dataset, which is therefore a crucial part of our analysis. The
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result of these fits is

a9 (mz) = 0.1135 ± (0.0002)exp (0.0005)hadr ± (0.0009)pert, (6.1)

Q1(RA, pA) = 0.323 ± (0.009)exp ± (0.013)02 i (0.020)aS(mz) ± (0.045)pert GeV,

where RA = [LA = 2 GeV and we quote individual 1-sigma errors for each parameter.

This fit has a X2 /dof = 0.91 with dof= 487 - 2.

- I

:1

- .

.U

first moment

thrust tail

LL resultsfull N3

- I -

0.112 0.113 0.114 0.115 0.116 0.117

o's(Mz)

Figure 6-1: Comparison of a(mz) and Q1 determinations from thrust first moment
data (red) and thrust tail data (magenta). The plot corresponds to fits with N3 LL
accuracy and in the Rgap scheme. The tail fits are performed with our improved
code which uses a new nonsingular two-loop function, and the now known two-loop
soft function. Solid lines correspond to theory uncertainties, dashed lines correspond
to AX2 = 1 combined theoretical and experimental error ellipses, and dotted lines
correspond to Ax 2 = 2.3 combined error ellipses.

We also performed a fit for a,(mz) and Q1 to all existing data on the first moment

of the thrust distribution. In this case, we again found it necessary to build a global

dataset using data at different center-of-mass energies in order to lift the degeneracy
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between these two parameters. In this case we obtained

as(mz) = 0.1141 ± (0.0004)exp ± (0.0014)hadr ± (0.0007)pert, (6.2)

Q,1(RA, pA) = 0.372 i (0.013)exp ± (0.044)a(mz) ± (0.039)pert GeV,

where RA = ptA = 2 GeV and we quote individual 1-sigma uncertainties for each

parameter. Here X2/dof = 1.33, with dof= 47 - 2. In figure 6-1, we summarize and

compare the results of these two analyses, showing their full compatibility.

In Chapter 5, we analyzed the initial state radiation in Drell-Yan process in pp

collisions. We studied the beam functions and we calculated at NNLO the full set

of logarithms of beam thrust defined in the hadronic center-of-mass frame, -r. Using

this result, we have then analytically calculated the full set of logarithms of T in the

singular part of the NNLO coefficient functions for the isolated Drell-Yan cross section.

This result is necessary for the calculation of the nonsingular terms in resummed

predictions.
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Appendix A

Formulae
In this appendix we collect all the remaining formulas used in our analysis for the

case of massless quarks. The total hadronic cross section at tree level at the energies

we are considering is

UOQ = a {o(Q) + o-4,c (Q)] (A. 1)
qtop

where Q is the c.m. energy. For a quark of flavor q the tree level axial-vector and

vector cross sections are

4r2 Q4(V2 2 )2
oq = Nc 4 Q ,(+ ae)a (A.2)

3Q2 (M2 _ 2)2+ 12

Uoj =N 4ra2 [e2 2 eqvqve - mz)+ + Q(vi +ae)V2
C3Q2  q (m~zQ2)2 +QF 12

where eq is the electric charge of the quark, and

Ti - 2 e sin 2 Ow Tq
Vq= sin(2Ow) ' a sin(2 Ow)(

Here Tj is the third component of the weak isospin, and Ow is the weak mixing angle.

For our numerics we use the following values:

sin 2 6w = 0.23119, mz = 91.187 GeV,

Iz = 2.4952GeV, M = 172 GeV ,

mb = 4.2 GeV, a(mz) = 1/127.925. (A.4)
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Singular Cross Section Formula

To simplify the numerical evaluation of the singular part of the differential cross

section given in Eq. (2.8) we take t = pt so that Ur(s - s', ij, pj) = 6(s - s') and

express the result in the following form

Jdk ds (T - S"1"d (k - 2A(R, st,)) =Q o H (Q, pH) UH (Q, PH, pJ)

x dk P(Q, Qr - k, ptt) e-2 (R,Is)i Snod (k - 2A(R, ps)), (A.5)

where the perturbative corrections from the partonic soft function, jet function, and

soft evolution factor are contained in

P(Q, k, pt) = ds dk'Jr,(s, j)Us(k', i, s)S"*(k - - s/Q, ps). (A.6)

The integrals in P can be carried out explicitly so that it is given by a simple

set of functions. The soft nonperturbative function Sniod (k - 2A) is discussed in

Sec. 2.4, and in Eq. (A.5) we have integrated by parts so the derivative in the ex-

ponential with the 6(R, ps) acts on this nonperturbative function. HI, J, SP"

and exp(-26(R, ps)d/dk) (cf. Eq. (2.34)) involve series in a,(ph), a,(pj), and

as(ps) with no large logs, and in our numerical analysis we expand the product

of these series out, order-by-order in a.. This expansion is crucial for Spart(k, Ps)

and exp(-26(R, ps)d/dk) since it is needed to allow the renormalon in the two se-

ries to cancel. For simplicity where possible we give ingredients in a numerical form

for SU(3) color with n = 5 active flavors. The vector hard function to O(a3)
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is [120, 119, 83, 122, 113, 18]

H6(Q, p) =1 + as() CF -2 lg2 P - 3 log - 4 +Qr Q 12

+ 162 I
837r2  677w4

+- 60(3i
3 30

+ CACF (L2 (

+ CFO0 2L -

4w J

8
- 52(3 )

19L2 ±
4085
108

1037
+9

917F2

+18

- 45 +72(3

43 )]

h3 + L - 51L2 + 222L3 - 68L 4 + 12L 5 - 4 L6

- 89L7r2 + 2207r2 L 2 - 20L3 r2 + L4 + 1097r4 L
3 3 15

+ 408L 2 ( 3 - 96( 3L 3 +3047w2 (3 L - 480( 5L)

6947L 7474 L2
27

838 L3

6 7-
15 - 992( 3 L

+0 L 4- 4L 5 20307 2 L
3 3 27

2607r2 2 387r2 3 1667r4 L 604(3 - 2

9 9 45 3 3 /

+ CA 26002 L+ 14557L2 _ 374 L3 +16 L4 + 6467r2

27 54 9 3 27

+47r2L3- 42L

1727r2 L2
9

44+ 4 L86w
4

45 45

+ 13624(3 L - 544(3L2 + 104(3L
3 - 116L(37r2 + 240L( 5

+ CF (0241 L - L2 + 3L

CA3 ( L - 0L2+ L3

49 4 L - 2348(3 L + 24(3 2

+C 6 99 5 L +301L2 _ 4 L3
" A -81 9 3

22- 4 L2

45

3 L4  L + 42L28(3 L
3-Y 9 3 3)

818wx2 L±+ 20 2 L 2-472 L 3
- 81 9 9

+ 7707r2 L + 167r2 L2 387r4 L
81 9 45

(A.7)
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CF 2L4 - 12L 3 + (50- 147 2 )L2 + (-93+ 10r 2 +48( 3)L±

S 3 356(3 L + 88(3L 2 +88r23 L + 272(5L ,
9 9 '1

+ CF 00(-



with L = log(Q 2 / 2 ). Numerically,

H (Q, p) =1 + as(ph) (0.745808-1.27324LQ -0.848826L2

+ a (Ph) (2.27587 - 0.0251035 LQ - 1.06592 L2

+ 0.735517L3 + 0.360253L4)

+ alph) (0.00050393 h3 + 2.78092LQ - 2.85654L2

- 0.147051L' + 0.865045L4 - 0.165638L5

- 0.101931 LQ) , (A.8)

where LQ = ln - and from Eq. (2.9) we have h3 = 8998.080. Our axial-vector hardQ

function for b quarks has an extra two-loop singlet piece from the large top-bottom

mass splitting, Hb = H + Hin"l**. H was given in Eq. (2.10) and involves the

real function [104]

12(rt) = 10 D(rt)2 + 67f(rt) + - 1 jC12[2 D(rt)]4(rt)
3 rt 2

+ C13 [2 4(r)] - D(rt)2 - ((3) - {2 D(r) C12[4 D(r)]

- 2Cl3[2@(r)] + Cl3[4@(rt)] + [4-y(rt) + 3]D(rt)2 +((3)

+ - - 1 4(4h(r) + 7(rt))(rt) + 4Cl 2 [4 ( (r)]

- 61(rt) - 6Cl2[21(r)] - Cl2[2D(rt)] + 2 y(rt)D(rt)} (A.9)
Jrt

where rt = Q2/(4m') and

1
4(rt) = arcsin(v/rt), 7y(rt) = ln(2) + I ln(rt),2

C12 (x) = Im[Li 2 (eiX)], C13 (x) = Re[Li3 (eix)]

h(rt) = ln(2) + I1n(1 - rt). (A.10)
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The resummation of large logs from pH to pJ is given by UH(Q, 1pH, pj) in Eq. (A.5)

which is the solution of the RGE for the square of the SCET Wilson coefficient [22]

)(rar,y~
UH(Q, MH, Ip) - 62K(rQ2,) (A.11)

and the functions w and K are given in Eqs. (A.28) and (A.29) below. Finally using

results for the convolution of plus-functions from Ref. [116] we have the momentum

space formula

(QI k, pgQ) =t E (, ts) V" Jm aCs(pA) S7a(p)
n,m,k,l=-l 

A

m+n+1>k
k+1>!1

x V [ - 2w(Fs, p-i', ps)] LI2w(rSSpJ~PS) . (A.12)

This result is independent of the dummy variable (. Here E ( i, s) encodes

part of the running between the jet and the soft scale [19, 127],

E[s-M )] - 2
w(rs,ips) exp [2yE w(Fs, yj, pts)]

E exp [2K(Fs,7s,pj, ps "r[i - 2u(Fs, pi, ps)]

The sum in Eq. (A.12) contains coefficients of the momentum space soft and jet

functions. Shifting the plus-functions so that they have common arguments gives

J(p-k, pj) = Jma(p) Q, m ),

(k, ps) = 1 0 ,(0) ]L .k (A.13)

'When convoluted with Smod we evaluate the right-hand side of Eq. (A.12) for ( = Qr-2n(R, Ps)

which simplifies the final numerical integration.
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Here the thrust soft function coefficients are

00 lnfl lX
S_1[as, x] = S_1(a,) + Sn(as)

n=O

S[8 X, = (n +k)!skX

The soft function is known to O(a ) except for the constant s3 term [136, 79, 31, 94]

(A.14)

S_1(a,) =1+ rCFa,+a
12 F~s\108

4 2CFo(3)
+ 37r2 I

C ')AcF 3 2C2 Sl
160 F 87w2 - CFfTF

-27

3CFS1
+ as196r

7((3)
187r

CFnfTF

± 15797r 3
40F -- O320

+/0 (CFnfTF

73
CFnT

81w7
137rCF002 CF/1((3)

1440 67r3

55 7r 112((3)
144w 108 2773

160((3)2 + CACFQ
37r30

-7 20(3))
81wr 216 27w3 /

9((3) + CACF

677r w3  4

2160 720

+ AC F101(324wr

+ CACFff TF (
209

6487
+57r

162

245 677 117 3

2887r 648 2160

04((3) 11l((3) 14
277 3  18r 7

11wr 67((3) _29(

864 27w03

± C14(3)

So(a,) ± a 
8

- ) CFnf TF -

677r

67 +-- CCF
108-r 36f

+ CF~nTF ~ I

± CACFf!F (
+ CACF (

± 13678'
" CACF23328,A

711

24
16C2(3)

+± F

288C
+288

53 197 47((3)

721r 360 370 )

5921
583213

707
1944w

11+ 536((3)
96 9w0

6325
77767r

+ CACF (

i +5CFnfTF 0
8wr3 27r J

CFTF

71 101
2 27r 2

_CF31

96-x

260
729wr3

_7(~(3) >l
21F2 )JJ

2CF/03(3)
37r

3

5
1627w± 47r3)

± 914(3)

_ 127((3))
24w1J

11w 329((3)
247 3

+ C} 68((3) 192((5)

11((3)
36wr

180

11((3)
727r

(3)2

2r

16((5)

+ 7r3)]



S1(a,) = 4 CFa, ((67CA

3(( 469 7r\
+ a 367r 12) CAC}

35
97

+ CFnf TF 53

+ f( 28+ #0 27,7r3
( 209

± C ACFLfTF 543 -

CFas,30
S2(ags) = 7

CF2 - CF f F

57CF CFs1 4CFr2iTF

24 2w3 + 277 3

4((3) \ 2

7r3 .)+CC

1 ) 80C}((3)
87rwCFfF ~ 37 3

10
27r

14(3)
+37 }

1 \±

3r)CFnf TF +

245
47 3 4

+ CACF

( 67
18w3

-

CF00
± 247r

67 117
547r 180

11((3)
6w3 )

101 11 7((3)
37- 727 _ 3

-CACF6w
7CF2

±37

CF31 _ 160CF(3) 2
± 47 CACF

8Cial ( (268
S3 (as) = + af 36837w2 +Q9 k973

S4 (s) = 37r3
3S8C~a4

S5 (as) = 7

93 12w7 w

34CF
3wr

80CFnfTF

973
CF 2

37F3)

Numerically,

S_1(a) = 1+ 0.349066a, + (1.26859 + 0.0126651 s2)a

+ (1.54284 + 0.00442097 s2 + 0.00100786 S3) a ,

So(a,) = 2.07321as + (4.80020 - 0.0309077s 2)a,

Si(a,) = -1.69765 a, - 6.26659ai - (16.4676 + 0.021501 s2 ) a,

S2(as) = 1.03573 a2 - 0.567799 a,

S3 (a,) = 1.44101 a2 + 9.29297 a ,

S4(as) = -1.46525 a,

S5 (as) = -0.611585 as.

Note that S2 and s3 are the O(a2,3) coefficients of the non-logarithmic terms in the

series expansion of the logarithm of the position space thrust soft function. The
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coefficients appearing in the shifted thrust jet function are

00 inn+ 1lX
J-1[a,x] =J-i(as) + Jn(as) n+1

n=O

J[as, ] = (n +k) n+k(as) InkX, (A.17)

and are known up to O(a') except for the constant ja term [117, 25, 44, 29, 121, 31]

J_ 1(as) =1 + as CF
7 7r\

~27 2)
401

- 2.57469+ 4r 437r
2

240

7 1417 177r 2  9(3
± CA CF 7 864 2 1440 47r2

4057

+ 1728,
2

± C 0.208958

(3 2)
67r2 1

1435

+ 2567r3
355 4017r
96r + 576

4(2 g5,
3w3 2w3)

25(+ 5(32)
+24 + 73

429483 9919
± 34567r3

+ 0 ( - 0.130462 +
28399
6912r3

1709
5184r +

18257
10368r

(A.18)

751r r3  719(3
17280 480 1447r3

477r 959(3
432 2887r3
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11wr3

4320

787 57r 23(3
+AA#0O( 3456w 432 72w3
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577wr3

15120

225(3
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87r
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Jo(a,) = - 3CF+ a2-x I1.74359- 87167ri

*(AI 247 2)C 1+ 1 CF I

Sa [0.0361087 - 134s T128, 3 ±
83 289w
16w +480

+ ( 73
72 2

- + 4w

4 ) CA CF

+ ) C

+. 34777
+±CF(CA~ 0.379842 +34567w 3

15(5)
47r30

2( 4891
-'A 5s184w3

209
+216wr

1' 8237
+ #0 0.225488 - 376 3

1296w +
41w
1440
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576 72wK3

1007
4327

+ 605(372wr3

77r 23(3
144 87r3 )

36w

+ CA #0 -1807
±j423w

3
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12961r

13r 335(3
720 727r 3

67
- 1.18975 +T73

0.137915- 
2

+ 0.163063± 11743k7 864;ir

413
288w73

5
36wx

-65 -1.55268)

337 37w
48wr 72/

43 4 84wx

167 3  3w 720

43 11
2 4w 7 6w J'-X-

9wr
11 w 11 JAY

0 + (288 3

183

15(3

4w

+ CF

_ 4357
51847r3

29
± 288wr

J1 (as) = 2 Fas+a

a CF

+ as i(

+ CF

- ( 3127r3

- CA CF + C + 29 C1]

13CA
2w70 C

± CF

+ 780 24- )
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33CA
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rCF O

+ (.29686-549 +8 [CF64wT 3 4w) + C2 (0.277207CA -

959
1927r3

+ ( 23
48w3

19C
12 7rC

CA 29 2]120- 963 (130 )

(A.19)

0.101 32 1C± + + a CA

CF(- 0.255736 +
8w0 6wr

J4 (as) =a3 - 0.0907074 C

Ja C=

15

167w3

- 0.0315506 +
2 +1I

3wx3 6w-x

+ C' (0.0470335 + 3) + CF73

C - 0.00671907C3o - 52C 30

Numerically,

J_ 1(as) = 1 - 0.608949a, - 2.26795a2 ± (2.21087 + 0.00100786j) as ,

Jo(as) = -0.63662a, + 3.00401a2 + 4.45566a ,

J1 (as) = 0.848826a, - 0.441765ai - 11.905a3,

J2(as) = -1.0695a2 + 5.36297a ,

J3(a,) = 0.360253a + 0.169497a3,

J 4 (as) = -0.469837as ,

J5(as) = 0.0764481a.
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The L distributions are defined as [n > 0]

L, (X) =O(x)ln 
x]

n4(x I ~- . +

La 1_(x) = Li_(x) = 6(x), and for a > -1

a( x) x

11(x I

In Eq. (A.12) we use the coefficients [116]

dn V

db n

Vk(a)= 
a kn

a
n+1

(a, b)

dn-k

lbn-k

k = -1,
b=O

V (a, b)
b-O

+ 6 kn, 0< k<n,

k=n+1,

and the coefficients

d' d* V(a

datm dbn a +

V"n= mnp+q,k
p=O q=O

1 1

m±1 n±

b)
b a=b-O

(m) da -P d n-q
V(a, b)

a=b=O

k = -1,

0 < k < m + n,

(A.25)

where
F(a)17(b) _1 1

V(a, b) = -(ab) a (A.26)
'nF(a + b) a b

Special cases not covered by the general forrnulae in Eqs. (A.24) and (A.25) include

VC-1 (a) = a, VC-;,(a) = 0 , V-1,n = ,-= n.
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li d xO(X 1].
e:-+0 dx I

(A.23)

(A.24)

V_~1(a) = 1,

Evolution factors and Anomalous Dimensions

(A.27)
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The evolution factors appearing in Eqs. (A.11), (A.12), and (A.13) are

Ss(I) d (a)
a( 0 (ae)

w(r, [, po) =2

- Inr +

1 a8 ([to) r3
3 (47r) 3 L e
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#0 00 # 0

~2

00o
+ 

2

17o
-131 ) (r2
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(A.28)

and

K(F 17y, Y, o) -

_ 10

2002

W , y, po

4as (
a(PO) i

= 2/
J O'(AL)

1

r

d F(a)
/3(a)1(a

- In r) - 01I n 2 r

+ a Q ) __
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Go IO/O0
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213o ]Po0

B2rl
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- lo +17Fi3O

+ B3 r3-1

B2) (r2lnr - r 2 1)

where r = a,(p)/a,,(po) depends on 4-loop running couplings, and the coefficients

are B2 = 02/32 - 32/3o and B3 = -3 3/3 + 23132/)30 - 33/00. These results are

expressed in terms of series expansion coefficients of the QCD / function 3[a,], of

1F[a,] which is given by a constant of proportionality times the QCD cusp anomalous

dimension, and of a non-cusp anomalous dimension y[a,],

#(a,) = -2 a,

00

17(a8 ) =
n=o

n=#

4(a ) = Y 47
n=o
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The coefficients are [139, 109, 141, 105, 121, 61]
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Numerically, for ng = 5,

po = 23/3, 31 = 116/3, #2 = 180.907, (A.36)

,3 = 4826.16,

fCUSP = 16/3, Fc"us'= 36.8436, IF2""s= 239.208.

For the unknown four-loop cusp anomalous dimension we use the Pade approximation

assigning 200% uncertainty:

(A.37)

The anomalous dimensions for the hard, jet, and soft functions are [51, 142, 121, 127,

122, 98, 30]
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Numerically,

_YH H--8, yi = 1. 14194,

7= 8, -yj = - 77.3527,

7S H - J - .

72H 249.388,

= - 409.631,

(A.41)

To determine the strong coupling a(p) in terms of a,(mz) at 4-loops with 5 light

flavors we use

as(mz) =X + Bi as (mz) log X
asp W

+ a s z 1 -

+ (B2 - B2)(1 -
X 11

X) + B logX (A.42)

X)2 _ log2 X) + B 1 B 2 (X - X 2 + logX) + (X 2
2

(A.43)

with

X =1+ 0as(mz) log A
27 'mz

Bi= .A
(47r)i~o'

(A.44)
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Numerically,

1 X
= () + 0.401347248 In X (A.45)

asp as(mz)

+ a [0.01165228 (1 - X) + 0.16107961in X]

+ X2 [0.1586117 (X 2 - 1) + 0.0599722 (X

+ InX - X 2 ) + 0.0323244 {(1 - X)2 - In2 X}].

The form in Eq. (A.45) agrees very well with the numerical solution of the beta

function equation.

Nonsingular Cross Section Formula

At O(a2) there is an axial singlet contribution to the nonsingular terms through

the three-parton cut of Fig. 2-1, which is given by the function fsingiet appearing in

Eq. (2.24) for fad. The result for this function can be extracted from results in

Ref. [891 and reads: [rt = Q2/(4m2)]

fsinglet (T, rt) = 3 dyyg(y - 1, rt) + (1 - 3[) 2 -)

(A.46)

2rt sin- 1 (vt7) - sin- 1 (v'i) + [sin-1(Vrt) ] 2

g(r, rt) = 4r2 (-

+sin~ (Vfit) ]2 + r log (r)

4rt (1 - T)
2

R-evolution

Finally we display here the function D(k) [92] which appears in the solution in
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Eq. (2.38) of the R-RGE equation for A(R, R):

k

D(k)(Cai, C2) - E (-1)jSjx
j=O

[F(- 1 - j, ti) - F (- 1 -- j, t2)], (A.47)

which is real since the complex phase e"Tb1 cancels the imaginary part coming from

the incomplete Gamma functions, defined as

F(c, t) = dxc1- . (A.48)

Here k is the order of the matrix elements (that is k = 0 for NLL' and NNLL, k = 1

for NNLL' and N3 LL, and k = 2 for N3 LUL. For lower orders D(k) = 0). In Eq. (A.47)

we have defined

t- 2w bi ' 7
=- , 1 = , SO = 0 , 1 = (20) 2

7 __ 2#02#1+#-o/32 R
S2 - 7 1 0, (A.49)

6 (2#30)3 16#30 11 '

where the R-anomalous dimensions -Y7 were given in Eq. (2.37).

Total Hadronic Cross Section

The total hadronic QCD cross section, can be evaluated in fixed-order perturbation

theory with p ~ Q, and was given in Eq. (2.55) with the vector QCD results given in

Eq. (2.56). The function appearing in the singlet contribution in Eq. (2.55) at O(a2)
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is [104]

-(rt) - (rt) C12[2 I(r)] - C13 [2 (r)] + (3

1 2[1 - y(rt) ID(rt) - C12 [2 D(r)]
+ -- 1 1

rt r

+ 2 Cl2[2 @(rt)] + 2 [ 2-(rt) - 3 ]@(rt)

+ 6y(rt) + 2D(rt)2 - 4,(rt)2  (A.50)
rt 3

where the necessary functions appear in Eq. (A.10). Note that we have dropped the

four particle cut contribution 14 = 7r2/3 - 15/4 since we have not accounted for it in

the O(a2) nonsingular distribution.

A.1 Soft Function OPE Matching

To derive Eq. (2.18) we must demonstrate uniqueness of the power correction Q1 and

derive its perturbative Wilson coefficient to all orders in a,. We carry out these two

parts of the proof in turn. Since the operator appearing in the matrix element Q1 is

non-local, the proof of uniqueness is more involved than for a typical OPE where we

could just enumerate all local operators of the appropriate dimension. Here we are

integrating out perturbative soft gluons in SrQk, It), while retaining nonperturbative

soft gluons. The hierarchy between these soft gluons is in their invariant masses,

k 2 >> ACD. This process can not introduce Wilson lines in new light-like directions,

nor additional Wilson lines following paths in n and ft. Thus the Wilson lines will

be the same as those in the full theory operator, Eq. (2.14). Additional Wilson

lines could only be induced by integrating out collinear or hard gluons, which would

yield power corrections suppressed by the hard or jet scales. The second point to

demonstrate is that dimension one combinations of derivatives other than i do not

lead to new nonperturbative matrix elements at this order. The key is that for

derivative operators inside our vacuum matrix element involving Wilson lines, boost

invariance along the thrust axis relates all matrix elements to Q1 [110]. The proof
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relies on boost invariance along the thrust axis of derivative operators inside the

vacuum matrix element. To see this one defines the transverse energy flow operator

ET(7) by its action on states [107, 32]

Er) >j = ' 6(q - j) IX). (A.51)
iEX

Any dimension one derivative operator we might wish to consider, such as n -a, n9 -,

at, a2, ... , or combinations thereof, are given by an integral f dq h(r) ET(7) for an

appropriate rapidity function h( 7 ). For example, for the thrust derivative i& we have

h(q) = e-1'. Boost invariance implies [110]

= (0tr T (0)Yn(0) iST(0) + (0)-)

= fd ( (Otr Y (0)Y,(0) Er(n+i')Yt(0)Yi(0)|0)

=~~ (0t %0Y(0) ETr(77') Yt(0)? 0)0) (A.52)

for arbitrary q'. The same steps hold for any other derivative operator and function

h( 1 ), and different choices only affects the constant calculable prefactor. This suffices

to show the second point. To derive an all orders expression for the Wilson coefficient

of Q1 we construct an analog of the OPE matching done for the soft function in

B -+ X8,- [25]. The proof is considerably simpler for B -+ X,-y because the OPE

in that case yields local HQET operators. Nevertheless the thrust soft function can

be manipulated such that a similar strategy can be used. Using the thrust axis we

define hemisphere a where p+ < p- and hemisphere b where p~ < p+. Consider the

soft function written as a matrix element squared

Srk, i) = 1-Z6(k -+- k-) tr (0|Yf () X)

X W n(X )?*(0)|0) (A.53)
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where the trace is over color, k1+ = n -pa is the total plus-momentum of the particles

in state X in hemisphere a and kb- = R - p% is the minus-momenta of particles in

X in hemisphere b. To carry out the OPE we need to consider a state that has

overlap with the operator in Eq. (2.17). Thus we could replace the vacuum by very

soft nonperturbative gluons with momenta of O(AQCD) and then consider matrix

elements with perturbative gluons having momenta ~ k > AQCD. Since the OPE

is independent of the particular states we choose, we will instead consider a simpler

alternative in the following. First we write the matrix element in Eq. (A.53) as

tr (0|Y YX)(XIY2YJ|) (A.54)

= (0|tY YnCn|XunvA p(XunV I n|ntY*| 1)

where (n and (f are non-interacting collinear fields whose contractions with the sterile

quark u, and anti-quark va, are chosen with a normalization to reproduce the original

matrix element (and a sum over their color correctly reproduces the trace). Here un

should be thought of as a very energetic collinear quark in hemisphere a with large

label momentum p-, and zero residual momentum. The large momentum is conserved

by soft interactions from the Wilson lines due to the SCET multipole expansion. Here

the plus-momentum of un is included into k'+, but is zero and does not contribute

to the 6-function. The same is true for va which has zero minus-momentum, large

label p± momentum, and is always in hemisphere b. We introduced un and va so

that we can use them to systematically add a very soft momentum to the end of the

Wilson lines (at oo). They provide a convenient state with which to carry out the

OPE, because there is nonzero overlap taking only the 1 out of the Wilson lines, Y.

In particular they allow us to perform the OPE and pick out the 46 present in Qi at

tree level, without the necessity to add explicit soft gluons with momenta < k. To

carry out the OPE we now give un a very small soft momentum f+ and va, a very

small soft momentum -, and denote them by ut and vt respectively. These particles

are kept on-shell by adjusting their large label .- momenta so that f+ = pnj/p- and

,a= ph 1 /p. Due to the multipole expansion these I-momenta have no influence
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on diagrams with perturbative soft gluons having momenta k < pnI = -piL. The

Wilson line propagators reduce to the same as before, such as

p + ±p(A.55)
k+pn + f +p; + pn' k+

This property is familiar in SCET where soft couplings to energetic collinear quarks

in SCET remain eikonal for any values of the quark's large momenta by using the

equations of motion, as long as the final particles are on-shell. Thus at any order in

perturbation theory, with any number of soft gluons and soft quarks of momenta - k

in the matrix elements, the only change caused by f* is on the 6(k - ka+ - k'-) in

Eq. (A.53) which is shifted to 6(k - f - k+ - kr-), where f = f+ + f-. Expanding

with f < k the matrix element with this choice of state evaluates to

dSPat (k)
Sr t (k - e, p) = Sart (k) - dk e+... . (A.56)

dk

At lowest order in emission of very soft gluons ~ AQCD the corresponding matrix

element in the lower energy theory is

l(0 Ic vY 2i|uIv)(U i vlY7*(10) = f. (A.57)

Virtual radiative corrections do not correct this result since they are scaleless and van-

ish in pure dimensional regularization. Thus we can identify f -+ 201 in Eq. (A.56),

and this then yields the stated result for the OPE in Eq. (2.18).

A.1.1 Operator Expansion for the First Thrust Moment

For moment integrals of the thrust distribution over T E [0, 1/2] there is not a hier-

archy of scales that induces large logs, and one may formulate the theoretical result

in terms of an expansion in a, and AQCD/Q. The zero'th moment of thrust is just

the total cross section for e+e- -+ hadrons, and the power corrections are formulated

in terms of the well known OPE [137]. For higher moments the fact that thrust con-

strains a non-trivial combination of final state momenta makes carrying out an OPE
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Figure A-1: Amplitudes for zero and one soft gluon.

more difficult. For example, when we weigh the integral by a power of thrust it is not

possible to collapse all propagators to a point, so the nonperturbative parameters are

no longer constrained to be given by a basis of local operators. In the effective cou-

pling model [73] the same nonperturbative parameter ao that appears for the thrust

distribution, also occurs in the first moment. However it is not clear to what level

of accuracy this carries over to a field theoretical description of power corrections

derived from QCD. In this appendix we show how one can carry out an OPE for

the 1st moment of the thrust distribution, and demonstrate that at leading order it

only involves the same nonperturbative matrix element Q1 from Eq. (2.3). To carry

out an OPE for the thrust moment we can work order by order in the hard a,(Q)

expansion, and analyze direct computations where we couple soft nonperturbative

gluons to hard partons in Feynman diagrams. The appropriate non-local operator(s)

appearing in the expansion will be identified by the structure of the amplitudes in

this computation. In the following discussion the soft gluons will not be treated as

final state particles for which there is a phase space integral, but rather as a means

of probing the structure of the nonperturbative operator. The lowest order graphs

with zero or one soft gluon and a virtual photon current (for simplicity) are shown in

Fig. A-1. Here k" - AQCD is soft, and pP - Q, p' ~ Q are hard momenta. To carry

out the OPE we calculate and square the on-shell amplitude, M"M', where yi, v
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are the virtual photon current indices. We sum over the final quark/antiquark spins

since these particles are hard and are being integrated out. On the other hand the

gluon vector indices a, a' are left uncontracted and are used to help in identifying

the operator for the nonperturbative matrix element. For simplicity, the indices a

and a' are suppressed in writing down the amplitudes below. We start out without

making restrictions on the number of gluons coming from M and M*, which corre-

sponds to directly matching onto the nonperturbative operator, without considering

the final vacuum matrix element which gives a nonperturbative parameter. Since

p2 = pr2 = k2 = 0 the denominators of the propagators in the one gluon graphs

reduce to 2p - k and 2p'- k. In the numerators we can drop P's relative to the large /

and f'. The interference between the zero and one gluon amplitudes gives

M4M4* = Netrky'3y"] 2gTA [ p'k - Pc. (A.58)
hhNc .p'- k p- kj

The interference with one gluon from each of M' and M * is

2TATB Fpps tpO'' (p'" pl 'ap"'

MP 2* = Ne tr[ -'j"] + cp). (A.59)hhNc (p -k)2 (p'- k) 2  (p k)(p'-k) .

Continuing in this fashion with any number of gluons from M" and any number

from M* we always find the tree level amplitude squared with no soft gluons,

Ne trLyI7 ")-yv], times an amplitude from the soft gluons. Since the hard quarks are

on-shell and back-to-back their four-momenta are given by light-like vectors along the

thrust axis,

p14 = n/ , p' = n ,p (A.60)
2 2'

up to power corrections beyond those considered here. Here n/ = (1, t) and h" =

(1, -i) are identical to the n and n appearing in Eq. (2.3). Using Eq. (A.60) the

soft gluon amplitudes in Eqs. (A.58) and (A.59) are eikonal with precisely the right

factors to come from the Yn(0), Yn(0), Yl(0), Y*(O) in the Q1 matrix element in

Eq. (2.3). For the first moment observable we can focus on amplitudes that have the
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same number of gluons in M' and M);*, and at least one gluon for the io operation

in Eq. (2.3) to act on. Since the gluon is soft, the factor of r in f dT(r/-)(do/dr) is

given by

Tmin 2p2k 2p'-k -min n-k,i-k (A.61)
Iq' q2  Q L I

=-n-kO(fi-k-n-k)+6-kO(n-k-A-k) ,)

and is exactly equal to i given in Eq. (2.4) acting on the soft gluon in Fig. A-1. Hence

in the first moment of thrust we find that r together with the soft gluon amplitude

give precisely 2Q1/Q, with the vacuum matrix in Eq. (2.3) (where the trace comes

from the sum over color for the final state quarks). The remaining Ne tr[yjf'YyvJ

amplitude goes together with the two-body phase space to yield the tree level cross

section ao. Together these results yield Eq. (2.22) for the lowest order OPE for the

first moment of thrust.

198



Appendix B

Theory parameter scan for fit to

first moment

In this Appendix we describe the method we use to estimate uncertainties in our

analysis. We will briefly review the profile functions and the theoretical parameters

which determine the theory uncertainty. We will also describe the scan over those

parameters and the effects they have on the fit results.

The profile functions used in Ref. [1], to which we refer for a more extensive de-

scription, are r-dependent factorization scales which allow us to smoothly interpolate

between the theoretical constraints the hard, jet and soft scale must obey in different

regions of the thrust distribution:

1) peak: pI- ~ Q , Pi ~ fAQCD9,p AQCD,

2) tail: PH ~ Q, pu~ QV+, ps Q T ,

3) far-tail: PH = pJ = PS ~ Q . (B.1)

The factorization theorem derived for thrust in Ref. [1] is formally invariant under

0(1) changes of the profile function scales. The residual dependence on the choice

of profile functions constitutes one part of the theoretical uncertainties and provides

a method to estimate higher order perturbative corrections. We adopt a set of six

parameters that can be varied in our theory error analysis which encode this residual
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parameter default value

yo 2 GeV
n1 5
t 2  0.25
ej 0

eH 1
n. 0

3usp 1553.06
ja 0
S3  0

C2 0

C3
0

range of values
1.5 to 2.5 GeV

2 to 8
0.20 to 0.30

-1, 0, 1
0.5 to 2.0
-1, 0, 1

-1553.06 to +4659.18
-3000 to +3000

-500 to +500
-1, 0, 1

-1, 0, 1

Table B.1: Theory parameters relevant for estimating the theory uncertainty, their

default values and range of values used for the theory scan during the fit procedure.

freedom while still satisfying the constraints in Eq. (B.1).

For the profile function at the hard scale, we adopt

p1H = eH Q, (B.2)

where eH is a free parameter which we vary from 1/2 to 2 in our theory error analysis.

For the soft profile function we use the form

(B.3)

/_o + A r2, 0 < -r < ti,

pts) br + d, t1 < T < t2,

pH - 1-2 2 (__ r) 2 , t 2 < r < -

Here, ti and t2 represent the borders between the peak, tail and far-tail regions.

po is the value of ps at r = 0. Since the thrust value where the peak region ends

and the tail region begins is Q dependent, ti ~ 1/Q, we define the Q-independent

parameter ni by ti = ni/(Q/1 GeV). To ensure that ps(r) is a smooth function, the

quadratic and linear forms are joined by demanding continuity of the function and

its first derivative at r = ti and r = t 2 , which fixes b = 2 (PH - PO)t2 - t 1 + ) and

d = [po(t 2 + j) - Ht1]/(t2 - ti + 1). In our theory error analysis we vary the free

parameters ni, t 2 and po.
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eH
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tz
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E2

A3
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cusp
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110

E3

E2

J 3
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Figure B-1: Impact on parameters of the M 1 fit from variations of the best-fit values
for ao,(mz) and Q1 values in the ranges given in Table B.1. The dark shaded blue
regions represent values of the parameters larger than their default values, the light
shaded green regions where the parameters are smaller than their default values.

The profile function for the jet scale is determined by the natural relation between

the hard, jet, and soft scales

P(T)= 1+ ej( -T v/pG psr). (B.4)

The term involving the free 0(1)-parameter ej implements a modification to this

relation and vanishes in the multijet region where -r = 1/2. We use a variation of

ej to include the effect of such modifications in our estimation of the theoretical

uncertainties.

In our theory error analysis we vary p, to account for our ignorance on the

resummation of logarithms of -r in the nonsingular corrections. We consider three

possibilities

p, n, =1,

m(T) = Ipi (r), n, = 0, (B.5)

j[pj(r)+ ls(r)], n, = -1.
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The complete set of theoretical parameters and the their ranges of variation are sum-

marized in Table B.1.

Besides the parameters associated with the profile functions, the other theory pa-

rameters are ""3 j, S3 , and C1,2. The cusp anomalous dimension at O(a), fj""I is

estimated via Pad6 approximants and we assign a 200% uncertainty to this approx-

imation. j3 and s 3 represent the nonlogarithmic 3-loop term in the position-space

hemisphere jet and soft functions, respectively. These two parameters and their vari-

ations are estimated via Pad6 approximations. The last two parameters E2 and 63

allow us to include the statistical errors in the numerical determination of the non-

singular distribution at two (from EVENT2 [49, 50]) and three (from EERAD3 [86])

loops, respectively.

At each order we randomly scan the parameter space summarized in Table B.1

with a uniform measure, extracting 500 points. Each of the points in Fig. 3-2 is the

result of the fit performed with a single choice of a point in the parameter space. The

contour of the area in the a,-2 Q1 plane covered by the fit results at each given order

is fit to an ellipse, which is interpreted as a 1-o theoretical uncertainty. The ellipse

is determined as follows: in a first step we determine the outermost points on the

c,-2 1 plane (defined by the outermost convex polygon). We then perform a fit to

these points using a x 2 which is the square of the formula for an ellipse:

Xelipse = [a (ai - ao)2 + 4 b (Ri - Go)2 (B.6)

+ 2 c (ai - ao)(f2i - o) - 1]2

Here the sum is over the outermost points, and coordinates for the center of the ellipse,

ao and Qo, are fixed ahead of time to the average of the maximum and minimum values

of a,(mz) and Q1 in the scan. We then minimize X 23,,, to determine the parameters

a, b, c of the ellipse.
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One could further constrain the coefficients a and b by writing

1 + v/1 +4 4c 2 Aa 2 AQ 2

a 2Aa 2

(B.7)

1 + /1 + 4 c2 Aa 2 AQ 2

8 AQ2

where Aa and AQ correspond to the half the difference of the maximum and minimum

values of a,(mz) and Q1 , respectively (the perturbative errors). The minimization of

l2 in Eq. (B.6) gives almost identical results regardless of whether or not Eq. (B.7)

is imposed.

In Fig. B-1 we vary a single parameter of Table B.1 keeping all the others fixed at

their respective default values, and we plot the change of a,(mz) and Q1 as compared

to the values obtained from the first moment thrust fit with the default setup. In the

figure, the dark shaded blue area represents a variation where the parameter is larger

than the default value, and the light shaded green one where the parameter is smaller.

The largest uncertainty is associated with the variation of the hard scale, eH. The

value of a,(mz) is similarly affected by the uncertainty of the profile function param-

eters, the statistical error from the numerical determination of the 3-loop nonsingular

distribution from EERAD3 [86], and by the parameter 3. It is rather insensitive to

the variation of the 4-loop cusp anomalous dimension and the statistical error from

the determination of the 2-loop nonsingular. The value of Q1 is mainly sensitive to

the profile function parameters and C3, but is quite insensitive to j3.
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Appendix C

One loop beam function

In this appendix we summarize the results of the one loop beam function.

Iqq(t, z, p) =6(t)6(1 - z)

+ as )CFO( 1

Iq,(t, z, A) = as( Z)TF IL

1,1)() ±

( T q 1,0) (Z) ± 6 (,6) (Z)
9 9

-6(1 - z)
6

+ 0(1 - z) 1

I1,) (z) =P(Z) - J(1 - Z)

1,' (z) =26(1 - z)Eqq

-1(1,) (z) =Pqg(z) log

I1' (z) =Pqg(z)

(Z)

(C.2)

4",6) (Z)

(C.1)

Sz Z log z)

205

0 o 1,0) (Z

1I 5 (z) = 11-z)( + z 2)

-i)+0(1-z)



The beam function can be expanded on a basis given by the Li, whose arguments can

be arbitrarily rescaled as follows.

Ij (t, z, P) = m ices I a()), z] Em

=>1Ij[as() Z, ] Lm (C.3)

The rescaled coefficients are related to the non rescaled ones by the following equa-

tions,

I-i [as(), z, x]

Ij [as (p), z, X]

logn+1 x

=-I [as(m), z] + I [as(p), z] n + 1

= (nn k +k [as(p), z] log" X.
n=o

Explicitly, at one loop,

Tqq1 [as(p-), z]

Tq [as (P), z]

=6(1 - z) + as)CF ( 6 )()

= a(p) CF ,)

=as 7)CF 1,

27r 0()wq~I,1 z

I1 [asp zI =a0 z) cs(J))TF

Vqg[as p),z] =as()TF O 0)(z)
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and therefore the rescaled coefficients are

q~l [as(p), z, x] =6(1 -z)±+ as()CF 1 1,0) ()=J(I -Z) 2 (z) [Eq +110 0 log
2 x 1

qq W2 ]

1q [as(p), z, X] =as(p)CF [ 1'0 )(z + I( 1 '1 )(z) log]

qqas(p),Z] zv ] = as(z)CF i)

=as(p)TF ()
2w

1,J) ,0 )

149[as(p-), z,x] = 2as)TF 0 0)

The Altarelli-Parisi splitting functions are

-p0)(z) =0(z) CF Pqq(Z)

z')(Z) =0(z)TF Pqg(z)

1g(z) =0(z) CF Pgq(Z)

12g)(z) =0(z) ICA Pg(z) +

(C-6)

(C.7)- z)]

with

= 24(1 - z) - 0(1 - z) (1 + z) + 3L-1(1 - z)
2

Pj,0)(z) =0(1 -

Pg0)(z) =0(1 -

z) [z2 +±(1-z)2]

z) 1 (1 -Z)2

z

(C.8)
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For the two loop splitting functions, we used

fM (z) =2PV(1)(z) + 2Pq (z)

P')(z) =2P(' (z)

P(z) =2PK(' (z) + 2P1 (z)

Pfl)(z) =2P( (z)

PM (z) =P~l (z), (C.9)

where the functions on the right hand side of Eq. C.9 are defined in Eq. 4.107-4.112

of [1331.
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Convolutions

Here are listed the convolutions which have been used to calculate the Drell-Yan

coefficients in Chapter 5

Pqq ( Pqq(z) j PiP Z() Pq(z')

= - 5 - z-4(1 + z)log(1 - z) + 3(1 + z) logz +

+ (6 - 4log z)Lo(1 - z) + 8L1 (1 - z)

- -)1 (1 - z)

J Pqg() Pgq(z')= +z z/ z/1±

fz1

-z3- +2(1+z)logz

Pqq ()Pq,(z')=

- +2z+2(1-2z+2z 2)log(1-z)+(-1 +2z-4z 2)logz
2

Pqg9Pgg(z) =
z1

'P P z')=

'")9 Pq(Z) =
fz1

+ 4+8z - 2+ 2(1 - 2z +
3z 3

dP ()
z q~q

2z 2)log(1 - z) + 2(1+ 4z)logz

( z')

4-8z+4z2 - 3(1 + z) log 2 (1 - z)I -z

- z +z2 l) - 2(1
2/1 -z

+ z2)log(1 - z) log z
1-z

+ (1 z)21og
2 z

1 -z

- (1 + z) log 2(z)

+ 4(3 - ,6(1 - z) - r2 o(1 - Z) + 2 ( - z) +642(1 -z)
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Fourier Transforms of plus functions

Fourier transforms of plus functions and their inverses.
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