
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-016 July 17, 2013

Coded Emulation of Shared Atomic
Memory for Message Passing Architectures
Viveck R. Cadambe, Nancy Lynch, Muriel Medard,
and Peter Musial

Coded Emulation of Shared Atomic Memory for
Message Passing Architectures

Viveck R. Cadambe, Nancy Lynch, Muriel Médard, Peter Musial?

Abstract. This paper considers the communication and storage costs of emu-
lating atomic (linearizable) read/write shared memory in distributed message-
passing systems. We analyze the costs of previously-proposed algorithms by At-
tiya, Bar-Noy, and Dolev (the ABD algorithm) and by Fan and Lynch (the LDR
algorithm), and develop new coding-based algorithms that significantly reduce
these costs. The paper contains three main contributions:
(1) We present a new shared-memory algorithm that we call CAS, for Coded
Atomic Storage. This algorithm uses erasure coding methods.
(2) In a storage system withN servers that is resilient to f server failures, we show
that the communication costs for the ABD and LDR algorithms, measured in terms
of number of object values, are both at least f + 1, whereas the communication
cost for CAS is N

N−2f
.

(3) We also explicitly quantify the storage costs of the ABD, LDR, and CAS al-
gorithms. The storage cost of the ABD algorithm, measured in terms of number
of object values, is N, whereas the storage costs of the LDR and CAS algorithms
are both unbounded. We present a modification of the CAS algorithm based on
the idea of garbage collection. The modified version of CAS has a storage cost of
(δ + 1) N

N−2f
, where δ in an upper bound on the number of operations that are

concurrent with a read operation. Thus, if δ is sufficiently small, the storage cost
of CAS is lower than those of both the ABD and LDR algorithms.

1 Introduction
Since the late 1970s, emulation of shared-memory systems in distributed message-passing
environments has been an active area of research [9, 20, 4, 16, 10, 3, 8]. The most typical
approach to building redundancy for distributed systems in the context of shared memory
emulation is replication. Replication techniques in message-passing systems were pio-
neered by Gifford [9] and Thomas [20]. In [4], Attiya, Bar-Noy, and Dolev presented an
algorithm for emulating shared memory that achieves atomic consistency [12, 11]. Their
algorithm allows only a single node to act as a writer; in this paper we consider a simple
multi-writer generalization of their algorithm which we call the ABD algorithmi. Their
algorithm uses a quorum-based replication scheme [21], combined with read and write
protocols to ensure that the emulated object is atomic [12] (linearizable [11]), and to en-
sure liveness, specifically, that each operation terminates provided that at most dN−1

2 e
server nodes fail. A critical step in ensuring atomicity in the ABD algorithm is the prop-
agate phase of the read protocol, where the readers write back the value they read to
? Viveck R. Cadambe and Muriel Médard are with the Research Laboratory of Electron-

ics (RLE), MIT, Cambridge, USA [viveck, medard]@mit.edu. Nancy Lynch is with
Computer Science and Artificial Intelligence Laboratory (CSAIL), MIT, Cambridge, USA
lynch@theory.lcs.mit.edu. Peter Musial is the Advanced Storage Division of EMC2,
Cambridge, USA peter.musial@emc.com

i The algorithm of Attiya, Bar-Noy and Dolev [4] did not distinguish between client and server
nodes as we do in our paper.

a subset of the nodes in the storage system. Since the read and write protocols require
multiple communication phases where entire replicas are sent, this algorithm has a high
communication cost.

To the best of our knowledge the only work that has previously studied efficient emu-
lation of atomic shared memory is by Lynch and Fan [7]. In [7], the authors introduced a
directory-based replication system that, like [4], emulates atomic shared memory in the
message-passing model; however, unlike [4], the readers are required to write only some
metadata information to the directory, rather than the value read (thus making them self-
ish). In applications where the data being replicated is much larger than the metadata,
the LDR algorithm is less costly than ABD in terms of communication costs.

In this paper, we investigate practical aspects of emulating shared memory in dis-
tributed networks. Specifically, we focus on the communication and storage costs of
emulating atomic read/write shared memory in distributed message-passing systems.
The unique aspect of our work is the merging of quorum-based techniques with erasure
coding techniques.

Erasure coding is a generalization of replication that is well known in the context of
classical storage systems [13, 19, 6]. Specifically, in erasure coding, each server does not
store the value in its entirety, but only a part of the value called a coded element. In the
classical coding theory framework, this approach is well known to lead to smaller storage
costsii as compared to replication (see Sec. 4). However, classical erasure coding theory
does not consider issues of consistency; in fact, the most commonly studied models in
the coding literature focus on storing a single version of each data object. A natural
question is whether the cost benefits of coding that appear in the context of storing a
single version, translate to our setting of storing multiple versions consistently.

The major challenges in integrating erasure coding into quorum-based data manage-
ment lie in the handling of writer failures and in ensuring termination of read operations.
In ABD and similar algorithms, writer failures are not an issue since a writer always
sends an entire value to any server, hence readers who observe a trace of a failed write
can help complete the write operation. However, this is not the case when coding is used
since any single server will contain only some part of the value being written, i.e., a
coded element (see Sec. 4). While the benefits of erasure codes have been well demon-
strated for distributed data storage systems (see [1, 5, 17, 6]), their applicability in the
context of emulation of a coherent shared memory has scarcely been studied. Among
the few previous works that are relevant in this context, perhaps the most interesting
is [2], where erasure coding is used to devise an atomic shared-memory system. How-
ever, the technique of [2] does not ensure termination in the presence of client failures
since read operations must wait for ongoing write operations to terminate. In particu-
lar, while the system of [2] does support transient server failures, the failure of a single
writer can cause a future read operation to be blocked forever.

In this paper, we present algorithms that use erasure coding to emulate atomic shared
memory in asynchronous message-passing systems. These algorithms maintain the de-
sirable properties of shared memory systems while yielding significant improvements
over traditional techniques in terms of communication and storage costs.

ii In much of the literature that applies erasure coding to storage systems, the message passing
system is ignored in the modeling and therefore, communication costs are not relevant.

Read Communication Cost Write Communication Cost Storage Cost
ABD 2N N N

LDR 2f + 1 f + 1 ∞
CAS N

N−2f
N

N−2f
∞

CASGC N
N−2f

N
N−2f

(δ + 1)× N
N−2f

Table 1. Worst-case communication and storage costs for the ABD, LDR, CAS and CASGC
algorithms (see Theorems 3.1, 3.2, 5.10, 6.1). The parameter δ represents an upper bound on the
number of operations that are concurrent with a read operation. The costs are measured in terms
of the number of object values (see Sec. 2 for more precise definitions.)

Contributions. As in ABD and LDR, we consider a static distributed message-passing
setting where the universe of nodes is fixed and known, and nodes communicate us-
ing a reliable message-passing network. We assume that client and/or server nodes can
fail. We define our system model, and our communication and storage cost measures in
Sec. 2. We provide brief descriptions of the ABD and LDR algorithms and analyze their
communication and storage costs in Sec. 3.

Our main contribution is the Coded Atomic Storage (CAS) algorithm presented in
Sec. 5, which is a lower cost alternative to ABD and LDR. Since CAS uses erasure
coding, we present a brief introduction of this technique in Sec. 4. For a storage system
with N nodes, CAS ensures liveness provided that the number of server failures is at
most f and ensures atomicity regardless of the number of (client or server) failures. In
Sec. 5, we also analyze the communication cost of CAS.

The communication and storage costs of the ABD, LDR, and CAS algorithms are
depicted in Tab. 1. Specifically, in a storage system with N servers that is resilient to f
server node failures, the communication costs of CAS are smaller than the communica-
tion costs of both ABD and LDR if N

N−2f < f +1, i.e., if N > 2f +2. The storage cost
of the ABD algorithm is N , whereas the storage costs of the LDR and CAS algorithms
are unbounded. The reason for this difference is that in ABD, each server stores the value
associated with the latest version of the data object it receives, whereas in the LDR and
CAS algorithms, each server stores the values or coded elements associated with all the
versions of the data object it receives. In executions where an unbounded number of
write operations occur, the servers may store values or coded elements corresponding
to an unbounded number of object values, thus resulting in unbounded storage costs. In
Sec. 6, we present a variant of the CAS algorithm, called the CAS with Garbage Collec-
tion (CASGC) algorithm, which has a bounded storage cost; specifically, the CASGC
algorithm has a storage cost of (δ + 1) N

N−2f , where δ represents an upper bound on the
number of operations that are concurrent with a read operation. The CASGC algorithm
achieves a bounded storage cost by garbage collection, i.e., discarding values associated
with sufficiently old versions. We argue in Sec. 6 that if the number of operations that
are concurrent with a read is bounded, such garbage collection can be done without loss
of atomicity or liveness.

We finish by discussing some open questions and areas of future research in Sec. 7.

2 System Model
Deployment setting. In this work, we assume a static asynchronous deployment set-
ting where all the nodes and the network connections are known a priori and the only
sources of dynamic behavior are node stop-failures (or simply, failures) and processing

and communication delays. We consider a message-passing setting where nodes com-
municate via point-to-point reliable channels.

We assume a universe of nodes that is the union of server and client nodes, where the
client nodes are reader or writer nodes.N represents the set of server nodes; N denotes
the cardinality ofN . We assume that server and client nodes can fail (stop execution) at
any point. We assume that the number of server node failures is at most f . There is no
bound on the number of client failures.
Shared memory emulation. We consider algorithms that emulate multi-writer, multi-
reader (MWMR) read/write atomic shared memory using our deployment platform. We
assume that read clients receive read requests (invocations) from some local external
source, and respond with object values. Write clients receive write requests and respond
with acknowledgments. The requests follow a “handshake” discipline, where a new in-
vocation at a client waits for a response to the preceding invocation at the same client.
We require that the overall external behavior of the algorithm corresponds to atomic
memory. For simplicity, in this paper we consider a shared-memory system that consists
of just a single object.

As in [4] we represent each version of the data object as a (tag, value) pair. When a
write client processes a write request, it assigns a tag to the request. We assume that the
tag is an element of a totally ordered set T that has a minimum element t0. The tag of a
write request serves as a unique identifier for that request, and the tags associated with
successive write requests at a particular write client increase monotonically. Different
algorithms use different kinds of tags. We assume that value is a member of a finite
set V that represents the set of values that the data object can take on; this implies that
value can be represented by log2 |V| bitsiii. We assume that all servers are initialized
with a default initial state.
Requirements. The key correctness requirement on the targeted shared memory service
is atomicity. A shared atomic object is one that supports concurrent access by multiple
clients and where the observed global external behaviors “look like” the object is being
accessed sequentially. Another requirement is liveness, by which we mean here that an
operation of a non-failed client is guaranteed to terminate provided that the number of
server failures is at most f , and irrespective of the failures of other clientsiv.
Communication cost. Informally speaking, the communication cost is the number of
bits transferred over the point-to-point links in the message-passing system. For a mes-
sage that can take any value in some finite setM, we measure the cost of the message as
log2 |M| bits. In this paper, we aim to separate the cost of communicating a value of the
data object from the cost of communicating the tags and other metadata. For this pur-
pose, we assume that each message is a triplev (t, w, d) where t ∈ T is a tag, w ∈ W is
the (only) component of the triple that depends on the value associated with the tag t, and
d ∈ D is any additional metadata that is independent of the value. Here, W is a finite set
of values that the second component of the message can take on, depending on the value
iii Strictly speaking, we need dlog2 |V|e bits since the number of bits has to be an integer. We

ignore this rounding error in this paper.
iv We will assume that N > 2f, since atomicity cannot be guaranteed if N ≤ 2f [15].
v It is possible for some messages to have some of the fields empty. For example, if the message

carries only metadata, then W is the empty set. In such a case, we will simply omit the data
field. Messages where the metadata is missing are also handled similarly.

of the data object. D is a finite set that represents all the possible metadata elements for
the message. These sets are assumed to be known a priori to the sender and recipient of
the message. In this paper, we make the approximation: log2 |M| ≈ log2 |W|, that is,
the costs of communicating the tags and the metadata are negligible as compared to the
cost of communicating the data object values, log2 |W|. We assume that every message
is sent on behalf of some read operation or write operation. We next define the read and
write communication costs of an algorithm.

For a given shared memory algorithm, consider an execution α of the system. Con-
sider a write operation in α. The communication cost of this write operation is the sum
of the communication costs of all the messages sent over the point-to-point links on be-
half of the operation. The write communication cost of the execution α is the supremum
of the costs of all the write operations in α. The write communication cost of the algo-
rithm is the supremum of the write communication costs taken over all executions of the
algorithm. The read communication cost of an algorithm is defined similarly.
Storage cost. Informally speaking, at any point of an execution of an algorithm, the
storage cost is the total number of bits stored by the servers. Similarly to how we mea-
sured the communication costs, in this paper, we isolate the costs of storing the data
object from the cost of storing the tags and the metadata. Specifically, we assume that
a server node stores a set of triples with each triple of the form (t, w, d), where t ∈ T ,
w depends on the value of the data object associated with tag t, and d represents any
additional metadata that is independent of the values stored. We neglect the cost of stor-
ing the tags and the metadata; so the cost of storing the triple (t, w, d) is measured as
log2 |W| bits. The storage cost of a server is the sum of the storage costs of all the triples
stored at the server. For a given shared memory algorithm, consider an execution α. The
total storage cost at a particular point of α is the sum of the storage costs of all the
servers at that point. The total storage cost of the execution α is the supremum of the
storage costs over all points of the execution. The total storage cost of an algorithm is
the supremum of the total storage costs over all executions of the algorithmvi.

3 The ABD and LDR Algorithms

As baselines for our work we use the MWMR versions of the ABD and LDR algorithms
[4, 7]. Because of space constraints, here, we will only describe these algorithms infor-
mally, in the context of evaluation of their communication and storage costs. The costs of
these algorithms are stated in Theorems 3.1 and 3.2. We provide a complete description
of ABD and LDR and proofs of Theorems 3.1 and 3.2 in Appendix A. In the ABD algo-
rithm, the write protocol involves communication of a message that includes the value
of the data object to each of the N servers, and therefore incurs a write communication
cost of N log2 |V| bits. The read communication cost is bigger because it involves com-
munication of the value of the data object in two of its phases, known as the get phase
and the put phase (see Fig. 3 in Appendix A). In the get phase, each of the N servers
send a message containing a value to the reader, and the communication cost incurred is
N log2 |V| bits. In the put phase, the reader sends a message involving the value of its
data object to each of the N servers, and the communication cost incurred is N log2 |V|
vi The total storage costs of some of the algorithms in this paper are unbounded. For such algo-

rithms, we measure the storage cost of the algorithm for a class of executions as the supremum
of the total storage costs over all executions belonging to that class (in particular, see Sec. 6)

bits. The read communication cost of the ABD algorithm is therefore 2N log2 |V| bits.
The storage cost of the ABD algorithm isN log2 |V| bits since each server stores exactly
one value of the data object.

Theorem 3.1. The write and read communication costs of ABD are respectively equal
to N log |V| and 2N log |V| bits. The storage cost is equal to N log2 |V| bits.

The LDR algorithm divides its servers into directory servers that store metadata, and
replica servers that store object values. The write protocol of LDR involves the sending
of object values to 2f + 1 replica servers. The read protocol is less taxing since in the
worst-case, it involves retrieving the data object values from f + 1 replica servers. We
state the communication costs of LDR next (for formal proof, see Appendix A.)

Theorem 3.2. In LDR, the write communication cost is (2f + 1) log2 |V| bits, and the
read communication cost is (f + 1) log2 |V| bits.

In the LDR algorithm, each replica server stores every version of the data object it re-
ceivesvii. Therefore, the (worst-case) storage cost of the LDR algorithm is unbounded.
We revisit the issue of storage cost of the LDR algorithm in Sec. 6.

4 Erasure Coding - Background
Erasure coding is a generalization of replication that has been widely studied for pur-
poses of failure-tolerance in storage systems (see [13, 19, 17, 6]). Erasure codes per se
do not address the issue of maintaining consistency in distributed storage systems since
the classical erasure coding models assume that only a single version of the data object
is being stored. In this paper, we use erasure coding as an ancillary technique in pro-
viding a shared-memory system that is consistent (specifically atomic) across different
versions of the data. Here we give an overview of the relevant definitions and results
from classical coding theory [19].

The key idea of erasure coding involves splitting the data into several coded ele-
ments, each of which is then stored at a different server node. As long as a sufficient
number of coded elements can be accessed, the original data can be recovered. Infor-
mally speaking, given two positive integers m, k, k < m, an (m, k) Maximum Distance
Separable (MDS) code maps a k-length vector to anm-length vector, where the original
(input) k-length vector can be recovered from any k coordinates of the output m-length
vector. This implies that an (m, k) code, when used to store a k-length vector on m
server nodes - each server node storing one of the m coordinates of the output - can tol-
erate (m− k) node failures (erasuresviii) in the absence of any consistency requirements
(for example, see [1]). We proceed to define the notion of an MDS code formally.

Given an arbitrary finite set A and any set S ⊆ {1, 2, . . . ,m}, let πS denote the
natural projection mapping from Am onto the coordinates corresponding to S, i.e., de-
noting S = {s1, s2, . . . , s|S|}, where s1 < s2 . . . < s|S|, the function πS : Am → A|S|
is defined as πS (x1, x2, . . . , xm) = (xs1 , xs2 , . . . , xs|S|).
Definition 4.1 ((m, k) Maximum Distance Separable (MDS) code). LetA denote any
finite set. Given positive integers k,m such that k < m, an (m, k) code over A is
vii This is unlike ABD where the servers store only the latest version of the data object received.

viii In information and coding theory literature, an erasure is an abstraction that corresponds to a
node failure; hence the term erasure coding.

a map Φ : Ak → Am. An (m, k) code Φ over A is said to be Maximum Distance
Separable (MDS) if, for every S ⊆ {1, 2, . . . ,m} where |S| = k, there exists a function
Φ−1
S : Ak → Ak such that: Φ−1

S (πS(Φ(x)) = x for every x ∈ Ak, where πS is the
natural projection mapping.
We refer to each of the m coordinates of the output of an (m, k) code Φ as a coded ele-
ment. Put simply, an (m, k) MDS code Φ is one where the input to Φ is obtainable from
any k coded elements. Classical m-way replication, where the input value is repeated m
times, is in fact an (m, 1) MDS code, since the input can be obtained from any single
coded element (copy). Another example is the single parity code: an (m,m − 1) MDS
code overA = {0, 1} which maps the (m− 1)-bit vector x1, x2, . . . , xm−1 to the m-bit
vector x1, x2, . . . , xm−1, x1 ⊕ x2 ⊕ . . .⊕ xm−1.
Erasure Coding for single-version data storage. In the classical coding-theoretic
model, a single version of a data object is stored over N servers. Here we review how
an MDS code can be used in this setting.

Consider a single version of the data object with value v ∈ V . Suppose that we want
to store value v among the N servers using an (N, k) MDS code. For simplicity, we
will assume here that V = Wk for some finite set W and that an (N, k) MDS code
Φ :Wk →WN exists overW (see Appendix B for a discussion). Then, the value of the
data object v can be used as an input to Φ to get N coded elements overW; each of the
N servers, respectively, stores one of these coded elements. Since each coded element
belongs to the setW, whose cardinality satisfies |W| = |V|1/k = 2

log2 |V|
k , each coded

element can be represented as a log2 |V|
k bit-vector, i.e., the number of bits in each coded

element is a fraction 1
k of the number of bits in the original data object. Therefore, the

total storage cost of storing the coded elements overN servers is N
k times the number of

bits in the original data object. The ratio N
k - also known as the redundancy factor of the

code - represents the storage cost overhead in the classical erasure coding model. Much
literature in classical coding theory is devoted to the study of making the redundancy
factor as small as possible (see [19, 13] and discussion in Appendix B).

The redundancy factor of the code turns out to be relevant even in our context of
storing multiple versions of the data object in a shared-memory system. The CAS and
CASGC algorithms presented in Sec. 5 and 6 both use an (N, k) MDS code Φ to store
values of the data object. It turns out that a smaller redundancy factor of the code trans-
lates to smaller communication and storage costs (see Theorems 5.10, Theorem 6.1).

5 Coded Atomic Storage
We now present the Coded Atomic Storage (CAS) algorithm, which takes advantage
of erasure coding techniques to reduce the communication cost for emulating atomic
shared memory. CAS is parameterized by an integer k, 1 ≤ k ≤ N − 2f ; we denote the
algorithm with parameter value k by CAS(k). CAS, like ABD and LDR, is a quorum-
based algorithm. Later, in Sec. 6, we will present a variant of CAS that has efficient
storage costs as well (in addition to having the same communication costs as CAS).

In the ABD algorithm, each message sent by a writer contains a (tag, value) pair.
A reader, at the end of its query phase, learns both the tag and the value. This enables
easy handling of writer failures since a reader can complete a (failed) write operationix.
In contrast, handling of writer failures is not as simple when erasure coding is used.
ix In [7], the authors show that readers must write, at least in some executions, to ensure atomicity.

write(value)
query: Send query messages to all servers asking for the highest tag with label ‘fin’; await re-
sponses from a quorum.

pre-write: Select the largest tag from the query phase; let its integer component be z. Form a new
tag t as (z+ 1, ‘id’), where ‘id’ is the identifier of the client performing the operation. Apply the
(N, k) MDS code Φ (see Sec. 4) to the value to obtain coded elements w1, w2, . . . , wN . Send
(t, ws, ‘pre’) to server s for every s ∈ N . Await responses from a quorum.

finalize: Send a finalize message (t, ‘null’, ‘fin’) to all servers. Terminate after receiving re-
sponses from a quorum.

read
query: As in the writer protocol.

finalize: Send a finalize message with tag t to all the servers requesting the associated coded
elements. Await responses from a quorum. If at least k servers include their locally stored coded
elements in their responses, then obtain the value from these coded elements by inverting Φ (see
Definition 4.1) and terminate by returning value.

server
state variable: A variable that is a subset of T × (W ∪ {‘null’})× {‘pre’, ‘fin’}
initial state: Store (t0, w0,s, ‘fin’) where s denotes the server and w0,s is the coded element
corresponding to server s obtained by apply Φ to the initial value v0.

On receipt of query message: Respond with the highest locally known tag that has a label ‘fin’,
i.e., the highest tag such that the triple (tag, ∗, ‘fin’) is at the server, where ∗ can be a coded
element or ‘null’.

On receipt of pre-write message: If there is no record of the tag of the message in the list of triples
stored at the server, then add the triple in the message to the list of stored triples; otherwise ignore.
Send an acknowledgment.

On receipt of finalize from a writer: Let t be the tag associated with the message. If a triple of the
form (t, ws, ‘pre’) exists in the list of stored triples, then update it to (t, ws, ‘fin’). Otherwise
add (t, ‘null’, ‘fin’) to the list of stored triples xvi. Send an acknowledgment.

On receipt of finalize from a reader: Let t be the tag associated with the message. If a triple of
the form (t, ws, ∗) exists in the list of stored triples where ∗ can be ‘pre’ or ‘fin’, then update it
to (t, ws, ‘fin’) and send (t, ws) to the reader. Otherwise add (t, ‘null’, ‘fin’) to the list of triples
at the server and send an acknowledgment.

Fig. 1. Write, read, and server protocols of the CAS algorithm.

This is because, with an (N, k) MDS code, each message from a writer contains a coded
element of the value and therefore, there is no single server that has a complete replica
of the version. To solve this problem we do not allow readers to observe write operations
in progress until enough information has been stored at servers, so that if the writer fails
before completing its operation, then a reader can complete that write.
Quorum specification. We define our quorum system, Q, to be the set of all subsets of
N that have at least dN+k

2 e elements (server nodes). We refer to the members of Q, as
quorum sets. We can show that Q satisfies the following:

Lemma 5.1. Suppose that 1 ≤ k ≤ N − 2f. (i) If Q1, Q2 ∈ Q, then |Q1 ∩ Q2| ≥ k.
(ii) If the number of failed servers is at most f , then Q contains at least one quorum set
Q of non-failed servers.

The lemma is proved in Appendix C. The CAS algorithm can, in fact, use any quo-
rum system that satisfies properties (i) and (ii) of Lemma 5.1.
Algorithm description. In CAS, we assume that tags are tuples of the form (z, ‘id’),
where z is an integer and ‘id’ is an identifier of a client node. The ordering on the set
of tags T is defined lexicographically, using the usual ordering on the integers and a
predefined ordering on the client identifiers. Fig. 1 contains a description of the read
and write protocols, and the server actions of CAS. Here, we provide an overview of the
algorithm and, in particular, explain how we handle writer failures.

Each server node maintains a set of (tag, coded-element, label)x triples, where we
specialize the metadata to label ∈ {‘pre’, ‘fin’}. The different phases of the write
and read protocols are executed sequentially. In each phase, a client sends messages
to servers to which the non-failed servers respond. Termination of each phase depends
on getting a response from at least one quorum.

The query phase is identical in both protocols and it allows clients to discover a
recent finalized object version, i.e., a recent version with a ‘fin’ tag. The goal of the
pre-write phase of a write is to propagate the writer’s value to the servers – each server
gets a coded element with label ‘pre’. Tags associated with pre-written coded elements
are not visible to the readers, since the servers respond to query messages only with
finalized tags. Once a quorum, say Qpw, has acknowledged receipt of the pre-written
coded elements, the writer proceeds to its finalize phase. In this phase, it propagates a
finalize (‘fin’) label with the tag and waits for a response from a quorum of servers, say
Qfw. The purpose of propagating the ‘fin’ label is to record that the coded elements
associated with the tag have been propagated to a quorumxi. In fact, when a tag appears
anywhere in the system associated with a ‘fin’ label, it means that the corresponding
coded elements reached a quorum Qpw with a ‘pre’ label at some previous point. The
operation of a writer in the two phases following its query phase in fact helps overcome
the challenge of handling writer failures. In particular, only a tag with the ‘fin’ label is
visible to the readers. This means that any tag obtained by a reader in the query phase
has been finalized, which indicates that the corresponding coded elements have been
propagated to at least one quorum. The reader is guaranteed to get k unique coded units
from any quorum of non-failed nodes, because such a quorum has an intersection of k
nodes withQpwxii. Finally, the reader helps propagate the tag to a quorum, and this helps
complete (possibly failed) writes as well. We next state the man result of this section.

Theorem 5.2. CAS emulates shared atomic read/write memory.

To prove Theorem 5.2, we need to show atomicity, Lemma 5.3, and liveness, Lemma 5.9.

Lemma 5.3 (Atomicity). CAS(k) is atomic.

To show Lemma 5.3 we show that it satisfies properties of the following lemma,
which suffices to establish atomicity.

x The ‘null’ entry indicates that no coded element is stored, only a label is stored with the tag;
the storage cost associated storing a null coded element is assumed to be negligible.

xi It is worth noting that Qfw and Qpw need not be the same quorum. That is, for a tag, one
quorum of servers, Qpw may have the actual coded elements, some of them with the ‘pre’
label and others with the ‘fin’ label; a different quorum Qfw may have the ‘fin’ label, some of
them with the associated coded element and others with the ‘null’ entry for the coded element.

xii We note that any server s inQpw∩Qfw responds to the read’s finalize message with the locally
stored coded element ws.

Lemma 5.4. (Paraphrased Lemma 13.16 [15].) Suppose that the environment is well-
behaved, meaning that an operation is invoked at a client only if no other operation
was performed by the client, or the client received a response to the last operation it
initiated. Let β be a (finite or infinite) execution of a read/write object, where β consists
of invocations and responses of read and write operations and where all operations
terminate. Let Π be the set of all operations in β.

Suppose that≺ is an irreflexive partial ordering of all the operations inΠ , satisfying
the following properties: (1) If the response for π1 precedes the invocation for π2 in β,
then it cannot be the case that π2 ≺ π1. (2) If π1 is a write operation in Π and π2 is any
operation in Π , then either π1 ≺ π2 or π2 ≺ π1. (3) The value returned by each read
operation is the value written by the last preceding write operation according to ≺ (or
v0, if there is no such write).

The following definition will be useful for proving Lemma 5.4.

Definition 5.5. Consider an execution β of CAS and consider an operation π that ter-
minates in β. The tag of operation π, denoted as T (π), is defined as follows: If π is a
read, then, T (π) is the highest tag received in its query phase. If π is a write, then, T (π)
is the new tag formed in its pre-write phase.

We show Lemma 5.4 by defining the partial order ≺ on operations based on their
tags. To do so, in Lemmas 5.6, 5.7, and 5.8, we show certain properties satisfied by the
tags. Specifically, we show in Lemma 5.6 that, in any execution of CAS, at any point
after an operation π terminates, the tag T (π) has been propagated with the ‘fin’ label
to at least one quorum of servers. Intuitively speaking, Lemma 5.6 means that if an
operation π terminates, the tag T (π) is visible to any operation that is invoked after π
terminates. We crystallize this intuition in Lemma 5.7, where we show that any operation
that is invoked after an operation π terminates acquires a tag that is at least as large as
T (π). Using Lemma 5.7 we show Lemma 5.8, which states that the tag acquired by
each write operation is unique. Finally, we show that Lemmas 5.7 and 5.8 imply Lemma
5.4 by defining that partial order ≺ on operations based on the tags acquired by the
operations. Here, we present only a proof of Lemma 5.6, and a brief sketch of a proof of
Lemma 5.4. We present formal proofs of Lemmas 5.7, 5.8, and 5.3 in Appendix D.

Lemma 5.6. In any execution β of CAS, for an operation π that terminates in β, there
exists a quorum Qfw(π) such that the following is true at every point of the execution
β after π terminates: Every server of Qfw(π) has (t, ∗, ‘fin’) in its set of stored triples,
where ∗ is either a coded element or ‘null’, and t = T (π).

Proof. The proof is the same whether π is a read or a write operation. The operation π
terminates after completing its finalize phase, during which it receives responses from a
quorum, say Qfw(π), to its finalize message. This means that every server s in Qfw(π)
responded to the finalize message from π at some point before the point of termination
of π. From the server protocol, we can observe that every server s in Qfw(π) stores the
triple (t, ∗, ‘fin’) at the point of responding to the finalize message of π, where ∗ is either
a coded element or ‘null’. Furthermore, the server s stores the triple at every point after
the point of responding to the finalize message of π and hence at every point after the
point of termination of π. ut

Lemma 5.7. Consider any execution β of CAS, and let π1, π2 be two operations that
terminate in β. Suppose that π1 returns before π2 is invoked. Then T (π2) ≥ T (π1).
Furthermore, if π2 is a write operation, then T (π2) > T (π1).

Lemma 5.8. Let π1, π2 be write operations that terminate in an execution β of CAS.
Then T (π1) 6= T (π2).

Intuitively, Lemma 5.7 follows from Lemma 5.6 since, tag T (π1) has been propagated to
a quorum with the ‘fin’ label implying that operation π2 receives a tag that is at least as
large as T (π1). We next provide a brief sketch of the proof of Lemma 5.3. Proof Sketch
of Lemma 5.3. In any execution β of CAS, we order operations π1, π2 as π1 ≺ π2 if
(i) T (π1) < T (π2), or (ii) T (π1) = T (π2), π1 is a write and π2 is a read. It can be
verified that ≺ is a partial order on the operations of β. With this ordering, the first two
properties of Lemma 5.4 follow from Lemmas 5.7 and 5.8 respectively. The last property
of Lemma 5.4 follows from examination of the CAS algorithm, in particular, on noting
that a read that terminates always returns the value associated with its tag. ut
Lemma 5.9 (Liveness). CAS(k) satisfies the following liveness condition: If 1 ≤ k ≤
N − 2f , then every operation terminates in every fair execution of CAS(k) where the
number of failed server nodes is no bigger than f .

We provide only a part of the proof here; the remaining parts appear in Appendix E.
Proof (Partial.): By examination of the algorithm we observe that termination of any
operation depends on termination of its phases. So, to show liveness, we need to show
that each phase of each operation terminates. Termination of a write operation and the
query phase of a read are contingent on receiving responses from a quorum of non-failed
servers in the execution; property (ii) of Lemma 5.1 guarantees the existence of such a
quorum, and thus ensures their termination (see Appendix E for more details).

We show the termination of a reader’s finalize phase here since it is more challenging.
By using property (ii) of Lemma 5.1, we can show that a quorum, say Qfw of servers
responds to a reader’s finalize message. For the finalize phase of a read to terminate,
there is an additional requirement that at least k servers include coded elements in their
responses. To show that this requirement is satisfied, suppose that the read acquired a
tag t in its query phase. From examination of the CAS algorithm, we can infer that, at
some point before the point of termination of the read’s query phase, a writer propagated
a finalize message with tag t. Let us denote by Qpw(t), the set of servers that responded
to this write’s pre-write phase. Now, we argue that all servers in Qpw(t)∩Qfw respond
to the reader’s finalize message with a coded element. To see this, let s be any server in
Qpw(t) ∩ Qfw. Since s is in Qpw(t), the server protocol for responding to a pre-write
message implies that s has a coded element, ws, at the point where it responds to that
message. Since s is in Qfw, it also responds to the reader’s finalize message, and this
happens at some point after it responds to the pre-write message. So it responds with its
coded element ws. From Lemma 5.1, it is clear that |Qpw(t) ∩Qfw| ≥ k implying that
the reader receives at least k coded elements in its finalize phase and hence terminates.

ut
Cost analysis. We analyze the communication cost of CAS next.
Theorem 5.10. The write and read communication costs of the CAS(k) are both equal
to N/k log2 |V| bits.

Proof. For either protocol, to measure the communication cost, observe that messages
carry coded elements which have size log2 |V|

k bits. More formally, each message is an
element from T × W × {‘pre’, ‘fin’}, where, W is a coded element corresponding to
one of the N outputs of the MDS code Φ. As described in Sec. 4, log2 |W| = log2 |V|

k .
The only messages that incur a non-negligible communication cost are the messages
sent from the client to the servers in the pre-write phase of a write and the messages sent
from the servers to a client in the finalize phase of a read. It can be seen that the total
communication cost of read and write operations of the CAS algorithm are N

k log2 |V|
bits, that is, they are upper bounded by this quantity and the said costs are incurred in
certain worst-case executions. ut

Since k is a parameter that can be freely chosen so that 1 ≤ k ≤ N − 2f, the
communication cost for both reads and writes be made as small as N

N−2f log2 |V| bits
by choosing k = N − 2f (see Tab. 1).

6 Storage Optimized Variant of CAS

In this section, we present a variant of the CAS algorithm that has bounded storage
cost provided that the number of operations that are concurrent to any read operation is
bounded. The key idea that enables bounded storage cost is garbage collection of suffi-
ciently old coded elements, which do not impact the external behavior of read and write
operationsxiii. We begin by describing our variant, the CAS with Garbage Collection
(CASGC) algorithm. The CASGC algorithm assumes that the number of operations that
are concurrent with a read operation is upper bounded by a parameter δ, whose value is
known to all the servers in the system. Like CAS, CASGC is parametrized by an integer
k, where 1 ≤ k ≤ N − 2f ; we will denote the algorithm with the parameter value k as
CASGC(k). After describing the algorithm, we will show that CASGC satisfies the de-
sired correctness requirements (atomicity and liveness), in addition to having a storage
cost of (δ + 1)Nk log2 |V|.

The CASGC algorithm is essentially the same as CAS with an additional garbage
collection step at the servers. In particular, the only differences between the two algo-
rithms lie in the set of server actions in response to receiving a pre-write message and a
finalize message from a reader. The server actions in the CASGC algorithm are described
in Fig. 2. The figure shows that, in CASGC, each server stores the latest δ + 1 coded el-
ements along with their tags and their labels; it stores only metadata related to the other
tags it has seen. On receiving a pre-write message, it performs a garbage collection step
before responding to the message. The garbage collection step checks if the server has
more than δ + 1 coded elements; if so, it replaces the triple (t′, coded-element, label)
by (t′, ‘null’, label) where t′ is the smallest tag associated with a coded element in the
list of triples stored at the server. This strategy ensures that the server stores at most δ+1
coded elements at any point. If a reader requests, through a finalize message, a coded
element that is already garbage collected, the server simply ignores this request.

Now we bound the storage cost of the CASGC algorithm, and show that CASGC
satisfies atomicity and liveness.
xiii Recall that the LDR algorithm, much like the CAS algorithm has unbounded storage cost. The

garbage collection technique presented here could perhaps be utilized on the LDR algorithm to
bound its storage cost as well.

servers
state variable: A variable that is a subset of T × (W ∪ {‘null’}) ×
{‘pre’, ‘fin’, (‘pre’, ‘gc’), (‘fin’, ‘gc’)}
initial state: Same as in Fig. 1.

On receipt of query message: Similar to Fig. 1, respond with the highest locally available
tag labeled ‘fin’, i.e., Respond with the highest tag such that the triple (tag, ∗, ‘fin’) or
(tag, ‘null’, (‘fin’, ‘gc’)) is at the server, where ∗ can be a coded element or ‘null’.

On receipt of a pre-write message: Perform the actions as described in Fig. 1 except the sending
of an acknowledgment. Then, perform garbage collection. Then, send an acknowledgment.

On receipt of finalize from a writer: Let t be the tag associated with the message. If a triple of
the form (t, ‘null’, (‘fin’, ‘gc’)) exists in the list of stored triples, send an acknowledgement.
Otherwise perform steps as in Fig. 1.

On receipt of a finalize message from a reader: Let t be the tag associated with the message.
If (t, ‘null’, (∗, ‘gc’)) exists in the list of locally available triples where ∗ can be either ‘fin’ or
‘pre’, then ignore the incoming message. Otherwise, perform steps as in Fig. 1.

garbage collection: If there are more than δ + 1 triples with coded elements, then, for every tag
t′ such that the server has the triple (t′, coded-element, label), and t′ is not one of the highest
δ + 1 tags at the server with a coded element, replace the triple by (t′, ‘null’, (label, ‘gc’)).

Fig. 2. Server Actions for the CASGC algorithm.

Theorem 6.1. The write and read communication costs of CASGC(k) are each equal to
N
k log2 |V| bits. The storage cost of CASGC(k) is (δ + 1)Nk log2 |V| bits.

Proof. The proofs of the write and read communication costs of the CASGC algorithm
are similar to the proofs the costs for the CAS algorithm. We omit the proof here for
brevity. We can show that the storage cost of the CASGC algorithm is (δ + 1)Nk log2 |V|
bits by noting that each server stores at most (δ + 1) coded elements, and by noting that
in certain executions, all N servers simultaneously store (δ + 1) coded elements. ut
Since k can be chosen to be any parameter in the rage 1 ≤ k ≤ N − 2f , the storage cost
of the CASGC algorithm can be made as small as (δ+1)N

N−2f log2 |V| bits (see Tab. 1).

Theorem 6.2. If the number of operations concurrent to any read operation is upper
bounded by δ, then the CASGC algorithm satisfies atomicity and liveness.

To show the theorem, we observe that, from the perspective of the clients, the only
difference between CAS and CASGC is in the server response to a read’s finalize mes-
sage. In CASGC, when a coded element has been garbage collected, a server ignores
a read’s finalize message. If the number of write operations concurrent with a read are
bounded by δ, we show the following key property of CASGC: at any point when a
server ignores a reader’s finalize message because of garbage collection, the read oper-
ation that sent the message has already terminated. We show this formally in Lemma
6.3. The lemma implies that garbage collection does not influence the external behavior
of the operations, and therefore, the proof of correctness of CASGC follows along the
same lines as CAS. We state and prove Lemma 6.3 here. We present a more formal proof
of Theorem 6.2 via a simulation relation to CAS in Appendix F.
Lemma 6.3. Consider any execution α of CASGC where the number of operations con-
current to any read operation is upper bounded by δ. Consider any point of α where

the triple (t, ‘null’, (∗, ‘gc’)) is in the set of triples stored at some server, where ∗ could
be ‘pre’ or ‘fin’. If a read operation in α acquired tag t in its query phase, then the
operation terminated before this point.
Proof. We show the lemma by contradiction. Consider an execution α of CASGC and
consider a point of α (if such a point exists) where: (i) a server s has (t, ‘null’, (∗, ‘gc’))
in its set of triples, where ∗ is ‘pre’ or ‘fin’, and (i) a read operation that selected tag t in
its query phase has not terminated at this point. Because server s has garbage collected
tag t, the server protocol of CASGC implies that server s received at least δ + 1 coded
elements corresponding to tags that are higher than t before the point in consideration.
We denote the tags by t1, t2, . . . , tδ+1, where, ti > t, i = 1, 2, . . . , δ + 1. For any i in
{1, 2, . . . , δ + 1}, the presence of a tag ti at server s means that a write operation, say
πi, must have committed to tag ti in its pre-write phase before this point in α. Since, at
this point, the read with tag t has not terminated, there are only two possibilities.

(a) All the write operations π1, π2, . . . , πδ+1 are concurrent with the reader.
(b) At least one of the operations πi terminated before the read operation started.
To show the lemma, it suffices to show that neither (a) nor (b) is possible. (a) violates
the concurrency bound of δ and is therefore impossible. To show that (b) cannot occur,
we use an argument similar to the proof of the first property of Lemma 5.4 in Sec. 5. In
particular, we can showxiv that the following property, analogous to Lemma 5.6, holds
for CASGC: After operation πi terminates, a quorum Qfw(πi) exists where each server
of the quorum has an element (ti, ∗, ‘fin’) or (ti, ‘null’, (‘fin’, ‘gc’)) where ∗ can be
‘null’ or a coded element. This implies that the reader must have acquired a tag t ≥ ti
during its query phase contradicting our earlier assumption. Hence, (b) is impossible.

ut

7 Conclusions
In this paper, we have proposed a new approach toward emulation of atomic shared
memory in asynchronous message-passing systems. Contributions of our paper apply
to two different fields. First, we analyze communication and storage costs of traditional
techniques in distributed computing theory; we also provide new coding-based algo-
rithms that outperform traditional techniques with respect to these costs. Second, for
the area of information and coding theory, which traditionally studies costs of com-
munication and storage techniques under certain classical constraints (tolerance against
erasures (failures)), we introduce the new constraint of ensuring consistency. In partic-
ular, we study techniques that ensure consistency in addition to failure tolerance, and
their associated costs.

Broadly, understanding the performance of communication and storage costs of con-
sistent distributed shared-memory systems is an open and ripe research area. In this pa-
per, we considered a point-to-point reliable message passing system where the cost of
a message is equal to the size of the values it contains. In our model, an open question
is whether the shared memory algorithms of this paper are optimal; such a study will
need the construction of lower bounds on the costs incurred. More generally, it is of
relevance, both to theory and practice, to explore the performance of other models for
message-passing architectures such as wireless systems, packet erasure channels, and
wireline communication networks.
xiv The proof is almost identical to the proof of Lemma 5.6 and is omitted here for brevity.

References

1. Common RAID disk data format specification, March 2009.
2. A. Agrawal and P. Jalote. Coding-based replication schemes for distributed systems. Parallel

and Distributed Systems, IEEE Transactions on, 6(3):240 –251, March 1995.
3. M. K. Aguilera, I. Keidar, D. Malkhi, and A. Shraer. Dynamic atomic storage without con-

sensus. J. ACM, 58:7:1–7:32, April 2011.
4. H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing systems.

In Proceedings of the ninth annual ACM symposium on Principles of distributed computing,
PODC ’90, pages 363–375, New York, NY, USA, 1990. ACM.

5. M. Blaum, P. Farrell, and H. Van Tilborg. Array codes, handbook of coding theory. Elsevier
Science, 2:1855–1909, 1998. Chapter 22, Editors: V.S. Pless and W.C. Huffman.

6. Y. Cassuto, A. Datta, and F. Oggier. Coding for distributed storage, March 2013. SIGACT
News.

7. R. Fan and N. Lynch. Efficient replication of large data objects. In In Proceedings of the 17th
International Symposium on Distributed Computing (DISC), pages 75–91, 2003.

8. A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partitionable group commu-
nication service. ACM Trans. Comput. Syst., 19(2):171–216, 2001.

9. D. K. Gifford. Weighted voting for replicated data. In Proceedings of the seventh ACM
symposium on Operating systems principles, SOSP ’79, pages 150–162, New York, NY, USA,
1979. ACM.

10. S. Gilbert, N. Lynch, and A. Shvartsman. RAMBO: A robust, reconfigurable atomic memory
service for dynamic networks. Distributed Computing, 23(4):225–272, December 2010.

11. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12:463–492, July 1990.

12. L. Lamport. On interprocess communication. Part I: Basic formalism. Distributed Comput-
ing, 2(1):77–85, 1986.

13. S. Lin and D. J. Costello. Error Control Coding, Second Edition. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 2004.

14. N. Lynch and A. Shvartsman. Robust emulation of shared memory using dynamic quorum-
acknowledged broadcasts. In In Symposium on Fault-Tolerant Computing, pages 272–281.
IEEE, 1997.

15. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1996.

16. D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Computing, 11(4):203–
213, October 1998.

17. J. S. Plank. T1: erasure codes for storage applications. In Proc of the 4th USENIX Conference
on File and Storage Technologies. San Francisco, pages 1–74, 2005.

18. I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the Society
for Industrial & Applied Mathematics, 8(2):300–304, 1960.

19. R. Roth. Introduction to coding theory. Cambridge University Press, 2006.
20. R. Thomas. A majority consensus approach to concurrency control for multiple copy

databases. ACM Transactions on Database Systems, 4(2):180–209, 1979.
21. M. Vukolić. Quorum systems: With applications to storage and consensus. Synthesis Lectures

on Distributed Computing Theory, 3(1):1–146, 2012/03/01 2012.

A Descriptions of the ABD and LDR Algorithms

Here, we describe the ABD and LDR algorithms, and evaluate their communication and
storage costs. We present the ABD and LDR algorithms in Fig. 3 and Fig. 4 respectively.

write(value)
get: Send query request to all servers, await (tag) responses from a majority of server nodes.
Select the largest tag; let its integer component be z. Form a new tag t as (z+1, ‘id’), where
‘id’ is the identifier of the client performing the operation.

put: Send the pair (t, value) to all servers, await acknowledgment from a majority of server
nodes, and then terminate.

read
get: Send query request to all servers, await (tag, value) responses from a majority. Select
a tuple with the largest tag, say (t, v).

put: Send (t, v) to all servers, await acknowledgment from a majority, and then terminate
by returning the value v.

server
state variable: A variable which contains an element of T × V
initial state: Store the default (tag, value) pair (t0, v0).

On receipt of get message from a read: Respond with the locally available (tag, value)
pair.

On receipt of get message from a write: Respond with the locally available tag.

On receipt of put message: If the tag of the message is higher than the locally available tag,
store the (tag, value) pair of the message at the server. In any case, send an acknowledg-
ment.

Fig. 3. Write, read, and server protocols of the ABD algorithm.

Communication and Storage costs of ABD and LDR algorithms.
Proof of Theorem 3.1. We first present arguments that upper bound the communication
and storage cost for every execution of the ABD algorithm. The ABD algorithm pre-
sented here is fitted to our model. Specifically in [4, 14] there is no clear cut separation
between clients and servers. However, this separation does not change the costs of the
algorithm. Then we present worst-case executions that incur the costs as stated in the
theorem.
Upper bounds: First consider the write protocol. It has two phases, get and put. The
get phase of a write involves transfer of a tag, but not of actual data, and therefore has
negligible communication cost. In the put phase of a write, the client sends a value from
the set T ×V to every server node; the total communication cost of this phase is at most
N log2 |V| bits. Therefore the total write communication cost is at most N log2 |V| bits.
In the get phase of the read protocol, the message from the client to the servers contains
only metadata, and therefore has negligible communication cost. However, in this phase,
each of the N servers could respond to the client with a message from T × V; therefore
the total communication cost of the messages involved in the get phase is upper bounded

by N log2 |V| bits. In the put phase of the read protocol, the read sends an element of
T × V to N servers. Therefore, this phase incurs a communication cost of at most
N log2 |V| bits. The total communication cost of a read is therefore upper bounded by
2N log2 |V| bits.

The storage cost of ABD is no bigger thanN log2 |V| bits because each server stores
at most one value - the latest value it receives.
Worst-case executions: Informally speaking, due to asynchrony and the possibility of
failures, clients always send requests to all servers and in the worst case, all servers
respond. Therefore the upper bounds described above are tight.

For the write protocol, the client sends the value to all N nodes in its put phase.
So the write communication cost in an execution where at least one write terminates
is N log2 |V| bits. For the read protocol, consider the following execution, where there
is one read operation, and one write operation that is concurrent with this read. We
will assume that none of the N servers fail in this execution. Suppose that the writer
completes its get phase, and commits to a tag t. Note that t is the highest tag in the
system at this point. Suppose that among the N messages that the writer sends in its put
phase with the value and tag t, Now the writer begins its put phase where it sends N
messages with the value and tag t. At least one of these messages, say the message to
server 1, arrives.the remaining messages are delayed, i.e., they are assumed to reach after
the portion of the execution segment described here. At this point, the read operation
begins and receives (tag, value) pairs from all the N server nodes in its get phase. Of
these N messages, at least one message contains the tag t and the corresponding value.
Note that t is the highest tag it receives. Therefore, the put phase of the read has to sends
N messages with the tag t and the corresponding value - one message to each of the N
servers that which responded to the read in the get phase with an older tag.

The read protocol has two phases. The cost of a read operation in an execution is
the sum of the communication costs of the messages sent in its get phase and those
sent in its put phase. The get phase involves communication of N messages from T ×
V , one message from each server to the client, and therefore incurs a communication
cost of N log2 |V| bits provided that every server is active. The put phase involves the
communication of a message in T × V from the client to every server thereby incurring
a communication cost of N log2 |V| bits as well. Therefore, in any execution where all
N servers are active, the communication cost of a read operation is 2N log2 |V| bits and
therefore the upper bound is tight.

The storage cost is equal to N log2 |V| bits since each of the N servers store exactly
one value from V . ut
Proof of Theorem 3.2.
Upper bounds: In LDR servers are divided into two groups: directory servers used
to manage object metadata, and replication servers used for object replication. Read
and write protocols have three sequentially executed phases. The get-metadata and put-
metadata phases incur negligible communication cost since only metadata is sent over
the message-passing system. In the put phase, the writer sends its messages, each of
which is an element from T × V, to 2f + 1 replica servers and awaits f + 1 responses;
since the responses have negligible communication cost, this phase incurs a total com-
munication cost of at most (2f + 1) log2 |V| bits. The read protocol is less taxing, where
the reader during the get phase queries f + 1 replica servers and in the worst case, all

write(value)
get-metadata: Send query request to directory servers, and await (tag, location) responses
from a majority of directory servers. Select the largest tag; let its integer component be z.
Form a new tag t as (z+1, ‘id’), where ‘id’ represents the identifier of the client performing
the operation.

put: Send (t, value) to 2f + 1 replica servers, await acknowledgment from f + 1. Record
identifiers of the first f + 1 replica servers that respond, call this set of identifiers S.

put-metadata: Send (t,S) to all directory servers, await acknowledgment from a majority,
and then terminate.

read
get-metadata: Send query request to directory servers, and await (tag, location) responses
from a majority of directory servers. Choose a (tag, location) pair with the largest tag, let
this pair be (t,S).

put-metadata: Send (t,S) to all directory servers, await acknowledgment from a majority.

get: Send get object request to any f + 1 replica servers recorded in S for tag t. Await a
single response and terminate by returning a value.

replica server
state variable: A variable that is subset of T × V
initial state: Store the default (tag, value) pair (t0, v0).

On receipt of put message: Add the (tag, value) pair in the message to the set of locally
available pairs. Send an acknowledgment.

On receipt of get message: If the value associated with the requested tag is in the set of pairs
stored locally, respond with the value. Otherwise ignore.

directory server
state variable: A variable that is an element of T × 2R where 2R is the set of all subsets of
R.
initial state: Store (t0,R), whereR is the set of all replica servers.

On receipt of get-metadata message: Send the (tag,S) be the pair stored locally.

On receipt of put-metadata message: Let (t,S) be the incoming message. At the point of
reception of the message, let (tag,S1) be the pair stored locally at the server. If t is equal to
the tag stored locally, then store (t,S∪S1) locally. If t is bigger than tag and if |S| ≥ f+1,
then store (t,S) locally. Send an acknowledgment.

Fig. 4. Write, read, and server protocols of the LDR algorithm

respond with a message containing an element from T × V thereby incurring a total
communication cost of at most (f + 1) log2 |V| bits.

Worst-case executions: It is clear that in every execution where at least one writer termi-
nates, the writer sends out (2f + 1) messages to replica servers that contain the value,
thus incurring a write communication cost of (2f+1) log2 |V| bits. Similarly, for a read,
in certain executions, all (f + 1) replica servers that are selected in the put phase of the
read respond to the get request from the client. So the upper bounds derived above are
tight. ut

B Discussion on Erasure Codes

As described in Sec. 4, much literature in coding theory involves the design of (N, k)
codes for which the redundancy factorxv can be made as small as possible. In the classical
erasure coding model, the extent to which the redundancy factor can be reduced depends
on f - the maximum number of server failures that are to be tolerated. In particular, an
(N, k) MDS code, when employed to store the value of the data object, tolerates N − k
server node failures; this is because the definition of an MDS code implies that the data
can be recovered from any k surviving nodes. Thus, for an N -server system that uses
an MDS code, we must have k ≤ N − f , meaning that the redundancy factor is at least
N

N−f . It is well known [19] that, given N and f , the parameter k cannot be made larger
than N − f so that the redundancy factor is lower bounded by N

N−f for any code even if
it is not an MDS code; In fact, an MDS code can equivalently be defined as one which
attains this lower bound on the redundancy factor. In coding theory, this lower bound is
known as the Singleton bound [19]. Given parameters N, k, the question of whether an
(N, k) MDS code exists depends on the alphabet of codeW . We next discuss some of
the relevant assumptions that we (implicitly) make in this paper to enable the use of an
(N, k) MDS code in our algorithms.

B.1 Assumption on |V| due to Erasure Coding

Recall that, in our model, each value v of a data object belongs to a finite set V . In our
system, for the use of coding, we assume that V = Wk for some finite setW and that
Φ : Wk → WN is an MDS code. Here we refine these assumptions using classical
results from erasure coding theory. In particular, the following result is useful.

Theorem B.2. Consider a finite setW such that |W| ≥ N. Then, for any integer k <
N , there exists an (N, k) MDS code Φ :Wk →WN .

One proof for the above in coding theory literature is constructive. Specifically, it is well
known that when |W| ≥ N , then Φ can be constructed using the Reed-Solomon code
construction [18, 19, 13]. The above theorem implies that, to employ a Reed-Solomon
code over our system, we shall need the following two assumptions:

– k divides log2 |V|, and
– log2 |V|/k ≥ log2N .

Thus all our results are applicable under the above assumptions.
In fact, the first assumption above can be replaced by a different assumption with

only a negligible effect on the communication and storage costs. Specifically, if log2 |V|
were not a multiple of k then, one could pad the value with

(
d log2 |V|

k ek − log2 |V|
)

“dummy” bits, all set to 0, to ensure that the (padded) object has a size that is multiple
of k; note that this padding is an overhead. The size of the padded object would be
xv Literature in coding theory literature often studies the rate N

k
of a code, which is the reciprocal

of the redundancy factor, i.e., the rate of an (N, k) code is k
N
. In this paper, we use the redun-

dancy factor in our discussions since it enables a somewhat more intuitive connection with the
costs of our algorithms in Tab. 1 and Theorems 3.1, 3.2, 5.10, 6.1.

d log2 |V|
k ek bits and the size of each coded element would be d log2 |V|

k e bits. If we assume
that log2 |V| � k then, d log2 |V|

k e ≈ log2 |V|
k meaning that the padding overhead can be

neglected. Consequently, the first assumption can be replaced by the assumption that
log2 |V| � k with only a negligible effect on the communication and storage costs.

C Proof of Lemma 5.1

Proof of property (i): By the definition, each Q ∈ Q has cardinality at least dN+k
2 e.

Therefore, for Q1, Q2 ∈ Q, we have

|Q1 ∩Q2| = |Q1|+ |Q2| − |Q1 ∪Q2|
≥ 2

⌈
N + k

2

⌉
− |Q1 ∪Q2|

(a)

≥ 2
⌈
N + k

2

⌉
−N ≥ k,

where we have used the fact that |Q1 ∪Q2| ≤ N in (a).
Proof of property (ii): Let B be the set of all the server nodes that fail in an execution,
where |B| ≤ f . We need to show that there exists at least one quorum set Q ∈ Q such
that Q ⊆ N − B, that is, at least one quorum survives. To show this, because of the
definition of our quorum system, it suffices to show that |N − B| ≥ dN+k

2 e. We show
this as follows:

|N − B| ≥ N − f
(b)

≥ N −
⌊
N − k

2

⌋
=

⌈
N + k

2

⌉
,

where, (b) follows because k ≤ N − 2f implies that f ≤ bN−k2 c.

D Atomicity of CAS: Remaining Proofs

In this section, we first prove Lemmas 5.7 and 5.8, and then Lemma 5.3.
Proof of Lemma 5.7. To establish the lemma, it suffices to show that the tag acquired in
the query phase of π2, denoted as T̂ (π2), is at least as big as T (π1), that is, it suffices to
show that T̂ (π2) ≥ T (π1). This is because, by examination of the client protocols, we
can observe that if π2 is a read, T (π2) = T̂ (π2), and if π2 is a write, T (π2) > T̂ (π2).

To show that T̂ (π2) ≥ T (π1) we use Lemma 5.6. We denote the quorum of servers
that respond to the query phase of π2 as Q̂(π2). We now argue that every server s in
Q̂(π2) ∩ Qfw(π1) responds to the query phase of π2 with a tag that is at least as large
as T (π1). To see this, since s is in Qfw(π1), Lemma 5.6 implies that s has a tag T (π1)
with label ‘fin’ at the point of termination of π1. Since s is in Q̂(π), it also responds the
query message of π2, and this happens at some point after the termination of π1 because
π2 is invoked after π1 responds. From the server protocol, we can infer that server s
responds to the query message of π2 with a tag that is no smaller than T (π1). Because
of Lemma 5.1, there is at least one server s in Q̂(π2)∩Qfw(π1) implying that operation
π2 receives at least one response in its query phase with a tag that is no smaller than
T (π1). Therefore T̂ (π2) ≥ T (π1). ut

Proof of Lemma 5.8. Let π1, π2 be two write operations that terminate in execution β.
Let C1, C2 respectively indicate the identifiers of the client nodes at which operations
π1, π2 are invoked. We consider two cases.
Case 1, C1 6= C2: From the write protocol, we note that T (πi) = (zi, Ci). Since C1 6=
C2, we have T (π1) 6= T (π2).
Case 2, C1 = C2 : Recall that operations at the same client follow a “handshake”
discipline, where a new invocation awaits the response of a preceding invocation. This
means that one of the two operations π1, π2 should complete before the other starts.
Suppose that, without loss of generality, the write operation π1 completes before the
write operation π2 starts. Then, Lemma 5.7 implies that T (π2) > T (π1). This implies
that T (π2) 6= T (π1). ut
Proof of Lemma 5.3. Recall that we defined our ordering ≺ as follows: In any execution
β of CAS, we order operations π1, π2 as π1 ≺ π2 if (i) T (π1) < T (π2), or (ii) T (π1) =
T (π2), π1 is a write and π2 is a read.

We first verify that the above ordering is a partial order, that is, if π1 ≺ π2, then
it cannot be that π2 ≺ π1. We prove this by contradiction. Suppose that π1 ≺ π1 and
π2 ≺ π1. Then, by definition of the ordering, we have that T (π1) ≤ T (π2) and vice-
versa, implying that T (π1) = T (π2). Since π1 ≺ π2 and T (π1) = T (π2), we have that
π1 is a write and π2 is a read. But a symmetric argument implies that π2 is a write and
π1 is a read, which is a contradiction. Therefore ≺ is a partial order.

With the ordering ≺ defined as above, we now show that the three properties of
Lemma 5.4 are satisfied. For property (1), consider an execution β and two distinct
operations π1, π2 in β such that π1 returns before π2 is invoked. If π2 is a read, then
Lemma 5.7 implies that T (π2) ≥ T (π1). By definition of the ordering, it cannot be the
case that π2 ≺ π1. If π1 is a write, then Lemma 5.7 implies that T (π2) > T (π1) and so,
π1 ≺ π2. Since ≺ is a partial order, it cannot be the case that π2 ≺ π1.

Property (2) follows from the definition of the ≺ in conjunction with Lemma 5.8.
Now we show property (3): The value returned by each read operation is the value

written by the last preceding write operation according to ≺, or v0 if there is no such
write. Note that every version of the data object written in execution β is uniquely as-
sociated with a write operation in β. Lemma 5.8 implies that every version of the data
object being written can be uniquely associated with tag. Therefore, to show that a read
π returns the last preceding write, we only need to argue that the read returns the value
associated with T (π). From the write, read, and server protocols, it is clear that a value
and/or its coded elements are always paired together with the corresponding tags at ev-
ery state of every component of the system. In particular, the read returns the value from
k coded elements by inverting the MDS code Φ; these k coded elements were obtained
at some previous point by applying Φ to the value associated with T (π). Therefore Def-
inition 4.1 implies that the read returns the value associated with T (π). ut

E Proof of Liveness of CAS

Proof of Lemma 5.9. By examination of the algorithm we observe that termination of any
operation depends on termination of its phases. So, to show liveness, we need to show
that each phase of each operation terminates. Let us first examine the query phase of a
read/write operation; note that termination of the query phase of a client is contingent on

receiving responses from a quorum. Every non-failed server responds to a query message
with the highest locally available tag marked ‘fin’. Since every server is initialized with
(t0, v0, ‘fin’), every non-failed server has at least one tag associated with the label ‘fin’
and hence responds to the client’s query message. Since the client receives responses
from every non-failed server, property (ii) of Lemma 5.1 ensures that the query phase
receives responses from at least one quorum, and hence terminates. We can similarly
show that the pre-write phase and finalize phase of a writer terminate. In particular,
termination of each of these phases is contingent on receiving responses from a quorum.
Their termination is guaranteed from property (ii) of Lemma 5.1 in conjunction with
the fact that every non-failed server responds, at some point, to a pre-write message
and a finalize message from a write with an acknowledgment. Proof of termination of a
reader’s finalize phase is placed in Sec. 5.

, a writer propagated a finalize message with tag t. Let us denote by Qpw(t), the
set of servers that responded to this write’s pre-write phase. Now, we argue that all
servers in Qpw(t)∩Qfw respond to the reader’s finalize message with a coded element.
To see this, let s be any server in Qpw(t) ∩ Qfw. Since s is in Qpw(t), the server
protocol for responding to a pre-write message implies that s has a coded element, ws,
at the point where it responds to that message. Since s is in Qfw, it also responds to the
reader’s finalize message, and this happens at some point after it responds to the pre-
write message. So it responds with its coded element ws. From Lemma 5.1, it is clear
that |Qpw(t) ∩Qfw| ≥ k implying that the reader receives at least k coded elements in
its finalize phase and hence terminates. ut

F Proof of correctness of CASGC
Proof of Theorem 6.2 (Sketch). We show atomicity and liveness in two steps. Note that,
formally, CAS is an I/O automaton formed by composing the automata of all the nodes
and communication channels in the system. In the first step, we construct a I/O automa-
ton CAS′ which differs from CAS in that some of the actions of the servers in CAS′ are
non-deterministic. However, from the perspective of the external responses of the client,
CAS′ will be identical to CAS implying that CAS′ satisfies atomicity and liveness. In
the second step, we will show that CASGC simulates CAS′. These two steps suffice to
show that CAS′ satisfies both atomicity and liveness.

We now describe CAS′. The CAS′ automaton is identical to CAS with respect to the
client actions, and to the server responses to query and pre-write messages and finalize
messages from writers. A server’s response to a finalize message from a read operation
can be different in CAS′ as compared to CAS. In CAS′, if at the point of the receipt of
the finalize message at the server, the read has already terminated, then, the server could
respond either with the coded element, or not respond at all (even if it has the coded
element)xvi.

We now argue that CAS′ “simulates” CAS. Formally speaking, for every fair execu-
tion α′ of CAS′, there is a natural corresponding execution α of CAS with an identical
sequence of actions of all the components with one exception; when a server ignores a
xvi We note that, in the CAS′ automaton, the conditions on a server’s response are dependent on

the reader’s state. In our algorithms, the server is unaware of the state of the reader because of
the distributed nature of the system. Nonetheless, we will show that CASGC implements the
CAS′ automaton under our system model.

read’s finalize message in α′, we assume that the corresponding message in α is indefi-
nitely delayed. We now aim to show that α′ satisfies liveness and atomicity by exploiting
the fact that CAS satisfies these properties. For liveness, we require that all operations
in α′ terminate if the number of server failures is no bigger than f . Suppose that the
number of server failures in α′ is no bigger than f . To see that all operations in α′ ter-
minate, notice that the only difference between corresponding execution α of CAS, and
a fair execution of CAS is that, in α, certain messages to a reader that pertain to a read
operation that has already terminated are delayed indefinitely. However, since the read
operation has already terminated, the delay of these messages does not affect termina-
tion of any operation in α. Because CAS satisfies the liveness condition, every operation
in α terminates. Therefore, so does every operation in α′. It follows that CAS′ satisfies
the liveness condition. Since CAS is atomic, α has atomic behavior, so α′ does also.
Therefore CAS′ satisfies both atomicity and liveness.

Now, we show that CASGC “simulates” CAS′. That is, for every execution αgc of
CASGC where the number of operations concurrent to a read operation is no bigger than
δ, we construct a corresponding execution α′ of CAS′ such that

– α′ has the same external behavior (i.e., the same invocations, responses and failure
events) as that of αgc, and

– if αgc is fair, then α′ is fair as well.
Such a construction suffices to show that CASGC satisfies atomicity and liveness. To
see this, note that because CAS′ satisfies atomicity, α′ has atomic behavior. Since αgc
has the same external behavior as α′, it has atomic behavior as well. If αgc is a fair
execution where the number of server node failures is at most f , then so is α′. Because
CAS′ satisfies the liveness condition, every operation in α′ terminates. Therefore, so
does every operation in αgc. Therefore CASGC satisfies the desired liveness condition.

We describe the execution α′ step-by-step, that is, we consider a step of αgc and
describe the corresponding step of α′. We then show that our construction of α′ has
the properties listed above, i.e., we show that the external behavior is the same in both
α′ and αgc; in addition, we show that if αgc is fair, so is α′. Finally, we show that the
execution α′ that we have constructed is consistent with the CAS′ automaton.

We construct α′ as follows. We first set the initial states of all the components of α′

to be the same as they are in αgc. At every step, the states of the client nodes and the
message passing system in α′ are the same as the states of the corresponding components
in the corresponding step of αgc. A server’s responses on receipt of a message is the
same in α′ as that of the corresponding server’s response in αgc. In particular, we note
that a server’s external responses are the same in αgc and α′ even on receipt of a reader’s
finalize message, that is, if a server ignores a reader’s finalize message in αgc, it ignores
the reader’s finalize message in α′ as well. The only difference between αgc and α′ is
in the change to the server’s internal state at a point of receipt of a pre-write message.
At this point, the server performs garbage collection in αgc, whereas it does not perform
garbage collection in α′.

Note that the initial state, the server’s response, and the client states at every step of
α′ are the same as the corresponding step of αgc. Also note that a server that fails at a
step of αgc fails at the corresponding step of α′ (even though the server states could be
different in general because of the garbage collection). Hence, at every step, the external
behavior of α′ and αgc are the same. This implies that the external behavior of the entire

execution α′ is the same as the external behavior of αgc. Furthermore, if αgc is a fair
execution, so is α′.

We now show that α′ is consistent with the CAS′ automaton. Note that since the
initial states of all the components are the same in the CAS′ and CASGC algorithms,
the initial state of α′ is consistent with the CAS′ automaton. We show that every step of
α′ is consistent with CAS′. It is easy to verify that at every step of α′, the server internal
states and client states are consistent with CAS′. The only step where it is non-trivial
to show consistency with CAS′, is at a point of α′ where a server ignores a finalize
message from a reader. Consider such a point in α′, and let t indicate the tag associated
with the reader’s finalize message. To be consistent with CAS′, we need to verify that,
at this point α′, the read operation that sent this message has already terminated. To see
this, consider the corresponding point of αgc. By construction, we know that the server
ignores the reader’s finalize message with tag t at this point in αgc. From the server
protocol in CASGC, we infer that at this point of αgc, the server has (t, ‘null’, {∗, ‘gc’})
in its list of stored triples. Lemma 6.3 implies that at this point of αgc, the read operation
has already terminated. Since, in our construction, the client behavior is identical in αgc
and α′, the read operation has terminated at the point of α′ in consideration as well.
Therefore α′ is consistent with the CAS′ automaton.

ut

