Lean Aircraft Initiative Plenary Workshop

Factory Operations Team

October 16, 1996

Presented by: Tom Shields MIT

- Review of benchmarking activities
- Results
- Analysis of data
- Conclusions
- Next steps
- Focus group status report

Benchmarking Objective

Develop comparative benchmarking on member factory flow measures.

Flow Variables:

- * Touch Labor
- * Cycle Time
- * Router Queuing
- * Batch Sizes

Support Variables:

- * IE Hours
- * Part Characteristics
- * Distance Traveled
- * # of Process Steps
- * Process Controls
- * Quality

- Specific parts and data to be collected determined by sector representatives
- Questionnaire based
- Data verification

Metric Definitions

• Cycle Time (Hours)

 The total time from initiation of work order to completion of manufacturing process on work order.

Waiting Time (Hours)

 Cycle Time - Touch Labor. The time the work order spends on the floor without work being charged to the work order.

Router Queuing (Hours)

Time between creation of work order and first process step.

Part Manufacturing Timeline

Touch Labor Measurement

Process #1: One Person/Operation per Batch

Process #2: Multiple Persons/Operations per Batch

FO10/16/96- 7 @1996 Massachusetts Institute of Technology

Flow Efficiency Metric

- Flow Efficiency in principle (Unitless)
 - = Fabrication Time Cycle Time
- Flow Efficiency surrogate (Unitless)
 - = Touch Labor/part/crew size Cycle Time - Router Queuing

LEANAIRCRAFT INITIATIVE

Airframe Sector

- Extruded Sheet Metal Part
 - Straight, aluminum
 - < 2 ft long</p>
 - < 1/4" thick</p>
 - "T", "L", "C" or "Z" cross section
- Brake-Formed Part
 - Aluminum
 - 2 ft long
 - < 1/4" thick</p>
- Machined Prismatic Part
 - Aluminum
 - 3 Axis machine
 - $< 1 \text{ ft}^3$

Airframe Sector - Extrusions

LEANAIRCRAFT INITIATIVE Airframe Sector - Brake-formed Parts

FO10/16/96- 11 @1996 Massachusetts Institute of Technology

Airframe Sector - Machined Parts

LEANAIRCRAFT INITIATIVE

Electronic Sector

- Printed wiring assembly
 - Component insertion through final test
 - Does not include wafer board fabrication
- **Electronic Chassis**
 - Less chassis fabrication
- Cable / Harness
 - All assembly operations

FO10/16/96- 14 @1996 Massachusetts Institute of Technology

Electronic Sector - Printed Wiring Assembly

FO10/16/96- 15 @1996 Massachusetts Institute of Technology

Electronic Sector - Chassis

FO10/16/96- 16 @1996 Massachusetts Institute of Technology

FO10/16/96- 18 @1996 Massachusetts Institute of Technology

Engine Sector

Items Benchmarked

Turbine Disk

Combustor

- Three companies responded
- Usable data from one company
- Results not reported by sector
- Used in total data analysis

Summary Observations After Data Collection

- Each respondent's data collection system was different
- Multiple work methods observed
- Questionnaire method insufficient for gathering detail data
- Few respondents tracked their actual elapsed cycle times
- Work order lot size not the batch size used for processing

- Hypotheses
 - Higher flow efficiencies with lower lot sizes
 - Higher flow efficiencies with shorter distance traveled
 - Higher flow efficiencies with fewer process steps
- Analysis by sector
- Analysis with all sectors combined
- Influence of process type
- Wait time analysis

LEANAIRCRAFT INITIATIVE Flow Efficiency vs. Lot size (Combined)

FO10/16/96- 22 @1996 Massachusetts Institute of Technology

LEANAIRCRAFT Flow Efficiency vs. Travel Distance INITIATIVE (Combined)

LEANAIRCRAFT Flow Efficiency vs. Process Steps INITIATIVE (Combined)

Process Type

Job Shop Considerations

Factors that influence performance of job shops

- What the facility has optimized
- Operations may be capacity limited
- Machine utilization effect on set up
- Numbers of parts that are processed in this area
- Production environment

Wait Time Components

- Transportation delay
- Lot delay (while all parts are processed)
- Storage delay

	Wait Fraction	Lot Delay
Extrusion	95%	2%
Brake Formed	97%	2%
Machining	94%	3%

LEANAIRCRAFT INITIATIVE Wait Time Analysis - Electronic Sector

- Could not determine wait times directly
- Bounded the problem
 - Defined maximum wait times
 - Defined I. E. factor necessary to achieve zero wait time
- Process defined one respondent in each type of part that was doing at least twice as good as the other respondents

Dedicated Lines or Flow Shops

Wait Time Analysis

LEANAIRCRAFT INITIATIVE

Wait Time Analysis Conclusions

Dedicated line or flow shop

- All wait time in dedicated line or flow shop is waste
- Transportation delay does not predominate
- Predominate wait time component is storage delay

Job shop

- Storage and transportation delay predominate
- research could not differentiate other contributing factors
- Most opportunity for lean improvement is to concentrate on wait time reduction

Cycle Time Reduction

Wait Time = Waste

Gather data to understand wait time

- part/assembly/product <u>ACTUAL</u> cycle time key
- part/assembly/product <u>ACTUAL</u> fabrication time
- Determine wait time and their components
- Analyze causes of wait time
- Implement steps to reduce wait times
- Evaluate results to the production system
- Standardize the improvement across the system
- Reflect on the process and select next effort

Observations

- Few respondents tracked <u>actual</u> cycle times
- Router cueing time ranged from 4 to 42% of total cycle time in the airframe sector
- Wait fraction for airframe sector averages 96%
- Wait fraction for engine sector averages 87%
- Could not determine wait times in electronic sector
 - Comparison of wait time bounds
 - One electronic sector company showed at least two times better performance

Conclusions

Wait time reduction = cycle time reduction

- Within sectors apples to apples comparison achieved for each type of part
- Flow efficiency varied inversely with lot size and travel distance
- In job shops storage and transportation delay greater than lot delay times
- For dedicated lines or flow shops the largest component of wait time was storage delay

Report to respondents

Application of lessons learned into future research

LEANAIRCRAFT INITIATIVE Fa

Factory Operations Status Report

- Focus on LEM overarching practice Identify and Optimize Enterprise Flow
- Concentrate on factors that effect "Order to point of use delivery cycle time"
- **Use LEM to classify results**
- **Focus Group Identified field research site**
- Data collection methodology developed at MIT
- Site introductory visit completed
- **Data collection to commence next week**