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1 Introduction

The b-hadron production cross-section has been predicted with next-to-leading-order

(NLO) accuracy for more than twenty years [1, 2] and more recently it has been predicted

with fixed order plus next-to-leading-logarithms (FONLL) calculations [3, 4]. Several mea-

surements were performed with proton-antiproton collisions by the UA1 collaboration at

the Spp̄S collider (CERN) at a centre-of-mass energy of
√
s = 630 GeV [5, 6] and by the

CDF and D0 collaborations at the Tevatron collider (Fermilab) at
√
s = 630 GeV, 1.8 TeV

and 1.96 TeV [7–16]. These measurements made a significant contribution to the under-

standing of heavy-quark production in hadronic collisions [17]. However, the dependence of

the theoretical predictions for b-quark production on the factorisation and renormalisation

scales and the b-quark mass mb [2] results in theoretical uncertainties of up to 40% and,

therefore, it is important to perform precise measurements of b-hadron production cross-

sections. In addition, measurements of b-hadron production cross-sections are of theoretical

interest at higher
√
s [18] and for B mesons of higher transverse momentum (pT) [19].

Measurements of the b-hadron production cross-section in proton-proton collisions at

the Large Hadron Collider (LHC) provide further tests of QCD calculations for heavy-

quark production at higher centre-of-mass energies and in wider transverse momentum

(pT) and rapidity (y) ranges, thanks to the extended coverage and excellent performance of

the LHC detectors. Recently the LHCb collaboration measured b-hadron production cross-

sections using B± → J/ψK±, b→ J/ψX and semileptonic b-hadron decays in the forward
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rapidity region at
√
s = 7 TeV [20–22]. The CMS collaboration measured the production

cross-sections for B+, B0, Bs mesons, Λb baryons, and inclusive b-hadron production using

b→ J/ψX decays, semileptonic decays, and b-hadron jets at
√
s = 7 TeV [23–30]. ATLAS

has measured b-hadron production cross-sections using semileptonic decays [31, 32], b →
J/ψX decays [33] and b-hadron jets [34].

This paper presents a measurement of the B+ production cross-section using the decay

channel B+ → J/ψK+ → µ+µ−K+ in pp collisions at
√
s = 7 TeV, as a function of B+

transverse momentum and rapidity. The ATLAS and CMS detectors provide coverage in

the central rapidity region, so their measurements are complementary to the LHCb mea-

surements. With 2.4 fb−1 of data collected by the ATLAS detector, this analysis extends

the measurement of the B+ cross-section up to pT of about 100 GeV, allowing compar-

isons with NLO predictions in four rapidity regions in the range |y| < 2.25 to be made.

The results are reported for B+ meson production, but are derived from both charged

states, under the assumption that in the phase space accessible by this measurement the

B+ and B− production cross-sections are equal. This assumption is in agreement with

the predictions of NLO Monte Carlo generators and is also valid within the precision of

the measurement.

2 The ATLAS detector

The ATLAS experiment [35] uses a general-purpose detector1 consisting of an inner tracker,

a calorimeter and a muon spectrometer. A brief outline of the components that are most

relevant for this analysis is given below. The inner detector (ID) directly surrounds the

interaction point; it includes a silicon pixel detector (Pixel), a silicon microstrip detector

(SCT) and a transition radiation tracker (TRT), and is embedded in an axial 2 T magnetic

field. The ID covers the range |η| < 2.5 and is enclosed by a calorimeter system containing

electromagnetic and hadronic sections. The calorimeter is surrounded by a large muon

spectrometer (MS) inside an air-core toroidal magnet system that contains a combination

of monitored drift tubes (MDTs) and cathode strip chambers (CSCs), designed to provide

precise position measurements in the bending plane in the range |η| < 2.7. In addition,

resistive plate chambers (RPCs) and thin gap chambers (TGCs) with a coarse position

resolution but a fast response time are used primarily to trigger muons in the ranges

|η| < 1.05 and 1.05 < |η| < 2.4, respectively. RPCs and TGCs are also used to provide

position measurements in the non-bending plane and to improve pattern recognition and

track reconstruction. Momentum measurements in the MS are based on track segments

formed in at least two of the three stations of the MDTs and the CSCs.

The ATLAS trigger system [36] has three levels: the hardware-based Level-1 trigger

and the two-stage High Level Trigger (HLT), comprising the Level-2 trigger and Event Fil-

ter (EF). At Level-1, the muon trigger searches for patterns of hits satisfying different pT

1ATLAS uses a right-handed coordinate system (x, y, z) with its origin at the nominal interaction point.

The z-axis is along the beam pipe, the x-axis points to the centre of the LHC ring and the y-axis points

upward. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around

the beam pipe. The pseudorapidity η is defined as η = − ln[tan(θ/2)], where θ is the polar angle.
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thresholds using the RPCs and TGCs. The region-of-interest (RoI) around these Level-1

hit patterns then serves as a seed for the HLT muon reconstruction, in which dedicated al-

gorithms are used to incorporate information from both the MS and the ID, achieving a po-

sition and momentum resolution close to that provided by the offline muon reconstruction.

3 Data and Monte Carlo samples

The analysis is based on data collected at the LHC during the proton-proton running period

in the early 2011 (April-August) with a dimuon trigger that required the presence of at

least two muon candidates with pT > 4 GeV. Later run periods are not considered because

this trigger was prescaled. Selected events are required to have occurred during stable LHC

beam conditions and the ID, as well as the MS, must have been fully operational. The

collected data correspond to an integrated luminosity of 2.4 fb−1 with an uncertainty of

1.8% [37].

In the analysis two Monte Carlo (MC) samples are used. The first sample simulates

the signal B± → J/ψK± → µ+µ−K±, while the second simulates bb̄ production, with

bb̄→ J/ψX → µ+µ−X, including the signal and also the backgrounds which are relevant

for the analysis. Both samples were generated with Pythia 6 [38] using the 2011 ATLAS

tune [39]. The response of the ATLAS detector was simulated [40] using Geant4 [41].

Additional pp interactions in the same and nearby bunch crossings (pile-up) were included

in the simulation.

The MC samples are used in several parts of the analysis. The first is the extraction

of the fit models for signal and background. The second is the construction of efficiency

maps for the muon trigger and reconstruction. The third is the estimation of the signal

reconstruction efficiency and the kinematic acceptance of the selection criteria applied to

the final-state particles in each pT and rapidity interval used in the analysis. In the MC

samples generated with Pythia, the decay J/ψ → µ+µ− is isotropic. In order to take into

account that the J/ψ meson is produced with zero helicity in the B± rest frame, in the

analysis a weight proportional to sin2 θ∗ is applied to each event, where θ∗ is the µ+ angle

relative to the B± direction in the J/ψ rest frame.

To compare the cross-section measurements with theoretical predictions, NLO QCD

calculations matched with a leading-logarithmic parton shower MC simulation are used.

Predictions for bb̄ production are evaluated with two packages: Powheg-hvq (Powheg-

Box 1.0) [42, 43] and MC@NLO 4.01 [44, 45]. For the hadronisation process, Powheg is

matched with Pythia, which uses the Lund string model [46] with the Bowler modifica-

tion [47] of the Lund symmetric fragmentation function [48]. MC@NLO is matched with

Herwig [49], which uses a cluster model for hadronisation [50]. The b-quark production

cross-section is also calculated in the FONLL theoretical framework [19], permitting di-

rect comparison with the data assuming the world average of the hadronisation fraction

fb̄→B+ = 0.401 ± 0.008 [51]. The theoretical uncertainties associated with the Powheg,

MC@NLO and FONLL predictions are discussed in section 7 where the comparisons to

the measured cross-sections are made.
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4 Event selection and reconstruction

Events for the analysis were selected with a trigger that requires two muon RoIs at Level-

1. A full track reconstruction of dimuon candidates was performed by the HLT where

both muons are required to have pT > 4 GeV and fullfill additional requirements, loosely

selecting events compatible with J/ψ meson decays into a muon pair.

Events selected by the trigger are required to have at least one reconstructed primary

vertex with a minimum of three associated tracks. Tracks reconstructed in the ID which

are matched to tracks reconstructed in the MS are selected as muon candidates. Muon

candidates are required to have sufficient numbers of hits in the Pixel, SCT and TRT

detectors to ensure accurate ID measurements. The same selection criteria are applied to

tracks selected as potential K± candidates.

Events are required to contain at least one pair of reconstructed oppositely signed

muons that fit successfully to a common vertex, using a vertexing algorithm [52]. The

momenta of the muons and the dimuon invariant mass are calculated from the refitted

track parameters returned by the vertexing algorithm. Muon pairs with a common vertex

are considered as J/ψ → µ+µ− candidates if their invariant mass lies in the mass range 2.7–

3.5 GeV. Because of the trigger requirements on muons, the reconstructed J/ψ candidate

must have rapidity |y| < 2.25 and the reconstructed muons pT > 4 GeV and |η| < 2.3.

To ensure that the muon pair from the J/ψ candidate is the one that triggered the event,

an (η, φ) match between the trigger muons and those of the J/ψ candidate is required.

If multiple J/ψ candidates are found in the event, all are considered in the formation of

B± candidates.

The muon tracks of the selected J/ψ candidates are again fitted to a common vertex

with an additional third track with pT greater than 1 GeV. The three-track vertex fit is

performed by constraining the muon tracks to the J/ψ mass [51]. The K± mass is assigned

to the third track and the µ+µ−K± invariant mass is calculated from the refitted track

parameters returned by the vertexing algorithm. Regarding the quality of the three-track

vertex fit, the χ2 per degree of freedom must be χ2/Nd.o.f. < 6, which is found to select

about 99% of signal events while rejecting background events. We retain B+ and B−

candidates with pT > 9 GeV and |y| < 2.25 in the mass range 5.040–5.800 GeV. After

this selection, the average candidate multiplicity is 1.3. The multiple B± candidates result

mainly from random combinations of tracks with selected J/ψ mesons produced promptly

in pp collisions. Such combinations result in non-resonant background and do not affect

the estimation of the signal yield.

5 Cross-section determination

The differential cross-section for B+ meson production in pp collisions times branching

ratio to the final state is given by

d2σ(pp→ B+X)

dpTdy
· B =

NB+

L ·∆pT ·∆y
, (5.1)
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where B is the total branching ratio of the signal decay, which is (6.03 ± 0.21) × 10−5,

obtained by combining the world-average values of the branching ratios for B+ → J/ψK+

and J/ψ → µ+µ− [51], NB+
is the number of B+ → J/ψK+ signal decays produced, L

is the integrated luminosity of the data sample and ∆pT, ∆y are the widths of pT and

y intervals. Assuming that B+ and B− mesons are produced in equal numbers, NB+
is

derived from the average yield of the two reconstructed charged states in a (pT, y) interval,

after correcting for detector effects and acceptance,

NB+
=

1

A

NB+

reco

εB+ =
1

A

NB−
reco

εB− =
1

A

NB±
reco

εB+ + εB− , (5.2)

where NB±
reco is the number of reconstructed signal events, obtained from data with a fit

to the invariant mass distribution of B± candidates, A is the acceptance of the kinematic

selection of the final-state particles of the signal decay, obtained from MC simulation, and

εB
+

, εB
−

are the reconstruction efficiencies for the B± signal decays. Separate efficiency

is needed for B+ and B− signal decays, because the different interaction cross-sections of

K+ and K− with the detector material result in different reconstruction efficiencies for

the two charged mesons. The reconstruction efficiencies for B+ and B− are obtained from

MC simulation. In the following, εB
−

is implicitly referred to, together with εB
+

. The

efficiency for B+ events is defined as the product of trigger, muon reconstruction (ID and

MS), kaon reconstruction and vertexing efficiencies,

εB
+

= ε
J/ψ
trigger · ε

µ+ · εµ− · εK+

ID · ε
µµK
vertex = ε

J/ψ
trigger · ε

µ+

MS · ε
µ−

MS · (ε
µ
ID)2 · εK+

ID · ε
µµK
vertex .

In the above equation, εµ
+

MS and εµ
−

MS are the efficiencies for reconstructing µ+ and µ− in the

MS, which differ for muons of low pT and large |η| because of the bending of tracks in the

toroidal magnetic field. This effect is to large extent symmetric for a simultaneous change

of sign in the muon charge and in η. The trigger efficiency, ε
J/ψ
trigger, depends on the ability

of the trigger to identify muons of given pT and η as decay products of a J/ψ meson. The

trigger efficiency includes independent and correlated terms between the two muons [53].

The efficiency εB
+

for a given (pT, y) interval is obtained from MC-simulated signal events

from the fraction

εB
+

=
NB+

mc,reco

NB+

mc, gen

, (5.3)

where the denominator is the number of signal events generated in a given interval of the

generated pT and y and the numerator is the number of signal events that pass the trigger

and the offline selection requirements in the same (pT, y) interval of the reconstructed

variables. Bin-to-bin migration effects are included in the efficiency definition of eq. (5.3).

The trigger and muon reconstruction efficiencies are measured in the data using auxiliary

single muon and dimuon triggers and tag-and-probe methods [53] and the simulation is

corrected with per-event weights to reproduce the efficiencies measured with data. The

derived weights, wµ
+

MS, wµ
−

MS, w
J/ψ
trigger, are applied in each reconstructed MC-simulated signal
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event, so that NB+

mc, reco in eq. (5.3) is now defined as

NB+

mc, reco =

Nevents
mc∑
i=1

(wµ
+

MS)i · (wµ
−

MS)i · (wJ/ψtrigger)i , (5.4)

where N events
mc is the number of reconstructed MC-simulated signal events before applying

the weights derived from data. The efficiency for reconstructing muons in the ID, εµID,

and the vertexing efficiency, εµµKvertex, are found to be equal to 99% and are well reproduced

by the MC simulation. The reconstruction efficiency for hadrons in the ID was verified

in ref. [54] for data and simulation; for the kaons used in this analysis, the efficiency is

obtained from simulation.

The number of reconstructed B± mesons is obtained using a binned maximum like-

lihood fit to the invariant mass distribution of the selected candidates. The probability

density function (pdf) for the signal is defined as the sum of two Gaussians of relative frac-

tion f1 and corresponding widths σ1, σ2, both centred at the reconstructed B± mass. The

pdf for the background consists of three components to model the following three sources

of background:

• B± → J/ψ π±, where the kaon mass is wrongly assigned to the pion; this decay is

Cabibbo suppressed with a relative fraction of 4.9% [51] with respect to the signal

decay; it produces a resonant structure in the signal region that is modelled with a

Crystal Ball function (see appendix E of ref. [55]).

• B±/0 → J/ψK∗±/0 → J/ψ (Kπ)±/0 and B±/0 → J/ψ (Kπ)±/0, where the final-state

pion is not associated to the decay vertex, creating a resonant structure displaced

from the B± mass by about mπ, where mπ is the mass of the pion; these partially

reconstructed B-decays are modelled with a complementary error function.

• Combinatorial background from random combinations of J/ψ (produced promptly

in pp collisions or in feed-down from B-decays) with a track; it is modelled with an

exponential function. The background from muon pairs not originating from J/ψ

decays is negligible after the full B± candidate selection.

The extraction of the signal yield is done in two steps. First, the shapes of the signal

and the resonant background pdfs, which depend on the pT and y of the B± meson can-

didate, are obtained by fitting the invariant mass distribution of signal and background

events from MC samples in each (pT, y) interval. Then the invariant mass distribution of

the data is fitted in the same (pT, y) interval. The parameters for the shape of the signal

pdf (σ1, σ2 and f1) and the resonant backgrounds are fixed to the results of the fits to

MC event samples. The relative normalisation of the B± → J/ψ π± decay to the signal is

fixed to the fraction of the world-average values for their branching ratios, and is corrected

for the difference in acceptance for the two decay modes. The reconstructed mass mB±

is obtained from data for the full pT range in a rapidity interval by fitting the invariant

mass distribution of the selected candidates, and is fixed throughout the fits in pT inter-

vals. Therefore, when fitting the data in each (pT, y) interval, the free parameters are the

– 6 –
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Figure 1. The observed invariant mass distribution of B± candidates, mJ/ψK± , with transverse

momentum and rapidity in the range 20 GeV < pT < 25 GeV, 0.5 < |y| < 1 (dots), compared to

the binned maximum likelihood fit (solid line). The error bars represent the statistical uncertainty.

Also shown are the components of the fit as described in the legend.

normalisation of the signal, the normalisation of the partially reconstructed B-decays, and

the slope of the combinatorial background. The results of the fits to the invariant mass

distributions of the selected B± candidates from data are exemplified in figure 1 for an

interval of intermediate pT and central rapidity. The stability of the fit was tested with

simulated samples of signal and background with statistical size similar to our data and

no evidence of bias in the fit was found.

The total number of signal B± events observed in data in the full pT and y range

covered by the analysis, 9 GeV < pT < 120 GeV and |y| < 2.25, before acceptance and

efficiency corrections, is about 125600. These events populate four intervals in |y| and eight

intervals in pT for the differential cross-section measurement. The acceptance correction,

A, has a small dependence on y and ranges from 4% to 85% from the low to the high pT

intervals. The efficiency εB
+

has a dependence on both y and pT and ranges from 25% to

40%. The relative difference between the efficiencies for reconstructing B+ and B− mesons,

(εB
+ − εB−

)/εB
+

, has a dependence on pT and ranges from 5% to 2%.

The assumption of equal B+ and B− production is tested by fitting the invariant mass

distribution of B+ and B− candidates separately. The resulting yields, before applying

efficiency corrections, are 63530 ± 840 and 62090 ± 840 respectively, where the quoted

uncertainties are statistical. Taking into account the different efficiencies for reconstructing

B+ and B− mesons, the ratio of B+/B− is found to be consistent with unity, within the

statistical precision of this test.
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6 Systematic uncertainties

Various sources of systematic uncertainty on the measurement of the B+ production cross-

section are considered and discussed below:

1. Trigger. The trigger efficiency is obtained from data in bins of pT and q·η of the muon,

where q is the muon charge, using a tag-and-probe method [53]. Then, the correction

weights for the trigger efficiency w
J/ψ
trigger (see eq. (5.4)) are obtained from the fraction

of the measured efficiency from data over the expectation from simulation in each

(pT, q · η) bin. As the statistical components of the uncertainty associated with the

weights for the trigger efficiency are dominant, the uncertainties on the cross-section

are derived from a series of pseudo-experiments by allowing the weights to fluctuate

randomly under a Gaussian assumption, according to their assigned uncertainty.

2. Fit. For the fit method, three sources of systematic uncertainty are identified and

considered to be uncorrelated. These are the shape of the signal pdf, the reconstructed

B± mass and the shape of the background pdf. Below, the procedure to estimate the

systematic uncertainty from each source is described, and the resulting uncertainties

are added quadratically to obtain the total systematic uncertainty from the fit method

in each (pT, y) interval.

(a) Uncertainty on shape of the signal pdf. This uncertainty is estimated with vari-

ations of the fit model, where the values of the signal pdf parameters σ1, σ2, f1

are varied independently within their uncertainties derived from the fit to signal

events from MC simulation. From these variations of the fit model, the largest

absolute value of the signal yield variation is taken as the systematic uncer-

tainty from the signal pdf shape, in order to account for the large correlations of

these parameters. Two alternative pdfs were considered (three Gaussians, two

Crystal Ball + Gaussian) and no significant differences in the signal yield were

observed. Among the various sources of systematic uncertainty considered for

the fit method, the signal pdf is dominant and its contribution ranges from 1%

to 8%.

(b) Uncertainty on the B± mass value. The reconstructed mass mB± is obtained

from data by fitting the invariant mass distribution of all candidates with

pT > 9 GeV in each of the four rapidity intervals. The resulting values are

used to fix this parameter when performing the fits in the various (pT, y) inter-

vals and their statistical uncertainties (0.4–1.0 MeV) are used to estimate the

systematic uncertainty on the signal yield. The fits in the various (pT, y) in-

tervals are repeated varying the value of mB± within its statistical uncertainty.

The observed difference in the signal yield is smaller than 1%.

(c) Uncertainty on the shape of the background pdf. The fit includes three compo-

nents for the description of the background (see below), and each contributes

as a possible source of uncertainty. In order to account for the large correla-

tions between the three components, the systematic uncertainty assigned to the

– 8 –
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background modelling for each (pT, y) interval is obtained after varying each

component independently, and taking the largest observed difference in the sig-

nal yield.

i. Combinatorial background: with a polynomial instead of exponential shape

for the combinatorial bacground; the observed relative difference in the

signal yield ranges from 0.1% to 4%, where the larger change is observed

for higher values of y and pT.

ii. B± → J/ψ π±: for the resonant background from B± → J/ψ π±, the dom-

inant uncertainty comes from the relative branching fraction of this decay

with respect to the signal, which has an uncertainty of 10% [51]. Varying

this fraction in the fit within its uncertainty was found to have a small effect

on the signal yield (∼1%).

iii. Partially reconstructed B-decays: the resonant background from partially

reconstructed B-decays is modelled with a complementary error function.

When varying its parameters within their uncertainties from the fits to

background events from MC simulation, the observed difference in the signal

yield is smaller than 1%.

3. Kaon track reconstruction. The efficiency of hadron reconstruction is determined

from MC simulation and validated with data [54], with the uncertainty dominated

by the material description. The uncertainty ranges with increasing rapidity from

2% to 4% for the kaons used in this analysis.

4. Acceptance. The acceptance in each (pT, y) interval has a relative uncertainty

ranging from 1% to 4%, due to the size of the MC sample, which is assigned as

systematic uncertainty.

5. Muon reconstruction. The muon reconstruction efficiency is obtained from data in

bins of pT and q · η of the muon, using a tag-and-probe method [53]. Then, the

correction weights wµMS (see eq. (5.4)) are obtained from the fraction of the measured

efficiency from data over the expectation from simulation in each (pT, q · η) bin.

The uncertainties associated with the weights for the muon reconstruction efficiency

are mainly statistical, so the same procedure as for the trigger efficiency is used to

estimate the systematic uncertainty on the cross-section. In addition, there is also

an uncertainty coming from the efficiency for reconstructing a muon in the ID with

the selection criteria used in this analysis. This efficiency is found to be 99% with a

systematic uncertainty of 0.5% for each muon.

6. B± vertex-finding efficiency. The vertex quality requirement has an efficiency of

∼99% and is fairly independent of pT and y. It was estimated with data by comparing

the signal yields in four rapidity intervals before and after applying this requirement

and is found to be consistent with the expectation from MC simulation. A system-

atic uncertainty of 2% is assigned to the cross-section, as the maximum difference

observed between the estimate from data and the expectation from MC simulation

for this efficiency.

– 9 –
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7. Branching ratio. The total branching ratio of the selected decay, obtained by com-

bining the branching ratios of the decays B± → J/ψK± and J/ψ → µ+µ−, has an

uncertainty of 3.4% [51].

8. Luminosity. The luminosity calibration is based on data from van der Meer scans

and has an uncertainty of 1.8% [37].

9. Signal efficiency. The efficiency correction factor for B± signal events is obtained

from MC simulation (eq. (5.3)). The systematic uncertainty assigned to this factor

has two components, which are added in quadrature:

(a) Uncertainty from the size of the MC sample. The sample used for the estimation

of the efficiency correction factor corresponds to a luminosity similar to that of

the data sample. Due to the size of this sample, the efficiency estimation has

an uncertainty that is small (∼1%) in most intervals and becomes significant in

the high-pT interval 70–120 GeV (∼10%). It is added quadratically to the rest

of the sources of uncertainty.

(b) Uncertainty from K+/K− efficiency asymmetry. The efficiencies for recon-

structing K+ and K− mesons are obtained from simulation and their relative

difference is found to be ∼3.5%. This difference is verified with data and the

statistical uncertainty of the estimate from data is used to assign a systematic

uncertainty of 1%, which propagates to the cross-section through the sum of

efficiencies (εB
+

+ εB
−

) in eq. (5.2).

The range of these uncertainties is summarised in table 1. Their breakdown in (pT, y)

intervals is given in figure 2. In the same figure, the total systematic uncertainty, including

the uncertainties from the luminosity and branching ratio, is compared to the statistical

precision of the measurement. In most intervals, the systematic uncertainty dominates.

Additional sources of systematic uncertainty were examined, but were found to be less

significant and were neglected. Residual effects related to final-state radiation have been de-

termined to be smaller than 1% and are neglected. Differences in the underlying kinematic

distributions modelled by the Pythia and NLO generators, including parton distribution

functions, were considered. The impact on the acceptance and the signal efficiency was

estimated by reweighting the kinematic distributions of Pythia to those of Powheg and

MC@NLO. The largest effect is seen in the high-rapidity intervals (1.5 < |y| < 2.25),

where the maximum relative difference observed is 1%, with a statistical uncertainty of the

same order, while in most (pT, y) intervals the effect is very small (∼0.1%). Bin-to-bin mi-

gration of signal events due to finite detector resolution is studied with MC simulation. It

is found to be a small effect (<0.5%), which is included in the definition of signal efficiency

(eq. (5.3)). Potential effects in the calculation of the signal efficiency due to the difference

between the momentum scales in data and MC simulation are expected to be larger in the

lower pT intervals used in this analysis, where they were estimated to be smaller than 0.5%.
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Relative uncertainty [%]

Source |y| < 0.5 0.5 < |y| < 1 1 < |y| < 1.5 1.5 < |y| < 2.25

Statistical uncertainty 2.2–14 2.5–17 3.2–22 3.8–24

Total systematic uncertainty 6.7–14 6.5–13 6.9–16 7.6–18

1. Trigger 3.8–7.4 3.2–6.2 3.4–7.0 3.6–8.8

2. Invariant mass fit 1.8–3.4 1.7–5.3 2.4–8.9 2.6–7.6

3. Kaon reconstruction 2.2 2.2–2.4 2.5–2.9 3.5–4.0

4. Acceptance 0.9–3.5 0.9–3.6 1.0–4.2 1.0–5.8

5. Muon reconstruction 0.5–1.3 0.5–1.7 0.5–2.1 0.6–5.4

6. B± vertexing 2.0 2.0 2.0 2.0

7. Branching ratio 3.4 3.4 3.4 3.4

8. Luminosity 1.8 1.8 1.8 1.8

9. Signal efficiency 1.3–10 1.3–9.1 1.3–9.5 1.2–12

Table 1. The statistical and total systematic uncertainties on the cross-section measurement in

different ranges of rapidity y. The contributions from the various sources of systematic uncertainty

are also given. The range of values quoted for some of the uncertainties represent the lower and

upper limit of the uncertainty over the pT range in a given rapidity range.

7 Cross-section results

Using eq. (5.1), the differential cross-section for B+ production times the product of branch-

ing ratios B is obtained as a function of pT and y of the B+ meson and the results are

shown in tables 2 and 3, averaged over each (pT, y) interval. The double-differential cross-

section is integrated over pT to obtain the differential cross-section dσ/dy, or over rapidity

to obtain dσ/dpT, and results are reported in tables 4 and 5. When summing over the

intervals in pT or rapidity, the systematic uncertainty from each source is calculated from

the linear sum of the contributions from each interval, as they are correlated. Tabulated

results of the measurements presented in this paper are available in HepData [56].

Using the world-average values for the branching ratio B, the differential cross-sections

obtained are compared to predictions of Powheg (+Pythia) and MC@NLO (+Herwig)

and the FONLL approximations. For Powheg and MC@NLO the CT10 [57] param-

eterisation for the parton distribution function of the proton is used, while for FONLL

calculations the CTEQ6.6 [58] parameterisation is used. In all cases, a b-quark mass of

4.75 ± 0.25 GeV is used, with the renormalisation and factorisation scales, µr, µf , set to

µr = µf = µ, where µ has different definitions for the Powheg, MC@NLO and FONLL

predictions.2 The predictions are quoted with uncertainties due to the b-quark mass and

2For Powheg: µ2 = m2
Q+(m2

QQ̄/4−m
2
Q) sin2 θQ , wheremQQ̄ is the invariant mass of theQQ̄ system and

θQ is the polar angle of the heavy quark in the QQ̄ rest frame. For MC@NLO: µ2 = m2
Q+(pT, Q+pT, Q̄)2/4,

where pT, Q and pT, Q̄ are the transverse momenta of the produced heavy quark and antiquark respectively,

and mQ is the heavy-quark mass. For FONLL: µ =
√
m2

Q + p2
T, Q.
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Figure 2. Relative systematic uncertainties on the cross-section determination as a function of pT

for different rapidity ranges. The total systematic uncertainty (solid area), including uncertainties

from luminosity (1.8%) and branching ratio (3.4%), is compared to the statistical uncertainty

(dashed line).

renormalisation and factorisation scales. Uncertainties from factorisation and renormal-

isation scales are estimated by varying them independently up and down by a factor of

two [19].

Powheg and MC@NLO predictions are compared with the double-differential cross-

section measurement in figure 3. To allow a better comparison between the measured

cross-sections and the NLO predictions, figure 4 shows their ratio for each rapidity range

separately for Powheg and MC@NLO. The data are in good agreement with Powheg in

all rapidity intervals. MC@NLO, however, predicts a lower production cross-section at

low pT and a pT spectrum that is softer than the data for |y| < 1 and harder than the data

for |y| > 1. In the integration of the four rapidity intervals, this effect averages out and

the prediction of the cross-section dσ/dpT is compatible with data.

The FONLL prediction is compared with the measured differential cross-section

dσ/dpT in figure 5. In this figure, the results from CMS [23] for B+ meson production

as a function of pT, covering the rapidity range |y| < 2.4, are shown for comparison. The
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pT interval d2σ
dpTdy · B(B+ → J/ψK+) · B(J/ψ → µ+µ−) [pb/GeV]

[GeV] 0 < |y| < 0.5 0.5 < |y| < 1

9–13 24.5 ± 1.1 ± 1.7 21.7 ± 1.3 ± 1.4

13–16 8.7 ± 0.3 ± 0.6 8.5 ± 0.3 ± 0.5

16–20 3.76 ± 0.09 ± 0.22 3.9 ± 0.10 ± 0.27

20–25 1.54 ± 0.04 ± 0.09 1.57 ± 0.04 ± 0.11

25–35 0.467 ± 0.010 ± 0.027 0.468 ± 0.012 ± 0.033

35–50 0.097 ± 0.003 ± 0.007 0.095 ± 0.004 ± 0.008

50–70 0.0165 ± 0.0012 ± 0.0014 0.0178 ± 0.0014 ± 0.0015

70–120 0.00188 ± 0.00026 ± 0.00025 0.00202 ± 0.00034 ± 0.00026

Table 2. Differential cross-section measurement for B+ production multiplied by the branching

ratio to the final state, averaged over each (pT, y) interval in the rapidity range |y| < 0.5 and

0.5 < |y| < 1. The first quoted uncertainty is statistical, the second uncertainty is systematic.

pT interval d2σ
dpTdy · B(B+ → J/ψK+) · B(J/ψ → µ+µ−) [pb/GeV]

[GeV] 1 < |y| < 1.5 1.5 < |y| < 2.25

9–13 23.6 ± 1.9 ± 1.7 22.3 ± 1.8 ± 1.9

13–16 8.0 ± 0.4 ± 0.5 7.1 ± 0.4 ± 0.6

16–20 3.29 ± 0.11 ± 0.20 2.90 ± 0.12 ± 0.21

20–25 1.32 ± 0.04 ± 0.08 1.08 ± 0.04 ± 0.07

25–35 0.408 ± 0.013 ± 0.028 0.312 ± 0.012 ± 0.022

35–50 0.073 ± 0.004 ± 0.006 0.055 ± 0.004 ± 0.006

50–70 0.0135 ± 0.0014 ± 0.0013 0.0097 ± 0.0012 ± 0.0012

70–120 0.00095 ± 0.00021 ± 0.00015 0.00083 ± 0.00019 ± 0.00014

Table 3. Differential cross-section measurement for B+ production multiplied by the branching

ratio to the final state, averaged over each (pT, y) interval in the rapidity range 1 < |y| < 1.5 and

1.5 < |y| < 2.25. The first quoted uncertainty is statistical, the second uncertainty is systematic.

FONLL prediction is in good agreement with the data concerning the behaviour in rapidity

and pT, within the theoretical uncertainties.

All available predictions for dσ/dy are compared with data in figure 6. The measured

cross-section has a small rapidity dependence and is in agreement with the predictions

within their uncertainties. The theoretical uncertainties in all cases are large (∼30%) and

are similar for the Powheg, MC@NLO and FONLL predictions.
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pT interval dσ
dpT
· B(B+ → J/ψK+) · B(J/ψ → µ+µ−) [pb/GeV]

[GeV] |y| < 2.25

9–13 103 ± 4 ± 8

13–16 36.0 ± 0.8 ± 2.3

16–20 15.3 ± 0.3 ± 1.0

20–25 6.1 ± 0.1 ± 0.4

25–35 1.81 ± 0.03 ± 0.12

35–50 0.348 ± 0.008 ± 0.028

50–70 0.062 ± 0.003 ± 0.005

70–120 0.0061 ± 0.0006 ± 0.0007

Table 4. Differential cross-section measurement for B+ production multiplied by the branching

ratio to the final state, averaged over each pT interval in the rapidity range |y| < 2.25. The first

quoted uncertainty is statistical, the second uncertainty is systematic.

|y| interval dσ
dy · B(B+ → J/ψK+) · B(J/ψ → µ+µ−) [pb]

9 GeV < pT < 120 GeV

0.0–0.5 154 ± 5 ± 10

0.5–1.0 143 ± 6 ± 9

1.0–1.5 144 ± 8 ± 10

1.5–2.25 132 ± 7 ± 11

Table 5. Differential cross-section measurement for B+ production multiplied by the branching

ratio to the final state, averaged over each y interval in the pT range 9 GeV< pT < 120 GeV. The

first quoted uncertainty is statistical, the second uncertainty is systematic.

The integrated B+ production cross-section in the kinematic range 9 GeV < pT <

120 GeV and |y| < 2.25 is:

σ(pp→ B+X) = 10.6± 0.3 (stat.)± 0.7 (syst.)± 0.2 (lumi.)± 0.4 (B) µb.

The FONLL prediction, with its theoretical uncertainty from the renormalisation and fac-

torisation scale and the b-quark mass, is:

σ(pp→ bX) · fb̄→B+ = 8.6+3.0
−1.9 (scale)± 0.6 (mb) µb ,

where fb̄→B+ = (40.1 ± 0.8)% [51] is the world-average value for the hadronisation frac-

tion. The corresponding predictions of Powheg and MC@NLO are 9.4 µb and 8.8 µb,

respectively, with theoretical uncertainties similar to those of the FONLL prediction.
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Figure 3. Double-differential cross-section of B+ production as a function of pT and y, averaged

over each (pT, y) interval and quoted at its centre. The data points are compared to NLO predictions

from Powheg and MC@NLO. The shaded areas around the theoretical predictions reflect the

uncertainty from renormalisation and factorisation scales and the b-quark mass.

8 Conclusions

The differential cross-section for B+ meson production has been studied with 2.4 fb−1 of

pp collision data at
√
s = 7 TeV, recorded in 2011 with the ATLAS detector at the LHC.

The cross-section was measured as a function of transverse momentum and rapidity in

the range 9 GeV < pT < 120 GeV and |y| < 2.25, and quoted with a total uncertainty

of 7%–30% with the main source of uncertainty being systematic. The next-to-leading-

order QCD calculation is compatible with the measured differential cross-section. The

predictions are obtained within the Powheg and MC@NLO frameworks and are quoted

with an uncertainty from renormalisation and factorisation scales and b-quark mass of the

order of 20%–40%. Within these uncertainties, Powheg+Pythia is in agreement with

the measured integrated cross-sections and with the dependence on pT and y. At low |y|,
MC@NLO+Herwig predicts a lower production cross-section and a softer pT spectrum

than the one observed in data, while for |y| > 1 the predicted pT spectrum becomes harder

than observed in data. The FONLL calculation for σ(pp→ bX) is compared to the data,

assuming a hadronisation fraction fb̄→B+ of (40.1 ± 0.8)% [51], and is in good agreement

with the measured differential cross-section dσ/dpT, within the theoretical uncertainty.
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[38] T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05

(2006) 026 [hep-ph/0603175] [INSPIRE].

[39] ATLAS collaboration, ATLAS tunes of PYTHIA 6 and PYTHIA 8 for MC11,

ATL-PHYS-PUB-2011-009 (2011).

[40] ATLAS collaboration, The ATLAS simulation infrastructure, Eur. Phys. J. C 70 (2010) 823

[arXiv:1005.4568] [INSPIRE].

[41] GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum.

Meth. A 506 (2003) 250 [INSPIRE].

[42] P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms,

JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].

[43] S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for

heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [INSPIRE].

[44] S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower

simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

[45] S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy

flavor production, JHEP 08 (2003) 007 [hep-ph/0305252] [INSPIRE].

[46] B. Andersson, G. Gustafson, G. Ingelman and T. Sjöstrand, Parton fragmentation and string
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T.P.A. Åkesson80, G. Akimoto156, A.V. Akimov95, M.A. Alam76, J. Albert170, S. Albrand55,
M.J. Alconada Verzini70, M. Aleksa30, I.N. Aleksandrov64, F. Alessandria90a, C. Alexa26a,
G. Alexander154, G. Alexandre49, T. Alexopoulos10, M. Alhroob165a,165c, M. Aliev16,
G. Alimonti90a, J. Alison31, B.M.M. Allbrooke18, L.J. Allison71, P.P. Allport73,
S.E. Allwood-Spiers53, J. Almond83, A. Aloisio103a,103b, R. Alon173, A. Alonso36, F. Alonso70,
A. Altheimer35, B. Alvarez Gonzalez89, M.G. Alviggi103a,103b, K. Amako65,
Y. Amaral Coutinho24a, C. Amelung23, V.V. Ammosov129,∗, S.P. Amor Dos Santos125a,
A. Amorim125a,c, S. Amoroso48, N. Amram154, C. Anastopoulos30, L.S. Ancu17, N. Andari30,
T. Andeen35, C.F. Anders58b, G. Anders58a, K.J. Anderson31, A. Andreazza90a,90b, V. Andrei58a,
X.S. Anduaga70, S. Angelidakis9, P. Anger44, A. Angerami35, F. Anghinolfi30, A.V. Anisenkov108,
N. Anjos125a, A. Annovi47, A. Antonaki9, M. Antonelli47, A. Antonov97, J. Antos145b,
F. Anulli133a, M. Aoki102, L. Aperio Bella18, R. Apolle119,d, G. Arabidze89, I. Aracena144,
Y. Arai65, A.T.H. Arce45, S. Arfaoui149, J-F. Arguin94, S. Argyropoulos42, E. Arik19a,∗,
M. Arik19a, A.J. Armbruster88, O. Arnaez82, V. Arnal81, A. Artamonov96, G. Artoni133a,133b,
D. Arutinov21, S. Asai156, N. Asbah94, S. Ask28, B. Åsman147a,147b, L. Asquith6, K. Assamagan25,
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D.W. Miller31, W.J. Mills169, C. Mills57, A. Milov173, D.A. Milstead147a,147b, D. Milstein173,
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Z. Rurikova48, N.A. Rusakovich64, A. Ruschke99, J.P. Rutherfoord7, N. Ruthmann48,
P. Ruzicka126, Y.F. Ryabov122, M. Rybar128, G. Rybkin116, N.C. Ryder119, A.F. Saavedra151,
A. Saddique3, I. Sadeh154, H.F-W. Sadrozinski138, R. Sadykov64, F. Safai Tehrani133a,
H. Sakamoto156, G. Salamanna75, A. Salamon134a, M. Saleem112, D. Salek30, D. Salihagic100,
A. Salnikov144, J. Salt168, B.M. Salvachua Ferrando6, D. Salvatore37a,37b, F. Salvatore150,
A. Salvucci105, A. Salzburger30, D. Sampsonidis155, A. Sanchez103a,103b, J. Sánchez168,
V. Sanchez Martinez168, H. Sandaker14, H.G. Sander82, M.P. Sanders99, M. Sandhoff176,
T. Sandoval28, C. Sandoval163, R. Sandstroem100, D.P.C. Sankey130, A. Sansoni47, C. Santoni34,
R. Santonico134a,134b, H. Santos125a, I. Santoyo Castillo150, K. Sapp124, J.G. Saraiva125a,
T. Sarangi174, E. Sarkisyan-Grinbaum8, B. Sarrazin21, F. Sarri123a,123b, G. Sartisohn176,
O. Sasaki65, Y. Sasaki156, N. Sasao67, I. Satsounkevitch91, G. Sauvage5,∗, E. Sauvan5,
J.B. Sauvan116, P. Savard159,e, V. Savinov124, D.O. Savu30, C. Sawyer119, L. Sawyer78,l,
D.H. Saxon53, J. Saxon121, C. Sbarra20a, A. Sbrizzi3, D.A. Scannicchio164, M. Scarcella151,
J. Schaarschmidt116, P. Schacht100, D. Schaefer121, A. Schaelicke46, S. Schaepe21, S. Schaetzel58b,
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T.B. Sjursen14, L.A. Skinnari15, H.P. Skottowe57, K.Yu. Skovpen108, P. Skubic112, M. Slater18,
T. Slavicek127, K. Sliwa162, V. Smakhtin173, B.H. Smart46, L. Smestad118, S.Yu. Smirnov97,
Y. Smirnov97, L.N. Smirnova98,ak, O. Smirnova80, K.M. Smith53, M. Smizanska71, K. Smolek127,

– 29 –



J
H
E
P
1
0
(
2
0
1
3
)
0
4
2

A.A. Snesarev95, G. Snidero75, J. Snow112, S. Snyder25, R. Sobie170,j , J. Sodomka127, A. Soffer154,
D.A. Soh152,w, C.A. Solans30, M. Solar127, J. Solc127, E.Yu. Soldatov97, U. Soldevila168,
E. Solfaroli Camillocci133a,133b, A.A. Solodkov129, O.V. Solovyanov129, V. Solovyev122, N. Soni1,
A. Sood15, V. Sopko127, B. Sopko127, M. Sosebee8, R. Soualah165a,165c, P. Soueid94,
A.M. Soukharev108, D. South42, S. Spagnolo72a,72b, F. Spanò76, R. Spighi20a, G. Spigo30,
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Barcelona, Barcelona, Spain
13 (a) Institute of Physics, University of Belgrade, Belgrade; (b) Vinca Institute of Nuclear Sciences,

University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley

CA, United States of America
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics,

University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Dogus

University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep,

Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna,
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Ambiente, Università di Udine, Udine, Italy
166 Department of Physics, University of Illinois, Urbana IL, United States of America
167 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
168 Instituto de F́ısica Corpuscular (IFIC) and Departamento de F́ısica Atómica, Molecular y Nuclear
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