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Abstract

TFT (Thin-film transistor) - LCD (Liquid-crystal display) is now widely used by the display

industry for the reason that LCD is compact and light with very low power consumption;

moreover, it has little or no flicker and no geometric distortion. However, small defects from the

bottom layers could grow after the deposition process and result in defective panels. Such tiny

objects on the scale of ~102 nm are too small for modem cameras to directly image and generally

requires (scanning) microscopy during industrial inspection process, which unfortunately leads

to a tremendous cost.

This thesis investigates a holographic imaging approach combined with a compressive signal

reconstruction framework to automatically locate such small defects from FDTD simulation

results. Holography records the electric field from a sparse distribution of particle scattering;

compressive sensing retrieves a clean signal from the original measured signal corrupted by shot

noise and other system noise with a sparsity prior and auto-parameter tuning based on signal

characteristics. Strong denoising parameter reduces false alarms and increases miss detection at

the same time. The compressive framework is followed by a defect candidate selection process

which helps to eliminate false alarms while preserving the desired signal by comparing the

compressive reconstruction result to the direct signal back-propagation estimate. Auto-parameter

tuning finds the compressive (denoising) parameter according to the strength of noise present in

the direct measurement. The accuracy and reliability of using this method to localize cylindrical
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defects on the scale of 102 nm is studied. This method is able to accurately cover detection of

most cylindrical defects of different sizes under 0.2 sec exposure time per field of view. The

accuracy is compromised for extremely small defects on a similar size scale to a cylindrical

defect of 100 nm in diameter and 100 nm in height.

Thesis Supervisor: George Barbastathis

Title: Professor
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Chapter 1

Introduction

Over the past few decades, TFT (Thin-film transistor) - LCD (Liquid-crystal display) has

become widely used by the display industry over long-used CRT monitor and other modem

displays such as LED (Light-emitting diode display) and PDP (Plasma display panel) for the

reason that LCD is compact and light with very low power consumption; moreover, it has little

or no flicker and no geometric distortion.

However, manufacturing such displays requires layer by layer material deposition as shown in

Fig- 1.1. Tiny defects at the bottom substrate could grow larger after adding many layers of

material and can eventually be observed on the final product, these are so-called Mura defects[ 1]

which is a typical vision defect of LCD panel that can be of spot-type, line-type, or even region-

type[2]; these defects appear dark and blurry and can only become noticeable after the

manufacturing process when the LCD panel tested exhibits a certain constant gray brightness

level.
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Fig - 1.1 Panel pattern deposition workflow from Samsung Electronics Co., Ltd.

These defective panels represent cost, which is essentially a waste of resources and effort. Most

importantly, they cannot be sold to the customers.
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1.1 Current inspection approaches

As the mobile electronics market grows with tablets and cellphones, flat panel display becomes

more and more widely used, manufactures compete to make high quality products that are free

from defects. Most manufactures currently use high-resolution camera combined with necessary

focusing optics and illumination to directly image the defect after the entire wafer deposition

manufacturing process; such cameras oftentimes have very small field-of-view, which eventually

limits the rate of production even with multiple camera heads. [5] Additionally, such sophisticated

systems are usually associated with high maintenance cost. To eliminate defects at the

manufacturing stage, dark-field illuminated microscopy is now used and this approach is

unacceptably slow.

The defects are generally small and range from 100 nm to several micrometer from non-

uniformity of the liquid crystal material and other foreign particles. [4] The primary inspection

challenge here is insufficient signal strength from small particles that is interfered with

comparably larger noise.

1.2 Our proposed method

This thesis analyzes a proposed holographic approach of examining the defects at bottom

substrate to improve the product quality as well as the final passed yield. Holographic imaging
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takes the scattered field directly without using any complicated lens system; this allows us to

have potentially smaller working distance and larger field-of-view; with the assist once of

computational technique, we aim to eliminate strong influence on the detection result from

system noise.

1.3 Small particle scattering

When small particles sit on the path of light (usually straight in air or vacuum), light deviates

from its trajectory to different directions due to the interaction. This physical process is so-called

scattering (Fig - 1.2). Light scattering happens everyday in our life; we see colors and shapes

when light scatters off the objects we are observing.

Since light is electromagnetic waves, Maxwell's equations are the direct method to

computationally describe such behavior. In real world particles or defects are of many different

complex shapes for which Maxwell's equations are extremely difficult to solve for an exactly

solution. Therefore, geometric approximations are frequently used for small particles scattering

process.
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_ At

Fig - 1.2 General particle scattering behavior

Rayleigh scattering [3] is well suited here because it approximates the scattering behavior of

particles that are smaller than the wavelength of incident light. Equation 1.1 shows the field

approximation at far field:

Eo -- k2 a 2EO ikrsinO
E, + 2E) r

(1.1)

Details of Rayleigh scattering approximation and its comparison with FDTD simulation results

will be further discussed in Chapter 3 of this thesis.

1.4 Finite-difference Time-domain (FDTD)

Finite-difference time-domain is a commonly used modern numerical technique for solving

mathematically complex problems. As mentioned in the previous section, Maxwell's equations

become extremely complex for particles of arbitrary shapes so that it is often difficult to find
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analytical solutions. FDTD models the continuous differential quantities as discrete centered

difference that provides us discrete approximate solutions to the real analytical solutions within

a certain error tolerance. It is especially useful for solving Maxwell's equations. The advantage

of using FDTD is that we could use nowadays computational power to resolve difficult

mathematical problem. However, the disadvantage of FDTD is that it requires the entire

computational domain to be gridded and the grid size has to be spatially fine enough to resolve

the smallest electromagnetic wavelength as well as the smallest geometrical feature in the model.

For large simulation domain, the process becomes quite time consuming.

For our particular case, the particles sizes are on the nanometer to micrometer scale while the

simulation size is much larger. Therefore we only used FDTD to obtain a confident near field

result. This will also be discussed in Chapter 3. In our simulation scheme, we utilized the

commercially available Lumerical Solution package, a pre-compiled high speed 3D Maxwell

solver. It contains a wide range of material property library and a 3D CAD environment that

allows us to do rapid simulation testing with different materials and geometry.

1.5 Digital Holography

Holography is a technique that records the light field, usually scattered off objects and allows the

same field to be reconstructed later when this scattered field is not present. It can be seen as an

encoding and decoding process.
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When an unknown beam Uo is interfered with another reference field Ur, the resulting intensity

in space can be expressed as:

I(x, y, z) = U(x, y, z) + U,(X, y, Z)
(1.2)

Notice that this intensity pattern carries the information about the electric field as shown in

equation 1.3 below and can be directly recorded by a photo sensitive recording medium; in the

case of digital holography, we use CCD camera to record the intensity pattern.

Reference
wave CCD

Fig - 1.3 Hologram formation

I is called recorded interference pattern. The interference pattern can provide numerical

reconstruction of the field. The first two terms are known as the autocorrelation terms for in-line

holography; Uo(x, y, z)Ur(x, y, z)* is the twin image. Off-axis holography gives separation of these

four terms and allows us to obtain and reconstruct Uo(x, y, z)*Ur(x, y, z) with spatial filtering and

numerical back-propagation. [5]
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I(x, y, z) o(X, y, Z) + Ir(X, y, Z) + U(X, y, Z)*Ur(X, y, Z) + Uo(X, y, Z)U(X, y, Z)*

(1.3)

1.6 Computational Imaging & Compressive Sampling

Instead of using the raw data that comes directly out of the sensors, computational imaging

integrates the post processing as part of the overall image formation process. The computer post

processing usually significantly boosts the image quality and thus extends the capability of the

hardware. This helps us to acquire more useful information from the captured data.

Conventional
imaging

Computational
imaging

L I -, Imaging
Optics

Necessary
Optics

Fig - 1.4 Computational imaging system demonstration

Candes and Romberg have proved conventional sampling rate requirement at above the Nyquist

rate might be too strict for sparse signals, which we have some prior knowledge .[6] With fewer
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measurements than the Nyqvist rate, reconstruction of almost identical quality signal is possible

by solving a convex optimization problem that minimizes

f(x) = IlAx - b112 + A((x) (1.4)

where A is the sensing or measurement matrix, x is the target we aim to reconstruct, b is the

measured quantity, f( ) is a convex function with an additional regularizer '(x) which helps us

to mitigate noise effects, and A is the regularization parameter.

This theory is named "compressive sampling" or "compressive sensing". Intuitively, the

measurement system A should be able to spread the very sparse x into the measurement b so that

fewer measurements in b could still capture part of the information from x. We expect the

sensing scheme to fail when A does not have much "spreading" characteristics, or when the

target x is not sparse in the chosen set of basis functions.

The the natural spherical wave propagation process spreads a point excitation into a spherically

symmetric field in space, which can be accurately approximated using Fresnel propagation basis

at the Fresnel zone. This particular spreading behavior allows us to compute a cleaner sparse

reconstruction from the very well spread measurements with prior knowledge.

1.7 Convex optimization and TwIST Denoising

Ideally, without any under sampling and noise, inverting the problem A x = b is simple because

we only need to inverse the sensing system A and multiply A-' with the measurement b as long as
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A is not singular. However, a direct inverse may not exist, because A could be singular or of any

rectangular shape, which causes the rank of A to be different from the maximum dimension of

itself. More likely, in real world, additive noise makes directly inverting A erroneous.

In this sense, we try to minimize lAx - b1I 2 for obtaining a close-enough solution x which is often

times the reconstruction. Iterative Shrinkage/Thresholding (IST) algorithm iteratively pursues an

approximate solution x by minimizing equation 1.5

1
f(x) = ||Ax - b|| 2 + Ad)(x)2

(1.5)

V2 is used as an energy matching coefficient and A is the regularization parameter. TwIST uses a

two-step work flow for updating the estimate of x with weights assigned to different terms. More

detailed algorithm will be discussed in Chapter 4 and Chapter 5.

1.8 Thesis Outline

Chapter 2 explains the scattering behavior of small particles on a flat substrate and basic

principles of holographic measurement. Discussion of experimental challenge will also be

included in this chapter.

Chapter 3 presents simulation hologram results of far-field generated from its near-field FDTD

simulation of various sizes, shapes of defects.
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Chapter 4 concentrates on describing the usage of compressive imaging and TwIST optimization

algorithm and their denosing effects with sparsity prior knowledge of the target signal.

Chapter 5 investigates in obtaining good-quality reconstruction from simulated noisy holograms

at far-field using compressive framework and achieving automatic machine decision on finding

possible defect locations. Then, the reliability and capability of our detection workflow is

explored with various amount of noise added.

Chapter 6 concludes the findings and makes suggestions for future works.
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Chapter 2

Theory of scattering and holography

2.1 Light as an electromagnetic wave

Light exhibits both particle and wave properties, a phenomenon known as wave-particle duality.

An electromagnetic wave has both electric and magnetic field components (E and H); they

oscillate perpendicular to each other and perpendicular to the direction of propagation. In

vacuum, the behavior of an electromagnetic wave is governed by the simplified version of

Maxwell's equations (2.1 - 2.2)

02
V 2E =p~ aat 2  

(2.1)

2 a
V B = -- oc 0 Bt2 (2.2)
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where E is the electric field, B is the magnetic field, to is the permittivity of free space and po is

the permeability of free space. One general solution, the plane wave solution to such wave

equation can be written in complex amplitude (phasor) notation as equation

E (r, t) = Eo (r, t) ej(k-r-wt+<o) ,(2.3)

where k is the wave number,

k 
2
A, (2.4)

A is the wavelength of the light, and n is the refractive index of the medium in which light is

traveling.

Equation (2.3) represents a plane wave because all values of r which satisfy a constant phase

comprise a plane that is perpendicular to the wave vector k.

As time t increases, for a constant phase, r must also increase proportionally so that the phase can

be kept in constant; this causes the wave front to move in the direction of wave number k as time

evolves.

The plane wave solution is not the only solution for free space propagation of light. A solution

with spherical wave front can satisfy the Maxwell's equations as well as shown in equation (2.5)

Aes (k.rkwt)
E(r, t) = r (2.5)
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where A is the source strength, the plus or minus sign indicates if this wave is converging to or

diverging from the source center.

2.2 The energy flow of light

Light carries energy while traveling. When its photons hit an object, the object can feel a small

pressure. In outer space, satellites with large solar panels can experience observable motion after

being long exposed to light. We use "intensity 1" to describe the energy carried by light. Intensity

is the energy transferred per unit area per unit time and has the unit [W/m 2 ] in SI system. This

value is directly determined by the field strength of light as

I = cn E 12
2 (2.6)

c is the speed of light in vacuum. The amount of power incident on a surface is governed by the

principle of energy

Energy= IdAdt (2.7)

Later in Chapter 3, we predict the shot noise from the camera electronics due to the particle

nature of light with this equation.
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2.3 The polarization of light

Polarization describes the orientation of the oscillation of an electromagnetic wave. Most sources

of electromagnetic radiation generates un polarized light; however, for most lasers, the beam that

comes out are frequently linearly polarized because of the implementation of Brewster window.

This means the electromagnetic wave only oscillates in one direction (or very close to that

direction). For a reflecting surface the light is traveling to, the component of the electric field

parallel to this plane is termed p-polarized field and the component perpendicular to this plane is

s-polarized. This surface is named the "plane of incidence". Fig 2-1. shows the schematic of an

unpolarized light getting polarized by a Brewster window.

Unpolarized P-polarized

S-polarized

Fig 2-1. Linear polarization from a Brewster window

In our simulation in chapter 3, the particle (defect) stays on such a plane, the incident beam is set

to s-polarization; this causes the scattered wave to remain mostly in s-polarization.

31



A small particle, when struck by a electromagnetic wave, gets polarized in the direction which

the incident beam oscillates. Then, light reflects off this particle and propagates to all directions.

The intensity of the scattered light depends on the polarizability of the particle it strikes on. [7]

2.4 Scattering theories

The classical light scattering theory was derived by Lord Rayleigh, which is now known as the

Rayleigh theory. Rayleigh theory specifically targets at predicting the scattering behavior of

small particles such as dusts or particles in the sky. The particle size has to be much smaller than

the wavelength of the incident beam as shown in equation (2.8) in order to have an proper

approximation, according to

D<A
10 (2.8)

where D is the characteristic length. There is no unique definition for characteristic length; for

one convention, it could be computed the third root of the integrated volume. Most conventions

for computing the characteristic length produce similar D values for the scale of particles in our

simulation.

When such a small particle at origin in a three dimensional space is illuminated by a linearly

polarized plane wave as described in equation (2.3), a dipole moment P inside the particle is

induced; the value of dipole moment is dependent on the polarizability a, which is a constant.
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The magnitude or the polarization field is proportional to the strength of the electromagnetic

field as shown in equation (2.9).

P = aEoej(k-r-wt+<) (2.9)

This induced dipole moments then radiates in all directions; we expect the scattered field

magnitude to be proportional to the second derivative of the dipole moment P and to be

proportional to (k/w)2 . Assume the incident beam propagates along z-axis and is linearly

polarized in y direction as shown in Fig 2-2, the scattered field should also be projected onto the

observation direction.

L 
X

6h

Fig 2-2. Scattering illustration
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With this configuration, considering the spacial decay of scattering the scattered field Esis

1 k2 &2]p
E = ~

E r W 2 &t2  (2.10)

ES= IEoak2sinOyej(k r-wt)
r (2.11)

It is obvious that the scattered field is inversely proportional to the observation distance r; this

indicates an perfect spherical wave front with intensity inversely proportional to r2. The

predicted intensity can be computed from

1
I. = -Eo2a 2 k sin2O

r2 Y (2.12)

However, we have to be careful when using Rayleigh scattering approximation to predict our

simulation since the size of the particles we hope to inspect ranges from 100 nm to a few micro

meter, Raleigh prediction could potentially yield significant error with visible light (400 ~ 800

nm in wavelength).

Although correction to Rayleigh's theory known as the Rayleigh-Gans theory was developed to

extend Rayleigh theory to particles that 10 times smaller than the wavelength but for the

refractive index of glass/silicon particles we hope to detect, Mie scattering yields a better

approximation if shape of the defect is not considered.

Based on the theory of Mie[9], for linearly polarized light, we can simplify the Mie theory to a

great extent by only considering equation
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2

i,=$2n +l Eanir, (COS0) + b,,r, (COS 0)]
n n(n+1) (2.13)

2

'2 = 2n+1 [ar,(cos9)+br,, (cos9)]
1n(n+1) (2.14)

where 7rn and Tn are angular dependent functions and can be expressed in terms of the Legendre

polynomials in equation (2.15) and (2.16).

7r,, (COS0) = (cos 0)
sin 0 (2.15)

( dp~l) (cos0)
- d9 (2.16)

an and bn are defined as

a ,(a)T' (ma)-mT,,(ma)T' (a)

a, g(a) T, (ma) - mn(ma) ,(a) (2.17)

b mT,,(a)' (ma)-TPn(ma)T' (a)
" m(a) T, (ma) -T,( *), ,(a) (2.18)

where m is the refractive index, a is the size parameter described in equation (2.19), Tf and are

shown in equation (2.20) and (2.21) with half-integer-order Bessel function of the first kind.

27rDmo 27rD

A0 A (2.19)
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2 )(2.20)

S(z) = 2 H+ 1 2 (z) = , (z) + iX, (z)
2 (2.21)

H+1/ 2 is the half-integer-order Hankel function of second kind and lastly, Xn is defmed with a

second kind Bessel function Y as shown in equation (2.22)

." x(z)=- K 1, 2(Z)2 ) (2.22)

The above methods all try to find approximate solutions to Maxwell's equations. However, in

real world situation, because of the unpredictable shapes of our defect, using these equations

could lead to undesirable errors. In Chapter 3 we introduce FDTD numerical techniques for

solving Maxwell's equations in more general geometries.

2.5 Holography theories

Traditional cameras records only the intensity at the imaging plane. In 1948, Denis Gabor

introduced a holography imaging approach[1 1]; since then holography has become known as a

technique for recording both the amplitude and phase of a wave. The interference between the

reference beam and the object beam encodes the field information of a wave as shown in Fig -
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1.3. This allows the same field to be decoded and reconstructed later when this scattered field is

not present.

Holography in general involves a two-steps process: 1) writing the hologram, which involves

recording the encode intensity pattern on a light sensitive film or on a CCD (charge-coupled

device) to save the amplitude and phase information; the second writing method is so-called

digital holography. 2) reading the hologram, which hologram is illuminated with reference field;

this process decodes the field information recorded in a hologram. In digital holography, the

second step is done on a computer with digital illumination and field rendering.

2.6.1 Gabor's inline holography

In Gabor's original setup, a point source of monochromatic light is collimated by a lens and the

resulting collimated beam illuminates the semitransparent object. The light passing through a

semitransparent object consists of the scattered Uo and unscattered field Ur.

As explained in chapter 1, intensity pattern Iof an encoded interference pattern at the film z

location can be expressed as equation (2.23)

I(x, y, z) = Io(X, y, Z) + I,(X, y, Z) + Uo(X, y, Z)*U,(X, y, Z) + Uo(X, y, Z)U,(X, y, Z)*

(2.23)
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Fig 2-3. In-line optical setup for writing Fresnel holograms

The unscattered wave Ur acts as a reference wave; the interference pattern can provide

numerical reconstruction of the field. The first two terms are known as the autocorrelation terms

for in-line holography, which is more or less a constant shift for intensity at each location;

Uo(x, y, z)Ur(x, y, z)*is the twin image. Off-axis holography gives separation of these four terms

and makes it possible to obtain and reconstruct Uo(x, y, z)*Ur(x, y, z) with spatial filtering and

numerical back-propagation.

If the film response of the photographic film is closely linear. The transmission function can be

defined as

t(x, y) = a + bI(x, y, z)
(2.24)

where a and b are constants. When reading the hologram Ur, the recording medium is illuminated

by the same input beam which is mostly the unscattered wave. Setting z to be at the film plane,

the resulting field after the transparency is
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U(x, y) = Ur - t(x, y)

U(x,y) =Ur(a+blUr2 )+bUrIUo(x,y) 2 +blUrI 2 -Uo(x,y)+blUr2 .Uo*(x,y) (2.26)

The term of interest is the third one; this is the term we use in our later work on holographic

reconstruction.

2.6.2 Off-axis holography

The invention of the off-axis reference hologram by Emmett Leith and Juris Uptnieks greatly

helped the elimination of the undesired twin image. The idea is to use a tilted reference beam that

forms an angle 0 respect to the z axis whose wave vector is kr. Now, let's denote the transmitted

field Ut and reference Ur. The field at the field plane is a super position of Ut and Ur.

U(x, y) = IUr leikr (22
(2.27)

(2.28)

The recorded information t(xy) on the film is:

t(x,y) c IUt(x, y)I 2 + IUr 2 + Ut(x, y)IUr Ie-ikr r + Ut*(x, y)IUr Ie ikr 'r (2.29)

When reading the hologram, using a beam along the direction of the reference beam we could

recreate the object field Ut(x, Y) exactly along the z axis while all other terms are going off z axis.
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For simplicity, use Ur as the illumination wave. The reconstructed field is

Ufinal(X, y) = |UrI eikrr - t(x, y) (2.30)

Ufinal(X, Y) Ut (x, y)I2 - IUr Ie ik,< + I Url3eik,.r + Ut(x,y) Ur| 2 + U*(x,y) - IUrI2 ei2 kr

(2.31)

We can easily observe that the reconstruct field at the observation location behind the

transparency is exactly a scaled version of the original transmitted field from the object.

2.7.1 Digital Holography

Utilizing CCD instead of photographic emulsions enables data to be collected repetitively and

quickly and makes it possible for industrial usage. This also allows some computational

techniques to be used conveniently on the collected data to perform certain artificial intelligent

tasks such as detecting the existence of a particular object on a test sample. However, CCD

devices usually do not have good resolution comparing to photographic emulsions used in

optical holography. Photographic emulsions have resolutions up to 5000 line pairs per millimeter

(Lp/mm); with such materials, holograms are not limited to the angle between the reference

beam and the object wave. Modem CCDs oftentimes have distance between neighboring pixels

Ax ~ 5pm. The spacial frequency it can resolve is then determined by equation (2.32).
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1
fmax = 2Ax (2.32)

the maximum resolvable spatial frequency is also determined by the angle between reference and

object wave as shown in equation (2.24).

2 . Omax
fmax = A 2 (2.33)

Combining the above two equations provides us the specific requirement for the angle in

between the object beam and reference beam

Omax = 2arcsin (~A A
4,Ax 2Ax (2.34)

The approximation shown in equation (2.34) is valid for small angles. To satisfy this small angle

requirement, we utilized a beam splitter in front of the CCD camera.

Therefore, for our purpose, we choose to use the setup shown in Fig. 2-4 because of this angle

limitation. This configuration is also named double exposed hologram recording.
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wave

Fig 2-4. Digital holography setup for TFT panel inspection

2.7.2 Numerical reconstruction

In 1967, Goodman and Lawrence used a camera tube to record an off-axis hologram. Numerical

processing was based on the fast Fourier transform algorithm[14]. Using Goodman's principle,

for the configuration shown in Fig 2-4., we essentially have a particle scattered field as the object

wave and an added reference wave. The recorded hologram is proportional to the intensity at the

camera plane and the intensity pattern is described in equation (2.32). Utilizing this intensity

pattern that is directly associated with the field at that plane, we can predict the field at our

objects.
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According to the Fresnel approximations from the point of view of the angular spectrum

method[15], the propagation phenomenon of a field is a convolution with the free space

propagation kernel in spacial domain, which corresponds to a multiplication in spectral domain.

The transfer function of free-space propagation is

H(fx, fy) = e kzexp [-j7rAz(fk + fy)] (2.35)

When this recorded intensity that represents the field is back-propagated to the object plane, the

other dominant component Uo(x, y, z)Ur(x, y, z)* becomes very spread out. Therefore we can

approximate the field at the object plane as

U(x, y, 0) cxc T-1 {H(fx, fy , -z) .F {I(x, y, z)}} (2.36)

Here F denotes the Fourier transform operation and .F- is the inverse Fourier transform.

Numerical Fourier transform calculation was performed based on the fast Fourier transform

proposed by Cooley and Turkey [16].
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Chapter 3

Forward scattering simulation

Finite-difference time-domain is a modem numerical technique to solve analytically complex

problems. The FDTD method was originally developed by Yee [18] and has been described

extensively by Kunz, Lumbers and Taflove [19]. This method is a direct solution of the

differential form of Faraday's and Ampere's laws.

For electric fields scattered off objects with arbitrary geometry, Maxwell's equations become

extremely complex and are often difficult to find analytical solutions. FDTD models the

continuous differential quantities as discrete centered difference that provides us the capability of

obtaining an discrete approximate solution within a certain error tolerance. The unpredictable

nature of defects on our panel indeed pushes us to make use of numerical FDTD simulations.
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3.1 Simulation scheme

In our simulation scheme, we utilized the commercially available Lumerical Solution package, a

pre-compiled high speed 3D Maxwell solver. It contains a wide range of material property

library and a 3D CAD environment that allows us to do rapid simulation testing with different

materials and geometry. FDTD Solutions 8.6 [17] is a simulation environment that solves the

Maxwell's curl equations in non-magnetic materials.

FDTD Solutions is specialized to solve the two and three dimensional Maxwell's equations in

dispersive media and simple non-linear media. We only used the three-dimensional simulation

configuration because our captured data are planar two-dimensions in nature. They also provided

a computer-aided-design interface where users can specify structure geometry and various input

excitation sources. FDTD is a time domain technique, meaning that the electromagnetic fields

are solved as a function of time. It calculates the electromagnetic fields as a function of

frequency or wavelength by performing Fourier transforms during the simulation. This allows it

to obtain complex-valued fields and other derived quantities such as the complex Poynting

vector, transmission, and far field projections as a function of frequency or wavelength.

For our particular case, the particles sizes are on the nanometer to micrometer scale while the

simulation size is much larger, because the CCD camera captures image on the order of cm 2 .

Therefore, simulating the entire process of scattering from the particle all the way to the detector

plane is almost impossible with nowadays computation power. Fig. 3-1 illustrates the scattering

orientation without considering the reference beam and the beam splitter.
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CCD

:Plane wave
Sillumination.

Sample

Fig. 3-1 Target simulation volume in 2D

If our grid size is chosen to be 30 nm in order to sufficiently predict the behavior of around 100

nm particle scattering, for a 1 cm by 1 cm CCD camera and lcm scattering distance, 3 x 1016

grid points would be required for the simulation volume. Obviously, this is not achievable with

nowadays computers. As explained in Chapter 2, the dipole scattering behavior for small

particles is more or less spherical in space. This fact allows us to simulate a field of view with

fine detailed close to the plane where scattering happens and further project this field to the

camera plane which is much larger in scale and more coarsely sampled.
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Fig. 3-2 Far-field projection method

When the electromagnetic fields are known on a plane (x-y) at z = a, the field can be calculated

to any point in the half-space beyond the surface (z > a). This calculation will be accurate when

electromagnetic fields are zero at the edges of the surface used for the projection [17]. For our

case, the scattered information is highly concentrated at the corresponding x-y position of the

particle and on the edges of the near-field. The field magnitude is close to zero. FDTD solutions

far field projection package calculates the field as a function of angle into the half-space above

the surface using Fast-fourier transform and then normalize the field using field magnitude

integration/power integration. For three-dimensional power simulation results are normalized by

a factor of 1/r 2
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Therefore we only used FDTD to obtain a confident near field results and compute the field

information at CCD plane from near-field information.

3.2 Near-field FDTD simulation

The near-field simulation volume contains a silicon dioxide substrate and a defective shape at the

center. We only tested spherical and cylindrical defects. The diameter change from 100 to 300

nm for different simulation tests; the height of the cylinder also range from 100 to 300 nm. The

pink arrow in Fig. 3-3 shows the poynting vector of the illumination beam and the blue arrow

indicates the polarization direction.

Fig. 3-3 Near-field simulation setup
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The small grey box in Fig 3-4 that encloses the cylindrical defect is the Total Field Scattered

Field (TFSF) bounding box. The TFSF source is a function provided by FDTD package, often

used to study scattering from small particles, such as the Mie scattering. It becomes very useful

here for our case when a plane wave illuminates a defect on a planar surface The TFSF source

allows us to separate the computation region into two distinct regions. Inside the bounding box,

computation is performed with the the sum of the incident field wave plus the scattered field,

only scattered field goes outside of the bounding box.

Near-field
simulation volume
boundary (PML)

Near-field
monitor

8000 nm

Cylindrical defect
Diameter 100 nm, height 100 nm

80000 nm

Fig. 3-4 Front view of near-field simulation
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The yellow horizontal line is a virtual near-field discrete Fourier transform monitor. This

frequency-domain monitors collect the field profile in the frequency domain from simulation

results above the TSFS box within the simulation. The monitor records field profiles exactly

where they are positioned. It records the individual field components, Poynting vector, and

power flow a function of frequency and position. In our simulation, we fixed the frequency of

illumination to be 532 nm. Thus, the recorded field becomes a function of only position. Fig. 3-5

shows the near-field scattering results from a cylindrical scatterer of 100 nm height and 100 nm

diameter recorded by this kind of monitor.

-2
x10

j1.3

1.1

-0.9

2 -0.7

0.3

-3 10.1

-3 -1 1 3
x(micrors)

Fig 3-5. Near field scattering profile of a cylindrical

of 100 nm height and 100 nm diameter
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The color bar shows the scattered field intensity which has a unit of W/m 2 with an unit

magnitude illumination plane wave field of 1 V/m. The results also proved our assumption of the

zero boundary field values the non-zero scattered signals are heavily concentrated at the center

and diminishes to zero quickly going away from the center. The field magnitude is shown in Fig.

3-6.

0.125

0.12

0.115

-0.11

0.105

0.095

0.09

Fig 3-6. Near field scattering field profile of a cylindrical

of 100 nm height and 100 nm diameter

3.3 Far-field propagation

As mentioned previously, it is oftentimes not practical to extend the computational domain into

the far field because of the limited simulation grids. Thus, to compute the far-field pattern from
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near-field information, FDTD Solutions utilizes a near-field to far-field transform. ThE

transformation is based on Green's identity, which predicts that if the tangential fields on a

closed surface radiated by a set of sources bound by the surface are known, then the fields

exterior to that surface can be predicted from the tangential surface fields alone.

Consider a set of time-harmonic current densities Ji and M , radiating in a free space with

material profile (p, &). The current densities radiate the fields E and H_ can be computed via the

vector potentials [20], according to

E (r*) = -joZ (r) + VV A()- V x F )
jOE , (3.1)

H ( j = 0 -oF (r)+.'V-Z() + V x Z ( )
VV ( ± , (3.2)

whereA is the magnetic vector potential and Jis the electric vector potential. They are defined

as:

AQ) r ff P r -jkRdv'

V (3.3)

.f e-jkR
F -() M' i' R dv'

V (3.4)

where r" is the source coordinate and j? is the observation coordinate, and R = r o' -

is the distance between the two.
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Now, let S be a fictitious surface that completely envelopes the sources Ji and Mi , as

illustrated in Fig. 3-7, and let j? be a point on S. We then have

Jss) =r X H(s) (3.5)

Ms(s)= (s) Xfl (3.6)

These two quantities are called equivalent densities and

Huygen surface.

t,I

SC

S

~, 11

/4E A' J

the surface S is referred to as a

, =0Ex
0,0

pe

n X

(a)
(b)

Fig 3-7. Equivalence principle (a)Original problem with impressed currents radiating in a

homogenous free space. (b) Equivalent currents distributed on the Huygens surface S

radiating in a homogeneous free space. [From Gender, Introduction to the FDTD Method]

According to Green's second identity, Js and ME should radiate exactly H and H in the

region outside of S [22] as shown in equation (3.7) and (3.8)
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~ff - e-jkR
(?)=J rs (' ds'

s (3.7)

F 1 f -jkR

s (3.8)

This is the surface equivalence principle [21], which allows computation to extend

beyond the FDTD computational domain. The projection is then done in frequency

domain utilizing the Fast Fourier transform.

Far field projection can be also be computed from Fourier transform, which is essentially a far-

field diffraction approximation. However, this method requires us to set a fixed grid size at a

particular z plane. In order to simulate a certain CCD camera model, resampling becomes

necessary. Resampling a fast oscillating field introduces undesirable error. Additionally, aliasing

arises from xx'/Az, which can only be taken care of with a large amount of zero padding. For

our 40 nm grid near field simulation, around 40000 by 40000 zero values are needed to reduce

aliasing at the camera plane. This approach eventually becomes difficult for the computers to

handle.

jAz (3.9)

Alternatively, the field can be calculated from the near-field considering the contribution from

each grid at the near-field to far-field which is essentially a convolution. The iteration takes about

10 minutes for a near field of 10 um by 10 um (sampled with 30 nm grids) to project to 1cm by
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1cm (1000 by 1000 pixel) camera. This approach converts memory requirement to time

consumption and is much faster than the FDTD Solutions package which make use of Green's

identity. The comparison between FDTD far-field projection package and near-field to far-field

convolution is shown in Fig 3-8.
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Fig 3-8. Comparison between (a) FDTD solutions far-field projection intensity and the near-field

to far-field convolution projection result (b)

Projection from a surface with know boundary conditions to a half space beyond that surface

requires the medium in between to be homogeneous. With the knowledge that beam splitter

allows part of the scattered field to penetrate through without changing the wave front too much

at the center, we can compute the scattered field at CCD camera plane first based on the near-

field simulation results and add the effect of beam splitter latter.
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3.4 Hologram formation with noise

With the scattered complex field information at the detector, we add a plane wave reference field

of comparable magnitude digitally as in equation (3.10). Then, to form a hologram or real-world

recorded intensity at the detector we amplify both signals linearly based on an approximation of

realistic laser power that is eventually used to illuminate the sample. Knowing the fact that

images taken under very weak light are strongly influenced by shot noise, we convert the

combined field power to the number of photons for a certain amount of exposure time first

before adding shot noise of poisson distribution.

I CD cno IEscat +Eref 1
2

ICcD =2 (3.10)

P(Iphotons) P(ICCDTexpAX2 /Eph ot o n ) (3.11)

where P is the poisson random function and Ephoton is the energy of a single photon, computed

from

Ephoton hc

Moreover, thermal noise from additional current fluctuations is present in most cameras. A

simple Gaussian distribution is often used as an adequately accurate model for the combined

effect of most other noises [23]. Fig 3-9 is a list of holograms without considering Gaussian

noise Study of reconstruction with different amount of additive Gaussian noise is presented in

Chapter 5.
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If 5% of a 2 w laser is used as the plane wave illumination beam after all necessary optics onto a

lcm by lcm field of view, the illumination beam power is 1000 w/ M2. We then add Poisson

noise to this results, assuming 0.1 sec exposure time.
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Fig. 3-9 Hologram formation with noise

(a) Camera plane intensity with unit magnitude field illumination for 100 nm diameter sphere.

(b) Intensity after magnification in photons with 10 um pixel size for 100 nm diameter sphere.

(c) Camera plane intensity from unit magnitude field illumination for 100 nm diameter 100 nm
height cylinder.

(d) Intensity after magnification in photons with 10 um pixel size for 100 nm diameter 100 nm
height cylinder.
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Chapter 4

Compressive Sampling and TwIST Optimization

Compressed sampling, also known as compressive sensing, is a signal processing technique

for reconstructing a signal from acquired data efficiently, by solving an underdetermined

system with the prior knowledge that the signal is sparse in a certain domain. In fact, this

method also requires the signal to be non-sparse in the measurement domain. This

transition from sparse to non-sparse helps to spread out the signal so that even if

measurements are taken below the conventional Nyqvist frequency, the target signal can

still be reconstructed via optimization.

4.1 General compressive sensing scheme

Candes and Romberg have proved conventional sampling rate requirement at above the Nyquist

rate might be too strict for sparse signals, which we have some prior knowledge .[6] With fewer
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number of measurements less than the Nyqvist rate, reconstruction of almost identical quality

signal is possible by solving a convex optimization problem

f(x) = IlAx - b112 + <b(x)

(4.1)

where A is the sensing or measurement matrix; it is oftentimes rectangular and contains more

columns than rows. x is the target we aim to reconstruct. b is the measured quantity and f( ) is

the convex function with an additional '(x) which helps us to achieve the desired optimization.

When a signal x is multiplied by A, because of the rectangular nature of A, the resulting number

of samples are less than the original number of samples of signal x this is in deed the

compression or under-sampling process. In general Ax = b cannot be directly solved if A is ill-

posed, which includes the case for both under and over determined system. Furthermore, noise

often makes our systems not solvable. For overdetermined system and systems that are not

solvable we can find an estimate least square solution i by minimizing the error term as shown

in equation 4.2. This process leads to a projection on to the A subspace in equation 4.3. The

minimization problem can also be solved by iterative approaches such as gradient decent,

conjugate gradient or Greedy algorithm if direct inverse of an operator cannot be computed.

min||As - b|| 2  (4.2)

x = (AT A)ATb (4.3)

b = A + n (4.4)
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where n is the noise or artifacts that goes into the measured data. However, for underdetermined

systems, we have infinitely many solutions. Knowing the fact that our desired solution is sparse,

we could find our the solution that has the fewest non zero entries for x.

For a noise free case (Ax = b), imaging that the signal sits in a higher dimensional space P, and

all solutions stays in a lower dimensional space Q. (Q is identical to the subspace of A). If i is

the sparsest solution in Q, it should have a very low dimensionality, which also means it can be

represented by a linear combination of the fewest number of unit vectors. Intuitively the solution

can be retrieved by minimizing Lo norm as shown in equation 4.5. However, implementing such

procedure is almost impossible because not only is it not convex, it is also polynomial-time

hard(NP-hard). Luckily, the non-convex minimizing problem can be circumvented by replacing

Lo norm with Li relaxation. In this relaxed case, instead of minimizing the number of non-zero

entries, we attempt to minimize the sum of all absolute value of the non-entries as shown in

equation 4.6.

= argminlIx||0 (4.5)

= argminjjxj| (4.6)

The intersection between Li space and the solution subspace minimizes Li norm and such .

along each axis yields the sparsest solution we desire as shown in Fig 4-1.
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Fig 4-1. Li minimization solution

When minimizing the convex least square error function together with the penalizing term, the

regularizing term 'I(x) is pre-multiplied by a constant A, also known as the weight parameter.

As the name suggests, this function controls how much the regularizer function is taken into

consideration comparing to the error function during optimization. Santosa and Symes , in 1986,

suggested the minimization of Li -norms to recover sparse spike trains [24].

As mentioned above, the first requirement for A is that it helps to spreads the originally sparse

signal in to a non sparse measurements so that the acquired data do not depend heavily on a

group of localized samples. Also, it is clear that matrix or operator A projects x to a much lower

dimensional space but if there exists two sparse signals xi and X2, which are both sparse but are

very far away in terms of distance from each other in the space. We essentially want very distinct

bi and b2 in the measurements. These fact leads to a general requirement for the sensing matrix.

A must satisfy the restricted isometry property (RIP).
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1-< IAxi-AX2 2 <1+6
1 IX - X21 2 (4.7)

where 6 is an arbitrary small value. This equation expresses the fact that the distance between

two signals are preserved after the sampling operator within a certain extend. RIP property of a

sensing operator guarantees the system does not explode from small perturbations of the signal

such as noise or artifacts because the distance between a clean signal and a noisier version is

small and the distance between two signals remains small after the sensing operation. If A

satisfies RIP, minimizing Lo norm returns the same solution as minimizing Li norm of x. [26]

For an underdetermined noise case, as described in equation 4.4, we minimize the Li norm for all

solutions that subject to equation (4.8). For any A satisfying RIP, equation (4.9) is automatically

satisfied.

||b - AxJ 2 < E (4.8)

11 - X112 < Ce (4.9)

where C is a constant that is close to unity. With small non-zero noise present, x may not be

exactly sparse. Thus we need to identify a well approximated which is sparse.
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4.2 Other recovery algorithms

Figure. 4-2 shows the essential problem we are hope to solve. Obviously, A is an

underdetermined system but if we know the exact locations of the non-zero entries, the

description of the system becomes simplified and oftentimes over determined. As mentioned

above for solving general overdetermined system in Figure 4-3, we can estimate the sparse

entries from equation (4.10)

Xr = (Ar Ar)-'Arb (4.10)

where Ar is the reduced measurement matrix that only contains columns corresponding to the

non-zero elements.

bA x

sparse
a c o p entes

Fig. 4-2 Forward compression process of sparse signal
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Fig. 4-3 Decompression process from known sparse entry locations

The key idea for resolve such problems is indeed making use of optimization searching

algorithms such as the Greedy algorithm, matching pursuit, iterative hard thresholding and

orthogonal matching. Such greedy algorithms use iterative searching approach to figure out

where the none-zero elements might be located.

4.3 Compressive holography

Small defects on TFT panels when illuminated a plane wave acts as point sources and the

scattered wave fronts are more or less spherical, wave propagation process spreads a point

excitement into a spherically symmetric field in space, which can be accurately approximated

using Fresnel propagation basis in the Fresnel zone. This assumption helps us to define a set of

forward and reverse sensing operators. Moreover, if we look at the scattering plane as an image,

the only bright locations should be where the defects presents and these locations are presumably
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sparse in the signal image because the majority part of the panel is expected to be clean and

smooth.

As explained in chapter 3, the free space propagation function takes the field information at

sample to the measurement plane and spreads out the very delta-like spiky signals. By using a

reference beam, the recorded hologram intensity resembles the field at the camera plane and is

non-sparse because of the spreading.

Having this in mind, we confidently claim that even if some pixels of the cameras malfunction,

we can still recover the sparse field at sample plane by compressive reconstruction algorithms.

We attempt to use compressive sensing algorithms for denoising the measurement and retrieve a

clean reconstruction of the electric field at the sample plane for describing the defects existence

and their locations.

The free-space propagation is a convolution process which becomes matrix multiplication is

Fourier domain. Thus, making use of the Discrete Fourier transform greatly simplifies the

description for the measurement A matrix. This is shown in equation (4.11).

F[ICCD + noise] oc H(u, v) - F[E1 ] (4.11)

it is obvious that

T-1 [71'(u, V)F[ICCD + noise]] c El (4.12)
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equation (4.12) allows us to directly obtain an estimation for the field right after the sample

plane. Although, this rough reconstruction carries all noises from camera measurement to the

reconstruction estimation, we still use this result as a reference for our optimized output.

where F indicates the discrete Fourier transform operation, H is the free-space propagation

kernel in frequency space and Ei is the electric field right after the sample plane.

Ei is the information we hope to recover from noisy measurement. Treating the DFT on the

camera measured intensity as a post processing of the signal. The sensing system A is indeed

A oc H(u, v) -F (4.13)

Also, Candes and Tao show that the discrete Fourier transform(DFT) matrix satisfies the RIP

requirement [25] so does the two dimensional Fast-Fourier-Transform(FFT) operator.

Additionally, the free-space propagation kernel also satisfies RIP because intuitively it does

nothing to the signal but spreading it out over propagation distance. Thus, a cascade of these

operators all satisfy the RIP requirement. The system becomes a linear inverse problem.

4.4 TwIST optimization

Two-step shrinkage/thresholding (TwIST) algorithm[27] is designed to solve linear inverse

problems with regularization. It is developed from original iterative shrinkage/thresholding (IST)

algorithm[30, 31, 32, 33, 34]. IST solves the problem in equation (4.1). More generally, the
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regularizing term is almost always pre-multiplied by a constant weight factor A which specifies

how much this penalizing term is taken into consideration and 2 is used as an energy matching

coefficient as shown in equation (4.14)

f(x) = - IAx - bH|2 + A&(x)
2 (4.14)

As explained previously in section 4.1, for Li minimization, D(x) is proper and convex; for any

proper and convex regularizing term f (x) is strictly convex and there exists a unique function

minimizer I (b) [30] that minimizesf(x). This is known as the Moreau proximal mapping of 4

[35, 36].

4I'A(b) = argminx{-I|Ax - bI12 + A)(x)}
2 (4.15)

IST algorithm iteratively searches for the estimate of x using equation (4.16).

XtI = (1 - /)xt + /3 FA xt - 1 AT (Axt - b)
a /(4.16)

where ,6 is the added weight from the minimizing function. Equation (4.17) shows the searching

process along the direction of the negative gradient of least squares.

- (||Axt - b||2) = AT (Axt - b)
OX (4.17)
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In order to solve the problem that IST becomes slow when A is very ill-conditioned and when ?

is small, Biouacs-Dias introduced an iterative reweighed shrinkage (IRS) method. However, this

method is worse than IST for mildly ill-conditioned A and for strong additive noise [37].

TwIST is a combination of IRS and IST, which updates the estimate x uses both estimates with

initial condition x1 = IFA (x0 ), xo is the initial guess for the solution and r,\ is a wrapper function

that uses the minimizing function 'FA as shown in.

IF (x) = T A (x + AT(b - Ax)) (4.18)

Then the iterative updating process uses the weighted average of solution estimates from

previous two steps and the function minimizer.

Xt+1 = (1 - a)xti1 + (a - #)xt + OIF A(xt) (4.19)

a and 8 are the weight constants and there exist an optimal choice for a and 8 [38]. As

demonstrated by Bioucas-Dias the convergence speed of TwIST is proved to be significantly

better than the single step IST approach as shown in Fig. 4-4. In order to achieve fast(desirably

in real time) signal processing from the measurements, our noisy measurements are processed by

TwIST using the compressive holography sensing model.
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Chapter 5

Compressive Reconstruction

Compressive reconstruction technique allows optimization from ill-conditioned systems.

Our forward simulation results primarily models system corrupted by noise. This chapter

investigates reconstruction quality compressive framework combined with automatic machine

decision and denoting parameter tuning. Due to the fact that the defects we aim to detect are

mostly point scatterers, Li regularizer is used to achieve optimization with sparsity constraint.

The key to a successful reconstruction depends on the total amount of noise from the system

comparing to the scattered signal strength.

5.1 Decision making for detection

The ultimate goal of using computer-assisted image is to automatically spot possible defects and

to indicate their possible locations. The denoised image are mostly black with sparse white pixels

as shown in Fig 5-1.
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Fig 5-1. TwIST direct output from 0.1 sec exposure with 5dB system Gaussian noise (Ground

truth: a cylinder with 200 nm diameter and 200 nm height)

Fig 5-1. is a normalized image for which the largest pixel value appears as pure white in the

displayed image and the smallest value is pure black.The black pixels are all very close to zero

and the white/gray pixels represent non-zero values, and the actual pixel value depends on the

scattering strength of defect and camera exposure time. When measured hologram is corrupted

by noise, the optimized reconstruction magnitude is oftentimes to some extend-off from a clean

reconstruction due to noise and regularization. Direct thresholding on the reconstructed pixel

value is difficult because the scattering characteristics of nano-scale particles not only depends

on their sizes but also their shapes[39]. TFT-panel manufacturing defects are mostly but not

necessarily cones or cylindrical; moreover, we hope to be able to inspect defects with a wide
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range of sizes (from ~0.1 um to -10 um). In stead of finding a strict threshold value for the

reconstruction, a better solution would be to located many possible defect locations using local

maximum filter and give up on the locations where the reconstructed signal is completely

indistinguishable from noise. Without using optimization, direct back propagation result from

equation (5.1) gives us information about the amount of noise in the field of view comparing to

the desired signal. Notice that, equation (5.1) is essentially the same model as TwIST

optimization except for the fact that it does not take care of noise. Fig. 5-2 shows a comparison

between these two results.

y- 1 [7H- 1 (U, V)T[ICCD + noise]] c El (5.1)
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Fig. 5-2 (a) TwIST reconstruction, (b) direct back propagation of the noisy hologram
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We name Fig. 5-2 (a) from TwIST a location map because it tells us the locations where there

more likely exist defects; this is shown in Fig. 5-3.

10
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40

50
10 20 30 40 50

Fig. 5-3 Location map from TwIST output

Fig. 5-2 (b) allows us to throw away locations we are not confident about. The defects are sparse,

so median value of Fig. 5-2 (b) can be a good descriptor for the average noise level. Here we

define another parameter CP which stands for confidence parameter. For convenience, we name

Fig. 5-2(b) a confidence map(CM).

fif: pixel value > median[CM] + CP -std[CM] keep the location

if: pixel value < median[CM] + CP -std[CM] ignore the location
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where std is the standard deviation operator. Depending on how confident we want our final

results to be, we can set our CP value. CP ranges from 1 to 5 in general; any CP value below 1

makes the second decision process useless. Setting CP to equal 2 we obtain Fig. 5-4

10

20
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40

50
10 20 30 40 50

pixel (10 um pix)

Fig. 5-4 Second decision making based on confidence

For this case, the second-step decision claims only the center spot in the location map lies a

defect while other locations are excluded as shown in Fig. 5-5.
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Fig. 5-5 Final decision on the possible location of defect.

This result above agrees with the ground truth that the only location with a defect is right at the

center of this field of view.

5.2 Auto denoising-parameter tuning

As one might have experienced, tuning parameters for algorithms oftentimes are experimental,

tedious and time consuming. The situation becomes worse, when we frequently change

measurement conditions such as having different defects, using different amount of illumination

or changing the exposure time. We hope to achieve a system that automatically finds a good set

78



of denoising parameters for each measurement; this auto parameter tuning ability makes the

algorithm more applicable to real-world inspection situations.

a and / in equation (4.16) are always the optimal values as suggested by Bioucas-Dias [38]. The

weight parameter X in equation (4.14) is associated to the standard deviation of the hologram.

Because standard deviation to some degree reflects the amount of noise in the system. These two

quantities are related by a simple proportional relationship in equation (5.3)

A = C -std[CM] (5.3)

CM is the confidence map same as defined in the previous section. C is a constant coefficient; it

is obtained from a test case with a single defect at the center of 50 x 50 field of view. For a

given noise level, we run the test case 1000 times and count the total true positives and false

alarms. The number of false alarms can be larger than 1000 because we can have multiple false

alarms in each single test.

As shown in Table 5.1, the blue dots represent the total false alarm counts out of 1000 tests for

the same test configuration as from section 5.1; the red dots indicate all true detection. SNR is

the magnitude of the spike at the center over the standard deviation of the amount of system

Gaussian noise. Due to the fact that the exposure time is fixed at this time, the amount of shot

noise is fixed.
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Table 5.1 Test counts for calibrating C value (0.1 sec exposure)
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Our algorithm uses two steps to eliminate false alarms. Therefore, we choose to use a more

conservative C value of 3 to eliminate a certain amount of possible locations and this ensures us

to have a good chance to not miss the true location where there is a defect.

5.3 Reconstruction results

Different exposure time determines the number of photons accumulate on CCD sensor during the

shot; this essentially determines the degree of influence due to shot noise. We present the

reconstruction result here with discrete exposure time values for the same test image. The

exposure time values ranges from 0.05 sec to 0.5 sec with 0.05 sec incremental. The test sample

is 200 nm diameter 200 nm height cylinder at the center of the field of view. The average

detection rate is calculated out of 1000 trials and is presented in Fig. 5-6. Fig.5-7 shows the false

alarm rate. Again, the false alarm rate can be greater than one because we could have multiple

false alarms triggered in the same test image. In Fig. 5-6 the signal-to-noise ratio is fixed to be 10

to model all other system noise.
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Fig. 5-6 Detection result with varying exposure time

According to the test, for defect of this size, we need at least 0.2 sec exposure time to achieve a

correction detection rate of higher than 95 percent.

Setting the exposure time to be 0.2 sec, which allows a decent scanning speed as well as a

acceptable detection rate, we vary the amount of added Gaussian noise to test how reliable this

framework is with different amount of system noise in addition to shot noise.
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Fig. 5-7 Detection rate test with varying system Gaussian noise

The result shows that when system SNR is below 8, the reconstruction quality starts to degrade.

Reconstruction results for a 100 nm diameter, 100 nm height cylinder at the center of field of

view is not as good as the larger defect, which is shown in Fig.5-8 and Fig. 5-9. The results show

insufficient reconstruction accuracy for 100 nm diameter 100 nm height cylinder.

Fig.5-8 shows that for smaller defect, 0.2 sec exposure time is not good enough for a decent

detection rate. At least, 1 sec exposure is required for a detection rate of 95 percent above. We

then fix the exposure time at 1 sec to test the noise resistance of our framework. 1 sec indeed is

very slow for industrial scan.
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Fig. 5-9 Detection rate test with varying system Gaussian noise for 100 nm diameter, 100 nm

height cylinder
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Fixing the exposure time and system SNR to be 0.2 sec and 10 respectively. We test the correct

detection rate with different size of cylindrical defects. According to results from Table 5.2, the

detection algorithm works better for larger defects as expected.

Table 5.2 Detection rate for cylindrical defect of different sizes.
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Diameter [nm] Height [nm] True positive rate

100 100 21.2%

100 200 43.5%

100 300 68.9%

200 100 91.5%

200 200 95.7%

200 300 97.4%

300 100 99.4%

300 200 100%

300 300 100%
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Chapter 6

Conclusion and future work

This thesis has explored using holographic technique combined with compressive framework,

filtering, smart parameter setting and thresholding techniques to perform computer visional

defect detection from numerical simulation results. It was demonstrated from previous chapters

that reconstruction and auto-detection of small defects are accurate for cylindrical defects of size

200 nm diameter and 200 nm height but not as effective for particles much smaller than this

scale. Mura defects generally ranges from 100 nm to several micrometer. The results show that

this auto-detection system should work properly for most defects except for the extremely small

ones.

Works in Chapter 3 demonstrated how utilizing Finite-difference time-domain numerical

technique could help to model and predict the end result on the camera sensor with known

physical model from Chapter 2. It is also verified that a point-spread function based convolution

method is able to solve far-field propagation problem from near-field simulation result much
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faster than far-field projection which solves the Green's identity. The convolution method also

offers the freedom to customize grid size (effective camera pixel size) at the detector plane. The

simulation framework considered two kinds of noise that could have an impact on defect

detection. Shot noise which is also known as the photon noise is modeled at the camera plane by

computing the number of photons on each pixel and enforce a poisson-distribution; we group all

other kinds of noise from this system in the form of random Gaussian. The intensity of system

Gaussian noise is described by signal-to-noise ratio where the strength of the signal is measured

from the pixel brightness from direction back-propagation estimation results with known pixel

location information and the strength of Gaussian noise is characterized by its standard deviation.

This model need further proof for its accuracy to specific image formation systems which

depends on their hardwares and optical setups because some noise is biased and may not be in

the form of Gaussian.

The work of Chapter 4 explains why compressive framework can be used for denoising with Li

regularizer. However, this is under the assumption that the panels are mostly clean which allows

the system a freedom to use the sparsity constraint in the reconstruction domain. Two-step

shrinkage/thresholding technique is implemented for its fast convergence property, and for its

effective denoising on signals with restricted isometry property [25].

Chapter 5 demonstrates the reconstruction results for defects larger than or on the scale of 200

nm diameter and 200 nm height cylinder are satisfactory. The exposure time required for this

kind of particle is 0.2 sec. This method targets at finding defects ranging from 100 nm to a few
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micrometer in characteristic length. The results indicate that if fast scanning is required,

reconstruction from particles on the scale of 100 nm may not be accurate and reliable.

In order to achieve real-time reconstruction on each field of view, the method needs to support

tiling for parallel computing; a better sequence of the work flow needs to be explored. Further

more, the accuracy, ultimate inspection speed and cost of this method could be compared with

other concurrent inspection techniques using real-world setups.
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