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MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Physics Department


Physics 8.286: The Early Universe April 6, 2000 
Prof. Alan Guth 

REVIEW PROBLEMS FOR QUIZ 3 

QUIZ DATE: Thursday, April 13, 2000 

COVERAGE: Lecture Notes 6; Lecture Notes 7; Problem Set 3; Michael Rowan-
Robinson, Cosmology (Third Edition), Chapters 4 and 5. One of the prob­
lems on the quiz will be taken verbatim (or at least almost verbatim) 
from either the homework assignment, or from this set of Review 
Problems. 

PURPOSE: These review problems are not to be handed in, but are being made 
available to help you study. They are all problems that I would consider fair 
for the coming quiz. Since Rowan-Robinson’s book has not previously been 
used as a text in 8.286, there are no review problems based on this reading. 
You should expect, however, that the quiz will include a set of questions based 
on this reading assignment. 

INFORMATION TO BE GIVEN ON QUIZ: 

The following material will be included on the quiz, so you need not memorize 
it. You should, however, make sure that you understand what these formulas mean, 
and how they can be applied. 

DOPPLER SHIFT: 

z = v/u (nonrelativistic, source moving) 

v/u 
z = (nonrelativistic, observer moving) 

1 − v/u 

1 +  α 
z = − 1 (special relativity, with α = v/c)

1 − α 

COSMOLOGICAL REDSHIFT: 

δobserved R(tobserved)1 +  z ≤ = 
δemitted R(temitted) 

COSMOLOGICAL EVOLUTION: 

Ṙ
�2 

8ξ kc2 

= Gν − 
R 3 R2 
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¨ 4ξ 3p 
� 

R = − G ν + R
3 c2 

EVOLUTION OF A FLAT (Ω � �/�c = 1)  UNIVERSE:  

R(t) � t2/3 (matter-dominated) 

R(t) � t1/2 (radiation-dominated) 

EVOLUTION OF A MATTER-DOMINATED 
UNIVERSE: 

Ṙ
�2 

8ξ kc2 

= Gν − 
R 3 R2 

¨ 4ξ 
R = − GνR 

3 

R3(ti )
ν(t) =  

R3 (t) 
ν(ti ) 

Closed (Ω > 1): ct = ∂(� − sin �) , 
R � = ∂(1 − cos �) , 
k 

4ξ GνR3 

where ∂ ≤ 
3 k3/2c2 

Open (Ω < 1): ct = ∂ (sinh � − �) 
R � = ∂ (cosh � − 1) ,
θ 

4ξ GνR3 

where ∂ ≤ 
θ3/2 2 

,
3 c

θ ≤ −k .  

ROBERTSON-WALKER METRIC: ⎩ ⎭ 
dr2 � � 

ds2 = −c 2 dπ 2 = −c 2 dt2 + R2(t) + r 2 d�2 + sin2 � dβ2

1 − kr2 

SCHWARZSCHILD METRIC: 

2GM 2GM 
�−1 

ds2 = −c 2dπ 2 = − 1 − c 2dt2 + 1 − dr2 

rc2 rc2 

+ r 2 d�2 + r 2 sin2 � dβ2 , 
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GEODESIC EQUATION: ⎩ ⎭ 
d dxj 1 dxk dx� 

gij = 
2

(�i gk�)
ds ds ds ds ⎩ ⎭ 
d dxγ 1 dx� dxλ 

or: gµγ = 
2

(�µ g�λ )
dπ dπ dπ dπ 

PHYSICAL CONSTANTS: 

k = Boltzmann’s constant = 1.381 × 10−16 erg/K 

= 8.617 × 10−5 eV/K , 

h
h̄ = = 1.055 × 10−27 erg-sec 

2ξ


= 6.582 × 10−16 eV-sec ,


c = 2.998 × 1010 cm/sec


1 eV  =  1.602 × 10−12 erg .


BLACK-BODY RADIATION: 

ξ2 (kT )4 

u = g (energy density) 
30 (h̄c)3


1

p = − u ν = u/c 2 (pressure, mass density) 

3 

n = g � τ(3) (kT )3 

(number density) 
ξ2 (h̄c)3 

2ξ2 k4T 3 

s = g 
hc)3 

, (entropy density) 
45 (¯

where 

1 per spin state for bosons (integer spin) 
g ≤ 

7/8 per spin state for fermions (half-integer spin) 

1 per spin state for bosons 
g � ≤ 

3/4 per spin state for fermions , 
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and 
1 1 1 

τ(3) = 
13 

+ + + · · ·  �  1.202 .
23 33 

EVOLUTION OF A FLAT RADIATION-DOMINATED 
UNIVERSE: � 

h3 5 �1/4
45¯	 c 1 

kT =	 �
16ξ3gG t 

For mµ = 106 MeV ≈ kT ≈ me = 0.511 MeV, g = 10.75 and 
then 

0.860 MeV 
kT = � 

t (in sec) 

PROBLEM 1: TRACING LIGHT RAYS IN A CLOSED, MATTER­
DOMINATED UNIVERSE (30 points) 

The following problem was Problem 3, Quiz 2, 1998. 

The spacetime metric for a homogeneous, isotropic, closed universe is given by 
the Robertson-Walker formula: ⎩	 ⎭ 

dr2 � � 
ds2 = −c 2 dπ 2 = −c 2 dt2 + R2 (t) + r 2 d�2 + sin2 � dβ2 ,

21 − r

where I have taken k = 1. To discuss motion in the radial direction, it is more 
convenient to work with an alternative radial coordinate �, related to r by 

r = sin  � .  

Then 
dr � = d� ,

1 − r2 

so the metric simplifies to 

ds2 = −c 2 dπ 2 = −c 2 dt2 + R2 (t) d�2 + sin2 � d�2 + sin2 � dβ2 . 

(a)	 (7 points) A light pulse travels on a null trajectory, which means that dπ = 0  
for each segment of the trajectory. Consider a light pulse that moves along 
a radial line, so � = β = constant. Find an expression for d�/dt in terms of 
quantities that appear in the metric. 

(b)	 (8 points) Write an expression for the physical horizon distance �phys at time 
t. You should leave your answer in the form of a definite integral. 
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The form of R(t) depends on the content of the universe. If the universe is matter-
dominated (i.e., dominated by nonrelativistic matter), then R(t) is described by 

the parametric equations 

ct = ∂(� − sin �) , 

R = ∂(1 − cos �) , 

where 

4ξ GνR3 

∂ ≤ 
23	 c

. 

These equations are identical to those on the front of the exam, except that I have 

chosen k = 1.  

(c)	 (10 points) Consider a radial light-ray moving through a matter-dominated 

closed universe, as described by the equations above. Find an expression for 

d�/d�, where  � is the parameter used to describe the evolution. 

(d)	 (5 points) Suppose that a photon leaves the origin of the coordinate system 

(� = 0)  at  t = 0. How long will it take for the photon to return to its starting 

place? Express your answer as a fraction of the full lifetime of the universe, 
from big bang to big crunch. 

PROBLEM 2: LENGTHS AND AREAS IN A TWO-DIMENSIONAL 

METRIC (25 points) 

The following problem was Problem 3, Quiz 2, 1994: 

Suppose a two dimensional space, described in polar coordinates (r, �), has a 

metric given by 

ds2 = (1  +  ar)2 dr2 + r 2 (1 + br)2 d�2 , 

where a and b are positive constants. Consider the path in this space which is 

formed by starting at the origin, moving along the � = 0 line to r = r0, then  

moving at fixed r to � = ξ/2, and then moving back to the origin at fixed �. The  
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path is shown below: 

a) (10 points) Find the total length of this path. 

b) (15 points) Find the area enclosed by this path. 

PROBLEM 3: GEOMETRY IN A CLOSED UNIVERSE (25 points) 

The following problem was Problem 4, Quiz 2, 1988: 

Consider a universe described by the Robertson–Walker metric on the first page 
of the quiz, with k = 1. The questions below all pertain to some fixed time t, so  
the scale factor can be written simply as R, dropping its explicit t-dependence. 

A small rod has one end at the point (r = a, � = 0, β = 0) and the other end 
at the point (r = a, � = ��, β = 0). Assume that �� ∝ 1. 
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(a) Find the physical distance �p from the origin (r = 0) to the first end (a, 0, 0) 
of the rod. You may find one of the following integrals useful: 

dr � = sin−1 r 
1 − r2 

dr 1 1 +  r 
= 

1 − r2 2
ln 

1 − r
. 

(b) Find the physical length sp of the rod. Express your answer in terms of the 
scale factor R, and  the  coordinates  a and ��. 

(c) Note that �� is the angle subtended by the rod, as seen from the origin. Write 
an expression for this angle in terms of the physical distance �p, the physical 
length sp, and the scale factor R. 

PROBLEM 4: THE GENERAL SPHERICALLY SYMMETRIC MET­
RIC (20 points) 

The following problem was Problem 3, Quiz 2, 1986: 

The metric for a given space depends of course on the coordinate system which 
is used to describe it. It can be shown that for any three dimensional space which 
is spherically symmetric about a particular point, coordinates can be found so that 
the metric has the form 

ds2 = dr2 + ν2(r) d�2 + sin2 � dβ2

for some function ν(r). The coordinates � and β have their usual ranges: � varies 
between 0 and ξ, and  β varies from 0 to 2ξ, where  β = 0  and  β = 2ξ are identified. 
Given this metric, consider the sphere whose outer boundary is defined by r = r0 . 

(a) Find the physical radius a of the sphere. (By “radius”, I mean the physical 
length of a radial line which extends from the center to the boundary of the 
sphere.) 

(b) Find the physical area of the surface of the sphere. 

(c) Find an explicit expression for the volume of the sphere.	 Be sure to include 
the limits of integration for any integrals which occur in your answer. 

(d) Suppose a new radial coordinate ρ is introduced, where ρ is related to r by 

ρ = r 2 . 

Express the metric in terms of this new variable. 



8.286 QUIZ 3 REVIEW PROBLEMS, SPRING 2000	 p. 8 

PROBLEM 5: VOLUMES IN A ROBERTSON-WALKER UNIVERSE 
(20 points) 

The following problem was Problem 1, Quiz 3, 1990: 

The metric for a Robertson-Walker universe is given by ⎩	 ⎭ 
dr2 � � 

ds2 = R2(t) + r 2 d�2 + sin2 � dβ2 .
1 − kr2 

Calculate the volume V (rmax ) of the sphere described by 

r ∞ rmax . 

You should carry out any angular integrations that may be necessary, but you may 
leave your answer in the form of a radial integral which is not carried out. Be sure, 
however, to clearly indicate the limits of integration. 

PROBLEM 6: THE SCHWARZSCHILD METRIC (25 points) 

The follow problem was Problem 4, Quiz 3, 1992: 

The space outside a spherically symmetric mass M is described by the Schwarz­
schild metric, given at the front of the exam. Two observers, designated A and B, 
are located along the same radial line, with values of the coordinate r given by rA 

and rB , respectively, with rA < rB . You should assume that both observers lie 
outside the Schwarzschild horizon. 

a)	 (5 points) Write down the expression for the Schwarzschild horizon radius RSch, 
expressed in terms of M and fundamental constants. 

b)	 (5 points) What is the proper distance between A and B? It  is  okay  to  leave  
the answer to this part in the form of an integral that you do not evaluate— 
but be sure to clearly indicate the limits of integration. 

c)	 (5 points) Observer A has a clock that emits an evenly spaced sequence of ticks, 
with proper time separation �πA. What will be the coordinate time separation 
�tA between these ticks? 

d)	 (5 points) At each tick of A’s clock, a light pulse is transmitted. Observer B 
receives these pulses, and measures the time separation on his own clock. What 
is the time interval �πB measured by B. 

e)	 (5 points) Suppose that the object creating the gravitational field is a static 
black hole, so the Schwarzschild metric is valid for all r. Now suppose that one 
considers the case in which observer A lies on the Schwarzschild horizon, so 
rA ≤ RSch. Is the proper distance between A and B finite for this case? Does 
the time interval of the pulses received by B, �πB , diverge in this case? 
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PROBLEM 7: GEODESICS (20 points) 

The following problem was Problem 4, Quiz 2, 1986: 

Ordinary Euclidean two-dimensional space can be described in polar coordi­
nates by the metric 

ds2 = dr2 + r 2 d�2 . 

(a) Suppose that r(δ) and  �(δ) describe a geodesic in this space, where the para­
meter δ is the arc length measured along the curve. Use the general formula 
on the front of the exam to obtain explicit differential equations which r(δ) 
and �(δ) must obey. 

(b) Now introduce the usual Cartesian coordinates, defined by 

x = r cos � ,  

y = r sin � .  

Use your answer to (a) to show that the line y = 1 is a geodesic curve. 

PROBLEM 8: METRIC OF A STATIC GRAVITATIONAL FIELD (30 
points) 

The following problem was Problem 2, Quiz 3, 1990: 

In this problem we will consider the metric 

3 � � 
dxi 
�2 

ds2 = − 
� 
c 2 + 2β(�x) dt2 + ,ST 

i=1 

which describes a static gravitational field. Here i runs from 1 to 3, with the 
identifications x1 ≤ x, x2 ≤ y, and  x3 ≤ z. The function β(�x) depends only on the 

1spatial variables �x ≤ (x , x2 , x3 ), and not on the time coordinate t. 

(a) Suppose that a radio transmitter, located at �xe , emits a series of evenly spaced 
pulses. The pulses are separated by a proper time interval �Te, as measured 
by a clock at the same location. What is the coordinate time interval �te 

between the emission of the pulses? (I.e., �te is the difference between the 
time coordinate t at the emission of one pulse and the time coordinate t at the 
emission of the next pulse.) 

(b) The pulses are received by an observer at �xr , who measures the time of arrival 
of each pulse. What is the coordinate time interval �tr between the reception 
of successive pulses? 
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(c) The observer uses his own clocks to measure the proper time interval �Tr 

between the reception of successive pulses. Find this time interval, and also 
the redshift z, defined by 

�Tr1 +  z =
�Te 

. 

First compute an exact expression for z, and then expand the answer to lowest 
order in β(�x) to obtain a weak-field approximation. (This weak-field approxi­
mation is in fact highly accurate in all terrestrial and solar system applications.) 

(d) A freely falling particle travels on a spacetime geodesic xµ (π ), where π is the 
proper time. (I.e., π is the time that would be measured by a clock moving 
with the particle.) The trajectory is described by the geodesic equation 

d dxγ 1 dx� dxλ 

gµγ = 
2

(�µ g�λ ) ,
dπ dπ dπ dπ 

where the Greek indices (µ, κ, δ, ρ, etc.) run from 0 to 3, and are summed over 
when repeated. Calculate an explicit expression for 

id2x

dπ 2 
, 

valid for i = 1, 2, or 3. (It is acceptable to leave quantities such as dt/dπ or 
dxi /dπ in the answer.) 

PROBLEM 9: GEODESICS ON THE SURFACE OF A SPHERE 

In this problem we will test the geodesic equation by computing the geodesic 
curves on the surface of a sphere. We will describe the sphere as in Lecture Notes 
6, with metric given by 

2 
� 

ds2 = a d�2 + sin2 � dβ2 . 

(a) Clearly one geodesic on the sphere is the equator, which can be parametrized 
by � = ξ/2 and  β = �, where  � is a parameter which runs from 0 to 2ξ. 
Show that if the equator is rotated by an angle ∂ about the x-axis, then the 
equations become: 

cos � = sin  � sin ∂ 

tan β = tan  � cos ∂ .  

(b) Using the generic form of the geodesic equation on the front of the exam, derive 
the differential equation which describes geodesics in this space. 

(c) Show that the expressions in (a) satisfy the differential equation for the geo­
desic. Hint: The algebra on this can be messy, but I found things were reason­
ably simple if I wrote the derivatives in the following way: 

d� cos � sin ∂ dβ cos ∂ 
, = 

d� 
= − � 

1 − sin2 � sin2 ∂ d� 1 − sin2 � sin2 ∂
. 
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PROBLEM 10: NUMBER DENSITIES IN THE COSMIC BACK­
GROUND RADIATION 

Today the temperature of the cosmic microwave background radiation is 2.7�K. 
Calculate the number density of photons in this radiation. What is the number 
density of thermal neutrinos left over from the big bang? 

PROBLEM 11: PROPERTIES OF BLACK-BODY RADIATION (25 
points) 

The following problem was Problem 4, Quiz 3, 1998. 

In answering the following questions, remember that you can refer to the for­
mulas at the front of the exam. Since you were not asked to bring calculators, you 
may leave your answers in the form of algebraic expressions, such as ξ32 / 5τ(3). 

(a)	 (5 points) For the black-body radiation (also called thermal radiation) of pho­
tons at temperature T , what is the average energy per photon? 

(b)	 (5 points) For the same radiation, what is the average entropy per photon? 

(c)	 (5 points) Now consider the black-body radiation of a massless boson which has 
spin zero, so there is only one spin state. Would the average energy per particle 
and entropy per particle be different from the answers you gave in parts (a) 
and (b)? If so, how would they change? 

(d)	 (5 points) Now consider the black-body radiation of electron neutrinos. These 
particles are fermions with spin 1/2, and we will assume that they are massless 
and have only one possible spin state. What is the average energy per particle 
for this case? 

(e)	 (5 points) What is the average entropy per particle for the black-body radiation 
of neutrinos, as described in part (d)? 

PROBLEM 12: A NEW SPECIES OF LEPTON 

The following problem was Problem 2, Quiz 3, 1992, worth 25 points. 

Suppose the calculations describing the early universe were modified by includ­
ing an additional, hypothetical lepton, called an 8.286ion. The 8.286ion has roughly 
the same properties as an electron, except that its mass is given by mc2 = 0.750 
MeV. 

Parts (a)-(c) of this question require numerical answers, but since you were 
not told to bring calculators, you need not carry out the arithmetic. Your answer 
should be expressed, however, in “calculator-ready” form— that is, it should be an 
expression involving pure numbers only (no units), with any necessary conversion 
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factors included. (For example, if you were asked how many meters a light pulse in 
vacuum travels in 5 minutes, you could express the answer as 2.998 × 108 × 5 × 60.) 

a)	 (5 points) What would be the number density of 8.286ions, in particles per 
cubic meter, when the temperature T was given by kT = 3  MeV?  

b)	 (5 points) Assuming (as in the standard picture) that the early universe is 
accurately described by a flat, radiation-dominated model, what would be the 
value of the mass density at t = .01 sec? You may assume that 0.75 MeV ∝ 
kT ∝ 100 MeV, so the particles contributing significantly to the black-body 
radiation include the photons, neutrinos, e+-e− pairs, and 8.286ion-anti8286ion 
pairs. Express your answer in the units of gm-cm−3 . 

c)	 (5 points) Under the same assumptions as in (b), what would be the value of 
kT , in MeV, at  t = .01 sec? 

The following part is not appropriate for Quiz 3 of this year (2000), as we have not 
yet studied nucleosynthesis: 

d)	 (5 points) When nucleosynthesis calculations are modified to include the effect 
of the 8.286ion, is the production of helium increased or decreased? Explain 
your answer in a few sentences. 

e)	 (5 points) Suppose the neutrinos decouple while kT ≈ 0.75 MeV. If the 
8.286ions are included, what does one predict for the value of Tγ /Tγ today? 
(Here Tγ denotes the temperature of the neutrinos, and Tγ denotes the tem­
perature of the cosmic background radiation photons.) 

PROBLEM 13: FREEZE-OUT OF MUONS 

The following problem was Problem 3, Quiz 3, 1990, where it was worth 30pts: 

A particle called the muon seems to be essentially identical to the electron, 
except that it is heavier— the mass/energy of a muon is 106 MeV, compared to 
0.511 MeV for the electron. The muon (µ− ) has the same charge as an electron, 
denoted by −e. There is also an antimuon (µ+), analogous to the positron, with 
charge +e. The muon and antimuon have the same spin as the electron. There is 
no known particle with a mass between that of an electron and that of a muon. 

(a) The black-body radiation formula, as shown at the front of this quiz, is written 
in terms of a normalization constant g. What is the value of g for the muons, 
taking µ+ and µ− together? 

(b) When kT is just above 106 MeV as the universe cools, what particles besides 
the muons are contained in the thermal radiation that fills the universe? What 
is the contribution to g from each of these particles? 

(c) As kT falls below 106 MeV, the muons disappear from the thermal equilibrium 
radiation. At these temperatures all of the other particles in the black-body 
radiation are interacting fast enough to maintain equilibrium, so the heat given 
off from the muons is shared among all the other particles. Letting R denote the 
Robertson-Walker scale factor, by what factor does the quantity RT increase 
when the muons disappear? 
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PROBLEM 14: THE EFFECT OF PRESSURE ON COSMOLOGICAL 
EVOLUTION (20 points) 

The following problem was Problem 3, Quiz 3, 1998. 

A radiation-dominated universe behaves differently from a matter-dominated 
universe because the pressure of the radiation is significant. In this problem we 
explore the role of pressure for several fictitious forms of matter. 

(a)	 (10 points) For the first fictitious form of matter, the mass density ν decreases 
as the scale factor R(t) grows, with the relation 

1 
ν(t) � 

R5 (t) 
. 

What is the pressure of this form of matter? [Hint: the answer is proportional 
to the mass density.] 

(b)	 (5 points) Find the behavior of the scale factor R(t) for a flat universe dom­
inated by the form of matter described in part (a). You should be able to 
determine the function R(t) up to a constant factor. 

(c)	 (5 points) Now consider a universe dominated by a different form of fictitious 
matter, with a pressure given by 

1 
p = νc2 .

6 

As the universe expands, the mass density of this form of matter behaves as 

1 
ν(t) � 

Rn(t) 
. 

Find the power n. 
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SOLUTIONS


PROBLEM 1: TRACING LIGHT RAYS IN A CLOSED, MATTER­
DOMINATED UNIVERSE 

(a) Since � = β = constant, d� = dβ = 0, and for light rays one always has dπ = 0.  
The line element therefore reduces to 

0 =  −c 2 dt2 + R2 (t)d�2 . 

Rearranging gives � �2
d� c2 

= 
dt R2 (t) 

, 

which implies that 

d� c 
dt 

= ± 
R(t) 

. 

The plus sign describes outward radial motion, while the minus sign describes 
inward motion. 

(b) The maximum value of the � coordinate that can be reached by time t is found 
by integrating its rate of change: 

t c 
�hor = dt� . 

R(t� )0 

The physical horizon distance is the proper length of the shortest line drawn at 
the time t from the origin to � = �hor, which according to the metric is given 
by 

� t� τ=τhor 
� τhor c 

�phys(t) =  ds = R(t) d� = R(t) 
R(t� ) 

dt� . 
τ=0 0 0 

(c) From part (a), 
d� c 

= 
dt R(t) 

. 

By differentiating the equation ct = ∂(� − sin �) stated in the problem, one 
finds 

dt ∂ 
= (1 − cos �) . 

d� c 
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Then 
d� 

= 
d� dt 

= 
∂(1 − cos �) 

d� dt d� R(t) 
. 

Then using R = ∂(1 − cos �), as stated in the problem, one has the very simple 
result 

d� 
= 1  . 

d� 

(d) This part is very simple if one knows that � must change by 2ξ before the 
photon returns to its starting point. Since d�/d� = 1, this means that � must 
also change by 2ξ. From  R = ∂(1 − cos �), one can see that R returns to zero 
at � = 2ξ, so this is exactly the lifetime of the universe. So, 

Time for photon to return 
= 1  .

Lifetime of universe 

If it is not clear why � must change by 2ξ for the photon to return to 
its starting point, then recall the construction of the closed universe that was 
used in Lecture Notes 6. The closed universe is described as the 3-dimensional 
surface of a sphere in a four-dimensional Euclidean space with coordinates 
(x, y, z, w): 

2 2 x 2 + y 2 + z 2 + w = a , 

where a is the radius of the sphere. The Robertson-Walker coordinate system 
is constructed on the 3-dimensional surface of the sphere, taking the point 
(0, 0, 0, 1) as the center of the coordinate system. If we define the w-direction 
as “north,” then the point (0, 0, 0, 1) can be called the north pole. Each point 
(x, y, z, w) on the surface of the sphere is assigned a coordinate �, defined to be 
the angle between the positive w axis and the vector (x, y, z, w). Thus � = 0  
at the north pole, and � = ξ for the antipodal point, (0, 0, 0, −1), which can be 
called the south pole. In making the round trip the photon must travel from 
the north pole to the south pole and back, for a total range of 2ξ. 

Discussion: Some students answered that the photon would return in the life­
time of the universe, but reached this conclusion without considering the details 
of the motion. The argument was simply that, at the big crunch when the scale 
factor returns to zero, all distances would return to zero, including the distance 
between the photon and its starting place. This statement is correct, but it does 
not quite answer the question. First, the statement in no way rules out the pos­
sibility that the photon might return to its starting point before the big crunch. 
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Second, if we use the delicate but well-motivated definitions that general rel­
ativists use, it is not necessarily true that the photon returns to its starting 
point at the big crunch. To be concrete, let me consider a radiation-dominated 
closed universe—a hypothetical universe for which the only “matter” present 
consists of massless particles such as photons or neutrinos. In that case (you 
can check my calculations) a photon that leaves the north pole at t = 0 just 
reaches the south pole at the big crunch. It might seem that reaching the south 
pole at the big crunch is not any different from completing the round trip back 
to the north pole, since the distance between the north pole and the south pole 
is zero at t = tCrunch, the time of the big crunch. However, suppose we adopt 
the principle that the instant of the initial singularity and the instant of the 
final crunch are both too singular to be considered part of the spacetime. We 
will allow ourselves to mathematically consider times ranging from t = σ to 
t = tCrunch − σ, where  σ is arbitrarily small, but we will not try to describe 
what happens exactly at t = 0  or  t = tCrunch. Thus, we now consider a photon 
that starts its journey at t = σ, and we follow it until t = tCrunch − σ. For  the  
case of the matter-dominated closed universe, such a photon would traverse 
a fraction of the full circle that would be almost 1, and would approach 1 as 
σ � 0. By contrast, for the radiation-dominated closed universe, the photon 
would traverse a fraction of the full circle that is almost 1/2, and it would 
approach 1/2 as σ � 0. Thus, from this point of view the two cases look very 
different. In the radiation-dominated case, one would say that the photon has 
come only half-way back to its starting point. 

PROBLEM 2: LENGTHS AND AREAS IN A TWO-DIMEN-
SIONAL METRIC 

a) Along the first segment d� = 0,  so  ds2 = (1  +  ar)2 dr2 , or  ds = (1  +  ar) dr. 
Integrating, the length of the first segment is found to be 

r0 1 2S1 = (1 + ar) dr = r0 + 2 
ar0 . 

0 

Along the second segment dr = 0,  so  ds = r(1 + br) d�, where  r = r0. So  the  
length of the second segment is � �/2 ξ 

S2 = r0(1 + br0 ) d� = r0 (1 + br0 ) .20 

Finally, the third segment is identical to the first, so S3 = S1. The total length 
is then � 

ξ1 2 

� 

S = 2S1 + S2 = 2  r0 + 2 
ar0 + r0 (1 + br0 )2 

� ξ � 1 2= 2 +
2 

r0 + 
2
(2a + ξb)r0 . 
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b) To find the area, it is best to divide the region into concentric strips as shown: 

Note that the strip has a coordinate width of dr, but the distance across the 
width of the strip is determined by the metric to be 

dh = (1  +  ar) dr . 

The length of the strip is calculated the same way as S2 in part (a): 

ξ 
s(r) =  r(1 + br) .

2 

The area is then 
dA = s(r) dh , 

so 
r0 

A = s(r) dh 
0

0 

r0 ξ 
= r(1 + br)(1 + ar) dr

2 
r0ξ 

[r + (a + b)r 2 + abr3 ] dr= 
2 0 

⎧ ⎫

ξ 1 3

0 
1 
3
(a + b)r 

1
 4
0+ + abr=
 2

0r2 2 4 
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PROBLEM 3: GEOMETRY IN A CLOSED UNIVERSE 

(a) As one moves along a line from the origin to (a, 0, 0), there is no variation in � 
or β. So  d� = dβ = 0,  and 


Rdr 

ds = � . 

21 − r

So 

a Rdr  
�p = � = R sin−1 a .  

1 − r2 
0 

(b)  In this case  it  is only  � that varies, so dr = dβ = 0.  So  

ds = Rr d� , 

so 

sp = Ra �� .  

(c) From part (a), one has 
a = sin(�p/R) . 

Inserting this expression into the answer to (b), and then solving for ��, one  
has 

�� = 
sp 

R sin(�p/R) 
. 

Note that as R � �, this approaches the Euclidean result, �� = sp/�p. 

PROBLEM 4: THE GENERAL SPHERICALLY SYMMETRIC MET­
RIC 

(a) The metric is given by 

ds2 = dr2 + ν2(r) d�2 + sin2 � dβ2 . 

The radius a is defined as the physical length of a radial line which extends 
from the center to the boundary of the sphere. The length of a path is just the 
integral of ds, so  

a = ds . 
radial path from 
origin to r0 
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The radial path is at a constant value of � and β, so  d� = dβ = 0,  and  then  
ds = dr. So  

r0 

a = dr = r0 . 
0 

(b) On the surface r = r0, so  dr ≤ 0. Then 

ds2 = ν2(r0 ) d�2 + sin2 � dβ2 . 

To find the area element, consider first a path obtained by varying only �. 
Then ds = ν(r0 ) d�. Similarly, a path obtained by varying only β has length 
ds = ν(r0 ) sin  � dβ. Furthermore, these two paths are perpendicular to each 
other, a fact that is incorporated into the metric by the absence of a dr d� 
term. Thus, the area of a small rectangle constructed from these two paths is 
given by the product of their lengths, so 

dA = ν2(r0 ) sin  � d� dβ  .  

The area is then obtained by integrating over the range of the coordinate 
variables: � 2� 

A = ν2(r0 ) dβ sin � d�  
0 0 

= ν2(r0 )(2ξ) − cos �� 
0 

=→ A = 4ξν2 (r0 ) . 

As a check, notice that if ν(r) =  r, then the metric becomes the metric of 
Euclidean space, in spherical polar coordinates. In this case the answer above 
becomes the well-known formula for the area of a Euclidean sphere, 4ξr2 . 

(c) As in Problem 2 of Problem Set 3 (2000), we can imagine breaking up the 
volume into spherical shells of infinitesimal thickness, with a given shell ex­
tending from r to r + dr. By the previous calculation, the area of such a shell is 
A(r) =  4ξν2(r). (In the previous part we considered only the case r = r0 , but 
the same argument applies for any value of r.) The thickness of the shell is just 
the path length ds of a radial path corresponding to the coordinate interval dr. 
For radial paths the metric reduces to ds2 = dr2 , so the thickness of the shell 
is ds = dr. The volume of the shell is then 

dV = 4ξν2(r) dr . 
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The total volume is then obtained by integration: 

r0 

V = 4ξ ν2 (r) dr . 
0 

Checking the answer for the Euclidean case, ν(r) =  r, one sees that it gives 
3V = (4ξ/3)r0 , as expected. 

(d) If r is replaced by a new coordinate ρ ≤ r2 , then the infinitesimal variations of 
the two coordinates are related by 

dρ � 
= 2r = 2  ρ ,

dr 

so 
dρ2 

dr2 = 
4ρ

. 

The function ν(r) can then be written as ν( ρ ), so 

dρ2 � � 
ds2 = + ν2 ( ρ ) d�2 + sin2 � dβ2

� 
.

4ρ 

PROBLEM 5: VOLUMES IN A ROBERTSON-WALKER UNIVERSE 

The product of differential length elements corresponding to infinitesimal 
changes in the coordinates r, � and β equals the differential volume element dV . 
Therefore 

dr 
dV = R(t) � × R(t)rd� × R(t)r sin �dβ 

1 − kr2 

The total volume is then � rmax 
� � � 2� r2 sin � 

V = dV = R3 (t) dr d� dβ � 
0 0 0 1 − kr2 

We can do the angular integrations immediately: 

rmax r2 dr 
V = 4ξR3(t) � . 

0 1 − kr2 
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[Pedagogical Note: If you don’t see through the solutions above, then note that the 
volume of the sphere can be determined by integration, after first breaking the 
volume into infinitesimal cells. A generic cell is shown in the diagram below: 

The cell includes the volume lying between r and r + dr, between � and � + d�, 
and between β and β + dβ. In the limit as dr, d�, and  dβ all approach zero, 
the cell approaches a rectangular solid with sides of length: 

dr 
ds1 = R(t) � 

1 − kr2 

ds2 = R(t)r d�  

ds3 = R(t)r sin � d�  .  

Here each ds is calculated by using the metric to find ds2, in each case allowing 
only one of the quantities dr, d�, or  dβ to be nonzero. The infinitesimal volume 
element is then dV = ds1 ds2 ds3, resulting in the answer above. The derivation 
relies on the orthogonality of the dr, d�, and  dβ directions; the orthogonality 
is implied by the metric, which otherwise would contain cross terms such as 
dr d�.] 

[Extension: The integral can in fact be carried out, using the substitution 

k r  = sin  � (if k >  0) 

−k r  = sinh  � (if k >  0). 
The answer is � � �� � ⎨ ⎣ ⎣ ⎣ sin−1 k rmax 1 − kr2 ⎣ max ⎬ ⎣ 2ξR3 (t) 

k3/2 
− ⎪ (if k >  0)⎣ ⎡ k


V =
⎣ �� �� �� ⎣ ⎣ 1 − kr2 sinh−1 −k rmax ⎣ max −⎣ ⎣ 2ξR3 (t) (if k <  0) .] � (−k) (−k)3/2 
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PROBLEM 6: THE SCHWARZSCHILD METRIC 

a) The Schwarzschild horizon is the value of r for which the metric becomes sin­
gular. Since the metric contains the factor 

2GM
1 − 

rc2 
, 

it becomes singular at 

2GM 
RSch = 

2 
. 

c

b) The separation between A and B is purely in the radial direction, so the proper 
length of a segment along the path joining them is given by 

2GM 
�−1 

ds2 = 1 − dr2 , 
rc2 

so 
dr 

ds = � . 
1 − 2GM 

2rc

The proper  distance from  A to B is obtained by adding the proper lengths of 
all the segments along the path, so 

rB dr 
sAB = � . 

1 − 2GMrA 2rc

EXTENSION: The integration can be carried out explicitly. First use the 
expression for the Schwarzschild radius to rewrite the expression for sAB as 

rB r dr  
sAB = � . 

rA r − RSch 

Then introduce the hyperbolic trigonometric substitution 

r = RSch cosh2 u .  

One then has 
r − RSch = RSch sinh u 
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dr = 2RSch cosh u sinh u du  ,  

and the indefinite integral becomes 

r dr  � = 2RSch cosh2 u du 

r − RSch


= RSch (1 + cosh 2u)du 

1 
= RSch u + sinh 2u

2 

= RSch(u + sinh  u cosh u) 

= RSch sinh−1 r − 1 + r(r − RSch) . 
RSch 

Thus, ⎧ � � � �⎫  
rA 

sAB = RSch sinh−1 rB − 1 − sinh−1 − 1 
RSch RSch 

+ rB (rB − RSch) − rA (rA − RSch) . 

c) A tick of the clock and the following tick are two events that differ only in their 
time coordinates. Thus, the metric reduces to 

2GM −c 2dπ 2 = − 1 − c 2dt2 , 
rc2 

so �

2GM


dπ = 1 − dt . 
rc2 

The reading on the observer’s clock corresponds to the proper time interval dπ , 
so the corresponding interval of the coordinate t is given by 

�πA�tA = � . 
1 − 2GM 

2rA c

d) Since the Schwarzschild metric does not change with time, each pulse leaving 
A will  take  the same length  of time to  reach  B. Thus, the pulses emitted by A 
will arrive at B with a time coordinate spacing 

�πA�tB = �tA = � . 
1 − 2GM 

2rA c



� 

� � 

� � 

� � 

� � 

� 

8.286 QUIZ 3 REVIEW PROBLEM SOLUTIONS, SPRING 2000 p. 24 

The clock at B, however, will read the proper time and not the coordinate 
time. Thus, 

2GM
�πB = 1 − 

2 �tB 
rB c

1 − 2GM � 2 
= � rB c �πA . 

1 − 2GM 
2rA c

e) From parts (a) and (b), the proper distance between A and B can be rewritten 
as 

rB rdr 
sAB = � . 

RSch 
r − RSch 

The potentially divergent part of the integral comes from the range of integra­
tion in the immediate vicinity of r = RSch, say  RSch < r  < RSch + σ. For  this  
range the quantity r in the numerator can be approximated by RSch, so  
the contribution has the form 

RSch +π dr 
RSch � . 

RSch r − RSch 

Changing the integration variable to u ≤ r − RSch, the contribution can be 
easily evaluated: 

� π � � RSch +π dr � du 
RSch � = RSch � = 2  RSchσ <  � . 

0 uRSch r − RSch 

So, although the integrand is infinite at r = RSch, the integral is still finite. 

The proper distance between A and B does not diverge. 

Looking at the answer to part (d), however, one can see that when rA = RSch, 

The time interval �πB diverges. 
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PROBLEM 7: GEODESICS 

The geodesic equation for a curve xi(δ), where the parameter δ is the arc 
length along the curve, can be written as 

⎩ ⎭ 
d dxj 1 dxk dx� 

gij = 
2

(�igk�) . 
dδ dδ dδ dδ 

Here the indices j, k, and  � are summed from 1 to the dimension of the space, so 
there is one equation for each value of i. 

(a) The metric is given by 

ds2 = gij dx
idxj = dr2 + r 2 d�2 , 

so 
2 grr = 1, g�� = r , gr� = g�r = 0  . 

First taking i = r, the nonvanishing terms in the geodesic equation become 

⎩ ⎭ 
d dr 1 d� d� 

grr = 
2

(�r g�� ) ,
dδ dδ dδ dδ 

which can be written explicitly as 

⎩ ⎭ 
d dr 1 � 

�r r 
2 
�� 

d� 
�2 

= 
dδ dδ 2 dδ 

, 

or 

d2r d� 
�2 

= r . 
dδ2 dδ 

For i = �, one has the simplification that gij is independent of � for all (i, j). 
So ⎩ ⎭ 

d 2 d� r = 0  . 
dδ dδ 

(b) The first step is to parameterize the curve, which means to imagine moving 
along the curve, and expressing the coordinates as a function of the distance 
traveled. (I am calling the locus y = 1 a curve rather than a line, since the 
techniques that are used here are usually applied to curves. Since a line is a 
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special case of a curve, there is nothing wrong with treating the line as a curve.) 
In Cartesian coordinates, the curve y = 1 can be parameterized as 

x(δ) =  δ ,  y(δ) =  1  . 

(The parameterization is not unique, because one can choose δ = 0 to represent 
any point along the curve.) Converting to the desired polar coordinates, 

r(δ) =  x2 (δ) +  y2 (δ) =  δ2 + 1  , 

�(δ) =  tan−1 y(δ) 
= tan−1 (1/δ) . 

x(δ)


Calculating the needed derivatives,*


dr δ 
dδ δ2 + 1  

d2r 1 δ2 1 1 
= � − = = 

r3dδ2 δ2 + 1  (δ2 + 1)3/2 (δ2 + 1)3/2 

d� 1 1 1 
= − .

2dδ 
= − 

1 +  
� 

1 
�2 δ2 r

Then, substituting into the geodesic equation for i = r, 

1 
�2

d2r d� 
�2 1 

dδ2 
= r 

dδ 
≡→ 

r3 
= r − 

r2 
, 

which checks. Substituting into the geodesic equation for i = �,
⎩ ⎭ 
d 
⎩ 

2 

� 
1 
�⎭


d 2 d� r = 0  ≡→ r − = 0  ,
dδ dδ dδ r2 

which also checks. 

* If you do not remember how to differentiate β = tan−1(z), then you should 
know how to derive it. Write z = tan  β = sin  β/ cos β, so  

cos β sin2 β 
dz = + dβ = (1  +  tan2 β)dβ . 

cos β cos2 β 

Then 
dβ 1 1 

= = 
dz 1 + tan2 β 1 +  z2 

. 
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PROBLEM 8: METRIC OF A STATIC GRAVITATIONAL FIELD 

i(a) ds2 is the invariant separation between the event at (x , t) and  the  event  at  ST 
i(xi + dxi, t  + dt). Here x and t are arbitrary coordinates that are connected 

to measurements only through the metric. ds2 
ST is defined to equal 

2−c 2dT 2 + d�r , 

where d�r and dT denote the space and time separation as it would be mea­
sured by a freely falling observer. Taking the transmitter as the freely falling 
observer* and taking the emission of two successive pulses as the two events, 
one has 

ds2 = −c 2(�Te)2 .ST 

To connect with the metric, note that the successive emissions have a separation 
in the time coordinate of �te, and a separation of space coordinates dxi = 0.  
So 

ds2 = − 
� 
c 2 + 2β(�xe) (�te)2 ,ST 

and then

−c 2(�Te)2 = −[c 2 + 2β(�
xe)](�te)2 =→ 

�Te�te = � . 
xe)1 +  2σ(θ
2c

(b) Since the metric is independent of t, each pulse follows a trajectory identical 
to the previous pulse, but delayed in t. Thus each pulse requires the same time 
interval �t to travel from emitter to receiver, so the pulses arrive with the same 
t-separation as they have at emission: 

�tr = �te . 

(c) This is similar to part (a), but in this case we consider the two events cor­
responding to the reception of two successive pulses. ds2 is related to the ST 
physical measurement �Tr by 

ds2 = −c 2(�Tr)2 .ST 

* The transmitter is not really a freely falling observer, but is presumably held 
at rest in this coordinate system. Thus gravity is acting on the clock, and could in 
principle affect its speed. It is standard, however, to assume that such effects are 
negligible. That is, one assumes that the clock is ideal, meaning that it ticks at 
the same rate as a freely falling clock that is instantaneously moving with the same 
velocity. 
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It is connected to the coordinate separation �tr through the metric, where 
again we use the fact that the two events have zero separation in their space 
coordinates— i.e., dxi = 0.  So  

ds2 = −[c 2 + 2β(�xr)](�tr)2 .ST 

Then

−c 2(�Tr)2 = −[c 2 + 2β(�
xr )](�te)2 =→ 

2β(�xr)�Tr = 1 +  �te . 
c2 

We can cast this into a more useful form for the problem by using the solution 
for �te found in part (c). This gives 

� ⎨ 
xr )1 +  2σ(θ
2 ⎬�Tr = � c ⎪�Te . 
xe)1 +  2σ(θ
2c

Substitute this result for �Tr directly into the definition for Z to obtain the 
exact expression for the redshift, 

xr )1 +  2σ(θ
2 

1 +  Z = � c
. 

xe)1 +  2σ(θ
2c

Remember that 1 +  x � 1+  1 x for small x. For weak fields, that is, for small 2 
values of β(� x). Expanding x), we can expand our result to lowest order in β(�

the numerator we have


xr) β(�2β(� xr )1 +  � 1 +  . 
c2 c2 

Similarly we find for 
1 β(�xe) � � 1 − . 

xe) c2 
1 +  2σ(θ

2c

Putting these approximations into our exact expression for 1 + Z we obtain 

� 
xr ) 
��  

xe) 
� 

β(� β(� β(� xe)xr ) β(�
1 +  Z � 1 +  1 − � 1 +  − 

2 ,
2 2 2c c c c
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where we dropped terms in β(� xr ). Finally, xe )β(�

β(� xe )xr ) − β(�
Z � .

2c

(d) For the metric at hand we know g00 = −[c2 + 2β(�x)], gk0 = 0  and  gik = gki = 
�ik . It is useful to notice that only g00 depends on �x and thus �i gkm = 0.  The  
geodesic equation corresponding to µ = i, where  i runs  from  1 to 3,  is  

d dxk 1 dx� dxλ 

gik = 
2
(�i g�λ ) =→ 

dπ dπ dπ dπ 

k 1d2x dx0 dx0 

�ik = 
2
(�i g00) . 

dπ 2 dπ dπ 

Using x0 ≤ t, �ik y
k = yi and 

2 
�i g00 = −�i (c 2 + 2β(� x)x)) = − 

c2 
�i β(�

we find 

id2x dt 
�2 

x) .= −�i β(�
d2 π dπ 

[Pedagogical Note: You might prefer to use the notation x0 ≤ ct, which is also a 
very common choice. In that case the metric is rewritten as 

⎧ ⎫ 
x) � � 

dxi 
�2 

ds2 = − 1 +  
2β(�

dx0
�2 

+ 
3 

,ST 2c
i=1 

so one takes g00 = − 1 + (2β(�x)/c2) . In the end one finds the same answer 
as the boxed equation above. 

Note also that when β is small and velocities are nonrelativistic, then 
dt/dπ � 1. Thus one has d2xi /d2t � −�i β(� x) can be identified with x), so β(�
the Newtonian gravitational potential. In the context of general relativity, 
Newtonian gravity is a distortion of the metric in the time-direction.] 
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PROBLEM 9: GEODESICS ON THE SURFACE OF A SPHERE 

(a) Rotations are easy to understand in Cartesian coordinates.	 The relationship 
between the polar and Cartesian coordinates is given by 

x = r sin � cos β 

y = r sin � sin β 

z = r cos � .  

The equator is then described by � = ξ/2, and β = �, where  � is a parameter 
running from 0 to 2ξ. Thus, the equator is described by the curve xi (�), where 

1 x = x = r cos � 

2 x = y = r sin � 

3 x = z = 0  . 

Now introduce a primed coordinate system that is related to the original system 
by a rotation in the y-z plane by an angle ∂: 

x = x 

y = y � cos ∂− z � sin ∂ 

z = z cos ∂+ y � sin ∂ .  
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The rotated equator, which we seek to describe, is just the standard equator 
in the primed coordinates: 

x = r cos � , y = r sin � , z � = 0  . 

Using the relation between the two coordinate systems given above, 

x = r cos � 

y = r sin � cos ∂ 

z = r sin � sin ∂ .  

Using again the relations between polar and Cartesian coordinates, 

z 
cos � = = sin  � sin ∂ 

r 

y
tan β = = tan  � cos ∂ .  

x 

(b) A segment of the equator corresponding to an interval d� has length ad�, so  
the parameter � is proportional to the arc length. Expressed in terms of the 
metric, this relationship becomes 

dxi dxj 
ds2 = gij d�2 = a 2 d�2 . 

d� d� 

Thus the quantity 
dxi dxj 

A ≤ gij 
d� d� 

is equal to a2 , so the geodesic equation (6.36) reduces to the simpler form of 
Eq. (6.38). (Note that we are following the notation of Lecture Notes 6, except 
that the variable used to parametrize the path is called �, rather than δ or s. 
Although A is not equal to 1 as we assumed in Lecture Notes 6, it is easily seen 
that Eq. (6.38) follows from (6.36) provided only that A = constant.) Thus, 

⎩ ⎭ 
d dxj 1 dxk dx� 

gij = 
2

(�i gk�) . 
d� d� d� d� 

For this problem the metric has only two nonzero components: 

2 g�� = a , gσσ = a 2 sin2 � .  
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Taking i = � in the geodesic equation, ⎩ ⎭ 
d d� 1 dβ dβ 

g�� =
2 
�� gσσ =→ 

d� d� d� d� 

d2� dβ 
�2 

= sin  � cos � . 
d�2 d� 

Taking i = β, ⎩ ⎭ 
d 

a 2 sin2 � 
dβ 

= 0  =→ 
d� d� 

⎩ ⎭ 
d 

sin2 � 
dβ 

= 0  . 
d� d� 

(c) This part is mainly algebra. Taking the derivative of 

cos � = sin  � sin ∂ 

implies

− sin � d�  = cos  � sin ∂ d� . 


Then, using the trigonometric identity sin � = 1 − cos2 �, one finds 

sin � = 1 − sin2 � sin2 ∂ , 


so

d� cos � sin ∂ 

= − � .

d� 1 − sin2 � sin2 ∂


Similarly


tan β = tan  � cos ∂ =→ sec2 βdβ  = sec2 � d� cos ∂ .  

Then

sec2 β = tan2 β + 1  =  tan2 � cos2 ∂ + 1 


1

= [sin2 � cos2 ∂ + cos2 �]

cos2 � 

= sec2 �[sin2 �(1 − sin2 ∂) +  cos2 �] 

= sec2 �[1 − sin2 � sin2 ∂] , 



� 
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So 
dβ cos ∂ 

= 
d� 1 − sin2 � sin2 ∂

. 

To verify the geodesic equations of part (b), it is easiest to check the second 
one first: 

cos ∂
sin2 � 

dβ 
= (1  − sin2 � sin2 ∂)

d� 1 − sin2 � sin2 ∂


= cos  ∂ , 


so clearly
 ⎩ ⎭ 
d d

sin2 � 
dβ 

= (cos ∂) =  0  . 
d� d� d� 

To verify the first geodesic equation from part (b), first calculate the left-hand 
side, d2 �/d�2 , using our result for d�/d�: � � � � 

d2� d d� d cos � sin ∂ 
= = − � . 

d�2 d� d� d� 1 − sin2 � sin2 ∂ 

After some straightforward algebra, one finds


d2� sin � sin ∂ cos2 ∂

= . 

d�2 
1 − sin2 � sin2 ∂ 

�3/2 

The right-hand side of the first geodesic equation can be evaluated using the 
expression found above for dβ/d�, giving 

� �2 � 
dβ cos2 ∂

sin � cos � = 1 − sin2 � sin2 ∂ sin � sin ∂ �
d� 1 − sin2 � sin2 ∂ 

�2 

sin � sin ∂ cos2 ∂ 
= . 

1 − sin2 � sin2 ∂ 
�3/2


So the left- and right-hand sides are equal.


PROBLEM 10: NUMBER DENSITIES IN THE COSMIC BACK­
GROUND RADIATION 

In general, the number density of a particle in the black-body radiation is given 
by 

� λ(3) 
� 
kT 
�3 

n = g 
ξ2 h̄c 



� 

� 

� 
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� 
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For photons, one has g� = 2.  Then  

k = 1.381 × 10−16erg/�K ⎣ ⎣ ⎣ ⎣ ⎣ � �3T = 2.7 �K ⎤ kT 
=→ = 1.638 × 103cm−3 . 

¯ ⎣ ¯h = 1.055 × 10−27erg-sec ⎣ hc ⎣ ⎣ ⎣ 
c = 2.998 × 1010cm/sec


Then using λ(3) � 1.202, one finds


3 nγ = 399/cm . 

For the neutrinos,

3 3


g = 2  × = per species. γ 4 2


The factor of 2 is to account for κ and ¯
κ, and the factor of 3/4 arises from the 
Pauli exclusion principle. So for three species of neutrinos one has 

9 
gγ 2 

. 

Using the result

4


T 3 = T 3 
γ γ11


from Problem 8 of Problem Set 3 (2000), one finds


� ��  �3 
g Tγγ nγ = 
g� 

nγ 
γ Tγ 

9 4 
� 

= 399cm−3 

4 11 

=→ nγ = 326/cm3 (for all three species combined). 
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PROBLEM 11: PROPERTIES OF BLACK-BODY RADIATION 

(a) The average energy per photon is found by dividing the energy density by the 
number density. The photon is a boson with two spin states, so g = g� = 2.  
Using the formulas on the front of the exam, 

ξ2 (kT )4 

g 
30 (h̄c)3 

E = 
� τ(3) (kT )3 

g 
ξ2 (h̄c)3 

ξ4 

= kT .
30τ(3) 

You were not expected to evaluate this numerically, but it is interesting to 
know that 

E = 2.701 kT . 

Note that the average energy per photon is significantly more than kT , which  
is often used as a rough estimate. 

(b) The method is the same as above, except this time we use the formula for the 
entropy density: 

2ξ2 k4T 3 

g 
45 (h̄c)3 

S = 
� τ(3) (kT )3 

g 
ξ2 (h̄c)3 

2ξ4 

= k .
45τ(3) 

Numerically, this gives 3.602 k, where  k is the Boltzman constant. 

(c) In this case we would have g = g� = 1. The average energy per particle and 
the average entropy particle depends only on the ratio g/g�, so there would be 

no difference from the answers given in parts (a) and (b). 

(d) For a fermion, g is 7/8 times the number of spin states, and g� is 3/4 times the 
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number of spin states. So the average energy per particle is 

ξ2 (kT )4 

g 
30 (h̄c)3 

E = 
τ(3) (kT )3 

g 
ξ2 (h̄c)3 

7 ξ2 (kT )4 

8 30 (h̄c)3 
= 

3 τ(3) (kT )3 

4 ξ2 (h̄c)3 

7ξ4 

= kT .
180τ(3) 

Numerically, E = 3.1514 kT . 

Warning: the Mathematician General has determined 
that the memorization of this number may adversely 
affect your ability to remember the value of ξ. 

If one takes into account both neutrinos and antineutrinos, the average energy 

per particle is unaffected — the energy density and the total number density 

are both doubled, but their ratio is unchanged. 

Note that the energy per particle is higher for fermions than it is for bosons. 

This result can be understood as a natural consequence of the fact that fermions 

must obey the exclusion principle, while bosons do not. Large numbers of 

bosons can therefore collect in the lowest energy levels. In fermion systems, 

on the other hand, the low-lying levels can accommodate at most one particle, 

and then additional particles are forced to higher energy levels. 
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(e) The values of g and g� are again 7/8 and 3/4 respectively, so 

2ξ2 k4T 3 

g 
45 (h̄c)3 

S = 
τ(3) (kT )3 

g 
ξ2 (h̄c)3 

7 2ξ2 k4T 3 

8 45 (h̄c)3 
= 

3 τ(3) (kT )3 

4 ξ2 (h̄c)3 

= 

Numerically, this gives S = 4.202 k. 

PROBLEM 12: A NEW SPECIES OF LEPTON 

a) The number density is given by the formula at the start of the exam,


� τ(3) (kT )3


n = g 
ξ2 (h̄c)3 

. 

Since the 8.286ion is like the electron, it has g� = 3; there are 2 spin states 
for the particles and 2 for the antiparticles, giving 4, and then a factor of 3/4 
because the particles are fermions. So 

7ξ4 

k .
135τ(3) 

Then 

τ(3) 3 × 106 × 102 �3 

Answer = 3 × 
ξ2 6.582 × 10−16 × 2.998 × 1010 

. 
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You were not asked to evaluate this expression, but the answer is 1.29 × 1039 . 

b) For a flat cosmology θ = 0 and one of the Einstein equations becomes 

Ṙ
�2 

8ξ 
= Gν . 

R 3 

During the radiation-dominated era R(t) � t1/2 , as claimed on the front cover 
of the exam. So, 

Ṙ 1 
= 

R 2t
.


Using this in the  above  equation gives 


1 8ξ 
= Gν .

4t2 3 

Solve this for ν, 
3 

ν = 
32ξGt2 . 

The question asks the value of ν at t = 0.01 sec. With G = 6.6732 × 
10−8 cm3 sec−2 g−1, then  

3 
ν = 

32ξ × 6.6732 × 10−8 × (0.01)2 

in units of g/cm3 . You weren’t asked to put the numbers in, but, for reference, 
doing so gives ν = 4.47 × 109 g/cm3 . 

c) The mass density ν = u/c2, where  u is the energy density. The energy density 
for black-body radiation is given in the exam, 

ξ2 (kT )4 

u = νc2 = g 
hc)3 

.
30 (¯

We can use this information to solve for kT in terms of ν(t) which we found 
above in part (b). At a time of 0.01 sec, g has the following contributions: 

Photons: g = 2  
7 e+e− : g = 4  × 8 = 3  1 

2 

7κe, κµ, κν : g = 6  × 8 = 5  1 
4 

78.286ion − anti8.286ion g = 4  × 8 = 3  1 
2 
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1 
gtot = 14

4 
. 

Solving for kT in terms of ν gives 

⎧ 
30 1 

⎫1/4 

h3kT = ¯ c 5ν . 
ξ2 gtot 

Using the result for ν from part (b) as well as the list of fundamental constants 
from the cover sheet of the exam gives 

⎧ 
90 × (1.055 × 10−27)3 × (2.998 × 1010)5 ⎫1/4 1 

kT = ×
14.24 × 32ξ3 × 6.6732 × 10−8 × (0.01)2 1.602 × 10−6 

where the answer is given in units of MeV. Putting in the numbers yields 
kT = 8.02 MeV. 

d) The production of helium is increased. At any given temperature, the addi­
tional particle increases the energy density. Since H � ν1/2, the increased 
energy density speeds the expansion of the universe— the Hubble constant at 
any given temperature is higher if the additional particle exists, and the tem­
perature falls faster. The weak interactions that interconvert protons and neu­
trons “freeze out” when they can no longer keep up with the rate of evolution 
of the universe. The reaction rates at a given temperature will be unaffected 
by the additional particle, but the higher value of H will mean that the tem­
perature at which these rates can no longer keep pace with the universe will 
occur sooner. The freeze-out will therefore occur at a higher temperature. The 
equilibrium value of the ratio of neutron to proton densities is larger at higher 
temperatures: nn/np � exp(−�mc2/kT ), where nn and np are the number 
densities of neutrons and protons, and �m is the neutron-proton mass differ­
ence. Consequently, there are more neutrons present to combine with protons 
to build helium nuclei. In addition, the faster evolution rate implies that the 
temperature at which the deuterium bottleneck breaks is reached sooner. This 
implies that fewer neutrons will have a chance to decay, further increasing the 
helium production. 

e) After the neutrinos decouple, the entropy in the neutrino bath is conserved 
separately from the entropy in the rest of the radiation bath. Just after neu­
trino decoupling, all of the particles in equilibrium are described by the same 
temperature which cools as T � 1/R. The entropy in the bath of particles still 
in equilibrium just after the neutrinos decouple is 

S � grestT 3(t)R3(t) 
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where grest = gtot − gγ = 9.  By  today,  the  e+ − e− pairs and the 8.286ion-
anti8.286ion pairs have annihilated, thus transferring their entropy to the pho­
ton bath. As a result the temperature of the photon bath is increased relative 
to that of the neutrino bath. From conservation of entropy we have that the 
entropy after annihilations is equal to the entropy before annihilations 

gγ Tγ 
3R3(t) =  grestT 3(t)R3(t) . 

So, 
Tγ = 

� 
grest 

�1/3 

T (t) gγ 
. 

Since the neutrino temperature was equal to the temperature before annihila­
tions, we have that 

Tγ 2 
�1/3 

= 
Tγ 9 

. 

PROBLEM 13: FREEZE-OUT OF MUONS 

(a) The factors contributing to g from the muons are the following: 

2 since there are two particles, the muon and the antimuon 

2 since there are two spin states for each particle 

7 
since the µ − and the µ + are fermions 

8


Thus


7 7

gµ = 2  × 2 × = 

8 2 
. 

(b) Besides the muons, the particles in thermal equilibrium when kT is just above 
106 MeV are photons, neutrinos and electrons. As found in class 

gγ = 2  

7 21 
gγ = 3  × 2 × = 

8 4 

7 7 
ge− = 2  × 2 × = 

8 2 
. 
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So, for kT just above 106 MeV, g is the sum of all of these contributions: 

57 
g = gµ + gγ + gγ + ge− = = 14.25 .

4 

(c) We know that entropy S is conserved and that it can be written as S = R3 × s 
where s is the entropy density. The expression for the entropy density is given 
on the cover of the exam. It is 

2ξ2 k4T 3 

s = g 
45 (h̄c)3 . 

Therefore S = R3 × s is given by 

S = C × g(T )R3 T 3 where C = constant. 

Let Ta denote the temperature of the universe when kTa is just above 106 MeV. 
Let Tb denote the temperature of the universe when kTb is just below 106 MeV. 
Since the entropy is constant S(Ta) =  S(Tb). Using the above expression for S 
we find 

C × g(Ta)(RTa )3 = C × g(Tb)(RTb )3 =→ 

RTb 
⎧ 
g(Ta) 

⎫1/3 

= 
RTa g(Tb) 

. 

We found g(Ta) in  part (b),  g(Ta) =  14.25. After the muons disappear from 
the black body radiation they no longer contribute to the g in the expression 
for the entropy. Thus at temperatures below Tb, g(Tb) =  gγ + gγ + ge− = 

= 432 +  21 + 7 = 10.75. Using these values in the expression above we obtain 4 2 4 
the increase in  RT , 

14.25 
�1/3 57 

�1/3 

RTb = RTa = RTa =→
10.75 43 

RTb � (1.10)RTa . 
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PROBLEM 14: THE EFFECT OF PRESSURE ON COSMOLOGICAL 
EVOLUTION 

(a) This problem is answered most easily by starting from the cosmological formula 
for energy conservation, which I remember most easily in the form motivated 
by dU = −p dV  . Using the fact that the energy density u is equal to νc2, the  
energy conservation relation can be written 

dU dV d � � 
= −p =→ νc2R3 

� 
= −p d � 

R3 . (1) 
dt dt dt dt 

Setting 
∂ 

ν = (2) 
R5


for some constant ∂, the conservation of energy formula becomes


d ∂c2 

= −p d � 
R3 
� 
,

dt R2 dt 

which implies 
∂c2 dR 

= −3pR2 dR −2 . 
R3 dt dt 

Thus 

2 ∂c2 2 
p = = νc2 .

3 R5 3 

For those students who could not reconstruct Eq. (1) or some equivalent equa­
tion from memory, the conservation of energy equation could be derived from 
the formulas for cosmological evolution on the front of the exam: 

Ṙ
�2 

8ξ kc2 

= Gν − (3) 
R 3 R2 

¨ 4ξ 3p 
� 

R = − G ν + R .  (4) 
3 c2 

By rewriting Eq. (3) as 

Ṙ2 8ξ 
= GνR2 − kc2 ,

3


the time derivative becomes


¨ 16ξ

2Ṙ R =

8ξ
G ˙ R .νR2 + GνR ˙

3 3 
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This equation can be solved for ν̇ to give 

˙ ¨ 3 RR Ṙ
ν̇ = − 2 ν .

4ξG R2 R 

¨ Using Eq. (4) to replace R, one finds 

Ṙ 3p 
� 

Ṙ Ṙ
ν + 

p
ν̇ = − ν + − 2 ν = −3 . (5) 

R c2 R R c2 

It is easy to show that Eq. (5) is equivalent to Eq. (1), but it is not necessary 
to do so. The question can be answered directly from Eq. (5), by substituting 
Eq. (2) and manipulating. 

(b) For a flat universe, Eq. (3) reduces to 

Ṙ
�2 

8ξ 
= Gν . 

R 3 

Using Eq. (2), this implies that 

Ṙ = 
α 

R3/2 
, 

for some constant α. Rewriting this as 

R3/2 dR = α dt  ,  

we can integrate the equation to give 

2 
R5/2 = αt + const ,

5 

where the constant of integration has no effect other than to shift the origin of 
the time variable t. Using the standard big bang convention that R = 0  when  
t = 0, the constant of integration vanishes. Thus, 

R � t2/5 . (6) 

The arbitrary constant of proportionality in Eq. (6) is consistent with the 
wording of the problem, which states that “You should be able to determine 
the function R(t) up to a constant factor.” Note that we could have expressed 
the constant of proportionality in terms of the constant ∂ in Eq. (2), but there 
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would not really be any point in doing that. The constant ∂ was not a given 
variable. If the comoving coordinates are measured in “notches,” then R is 
measured in meters per notch, and the constant of proportionality in Eq. (6) 
can be changed by changing the arbitrary definition of the notch. 

1(c) Combining Eq. (1) with p = 6 νc
2, one has 

d � � 1 � 
R3 
� 

νc2R3 = − νc2 d ,
dt 6 dt 

or equivalently 
d � � 1 d � � 

νR3 + ν R3 = 0  . (7) 
dt 6 dt 

There are various ways to proceed from here. Since the problem told us that 

const 
ν = ,

Rn 

the most straightforward approach would be to use this expression to replace 
ν in Eq. (7), and then solve the equation for n. A cleverer approach would be 
to multiply Eq. (7) by R1/2 , and then rewrite it as 

d 
νR7/2 = 0  ,

dt 

from which one can see immediately that 

1 
ν(t) � 

R7/2 (t) 
, 

and therefore 

n = 7/2 . 


