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QUIZ 1 SOLUTIONS 

PROBLEM 1: DID YOU DO THE READING? (25 points) 

(a) The radio emission from the Milky Way is primarily produced by cosmic ray 
electrons spiralling in the Galaxy’s magnetic field. 

(b) The Hertzsprung-Russell diagram, on which stars burning hydrogen like our 
sun lie on a line called the main sequence, is a plot of the luminosity of a 
star against color or (surface) temperature. 

(c) The oldest stars in our galaxy lie in globular clusters. 

(d) Newton proposed that one could test whether or not stars are distributed with 
uniform number density throughout the universe by counting the number of 
stars as a function of their observed flux. 

(e) Cosmologists now believe that the universe today is dominated by “dark en-
ergy” (i.e., energy density of the vacuum, or some form of peculiar matter that 
behaves very similarly). 

(f) The horizontal (wavelength) axis of the graph of the spectrum of the cosmic 
background radiation from Weinberg’s book is calibrated in centimeters. The 
peak is at about 0.2 cm. 

(g) The curve falls off at long wavelengths because it is hard to fit radiation into 
any volume whose dimensions are smaller than the wavelength. 

(h) The curve falls off at short wavelengths because the energy of any photon is 
inversely proportional to the wavelength, so at a given temperature there will 
not be enough energy to produce many photons of very short wavelength. 

PROBLEM 2: ANOTHER FLAT UNIVERSE WITH AN UNUSUAL 
TIME EVOLUTION (40 points) 

a) (5 points) The cosmological redshift is given by the usual form, 

R(t0)1 +  z = 
R(te ) 

. 

For light emitted by an object at time te, the redshift of the received light is 

t01 +  z = 
R(t0) = 

� �γ 

. 
R(te ) te 
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So, 

� �γ 
t0 

z = − 1 . 
te 

b)	 (5 points) The coordinates t0 and te are cosmic time coordinates. The “look-
back” time as defined in the exam is then the interval t0 − te. We  can  write  
this as 

t0 − te = t0 1 − 
te 

. 
t0 

We can use the result of part (a) to eliminate te /t0 in favor of z. From  (a),  

te = (1  +  z)−1/γ . 
t0 

Therefore, 

t0 − te = t0 1 − (1 + z)−1/γ . 

c)	 (10 points) The present value of the physical distance to the object, �p(t0), is 
found from 

t0 c 
�p(t0) =  R(t0) dt . 

R(t)te 

Calculating this integral gives 

γct0 1 1 
�p(t0) =  γ−1 − γ−1 .

1 − γ t0 te 

Factoring tγ−1 out of the parentheses gives 0 

� �γ−1 
t0

�p(t0) =  
ct0 1 − .

1 − γ te 

This  can be  rewritten in terms  of  z and H0 using the result of part (a) as well 
as, 

Ṙ(t0) γ 
H0 = 

R(t0)
= 

t0 
. 
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Finally then, 

γ −1 
γ�p(t0) =  cH−1 γ 

1 − (1 + z) .0 1 − γ 

d)	 (10 points) A nearly identical problem was worked through in Problem 8 of 
Problem Set 1. 

The energy of the observed photons will be redshifted by a factor of (1 + z). In 
addition the rate of arrival of photons will be redshifted relative to the rate of 
photon emmission, reducing the flux by another factor of (1+z). Consequently, 
the observed power will be redshifted by two factors of (1 + z) to  P/(1 + z)2 . 

Imagine a hypothetical sphere in comoving coordinates as drawn above, cen-
tered on the radiating object, with radius equal to the comoving distance �c. 
Now consider the photons passing through a patch of the sphere with physical 
area A. In comoving coordinates the present area of the patch is A/R(t0)2 . 
Since the object radiates uniformly in all directions, the patch will intercept a 
fraction (A/R(t0)2)/(4π�2) of the photons passing through the sphere. Thus c 
the power hitting the area A is 

(A/R(t0)2) P 
4π�2 (1 + z)2 

. 
c 

The radiation energy flux J , which is the received power per area, reaching the 
earth is then given  by  

1 P 
J = 

4π�p(t0)2 (1 + z)2 
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where we used  �p(t0) =  R(t0)�c . Using the result of part (c) to write J in terms 
of P, H0 , z,  and γ gives, 

H2 1 − γ 
�2 

P 
J = 0 

4πc2 γ	 � 
γ −1 
�2 . 

γ(1 + z)2 1 − (1 + z) 

e)	 (10 points) Following the solution of Problem 1 of Problem Set 1, we can 
introduce a fictitious relay station that is at rest relative to the galaxy, but 
located just next to the jet, between the jet and Earth. As in the previous 
solution, the relay station simply rebroadcasts the signal it receives from the 
source, at exactly the instant that it receives it. The relay station therefore 
has no effect on the signal received by the observer, but allows us to divide the 
problem into two simple parts. 

The distance between the jet and the relay station is very short compared to 
cosmological scales, so the effect of the expansion of the universe is negligible. 
For this part of the problem we can use special relativity, which says that the 
period with which the relay station measures the received radiation is given by 

1 − v 
c∆trelay station = 

1 +  v × ∆tsource . 
c 

Note that I have used the formula from the front of the exam, but I have 
changed the size of v, since the source in this case is moving toward the relay 
station, so the light is blue-shifted. To observers on Earth, the relay station is 
just a source at rest in the comoving coordinate system, so 

∆tobserved = (1  +  z)∆trelay station . 

Thus,

∆tobserved ∆tobserved ∆trelay station
1 +  zJ ≡ = 
∆tsource ∆trelay station ∆tsource 

= (1  +  z)| × (1 + z)|cosmological special relativity 

1 − v 
c= (1  +  z) 

1 +  v . 
c 

Thus, 

1 − v 

zJ = (1  +  z) c − 1 .
1 +  v 

c 
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Note added: In looking over the solutions to this problem, I found that a sub-
stantial number of students wrote solutions based on the incorrect assumption 
that the Doppler shift could be treated as if it were entirely due to motion. 
These students used the special relativity Doppler shift formula to convert 
the redshift z of the galaxy to a velocity of recession, then subtracted from 
this the speed v of the jet, and then again used the special relativity Doppler 
shift formula to find the Doppler shift corresponding to this composite velocity. 
However, as discussed at the end of Lecture Notes 3, the cosmological Doppler 
shift is given by 

∆to R(to )1 +  z ≡ 
∆te 

= 
R(te ) 

,	 (3.11) 

and is not purely an effect caused by motion. It is really the combined effect 
of the motion of the distant galaxies and the gravitational field that exists 
between the galaxies, so the special relativity formula relating z to v does not 
apply. 

PROBLEM 3: PARTICLE TRAJECTORIES IN NEWTONIAN 
COSMOLOGY (35 points) 

(a)	 (10 points) The particle will feel the gravitational field of all those particles 
in the model universe whose radius is less than |�rA |. (The spherical shell of 
matter outside of radius |�rA | does not create any gravitational field inside the 
shell.) The total mass enclosed within a radius |�rA | at time t is given by 

4π 
M = |�rA |3 ρ(t) .3 

The acceleration caused by this mass is 

GM 4π 
�aA = −|�rA| r̂A = − Gρ(t)|�rA | r̂A2 3 

4π 
Gρ(t) �=	 − 

3 
rA . 

The acceleration is radially inward, but the vector expression above already 
includes this information. 

(b)	 (8 points) The Hubble velocity is equal to the Hubble parameter H(t) times  
the distance from the center, |�rA |, directed radially outward. As a vector 
expression, this can be written simply as 

�vH = H(t) �rA . 
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(c) (9 points) Starting from the definition of the proper velocity, 

�vp = �vA − �vH ,


where �vH is given in the previous part, we can differentiate to find


rA ] =  − H �rA − H�vA . 
d�vp =

d�vA − 
d

[H(t) �
d�vA ˙

dt dt dt dt


Then note that d�vA /dt can be written from part (a) as


d�vA 4π

= − Gρ(t)�rA ,dt 3 

and � �


Ḣ =
dH(t) d Ṙ R
¨ Ṙ2 4π 

= = − = − Gρ(t) − H2(t) ,
dt dt R R R2 3 

¨ where in the last substitution we used the R Friedmann equation,


¨ 4π

R = − 

3 
GρR , 

which was listed on the front of the exam. Substituting these expressions into 
the previous expression for d�vp/dt, one finds 

= − Gρ(t)�rA − H �
d�vp 4π ˙ rA − H �vAdt 3


4π 4π

= − Gρ(t)�rA + Gρ(t)�rA + H2 �rA − H�vA .3 3 

The first two terms cancel — physically, this cancellation is just the statement 
that that the test particle A and the comoving particles that it is passing are 
experiencing the same acceleration. From part (b) we recall that H2 �rA = 
H �vH , so  

d�vp = H(�vH − �vA ) =  −H �vp .dt


This agrees with the specified form,


d�vp
 = −λH(t)�vp ,dt


provided that λ = 1 .
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(d) (8 points) From the given equation 

d�vp = −λH(t)�vp ,dt 

one can start manipulating by replacing H(t) by  Ṙ/R. One can then specialize 
the vector equation to the component vp,x, and one can then manipulate the 
equation to put everything that depends on vp,x on the left, and everything 
that depends on t or R(t) on the right. That is, 

dvp,x = −λH(t) vp,x dt 

can be rewritten as 

1 dR dRdvp,x = −λ 
vp,x R dt 

dt = −λ
R 

. 

Integrating both sides, 

ln vp,x = −λ ln R + const  . 

Exponentiating both sides, 

vp,x = e const R−λ(t) . 

If we now define the constant 

v0 ≡ e const , 

we get the desired the final result, 

vp,x = R−λ (t) v0 . 

This matches the desired form, provided that 

n = −λ .  


