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QUIZ 2 SOLUTIONS 

PROBLEM 1: DID YOU DO THE READING? (30 points) 

(a) Which one of the following is the correct statement of Birkhoff’s theorem, a 
result from general relativity theory? 

The correct answer was (iii), “The gravitational effect of a uniform medium 
external to a spherical cavity is zero” (see Rowan-Robinson, p.63). 

Birkhoff’s theorem in general relativity is the analogue of Newton’s “iron 
sphere” theorems for non-relativistic gravity. Newton showed that the gravi-
tational field outside of a hollow spherical shell of matter is the same as if all 
the matter were concentrated in a point at the center of the sphere, and also 
that the field inside the shell is zero (these follow simply from Gauss’ law). We 
derived the equations which determine the evolution of the scale factor with 
time in a Newtonian model using these facts. The analogous derivation of these 
equations in full general relativity invokes Birkhoff’s theorem (and remarkably, 
apart from the relativistic correction for pressure, the result is exactly the same 
as the Newtonian result). 

(b) What is the most likely explanation for the apparent predominance of matter 
over antimatter in the present day universe? 

The correct answer was (i), “The number of baryons in the early universe 
exceeded the number of antibaryons by about 1 part in 109 . The overwhelm-
ing majority of these baryon-antibaryon pairs annihilated, leaving an excess 
of baryons and a contribution to the large ratio of photons to baryons” (see 
Weinberg p.95-98). 

There is no known natural physical mechanism which seperates matter from 
antimatter. And if the observable universe does contain seperate domains of 
antimatter, we might also expect to see some signature of the 511 keV anni-
hilation radiation produced at the boundaries between matter and antimatter 
domains (although if the nearest domain boundary is beyond the local super-
cluster, the radiation would probably be too weak to detect). 

Most cosmologists are therefore inclined to think that the visible universe has a 
real matter-antimatter asymmetry, which presumably arises from some process 
in the very early universe. In inflationary models in particular, there is no 
way that this asymmetry could have been part of the initial conditions, since 
in inflationary models (as we will see) the matter of the universe is generated 
as it evolves. This led cosmologists to theories of baryogenesis, in which the 
universe started out baryon symmetric but was driven into an asymmetric state 
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(usually by invoking the physics of grand unified theories (GUTs), which come 
into play at extreme temperatures). 

(c) The collisions of neutrons and protons with electrons,	 neutrinos, and their 
antiparticles ceased to be important by t ≈ 3 minutes, but there was still one 
process that continued to cause the ratio of neutrons to protons to change. 
What was this process? 

The correct answer was (ii), “The neutron can decay into an electron, proton, 
and antineutrino. This process continued until the temperature was low enough 
for deuterium to form”, (see R-R p.88, Weinberg p.109). 

After a short time the universe had cooled enough to prevent the baryons from 
breaking up into free quarks, but was hot enough (1 MeV � kB T � 1 GeV)  
for neutrons (n), protons (p), electrons (e− ), positrons (e+), muons (µ−), and 
antimuons (µ+) to spontaneously form and react with one another. After a 
while the temperature dropped below the rest mass of neutrons, protons and 
muons, and the typical reactions occurring were 

n −→ p+ + e− + ν̄e (beta decay) 
n + e ←→ p+ + ¯+ νe (e+ capture) 
n + νe ←→ p+ + e− (e− capture) 

−e+ + e ←→ 2γ (ann./pair-prod.) 
e+ + e ←→ νe + ¯−	 νe (weak reactions) 

These reactions kept all species in equilibrium. The rate of beta decay is 
fixed at λnp ≈ 887s, but the rate of the e+/e− capture reactions has a strong 
temperature dependance λc ∝ T 5 . The capture reactions therefore eventually 
“freeze-out” as the universe cools and the reaction rate drops below the rate of 

˙expansion R/R. Before this occurs, thermal equilibrium ensures that the ratio 
of the (comoving) number density of neutrons (denoted by n) to  the  number  
density of protons (denoted by p) is given by the Boltzmann factor 

2(n/p)eq = exp(− Q/kB T ) where  Q ≡ (mn − mp)c . 

After freezout of the capture reactions it is still possible for neutrons to beta 
decay. (“Beta decay” refers to the reaction n −→ p+ + e− + ν̄e which occurs 
via the weak force, and the name originates from early 20th century nuclear 
physics, when the electrons emitted in the radioactive decay (via the weak 
force) of the neutrons in certain nuclei were referred to as “beta radiation”). 

This further reduces the neutron to proton ratio, until the temperature becomes 
low enough for the deuteron (2H) to form, at about 108.9K, corresponding to 
0.068 MeV (much less than the deuteron binding energy 2.22 MeV, since even 
at temperatures much lower than the binding energy there may still be plenty 
of photons in the tail of the blackbody distribution with greater than binding 



8.286 QUIZ 2 SOLUTIONS, SPRING 2002 p. 3 

energy). This temperature was reached when the time was t ≈ 180 s (Hence 
“the first three minutes”). 

After the temperature had dropped enough for the deuteron to form, the fol-
lowing reactions can occur 

n+ p←→ d+ γ 

d+ d −→ t+ p 

d+ d −→ 3He + n 

d+ t −→ 4He + n 

d+ 3He −→ 4He + p ,  

where d is the deuteron (2H) and t is tritium (3H). Hardly any heavier elements 
and isotopes are produced until the stars form, much later, after recombination 
(but some 7Li is produced, and can be observed). 

(d) The spectrum of the cosmic background radiation is distorted very slightly by 
the Sunyaev-Zeldovich effect. Which of the following statements is the best 
description of this effect? 

The correct answer was (iii), “When cosmic background radiation photons 
traverse a hot cluster of galaxies, they are scattered by the electrons in the 
hot gas within the cluster. The scattering on average increases the energy of 
the photons, with the result that the background looks cooler than average 
at long wavelengths and hotter than average at short wavelengths” (see R-R 
p.86). This effect has already been observed in many clusters of galaxies. Its 
use lies in the fact that the observed distortion of the microwave background 
spectrum, combined with independent measurements of the x-ray emission from 
the hot gas, allows determination of both the baryon density and temperature 
within the cluster. This in turn allows measurement of the Hubble constant, 
since the intrinsic x-ray luminosity of the cluster can be determined from its 
temperature. 

(e) Which one of the following processes in the early history of the universe was 
the last to occur? 

The correct answer was (iii), “Recombination” (or the “epoch of decoupling 
of radiation and matter”), i.e. the formation of neutral hydrogen and helium 
atoms for the first time (see R-R, p.78, Weinberg, p.112). 

Here is a rough description of the sequence of events in the early universe. 

The muons (and taus) annihilated earliest when the temperature was about 
T ≈ 1012.1K (T ≈ 1013.3 for taus). At temperatures above T ≈ 1010.5K, all  of  
the following reactions occurred maintaining all species in equilibrium. 
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n −→ p+ + e− + ν̄e (beta decay) 
n + e ←→ p+ + ¯+ νe (e+ capture) 
n + νe ←→ p+ + e− (e− capture) 

−e+ + e ←→ 2γ (ann./pair-prod) 
e+ + e ←→ νe + ¯− νe (weak reactions) . 

−As the temperature dropped below T ≈ 1010.5K, the reaction e+ + e ←→ 
νe + ν̄e froze out2, and neutrinos were no longer in thermal equilibrium after 
this (neutrino decoupling). 

When the temperature further dropped to T ≈ 1010.1K the reactions n + 
e+ ←→ p+ + ν̄e, n  + νe ←→ p+ + e− froze out, and the neutrons were left to 
beta decay. 

Slightly later, when T ≈ 109.7K, the electrons and positrons annihilated, en-
hancing the temperature of the photon background relative to the neutrino 
background (since the neutrinos had decoupled). 

The neutron beta decay n −→ p+ +e− + ν̄e continued for a few minutes, further 
reducing the neutron to proton ratio, until the temperature was low enough 
for the deuteron to exist stably, T ≈ 108.9K. Deuterium then fused to produce 
stable helium nuclei. 

Much later, when the universe had cooled to T ≈ 1000K, there was an insuf-
ficient number of photons with E >  13.6 eV to prevent neutral hydrogen from 
forming for the first time (actually neutral helium formed slightly earlier than 
the neutral hydrogen, since helium has a higher ionization energy, E ≈ 24.6 
eV). After this “epoch of recombination” the universe became transparent to 
the CMB photons, which did not interact further with matter until later, at rel-
atively low redshift z = 30  − 100, the universe was re-ionized by the appearance 
of the first stars. 

PROBLEM 2: PROPERTIES OF BLACK-BODY RADIATION (30 
points) 

(a) The average energy per photon is found by dividing the energy density by the 
number density. The photon is a boson with two spin states, so g = g ∗ = 2.  
Using the formulas on the front of the exam, 

π2 (kT )4 
g 
30 (h̄c)3 

E = 
∗ ζ(3) (kT )3 
g 

π2 (h̄c)3 

π4 

= kT .
30ζ(3) 



� � � � 

8.286 QUIZ 2 SOLUTIONS, SPRING 2002 p. 5 

Numerically, this gives 

E = 2.701 kT . 

Note that the average energy per photon is significantly more than kT , which  
is often used as a rough estimate. By substituting k = Boltzmann’s constant = 
1.381 × 10−16 erg/K = 8.617 × 10−5 eV/K, one has 

E = 3.730 × 10−16 erg/K T = 2.327 × 10−4 eV/K T .  

A note  about  style:  The official convention is to use K and not ◦K, but the ◦ 

symbol is still used with ◦C and  ◦F. Note also that the K in the denominator 
of the answer is necessary: the symbol T is a temperature, not a pure number, 
so “T ergs” would have the units of K·erg, and not ergs. Finally, a conceivable 
way to write the answer would be 

E = 3.730 × 10−16T (in K) erg . 

This is intelligible, but style guides such as NIST (National Institute of Stan-
dards and Technology) Special Publication 811 strongly discourage this format. 
Another acceptable format would be 

E = 3.730 × 10−16(T/K) erg . 

(b) The method is the same as above, except this time we use the formula for the 
entropy density: 

2π2 k4T 3 
g 
45 (h̄c)3 

S = 
∗ ζ(3) (kT )3 
g 

π2 (h̄c)3 

2π4 

= k .
45ζ(3) 

Numerically, this gives 

S = 3.602 k = 4.974 × 10−16 erg/K = 3.104 × 10−4 eV/K , 
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where k is the Boltzman constant. 
∗(c) In this case we would have g = g = 1. The average energy per particle and 

∗the average entropy particle depends only on the ratio g/g , so there would be 

no difference from the answers given in parts (a) and (b). 

∗(d) For a fermion, g is 7/8 times the number of spin states, and g is 3/4 times the 
number of spin states. So the average energy per particle is 

π2 (kT )4 
g 
30 (h̄c)3 

E = 
∗ ζ(3) (kT )3 
g 

π2 (h̄c)3 

7 π2 (kT )4 

8 30 (h̄c)3 
= 

3 ζ(3) (kT )3 

4 π2 (h̄c)3 

7π4 

= kT .
180ζ(3) 

Numerically, E = 3.1514 kT . 

Warning: the Mathematician General has determined 
that the memorization of this number may adversely 
affect your ability to remember the value of π. 

Completing the numerics, 

E = 3.151 kT = 4.352 × 10−16 erg/K T = 2.716 × 10−4 eV/K T .  

If one takes into account both neutrinos and antineutrinos, the average energy 
per particle is unaffected — the energy density and the total number density 
are both doubled, but their ratio is unchanged. 

Note that the energy per particle is higher for fermions than it is for bosons. 
This result can be understood as a natural consequence of the fact that fermions 
must obey the exclusion principle, while bosons do not. Large numbers of 
bosons can therefore collect in the lowest energy levels. In fermion systems, 
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on the other hand, the low-lying levels can accommodate at most one particle, 
and then additional particles are forced to higher energy levels. 

∗(e) The values of g and g are again 7/8 and 3/4 respectively, so 

2π2 k4T 3 
g 
45 (h̄c)3 

S = 
∗ ζ(3) (kT )3 
g 

π2 (h̄c)3 

7 2π2 k4T 3 

8 45 (h̄c)3 
= 

3 ζ(3) (kT )3 

4 π2 (h̄c)3 

7π4 

= k .
135ζ(3)


Numerically, this gives


S = 4.202 k = 5.803 × 10−16 erg/K = 3.621 × 10−4 eV/K .


PROBLEM 3: A TWO-DIMENSIONAL CURVED SPACE (40 points) 

(a) For θ = constant, the expression for the metric reduces 
to 

2a du
ds2 = =⇒

4u(a − u) 

1 a 
ds = du .

2 u(a − u) 

To find the length of the radial line shown, 
one must integrate this expression from the value 
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of u at the center, which is 0, to the value of u at the outer edge, which is a. 
So 

a1 a 
R = du .

2 0 u(a − u)


You were not expected to do it, but the integral can be carried out, giving
√ 
R = (π/2) a. 

(b) For u = constant, the expression for the metric reduces 
to √ 

ds2 = u dθ2 =⇒ ds = u dθ .  

Since θ runs from 0 to 2π, and  u = a for the circumfer-
ence of the space, 

S = 
√ 
a dθ = 2π 

√ 
a .  

0 

� 2π 

(c) To evaluate the answer to first order in du means to 
2neglect any terms that would be proportional to du

or higher powers. This means that we can treat the 
annulus as if it were arbitrarily thin, in which case 
we can imagine bending it into a rectangle without 
changing its area. The area is then equal to the cir-
cumference times the width. Both the circumference 
and the width must be calculated by using the metric: 
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dA = circumference × width 

√ 1 a 
� 

= [2π u0 ] × du
2 u0(a − u0) 

a 
= π du .

(a − u0) 

(d) We can find the total area by imagining that it is broken up into annuluses, 
where a single annulus starts at radial coordinate u and extends to u + du. 
As in part (a), this expression must be integrated from the value of u at the 
center, which is 0, to the value of u at the outer edge, which is a. 

a a 
A = π du .

(a − u)0 

You did not need to carry out this integration, but the answer would be A = 
2πa. 

(e) From the list at the front of the exam, the general formula for a geodesic is 
written as 

k dx
d 
� 

dxj 1 ∂gk
 dx
.

ds
gij ds 

=
2 ∂xi ds ds 

The metric components gij are related to ds2 by 

2ds = gij dx i dxj , 

where the Einstein summation convention (sum over repeated indices) is as-
sumed. In this case 

a 
g11 ≡ guu = 4u(a − u) 

g22 ≡ gθθ = u 

g12 = g21 = 0  , 

where I have chosen x1 = u and x2 = θ. The equation with du/ds on the left-
hand side is found by looking at the geodesic equations for i = 1.  Of  course  j, 
k, and  & must all be summed, but the only nonzero contributions arise when 
j = 1,  and  k and & are either both equal to 1 or both equal to 2: 

d 
� 

du 
� 

1 ∂guu 
� 
du 

�2 1 ∂gθθ 
� 
dθ 

�2 

+
ds

guu ds 
=

2 ∂u ds 2 ∂u ds
. 
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1 
� ��� 

1 
� 
d 

��
d 

� 
a du 

� 
d 

� 
a du 

�2 dθ 
�2 

= + (u)
ds 4u(a − u) ds 2 du 4u(a − u) ds 2 du ds 

1 
� 

a a du 
�2 1 

� 
dθ 

�2 

= − +
2 4u(a − u)2 4u2(a − u) ds 2 ds 

1 
�

1 a(2u − a) 
� 
du 

�2 dθ 
�2 

= 
8 u2(a − u)2 ds 

+
2 ds

. 

(f) This part is solved by the same method, but it is simpler. Here we consider the 
geodesic equation with i = 2. The only term that contributes on the left-hand 
side is j = 2. On the right-hand side one finds nontrivial expressions when k 
and & are either both equal to 1 or both equal to 2. However, the terms on 
the right-hand side both involve the derivative of the metric with respect to 
x2 = θ, and these derivatives all vanish. So 

d 
� 

dθ 
� 

1 ∂guu 
� 
du 

�2 1 ∂gθθ 
� 
dθ 

�2 

+
ds

gθθ ds 
=

2 ∂θ ds 2 ∂θ ds
, 

which reduces to 

d 
� 

dθ 
u = 0  .

ds ds 


