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PROBLEM : NEUTRON-PROTON RATIO AND BIG-BANG 
NUCLEOSYNTHESIS (20 points) 

(a) In thermal equilibrium, the ratio of neutrons to protons is given by a Boltzmann 
factor, 

nn = e −∆m c  2/kT , (1) 
np 

where ∆m = (mn − mp). For ∆mc2 = 1.293 × 106 eV, k = 8.617 × 10−5 eV/K, 
and T = 5  × 1010 K, this gives 

nn = exp  − 1.293 × 106 /(8.617 × 10−5 × 5 × 1010) 
� 
= 0.741 . (2) 

np 

Caveat (for stat mech experts): The above formula would be a precise con-
sequence of statistical mechanics if the neutron and proton were two possible 
energy levels of the same system. In this case one would describe the system 
using the canonical ensemble, which implies that the probability of the system 
existing in any specific state i is proportional to exp(− Ei/kT ), where Ei is the 
energy of the state. However, the neutron and proton are not really different 
energy levels of the same system, because the conversion between neutrons and 
protons involves other particles as well; a sample conversion reaction would be 

n + νe ←→ p + e − , 

where νe is the electron neutrino, and e− is the electron. This means that 
if the universe contained a very large density of electron neutrinos, then n-
νe collisions would occur more frequently, and the reaction would be driven 
in the forward direction. Thus, a large density of electron neutrinos would 
lead to a lower ratio of neutrons to protons than the Boltzmann factor given 
above. Similarly, if the universe contained a large density of electrons, then 
the reaction would be driven in the reverse direction, and the ratio of neutrons 
to protons would be higher than the Boltzmann factor. A complete statistical 
mechanical treatment of this situation would use the grand canonical ensemble, 
which describes systems in which the number of particles of a given type can 
change by chemical reactions. In this formalism the density of each type of 
particle is related to a quantity called the chemical potential µ, where in general 
the relationship is given by 

d3p 1 
(3) n = g

h)3 e(E−µ)/(kT ) ± 1 
,

(2π¯
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where 
2 4pE = |�|2 c2 + m c , (4) 

the + sign holds for Fermi particles, the − sign holds for Bose particles, and 
the factor g has the same meaning as in Lecture Notes 7. It is sometimes more 
convenient to use E as the variable of integration, in which case the formula 
above can be written as 

g 
� ∞ (E2 − m2)1/2 

n = E dE .  (5) 
e(E−µ)/(kT ) ± 12π2(h̄c)3 

m 

For the nonrelativistic case, when kT � mc2, one can neglect the term ±1 in  
Eq. (3), and then the integral can be carried out exactly, yielding 

mkT 
�3/2 

e(µ−mc 2)/(kT )n = g
h2 . (6) 

2π¯

The ratio of neutrons to protons is then given by 

nn = e −(∆m c  2+µν −µe)/kT , (7) 
np 

where µν and µe represent the chemical potentials for electron neutrinos and 
electrons, respectively, and we have ignored a factor (mn/mp)3/2 ≈ 1. In 
the early universe, however, the standard theories imply that the chemical 
potentials for electrons and neutrinos were both negligible, so Eq. (1) above is 
extremely accurate. 

(b) A larger ∆m would mean that the Boltzmann factor described in the previous 
answer would be smaller, so that there would be fewer neutrons at any given 
temperature. Fewer neutrons implies less helium, since essentially all the neu-
trons that exist when the temperature falls enough for deuterium to become 
stable become bound into helium. 

(c) There are at least four effects that occur when the electron mass/energy is 
taken as 1 KeV instead of 0.511 MeV: 

(i) For the real mass/energy of 0.511 MeV the electron-positron pairs freeze 
out before nucleosynthesis, but a mass/energy of 1 KeV would mean that 
electron-positron pairs would behave as massless particles throughout the 
nucleosynthesis process. Just like adding an extra species of neutrino, this 
additional massless particle would mean that the expansion rate would be 
larger, since for a flat universe, 

8π 
H2 =

3 
Gρ , 
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and 
u π2 (kT )4 

ρ = 
c2 = g 

30 ¯ c
. 

h3 5 

Faster expansion means that the weak interactions “freeze out” earlier, 
since the freeze-out point is the time at which the interactions can no longer 
maintain equilibrium as the universe expands. An earlier freeze-out means 
a higher temperature of freeze-out and hence more neutrons at the time 
of freeze-out. In addition, the faster expansion rate means faster cooling, 
which means less time before the temperature of nucleosynthesis is reached, 
and therefore less time for neutrons to decay. Thus, faster expansion 
means more neutrons. Since essentially all the neutrons present when the 
deuterium bottleneck breaks are collected into helium, this implies more 
helium. 

(ii) The most important reactions that keep protons and neutrons in thermal 
equilibrium all involve electrons and positrons: 

n + e + ←→ p + ν̄e 

n + νe ←→ p + e − . 

If the electron-positron mass/energy were smaller, then the rates of all of 
these reactions would be enhanced. The reactions in which an e+ or e− 

appears in the initial state will be enhanced by the presence of more e+ ’s 
and e− ’s, and the reactions in which they appear in the final state will be 
enhanced because a lighter final state is easier to produce. The enhanced 
rate for these reactions will keep neutrons and protons in thermal equi-
librium longer, and hence to lower temperatures, and this would decrease 
the final abundance of neutrons. Thus this effect will go in the opposite 
direction as effect (i), leading to the production of less helium. 

(iii) If the electron mass is decreased, then the neutron decay 

n −→ p + e − + ν̄e 

becomes more exothermic, so it will happen more quickly. Thus more 
neutrons can decay, leading to less helium. 

(iv) As mentioned in (i), lowering the mass/energy of electron-positron pairs 
to 1 KeV would mean that their freeze-out would not occur until after 
nucleosynthesis is over. In the real case, however, with mec

2 = 0.511 MeV, 
the electron-positron pairs start to freeze out at t ≈ 10 sec. The energy 
released by this freeze-out heats the photons, protons, and neutrons, and 
this extra heat delays the time when the universe cools enough to break the 
deuterium bottleneck so that helium production can proceed. The delay 
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allows more time for the neutrons to decay, resulting in less helium. Since 
the freeze-out that occurs for mec

2 = 0.511 MeV results in less helium, the 
absence of this freeze-out if mec

2 = 1 KeV would result in more helium. 

Since the effects point in different directions, there is no easy way to know what 
the net effect will be. I (AHG) tried carrying out a full numerical integration, 
using the equations from P.J.E. Peebles, “Primordial helium abundance and 
the primordial fireball II,” Astrophysical Journal 146, 542-552 (1966). I found 
that the net effect of changing me c

2 to 1 KeV was to produce less helium. 
Apparently effects (ii) and (iii) above are the most significant. Of course I did 
not expect students to figure this out during the exam, although some students 
recalled this fact from the solutions in the Review Problems. 

(d) Part (a) asked for the ratio of neutrons to protons, so its answer is 

nneutron 
A = . 

nproton 

The fraction of the baryonic mass in neutrons is then 

nneutron 
nneutron nneutron = 

nproton A 
= = nneutron nB nneutron + nproton nproton 

+ 1  1 +  A
. 

The fraction of the baryonic mass in helium is twice this number, since after 
nucleosynthesis essentially all neutrons are in helium, and the mass of each 
helium nucleus is twice the mass of the neutrons within it. Thus 

2A 
Y = 

1 +  A
. 

This gives Y = 0.851. 
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PROBLEM : PRESSURE AND ENERGY DENSITY OF 
MYSTERIOUS STUFF (25 points) 

√ 
(a) If u ∝ 1/ V , then one can write 

V 
u(V +∆V ) =  u0 

V +∆V
. 

√ 
(The above expression is proportional to 1/ V +∆V , and reduces to u = u0 

when ∆V = 0.) Expanding to first order in ∆V , 

u0 u0 1 ∆V 
� 

1 −
∆V
V 

u
= = = u0 

1 +  ∆V
V 

2

.

1 +  1 
2 

V 

The total energy is the energy density times the volume, so 

1 ∆V 
� 

∆V 
� 

1 ∆V 
� 

U = u(V +∆V ) =  u0 1 − V 1 +  = U0 1 +
2 V V 2 V

, 

where U0 = u0V . Then 

1 ∆V
∆U = U0 .2 V 

(b) The work done by the agent must be the negative of the work done by the gas, 
which is p∆V . So  

∆W = −p∆V . 

(c) The agent must supply the full change in energy, so 

1 ∆V
∆W = ∆U = U0 .2 V 

Combining this with the expression for ∆W from part (b), one sees immediately 
that 

1 U0 1 
p = − = − 

2 
u0 .2 V 

5
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PROBLEM : AGE OF A UNIVERSE WITH MYSTERIOUS STUFF 
(15 points) 

(a) The critical density ρc is defined as that density for which k = 0,  where  the  
Friedmann equation from the front of the exam implies that 

8π kc2 

H2 = Gρ − .
3 R2 

Thus the critical density today is given by 

3H0
2 

ρc = 
8πG 

. 

The mass density today of any species X is then related to ΩX,0 by 

3H0
2ΩX,0

ρX,0 = ρcΩX,0 = 8πG 
. 

The total mass density today is then expressed in terms of its four components 
as 

ρ0 =
3H0

2 

[Ωm,0 +Ωr,0 + Ωv,0 + Ωms,0] .8πG 
But we also know how each of these contributions to the mass density scales √ 
with x(t): ρm ∝ 1/x3 , ρr ∝ 1/x4 , ρv ∝ 1, and ρms ∝ 1/ V ∝ 1/x3/2. Inserting 
these factors, 

ρ(t) =  
3H0

2 Ωm,0 Ωr,0 + Ωv,0 +
Ωms,0 

8πG x3 
+ 
x4 x3/2 

. 

(b) The Friedmann equation then becomes 

ẋ
�2 8πG 3H0

2 Ωm,0 Ωr,0 + Ωv,0 +
Ωms,0 

� 
kc2 

= + − .
3 4 x3/2 R2x 3 8πG x x

Defining 
kc2 

H0
2Ωk,0 = − 

R2(t0) 
, 

so 
kc2 kc2 1 H0

2Ωk,0− = − 
2R2(t) R2(t0) x
= 

x2 , 

and then the Friedmann equation becomes 

ẋ
�2 

= H0
2 Ωm,0 Ωr,0 + Ωv,0 +

Ωms,0 Ωk,0 
� 

+ + . 
x x3 x4 x3/2 x2 
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Applying this equation today, when ẋ/x = H0, one finds that 

Ωk,0 = 1  − Ωm,0 − Ωr,0 − Ωv,0 − Ωms,0 . 

Rearranging the equation for ( ̇x/x)2 above, 

dx 
H0 dt = � . 

Ωm,0 + Ωr,0 + Ωk,0 x 3 x + Ωv,0 + Ωms,0 
4 3/2 2x x x

The age of the universe is found by integrating over the full range of x, which  
starts from 0 when the universe is born, and is equal to 1 today. So 

1 
� 1 dx 

t0 = � . 
H0 0 Ωm,0 + Ωr,0 + Ωk,0 x 3 x + Ωv,0 + Ωms,0 

4 3/2 2x x x

Extra Credit for Super-Sharpies (no partial credit): 

Since Ωtot < 1, we use the Robertson-Walker open universe form 

2dr �
2ds = −c 2 dτ 2 = −c 2 dt2 + R2(t) + r 2 dθ2 + sin2 θ dφ2

� 
,

1 +  r2 

where I have started with the general form from the front of the exam, and 
replaced k by −1. To discuss the radial transmission of light rays it is useful 
to define a new radial coordinate 

r = sinh  ψ ,  

so 
dr = cosh  ψ dψ = 1 +  r2 dψ ,  

where I used the identity that cosh2 ψ = 1  +  sinh2 ψ. The metric can then be 
rewritten as 

2 
� � �� 

ds = −c 2 dτ 2 = −c 2 dt2 + R2(t) dψ2 + sinh2 ψ dθ2 + sin2 θ dφ2 . 

Light rays then travel with dτ 2 = 0,  so  

dψ c 
= 

dt R(t) 
. 
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If a light ray leaves the object at time te and arrives at Earth today, then it 
will travel an interval of ψ given by 

t0 

ψ = 
c 

dt′ . 
R(t′ )te 

We will need to know ψ, but we don’t know either te or R(t). So we need to 
manipulate the right-hand side of the above equation to express it in terms of 
things that we do know. Changing integration variables from t′ to x, where  
x = R(t′)/R(t0 ), one finds dx = ẋ dt′, and  then  

� 1 c 1 dx 
ψ = . 

R(t0 ) x ẋxe 

Using H = ẋ/x, � 1 c dx 
ψ = 

R(t0 ) xe 
x2 H

. 

Now use the formula for H = ẋ/x from part (b), so 

� 1 c dx 
ψ = � . 

Ωm,0 + Ωr,0 + Ωk,0R(t0 )H0 xe x2 
3 x + Ωv,0 + Ωms,0 

4 3/2 2x x x

Here 

1 
xe = 

R(te) = 
1 +  z

,
R(t0 ) 

and the coefficient in front of the integral can be evaluated using the Friedman 
equation for k = −1: 

2 2 

H2 =
8π
Gρ0 + 

R2 

c

(t0)
= H0

2 Ω0 + 
R2 

c

(t0) 
,0 3


so

2c

= 1  − Ω0 = Ωk,0 . 
R2 (t0) H2 

0 

Finally, then, the expression for ψ can be written 

� 1 � dx 
ψ = Ωk,0 � , 

xe x2 Ωm,0 + Ωr,0 + Ωk,0+ Ωv,0 + Ωms,0 
3 x4 3/2 2x x x
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where xe is given by the boxed equation above. 

Once we know ψ, the rest is straightforward. We draw a picture in comoving 
coordinates of the light rays leaving the object and arriving at Earth: 

In this picture ∆θ is the angular size that would be measured. Using the dθ2 

part of the metric, 
2ds = R2 (t) sinh2 ψ dθ2 , 

we can relate w, the physical size of the object at the time of emission, to ∆θ: 

w = R(te) sinh  ψ ∆θ .  

To evaluate R(te) we  can  use  

xec 
R(te) =  xeR(t0 ) =  � . 

H0 Ωk,0 

Finally, then, 

wH0 Ωk,0∆θ = 
xec sinh ψ

, 

where ψ is  given by  the  boxed equation above.  
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