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ABSTRACT

Neutronic sensitivity studies have been made with respect to
the use of the computer code MEKIN (MIT-EPRI Kinetics Code).
This code is a tool for nuclear reactor safety analysis which
couples neutron physics with thermal-hydraulics in time and
three-dimensional space. These sensitivity results can be used
as a guide with respect to three user inputs: neutronic spatial
mesh size, neutronic time step size, and the linear cross section
feedback parameters.

As the neutronic spatial mesh interval is decreased, the power
distribution always converges to accurate solutions. For large
problems with material discontinuities, a high degree of accur-
acy appears extremely expensive. For well-behaved and converged
solutions, the required number of neutronic time steps may also
be very costly. The solution is found to be particularly sensi-
tive to time step size when the power-time behavior deviates
from an exponential. The linear cross section feedback approxi-
mation cannot be depended upon, apriori, to accurately (i.e.,
within 10%, predict power level and energy deposition.
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CHAPTER 1

INTRODUCTION

Sensitivity studies with the computer code MEKIN (2) form

the basis of this thesis. MEKIN is a nuclear reactor safety

analysis code which couples neutron physics with thermal-

hydraulics in time and three-dimensional space. Specifically,

the code models light water reactor cores during V6stulated

transients. The objective of this research project was to in-

vestigate and describe how certain neutronic input parameters

effect the solution. The motivation behind the work and a

-general outline are provided in the next paragraphs.

Nuclear reactor safety has received a great deal of

attention form this country's reactor vendors and public

utilities. In addition, the government and general public

have been constantly studying and questioning the issue.

Complete experimental verification of safety is impractical

or even impossible. As a result, computer codes have been

the primary means of nuclear reactor accident analysis. Codes

introduce compromises via numerical approximations and simpli-

fied physical models. The incentive for such compromising is

both theoretical and economic; the mathematics or physics nece-

ssary for an exact solution may not be understood, while finan-

cial restraints limit computational time. Some compromises

are built irto the code, while others are options selected by

the user. Either way, code users generally wish to attain a

certain accuracy with the least amount of trouble. Therefore,
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the user must have some idea on the extent that the solution is

effected as the caluculation is simplified. This is the mode

of thought which led to the problem addressed in this thesis:

sensitivity studies with MEKIN.

This thesis is broken down into seven chapters. Chapter

2 provides a brief description of the MEKIN code in terms

geometry and calculational strategy. This chapter can be skipped

by those familiar with the code, and the MEKIN manual should be

consulted if more detail is desired. Chapter 2 also addresses

several areas of input preparation which warranted special at-

tention in this study and may demand extra consideration by

future code users. Chapter 3 gives an indication of the sensi-

tivity of solution to the steady state convergence criteria.

Chapter 4 gives a discussion of the sensitibity of solution to

the neutronic mesh spacing. Chapter 5 gives a description of

the sensitivity of solution to the neutronic time step size.

Chapter 6 sets forth the sensitivity of solution to the cross

section feedback parameters. Finally, Chapter 7 offers recom-

mendations and conclusions.
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CHAPTER 2

THE MEKIN CODE DESCRIPTION AND INPUT PREPARATION

MEKIN is a safety analysis code which couples neutron

physics with thermal hydraulics in time and three-dimensional

space. Specifically, this code represents cores of light-water

nuclear reactors during postulated transients. A complete

code description is contained in the MEKIN manual. Volume I con-

sists of a theoretical explanation of the code's capabilities

afhd caluclational strategy. Volumes II and III are made up of

articles written while MEKIN was being developed.

This chapter highlights MEKIN and discusses several aspects

of input preparation which deserve special attention. For more

detail, the reader should consult the MEKIN manual.

2.1 MEKIN G1EOMETRY

When using or discussing a code similar to MEKIN, an

accepted nomenclature greatly enhances understanding and commun-

ication. Below is an explanation of the reactor geometry in

MEKIN and a presentation of definitions employed throughout this

thesis as well as in the code manual.

The core is represented as a mass of three-dimensional

reactor regions. Every region is the same size, each is neutron-

ically homogeneous, and each is rectangular parallel .-piped.

A region occupies a square box in the X-Y (horizontal) plane

and an axial segment in the z (vertical) direction. The user

supplies a set of cross-sections and related constants for each



14

region.

Superimposed on this region-geometry is a neutronic fine

mesh geometry. As a result, each homogeneous region is sub-

divided into axial mesh intervals and horizontal square mesh

increments. Both axial intervals and square increments must

be uniform throughout the reactor. However, the set of axial

intervals and the set of square increments may be varied

independently. These intervals and squares all contain a

centered neutronic mesh point. Turning back to three dimen-

sions, a mesh increment of volume must also have a geometrically

centered mesh point. Thus, a uniform number of mesh points

are contained within each and every reactor reg.on. Values of

neutron flux, delayed neutron precursor concentration, and

equilibrium xenon concentration are computed for each mesh

point in the reactor.

Within the core, thermal-hydraulic regions are indentical

to the neutronically homogeneous reactor regions discussed above.

Both have the same size, same shape, and same locations. Outside

the core, additional thermal-hydraulic regions may (user option)

occupy volumes not considered in the neutronic analysis. A

thermal-hydraulic channel is a vertical combination of regions.

Average values of coolant density, coolant temperature, and fuel

temperature are computed and stored for each thermal-hydraulic

region.

Perhaps a summation of the geometrical model will clarify-

the nomenclature. A region should be visualized as a volume

whose neutronic and thermal-hydraulic constants are smeared
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over this volume. The neutron flux solution is computed at

discrete mesh points within the region, while the radial tem-

perature profile is calculated at discrete nodes within the

region's average pin. Such a description is consistent with

MEKIN's required input. The user specifies a uniform size of

the regions, a uniform number of axial and horizontal mesh

points per region, and a uniform number of radial fuel nodes

per pin. Chapter 4 deals with the sensitivity of the neutronic

mesh spacing in detail. Illustrations of the MEKIN geometry

are privided on Figs. 2.1 and 2.2.

2.2 THE MEEIN CALCULATION

The calculational sequences can be subdivided into three

classes: neutronics, thermal-hydraulics, and the transmission

of information between the two. The neutronic model is tran-

sient neutron diffusion theory. The user can choose a calcu-.

lation involving one or two neutron energy groups and from zero

to six delayed neutron families. The thermal-hydraulic model

is identifcal to the COBRA III-C/MIT code (14).

The steady state and transient calculational strategies

require separate explanations. As a brief description, the

next two paragraphs and associated figures include material

taken directly from Volume I, Part I, pages 9-13 of the MEKIN

manual.

The steady state reactor calculation involves an iter-

ation between neutronic and thermal-hydraulic calculations.

This iteration is required because neutronic parameters (e.g.)

cross sections) are functions of thermal-hydraulic state vari-
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ables (e.g., temperatures and densities). Furthermore, the

sensible power (i.e., heat) distribution is a function of the

fission distribution. The sequence of calculations is illus-

trated in Fig. 2.3. Total reactor power is a user input and

the static neutronic calculation is performed as a K-effective

search. This calculation is based on user specified convergence

criteria, which are discussed further in Chapter 3.

The general sequence of calculations required to update

the reactor state over one time interval is illustrated in Fig.

2.4. Beginning in the lower, left-hand portion of the figure,

the most recently computed thermal-hydraulic state variables

(ec' I Tm) and correlated data are used to evaluate neutronic

parameters. These parameters are modified to reflect external

neutronic perturbations (e.g., control rod movement). The

neutron flux ($), delayed neutron precurser concentrations (C),

and fission distribution (F) are updated in tne transient neu-

tronic calculation. The sensible power is computed. Thermal-

hydraulic parameters and boundary conditions are modified to

reflect the effect of external thermal-hydraulic perturbations

(e.g., reduction of flow). Thethermal-hydraulic state variables

are then computed. This sequence is repeated for successive

thermal-hydraulic time intervals, and the user may specify mul-

tiple neutronic time steps within one thermal-hydraulic interval.

The sensitivity of the time interval between neutronic

calculations is discussed in depth in Chapter 5 of this thesis.

The sensitivity of the technique for updating the cross sections

is considered in Chapter 6.
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2.3 INPUT PREPARATION

Several of the user input parameters of MEKIN warrant

special attention, and preliminary calculations may be necessary.

A few examples of such neutronic parameters are discussed below.

Homogenized, macroscopic cross sections represent a user

input in MERIN, but separate codes must be employed to obtain

these constants. Consequently, care must be taken to insure

that generated cross sections are in the proper form for use in

MEKIN. In addition, gathering the data may be a formidable task

due to the large number of reactor regions for a full-scale

problem. This is particularly true for an end-of-cycle core,

where burnup causes region-to-region cross section variation in

the axial as well as radial direction. In fact, a reactor-

specific computer program may be the most efficient procedure

for gathering, altering, and punching the data. Due to the

nature of the data base for the test problems of this thesis,

the macroscopic cross sections required both an alteration of

form (see Appendix A for details) and a custom-made computer

program. Keep in mind that Appendix A applies to a specific

case, and the material may or may not be relevant to another

user. The key point to remember is that inputting the macro-

scopic cross-sections to MEKIN may require a careful, tedious

effort.

The MEKIN user has the option of specifying albedo boun-

dary conditions at the core-reflector interface. A set of al-

bedoes can be determined by either of two methods: nomalization

of the power distribution or direct calculation. A normaliza-



23

tion procedure would involve iteratively varying the albedoes

until the MEKIN power distribution approximates an accurately

calculated distribution. However, the effort would probably

outweigh the benefits in terms of expense and time relative to

a questionable gain in accuracy. Direct calculation of the

albedoes is the alternative, but an understanding of the use

of the albedo boundary conditions in the MEKIN code is essential

because albedoes do not have a standard definition. One method

of calculating an appropriate set is the procedure developed by

P. Kalambokas (10). Although his definition of albedoes does

not match that in MEKIN, his procedure is still applicable.

Details are set forth in Appendix A.

The cross section feedback parameters comprise another set

of inputs which require extra calculations. Chapter 6 gives

a discussion of these parameters in detail.

Abb-Aw -
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CHAPTER 3

NEUTRONIC CONVERGENCE CRITERIA SENSITIVITY

In the steady state, MEKIN solves the neutronics finite

difference equations by accelerated iterative methods, and the

computation proceeds until the convergence criteria has been

satisfied. Because this criteria is among the input, the user

can control the degree to which the solution is converged. The

purpose of this chapter is to address the sensitivity of the

"neutronics-only" steady state solution to the neutronic con-

vergence criteria (Neutronics-only implies no thermal-hydraulic

calculations.).

The input convergence criteria to MEKIN are EPSSPR, EPPSK,

and DIFMAX. As defined in Volume 1, Part II, page 27 of the

manual, EPSSPR is the convergence criteria on region power for

reactor iterations at steady state. The maximum change in

reactor power, over all regions, must be less than this value.

EPSSK is the neutronic eigenvalue (K-effective) convergence

criteria for the reactor solution at steady state. DIFMAX is

the pointwise neutron flux convergence criteria for the neu-

tronic steady state caluculation. When thermal-hydraulic feed-

back and xenon are not included, only one neutronic calculation

is performed (i.e., one set of outer iterations). In this situa-

tion, EPSSPR and EPPSE are ignored; DIFMAX and criteria built

into MEKIN monitor the convergence.

In order to determine the sensitivity of solution to

DIFMAX, several cases were selected and DIFMAX was varied for
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each case. Model 1 of Appendix B was the primary reactor used

for this sensitivity. The first case involved this model with

the following additional features: 10.4 cm. horizontal neu-

tronic mesh spacing, identical material compositions for all

regions, neutronics-only. The behavior of the steady state

flux solution as a function of DIFMAX is well behaved, as

illustrated in Fig. 3.1. The fact that the solutions are iden-

tical when DIF4AX is 10 and 10 indicates that the additional

covergence criteria built into MEKIN controls the convergence

when -log (DIFMAX) is sufficiently small.

The second case involved the same model with one exception:

the material compositions were different from region to region.

Results almost duplicate those from the initial case, as shown

by Fig. 3.2.

To summarize the results of both cases, a value of 105

for DIFMAX appears to be a dependable value for accurate steady

state power distributions. Less rigorous tests were performed

on the same model with a smaller neutronic mesh spacing and

on a different reactor (Model 3 of Appendix A). 10 was

again shown to be an adequate value for DIFMAX.

The above results apply to steady state neutronics-only

solutions. Two areas left open for future work are the effect

of the steady state convergence criteria on the transient solu-

tion and the sensitivity of coupled (i.e., neutronic and thermal

hydraulic) solutions to the convergence criteria. Concerning

the latter, a combination of EPSSPR as 10 , EPSSK as 10- 5, and

DIFMAX as 10-5 appears to give reliable and fairly economical
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answers, so this set of convergence criteria was used for all

coupled calculations discussed elsewhere in this thesis. How-

ever, a complete sensitivity study has not yet been performed.
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CHAPTER 4

NEUTRONIC SPATIAL MESH SIZE SENSITIVITY

The transient neutron diffusion equations are solved in

the MEKIN code by using numerical approximations such that

values of neutron flux are generated at discrete points through-

ott the reactor. The distance between these points is specified

by the user through two input parameters: the horizontal neu-

tronic mesh spacing and the axial mesh spacing, as discussed

in Section 2.1 of this thesis. Both inputs are restricted to

being constant everywhere in the core, but the two may differ

from one another. In addition, the mesh size cannot be changed

during a MEKIN transient calculation. The purpose of this

chapter is to give a description of the sensitivity of solution

to the distance between neutronic mesh points.

Research work was divided into three areas: a steady

state study of the horizontal mesh, a steady state investigation

of the axial mesh, and a transient mesh study. This chapter is

broken down in the same manner. Prior to describing the cal-

culations and results, the neutronic solution techniques in

MKIN are briefly discussed.

4.1 NEUTRONIC SOLUTION TECHNIQUES IN MEKIN

In the steady state, the neutron diffusion equations are

approximated in MEKIN by second-order three-dimensional finite

differencing. A point-by-point flux solution is generated by

accelerated iterative methods. In the transient, the user has
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the option of one-dimensional synthesis, point kinetics, or

three dimensional neutronics, where the solution technique is

the non-symmetric-alternating-difference-explicit (NSADE) method.

All transients discussed in this thesis involve chree-dimensional

neutronics.

The difference equations in MEKIN are of the mesh-centered

type; the discrete flux points lie entirely within the boundar-

ies of the bordering homogenized material compositions. This

mesh scheme is employed in the CITATION codes. The widely used

PDQ series of codes uses interface-centered, where all boundaries

between material compositions contain at least one mesh point.

From a physical standpoint, finite differencing forces two

compromises on the continuous three-dimensional diffusion equa-

tions. First, the value of the neutron flux at all continuous

locations within an incremental volume is approximated as the

value of the flux at the central point of that volume. Second,

the spatial flux gradients are approximated as straight lines.

Both of these compromises depend on the size of the neutronic

mesh interval, and it can be proven that the solution of the

difference equations converges to a unique limit as the mesh

interval is reduced (9).

From a numerical standpoint, the approximations discussed

above cause truncation error, where truncation error is a

measure of how well a difference equation models the differential

equation. This generalized error induces an error in neutron

flux at each mesh point. For the case of a bare, one-dimensional

homogeneous system with a uniform mesh, both the truncation error
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and the pointwise errors can be shown to be bounded by the

2
square of the mesh spacing (h) (19). For example, decreasing

the mesh interval by a factor of two will decrease the local

error by nearly a factor of four. Realistic problems have non-

uniform material properties, and development of exact expressions

f r truncation error and pointwise error has never been achieved.

H wever, error is expected to be proportional to h for a pattern

of material discontinuities between every mesh point in a one-

dimensional system with constant mesh size (19). In dealing

with MEKIN, the situation is even more complex: three dimensions,

two neutron energy groups, two-group albedo boundary conditions,

and material discontinuities between some, but not all, mesh

points. Development of exact analytical expressions for point-

wise error appears impossible and other types of theoretical

analysis are not well understood, so code experimentation is

the logical alternative. The next three sections of this chapter

include the calculations and results of such experimentation

performed with MEKIN.

4. 2 STEADY STATE HORIZONTAL MESH SENSITIVITY

For an adequate horizontal mesh sensitivity study, a reactor

must be large enough to allow for spatial effects. On the other

hand, economics can become a problem as the number of mesh points

is increased. Models 1 and 2 of Appendix B appear to accomodate

both constraints, so all of this section's calculations and re-

sults apply to these models. They represent a complete traverse

of a pressurized water reactor core and each horizontal box has
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the planer dimensions of one assembly.

The test cases are discussed in the following order:

Case 1: Model 1 of Appendix B, neutronics-only, mater-
ial compositions identical for all regions.

Case 2: Model 1, neutronics-only, all regions identical
except #3 (rod withdrawn).

Case 3: Model 1, neutronics-only, material compositions
vary from region to region.

Case 4: Model 2 of Appendix B, thermal-hydraulic feed-
back included, all regions identical.

Case 5: Model 2, thermal-hydraulic feedback included,
same material compositions as Case 3.

For each case, the test procedure was the same; the number of

neutronic mesh points was varied with all other parameters held

constant.

Case 1 is a homogeneous problem except at the ends, where

albedo boundary conditions are used. These albedoes are derived

from the material properties of a reflector region. As expected,

this case displayed very little sensitivity to the solution.

When comparing the 2.54 cm mesh to the 10.4 cm mesh, the largest

region power difference was 2.6%. Comparing the 2.6 cm mesh to

the 5.2 cm mesh , the maximum relative error was only 1%. Loca-

tion of the maximum relative error was always in the end region.

For this reason, the sensitivity is attributed to the albedo

boundary conditions. Further details are given on Fig. 4.1 and

Table C.1 of Appendix C.

Case 2 had the ejecting rod fully withdrawn. This single

inhomogeneity caused the model to be slightly more sensitive to

the number of mesh points. As before, the location of maximum

relative error was the end region. The largest region power

A% -
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difference between the 2.6 cm mesh and the 10.4 cm mesh was 4%.

Comparing the 5.2 cm mesh to the 2.6 cm mesh, 1.4% was the max-

mum relative error. The peak power region (the ejecting region

in this case) was almost as sensitive as the end region. Fig.

4.1 and Table C.2 of Appendix C give more details.

Again using Model 1 of Appendix B, the material compositions

were varied from region to region based on a reactor at the end

of a cycle and in the hot-zero-power mode (Case 3). Due to the

various burnups and the presence of control rods, the power dis-

tribution was very uneven (see Fig. 4.1). For this case, the

power distribution is markedly sensitive to mesh spacing. The

maximum relative error is over 10% when comparing the 10.4 cm

mesh to the 1.3 cm mesh. The 5.2 cm mesh is somewhat better as

the largest difference in region power is z5% matched against

the 1.3 cm mesh. As with Case 1, increasing the number of mesh

points tilts the power toward the center of the core. More

detail is given on Table C.3 of Appendix C. The region material

discontinuities appear to be chiefly responsible for the solu-

tion's sensitivity to mesh size. Indeed the most sensitive

regions are those having a bordering region of significantly

different composition and/or a large flux gradient (i.e. edge

region, rodded-unrodded neighboring regions, etc.). This is

consistent with theory (8).

Fig. 4.2 gives another view of the results. For two of the

regions, power is plotted against mesh spacing. The curves are

converging to better answers in a somewhat linear fashion.
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Up to this point, just neutronics-only calculations have

been considered. Cases 4 and 5 involve a similar model (2 of

Appendix B) with thermal-hydraulic feedback. The amount of

feedback per volume resembles the level achieved when a typical

pressurized water reactor is operating at full power. The

extra axial level was included to accomodate the thermal-hydraulic

portion of the code. It has a negligible effect on horizontal

power distribution because the two levels have identical initial

cross sections. When all regions had identical compositions

(Case 4), the results almost duplicated Case 1 (see Table C.4

of Appendix C).

When the material compositions were varied from region to

region (Case 5), the results were again similar to the neutronics

only data (Case 3). The only apparent difference was a slight

dampening of the relative errors. For example, the maximum rela-

tive error between the 10.4 cm mesh and the 2.6 cm mesh is 7%.

Details are given on Fig. 4.4 and Table C.5 of Appendix C.

Fig. 4.5 plots region power against mesh spacing; again, conver-

gence is close to being linear.

Several areas of these horizontal mesh studies deserve

repetition or clarification. First, marked changes in material

compositions from one region to another cause MEKIN to be very

sensitive to the horizontal mesh interval. Second, convergence

to better answers is close to being linear. Third, feedback

does not have much effect on steady state sensitivity. Finally,

the errors which should cause the most concern are those near

power peaks and those near potential peaks (i.e., areas close
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to the perturbation of a transient).

4.3 STEADY STATE AXIAL MESH SENSITIVITY

The primary reactor for this investigation was Model 3 of

Appendix B. This represents four identical full-length channels

in a typical pressurized water reactor. The areas above and

below the core have different material properties and different

sets of albedoes 'were .therefore used at the top and bottom. The

material compositions were varied from region to region in order

to represent channels corresponding to 8000 MWD/MT of burnup.

The solution exhibited significant sensitivity as the

axial mesh was varied. The maximum relative error between the

29 cm mesh and the 7.2 cm mesh was nearly 10%. More detail is

given on Fig. 4.6 and Table C.6 of Appendix C. Another view

of the results is presented on Fig. 4.7, where region power is

plotted against mesh spacing for three of the ten different

regions. The data points for the 29 cm mesh do not fit the

curves well. The probable cause is the fact that each mesh

point sees different material compositions in both axial direc-

tions. From the shapes of the curves, the true solution in

each region still has not been closely approximated. Unfortun-

ately, this model cannot be input to MEKIN with more than four

mesh points per region due to current storage limitations in the

code.

In order to tighten the mesh further, keep within storage

limitations, and hopefully converge to a better answer, a study

was carried out on Model 4 of Appendix B. Region compositions
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are identical to the bottom five regions of the previous case.

Judging from Fig. 4.8 and Table C.7 of Appendix C., power solu-

tion appears to be fairly well converged for the 4.1 cm mesh.

In addition, the relative error is almost exactly linear with

axial mesh spacing (see Fig. 4.8).

In summary, the power solution error for both models is

proportional to h , where h is the mesh spacing. "q" is approx-

imately 1.0 for the five-region case. However, q appears to be

slightly less than unity for the ten-region case, indicating

greater sensitivity to axial mesh. This discrepancy can be

attributed to the relative complexities of the problems. The

10-region case represents an extreme for a pressurized water

reactor: full core height, different albedoes on top and bottom,

different material compositions at every level. However, boiling

water reactors may show a greater mesh sensitivity near the top

of the core due to the drastic cross section changes induced by

boiling.

No further axial mesh sensitivity studies were performed.

The reasons were two-fold: results were very similar to those

obtained with the horizontal models and the axial models are

relatively more expensive due to computer storage.

4.4 TRANSIENT MESH SENSITIVITY

The transient mesh size studies employed Model 1 of

Appendix B with material compostiions which varied from region

to region (In the steady state, this reactor was identical to

the one used in Case 3 of Section 3.2). An off-center control

-
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rod ejection was the reactivity force that was used to drive

the transient.

For neutronic mesh intervals of 2.6 cm, 5.2 cm, and 10.4

cm, the transient was carried out to 0.03 seconds. Despite this

relatively short time period, the solutions show significant

divergences (see Fig. 4.9 and Table C.8 of Appendix C). Total

reactor power for the 10.4 cm mesh differed from the power for

the 2.6 cm mesh by over 10% after 0.03 seconds. Better agree-

ment occurred in the 5.2 cm - 2.6 cm mesh comparison, but

reactor power still varied by z3%. To make matters worse, the

10.4 cm mesh underpredicted the power, indicating a non-conser-

vative trend for less accurate calculations. With respect to

individual regions, power variation as a function of mesh was

even more accented. When comparing the 10.4 cm mesh to the 2.6

cm mesh, the ejecting channel power varied by 18% while the

region of peak power had a power difference of 13%. Error as

a function of neutronic mesh appears to be fairly linear, as

indicated by Fig. 4.10. (The data point for the 2.6 cm mesh

should be interpreted as the best reference rather than the

exact answer.)

A separate study on the time step size assures that any

differences reflect only the spatial mesh size. The time step

size for the reported results was 0.0002 seconds and the error

from using this value is small compared to the error induced

by varying the mesh spacing. For example, with a 2.6 cm mesh

at 0.25 seconds, the powers were 0.00906 and 0.00899 MW for

time steps of 0.0002 and 0.0001 seconds. For the 10.4 cm mesh

-



10

2.6 eM ESE

9

5.2 cm MESH

8
10.4 cm. MESH

0
E-4

M

6

5

0.0 0.005 0.01 0.015 0.02 0.025 0.03

TIME (sec)

FIG. 4.9: REACTOR POWER VS TIME: HORIZONTAL MESH SENSITIVITY.



47

TOTAL REACTOR POMR

-5.0

-10.0 PEAK NEL
POWER

-15.0 EJECTING
CHANNEL POWER

TIME: 0.03 SECONDS

-20.0

0 1 2 3 4 5 6 7 8 9 10 11

MESH SPACING (CM)

FIG. 4.40: HORIZONTAL MESH SPACING VS. RELATIVE ER14: INW#SENT

CASEP



48

at 0.025 seconds, the powers were 0.00823 and 0.00819 for

time steps of 0.0002 and 0.0001 seconds.

The above results indicate that errors grow as the

transient evolves. Next, the probable cause and a simple

formula for predicting such behavior will be investigated.

Since K-effective is sensitive to mesh spacing, rod

worth is also affected. Therefore, an identical rod ejection

for different mesh sizes will result in different periods. For

the case at hand, different periods resulted and the rod worths

differ, but the two phenomena still must be linked together in

a quantitative manner,

The height of the prompt jump can easily be calculated

by: (12)

Pi 1(l-p) (4.1)
P0  1-p '

where
P1 = reactor power level after prompt jump,

Po = initial reactor power level,

a = delayed neutron fraction,

p = reactivity insertion (rod worth in this case).

In words, the power jumps by the factor 13(l-P) very soon
13-p

after reactivity p has been introduced to the system. This

formula was developed under the following conditions: system

originally at steady state, step change in reactivity, concen-

trations of precursers remain constant during prompt jump, homo-

geneous slab reactor, reactivity, p, is less than the delayed

neutron fraction, S.

- J a, -
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Unfortunately, with the exception of the final condition,

the other criteria differ for the case at hand. Despite these

differences, when this formula was tested against the MEKIN

calculations, the results were encouraging (see Table 4.1).

This table may be misleading because the calculated power ratio

does not match the MEKIN power ratio. However, the percentage

differences between the two mesh sizes are fairly close: 7.64

to 7.63 and 7.64 to 9.00, depending on the value of the delayed

neutron fraction. The exact reactor-averaged delayed neutron

fraction is not known because the input values vary from region

to region. The best value for the given formula would have to

be determined by weighting the region values by the regions'

importances.

Consequently the MEKIN user has a method of predicting

the error in power-time behavior which is induced by a coarse

mesh interval. Required information includes the coarse mesh

rod worth from two MEKIN steady state calculations and a fine

mesh rod worth from two more MEKIN steady state calculations.

The fine mesh result acts as an accurate reference when the two

worths are used in Eq. (4.1). The two calculations will yield

different power ratios, and the percentage difference in power

ratios is then an indication of the error in the true power ratio

between a fine mesh transient and a coarse mesh transient. This

procedure is only valid for reactivity insertions less than the

delayed neutron fraction.
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TABLE 4. 1 ,

Prediction of Transient Error.

K-Effective (Rod Out)

K-Effective (Rod In)

Rod Worth (AK/K)

P1 /po* (0 = .005)

P/P 0 * (6 = .0047)

Reactor Power (t=.03sec)

Reactor Power (t=0)

P/Po (MEKIN)

10.4 cm
mesh

.9713007

.9683575

.003093

2.542

2.822

.008466 (MW)

.005000 (MW)

1.693

5.2 cm
mesh

.9691710

.9651820

.0031890

2.752

3.101

.009165 (MW)

.005000 (MW)

1.833

Percentage
Difference

-7.63

-9.00

-7.64

*P1  - 6(1-p)
Po 0-p) )

where 6 = delayed neutron fraction x.005,

p Rod Worth..
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4.5 USER APPLICATIONS OF THE MESH SENSITIVITY

Prior to using the results of this study as an aid to mesh

size selection, several concluding remarks deserve consideration.

For one thing, the steady state magnitudes of error refer to the

horizontal and axial directions separately. When MEKIN is

used in three dimensions, the error in region power will be a

function of both the horizontal and axial uncertainty. As a first

approximation to this combined error and with the exact solution

normalized to unity:

= (1+a.) (1+y.)-1, (4.2)
1 1 1

where e. = fractional error in steady state power for region i,

a = fractional error in region i due to the horizontal

mesh spacing,

y = fractional error in region i due to the axial mesh

spacing.

The steady state results can provide a users' guide for

bracketing undertainties as a function of mesh size. Both

extremes (i.e., a homogeneous reactor and very inhomogeneous

reactors) have been studied, and a typical problem should fall

somewhere within these bounds. In the pase of a delayed-critical

reactivity insertion transient, a simple method for predicting

mesh size induced errors has been provided.

4.6 IMPLICATIONS OF THE MESH SENSITIVITY

Concerning solution behavior, better answers appear to be

approached in a somewhat linear fashion as the mesh size is re-

duced. Unfortunately, a high degree of accuracy may be too
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costly for large problems. Consider the case of a full core

problem with a 2.6 cm horizontal mesh and a 10 cm axial mesh.

These values are not unreasonable based on the results presented

here and they correspond to -400,000 neutronic mesh points for

the full core. On the IBM 370/168 computer at MIT, such a prob-

lem is estimated to require anywhere from 20 to 50 hours of CPU

time. Now remember, this is only a steady state neutronics-only

calculation. In view of this excessive computational time, al-

ternative solution techniques to the finite difference method

are under consideration. Two techniques which show promise have

been developed by R. Sims (16) and T.Shober (17) at M.I.T. Both

methods involve nodal codes based on response matrices.

AV0NWMft A&



53

CHAPTER 5

NEUTRONIC TIME STEP SIZE SENSITIVITY

When transient conditions are represented by MEKIN, the

neutronic power distribution is computed at successive times,

and the interval between calculations (i.e., neutronic time

step size) is user specified. This input is somewhat more

flexible than spatial mesh size because the user can vary the

time interval as desired. Currently, the code has no means

of automatic time step size selection.

The purpose of this chapter is to give a description of

the sensitivity of solution to the neutronic time step size.

As mentioned, the three-dimensional transient solution technique

is the NSADE method, and its theory is breifly presented in

Section 5.1. The remaining sections of this chapter include

the test cases and results, data correlation, user applications,

and implications of this particular sensitivity study.

5.1 THE NSADE METHOD IN MEKIN

The non-symmetric alternating-direction explicit (NSADE)

method is the solution technique used to solve the transient

three-dimensional neutronic finite difference equations in MEKIN.

In matrix form, these equations can be expressed as

V T(t) = A T(t), (5.1)

where the solution vector is

T = [11 42 C 1
--- CL ] (5.2)
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_ is the vector of all point fluxes in group g and C0 is the

vector of all point preculisers in family 9. v is a diagonal

matrix of inverse group velocities, while A is the net produc-

tion matrix.

Under transient conditions, the power distribution is

computed at successive times. Between any two such times, the

NSADE method performs a two-step semi-implicit calculation.

Matrix A of Eq. (5.1) is split into four triangular matrices

to allow the inversions to be obtained simply by forward sub-

stitution and backward substitution. The forward-back substi-

tutions are in fact a sweeping of the mesh points starting in

the lower left corner and solving points successively while ad-

vancing to the upper right, and then reversing direction and

sweeping back. The details of this procedure are set forth in

Volume 1, Part 1 of the MEKIN manual.

A special feature of this technique in MEKIN is the expon-

ential frequency transform of the group fluxes. The fluxes are

transformed by

g~n Omhg,n
m =  e m , all g, m, (5.3)

where = frequency at point m,

h = time step size,

$g,n = the group g flux at time n at mesh point m.m

The precursers are not transformed and a frequency is calculated

for each mesh point after each time step. The frequencies at

point m used during the time step from tn to tn+1 are computed

by

- -Nf f
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1 n[$g=2,n /g= 2,n-1 (5.4)
m tn n-l m m

This transform was originally implemented because "exponential

growths are characteristic of neutron kinetics." (11) Unfor-

tunately, such growths should not always be anticipated in

transient conditions. The "knee" of the prompt jump and the

turnaround in power due to thermal-hydraulic feedback are two

examples.

The main advantage of the NSADE method is the fact that

each time step is a direct calculation rather than an iterative

process. This results in a large savings in CPU time per time

step. Past studies (11) indicate that the main disadvantage is

the need for small time steps. Exactly how small will be dis-

cussed in the next section.

5.2 TEST CASES AND NUMERICAL RESULTS

The functional form of the power-time behavior is largely

dependent on the transient and the point in time within a par-

ticular transient. For this reason, a wide variety of test cases

were studied. The procedure involved varying the time step

size over a fixed time interval with the initial conditions and

all other parameters held constant. This methodology was made

possible by the restart option in MEKIN. This restart option

allows the user to store the solution on disk at a discrete

time and , subsequently, to continue the calculation from that

point as often as desired.
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The test cases include:

Case A: Model 6 of Appendix B, neutronics-only, super-
prompt critical transient, constant reactor frequency
(Fig. 5.1),

Case B: Model 1 of Appendix B, neutronics-only, prompt
jump (Fig. 5.2),

Case C: Model 1 of Appendix B, neutronics-only, after
the prompt jump (Fig. 5.3),

Case D: Model 1 of Appendix B, neutronics-only, knee
of prompt jump (Fig. 5.2),

Case E: Model 3 of Appendix B, neutronics-only, beginning
of transient (Fig. 5.4),

Case F: Model 6 of Appendix B, feedback included, turn-
around in power (Fig. 5.5).

Results are tabulated on Table 5.1. Error was measured by

the average reactor period over the time range under study. The

periods given on the figure were calculated by

(t f-t 0 )

ln( f/P )
(5.5)

where

t = the final time of the range,

t = the initial time of the range,

P = the final reactor power level,

P0 = the intial reactor power level.

Time step size as a function of error is plotted on Fig. 5.9.

Several observations deserve emphasis. Cases A, B, and C

are sensitive to time step size, but the general shapes of the

power-time curves show nothing surprising. On the other hand,

Cases D, E, and F involve more dramatic variation, as illustrated

by Figs. 5.6, 5.7, and 5.8. For all but Case C, the required
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TABLE 5.1.

Time Step Size Sensitivity by Case.

Case
(Initial
Power: P -MW)

0

A

(57.912)

B

(5.0000)

C

(9.4036)

D

(8.1912)

E

(47.0000)

F

(1053.0)

Time Step
Size: At

(sec)

0.000025'
0.00005
0.0001
0.0002
0.0005
0.005

0.000066
0.0001
0.00025
0.001

0.01
0.014
0.0179
0.02
0.033
0.1

0.0001
0.0002
0.00033
0.0005
0.00067
0.00083
0.00091
0. 0014'

0.00021
0.00031
0.0005
0.00083
0.00125

0.00005
0.0001
0.0002
0.0004

Final
Power: f

(MW)

141.297
141.380
141.788
143.272
148.112
150.804

7.5585
7.5684
7.5994
6.0065

13.9040
13.9296
14.1498
14.3071
15.0396
15.7377

8.8055
8.8151
8.8394
8.8958
8.9756
9.0573
9.0906
9.2475

49.5739
49.4774
49.1941
48.6104
48.0989

2321.6
2345.2
2442.2
2804.5

Average
Period: T

(sec)

0.005606
0.005602
0.005584
0.005520
0.005320
0.005220

0.02420
0.02412
0.02389
0.05452

2.557
2.545
2.447
2.383
2.129
1.942

0.277
0.272
0.263
0.243
0.219
0.199
0.192
0.165

0.281
0.292
0.329
0.445
0.649

0.01518
0.01499
0.01427
0.01225

% Error
in Period

(%)

-0.07
-0.39
-1.53
-5.10
-6.89

-0.33
-1.28

125.0

-0.47
-4.30
-6.80

-16.74
-24.05

-1.81
-5.05

-12.27
-20.94
-28.16
-30.69
-40.43

3.91
17.08
58.36

130.96

-1.26
-6.02

-19.30

- - Ja
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time step size for accurate answers wasvery small.

In order to interpret the results presented above, a close

look at the NSADE method is required. Past studies indicate

that excellent results were achieved for super-prompt critical

neutronics-only transients which were induced by a step change

in reactivity (6) (11) (13). These characteristics mean a

constant A matrix in Eq. (5.1), an exponential power increase,

and a constant frequency. The last two characteristics match

perfectly with the exponential transform and the method of

frequency selection

good results should

from Case A confirm

Results are no

rapidly such as at

knee (Case D), and

back (Case F). At

power rise (Fig. 5.

result (Fig. 5.9).

overestimated (Fig.

(i.e., Eqs. (5.3) and (5.4)). Consequently,

be expected for such conditions. The results

such expectations.

t as encouraging when the frequency is changing

the beginning of a transient (Case E), at the

at the point of power turnaround due to feed-

the beginning, large time steps retard the

8). At the knee, non-physical oscillations

At turnaround, the peak power level is

5.9), and oscillations will probably follow.

The oscillations are particularly disturbing because the thermal-

hydraulics calculations in MEKIN rely on the power levels. The

cause of these problems is the frequency transform used in the

NSADE method. As implied by Eq. (5.4), this method predicts

the point fluxes at the next time step based on the frequencies

of the previous time step. For this reason, inertia is built

into the system. This inertia is particularly well illustrated

in Fig. 5.7, where large time steps coax the curves to proceed
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in their current directions rather than follow the bend of the

exact solution. From a numerical standpoint, addition of the

frequency transformation changes the solution technique from a

first order system to a second order system:

n+l n n
=f Wq?),

n n-1 n
but w = f2 ($, $) , (5.6)

n+l n n-l
son = f3a($,~ ),

where f flux at timen,

Sn = flux frequency at time n .

5.3 DATA CoRRELATICN

Previous studies (6) (13) reccmnend choosing a time step size based on

one hundred time steps per doubling of reactor power for accuracies in re-

actor period within one percent. Such criteria appears to work very well

when the reactor period is constant. However, this number is far too small

when examining a port-ion of a transient where the period is changing

rapidly. Therefore, a generalized expression for the number of time steps

per doubling of reactor power must account for the rate of change of the

frequency. A rough correlation of the data in this study yielded:

N =C 1 + C2 1 n
n -2t (5.7)n

where N = the number of time steps per doubli'ng of reactor power for
n

errors in frequency of less than one percent at time n,

C 1 = the number of time steps per doubling of reactor power when

awn is zero,
-9t
1 n__

C 2 (-2~ !t ) = the number of additional time steps per
n
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doubling of reactor power needed to compensate for the chan-

ging period.

From the results of this study, C1 ~ 80, C 2  -100 when n< 0
at

and C2 ~ 25 when -n > 0. The fact that C2 was found to be

greater for Ben <0 is not surprising; all derivatives of an
at 3W

exponential are positive, and when g > 0, all derivatives

of the power time function are probably also positive. There-

fore, an exponential is more closely matched when n > 6 than

when < 0.

The form of Eq. (5.7) was chosen to fit the available cal-

culated data and to be dimensionally correct. Complete theo-

retical justification has not been established, and such a

task appears non-trivial. The analysis done here is based on

errors in reactor frequency over many time steps. Therefore,

each time step is assumed to contribute equally to the integra-

ted error over the range. In addition, the data base involved

only three cases where the second term of Eq. (5.7) dominated.

In summary, due to the lack of experimental and theoretical

evidence, the correlation presented above should not be taken

as a reliable quantitative guide for choosing the best time step

size. However, the correlation serves as a first attempt in

developing an automatic time step selector. In addition, it

shows that the NSADE method is often more sensitive to the rate

of change of frequency as opposed to the rate of change of

power. Indeed, a previous study noted that the NSADE method's

limiting factor is the "ability of the frequencies to follow a

,a, - - -
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bend in solution rather than just a largo change in power."(11)

5.4 USER APPLICATIONS OF THE TIME STEP SIZE SENSITIVITY

The most obvious application of this work is choice of

time step size based on the results of Section 5.2. However,

time step size is very dependent on the problem and desired

accuracy, so more universal guidelines are necessary.

As with any kinetics code where t-he time step is user

specified, a chief drawback is the fact that the user must

have some idea of what the answer will be before it is calcu-

lated. With MEKIN, several options exist for estimating the

power-time behavior prior to an accurate calculation. First

a simple point kinetics formula can crudely predict the frequency

of the prompt jump:

o = -,(5.9)

where = the reactor frequency,

k = prompt neutron lifetime (~10-4 for light water

reactors),

p = reactivity insertion (rod worth in the case of a

rod ejection).

Second, a crude scoping calculation could be performed with

MEKIN with the time step size kept relatively large. Unfortun-

ately, this approach has a serious drawback. If the time step

size is too large, the power-time oscillations may be so bad

that no useful information is gained from the run. Third, the

user may choose to take advantage of the MEKIN transient restart

option, which allows storing the solution on disk at a discrete

- - - &L
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time and subsequently continuing the calculation from this point

as often as desired. Such action permits a way of monitoring

the transient as it evolves, an economic method of recalculating

suspicious portions of the transient, and a means of catching

errors before they propagate. This approach may require more

time and effort in the short run, but it may turn out to be the

most efficient procedure over the long run.

After estimating the power-time behavior, the user must

choose a time step size such that results fall within the desired

accuracy. From the experience in this study, two general rules

have evolved. Each rule is intended to govern the selection of

the maximum time step size for less than one or two percent error

in reactor frequency.

For transients of constant frequency, eighty time steps

per doubling of reactor power appears adequate. An example of

such a situation is a super-prmpt critical transient which is

induced by a step change in reactivity and does not have feed-

back effects (i.e., similar to Case A of Section 5.2). This

rule also applies for long intervals of constant frequency

within any transient, such as the asymptotic portion (after

the knee) of a "neutronics - only" delayed critical transient.

When thermal-hydraulic feedback is included, a perfectly con-

stant frequency is almost never seen. Hlowever, many portions

of such transients have frequencies which are changing slowly

enough to accomodate the rule given above.

For transients which include portions of rapidly changing

frequency, an adequate time step size corresponds to one hundred
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time steps per doubling of reactor power, based on the "maximum

normalized" rate of power increase within the transient. Max-

imum normalized rate of power increase can be defined as

a P
1 x_R - - -8 x (5.9)
x

where P = reactor power at time x,x

x =x the slope of the curve at time x, "x" corresponds
at

to the time of maximum normalized rate of power

increase.

The time step size can then be determined by

At = 1 (5.10)

where At = time step size,

N = the number of time steps per doubling of reactor

power (= 100, if the criteria given above is

followed).

This rule is meant to be applied to transients similar to Fig.

5.2, a "neutronics-only" delayed critical transient induced by

a fast rod ejection. For the particular conditions of Fig. 5.2,

the time step size would be based on the normalized rate of power

increase at the indicated location. However, once the asymptotic

portion after the knee is reached, the time step size can be

drastically increased. A second application of this rule is a

super-prompt critical rod ejection with thermal-hydraulic feed-

back (i.e., Fig. 5.5). If the rod is out before significant

changes in temperature, the power will rise via a constant

frequency. As the negative doppler feedback becomes important,
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the rate of power increase will decline and eventually turn

around. The maximum normalized rate of power increase should

be based on the frequency before feedback becomes important.

5.5 IMPLICATIONS OF THE TIME STEP SIZE SENSITIVITY

The transient solution appears to be very sensitive to

neutronic time step size. For this reason, an automatic time

step selector may be among future modifications of the MEKIN

code. In order to comply with data storage limitations in

MEKIN, the selector will probably need to be based on total

reactor parameters (i.e., powers and frequencies) rather than

point fluxes and frequencies.

In most of the situations tested here, the required time

step size has been significantly smaller than originally

anticipated. This makes the NSADE method less attractive from

an economic point of view. Even a finely tuned time step selector

will not erase this drawback.

The test cases discussed in this chapter were either

"neutronics-only" or fast coupled transients. Slow transients

with thermal-hydraulic feedback also constitute an important

application of MEKIN. Unfortunately, attempts to represent

such conditions with MEKIN resulted in difficulties with respect

to time step size and power-time behavior (see Section 6.3).

If the NSADE method is to be modified, the frequency

transform or perhaps just the choice of frequencies may be the

place to start. Although the methodt wdrks well under certain

conditions, results of this study indicate problems arise as the
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power-time behavior deviates from an exponential form. This

conclus ion agrees with the recommendations of at least one

previous study (11).
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CHAPTER 6

CROSS SECTION FEEDBACK PARAMETER SENSITIVITY

As explained in Chapter 2, feedback between neutronics

and thermal-hydraulics is one of the main features of the MEKIN

code. With respect to neutronics, the cross sections are repre-

sented as linear functions of coolant density, coolant tempera-

ture, and metal temperature. In equation form, the cross

sections are updated after each thermal-hydraulic calculation

by

* * * * *
E (C T Tc ) = E.. (C c T c T ) + C1 (ec -e

+* *
C (T - T ) + C3 (T - T ) (6.1)
2 c c 3 m m

where C c= / De d

C 2= 3;3C2 c

C 3= Di/ a Tm,

"*" indicates reference state,

"C" refers to the coolant,

"m" refers to metal (the fuel and clad).

* * * *

C 1 , C2 , C 3, ec Tc ' m , andZE are user inputs.

The purpose of this chapter is to give a description

of the sensitivity of solution to the cross section feedback

parameters (i.e., C1 , C2 , and C3 of Eq. (.6.1)). Research
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involved three separate tasks: background work, fuel feedback

sensitivity, and coolant feedback sensitivity. The chapter is

divided accordingly, and it also includes sections on user

applications and implications of this sensitivity study.

6.1 PRELIMINARY RESEARCH

Unlike the inputs of mesh size and time step size, the

feedback parameters require preliminary calculations. Conse-

quently, a significant amount of background work was done

prior to transient studies with the MEKIN code.

When calculating cross section feedback parameters, a

computer code is needed to help generate homogenized cross

sections at different fuel temperatures, coolant temperatures,

and coolant densities. Once the cross section-temperature

and cross section-density behaviors are known, the data must

be linearly approximated. Units and cross section definitions

must be carefully monitored when converting output from a

cross section code to input for the MEKIN code. All feed-

back parameters employed in this research project were

obtained by using the LEOPARD code (1). Appendix D explains

the manner in which LEOPARD has been and can be applied to

input preparation for MEKIN.

The cross section feedback parameters used in MEKIN are

a function of the initial composition of the reactor region,

the burnup, metal temperature, coolant temperature, and

coolant density. Only the temperatures and density are
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coupled to the MEKIN calculational strategy. For this reason,

the burnup and initial composition were held constant when

the feedback parameters were calculated for the test cases of

Sections 6.2 and 6.3. However, the MEKIN user cannot ignore

these variables when preparing input, and further discussion

.s provided in Section 6.4.

Prior to running expensive transient calculations with

MEKIN, efforts were made to determine the most important

feedback parameters with respect to sensitivity of solution.

This task was approached from three directions: 1) a steady

state cross section sensitivity; 2) a prediction of actual

cross section changes during a transient; and 3) a measure

of the uncertainty of the linear feedback approximation.

The cross section sensitivity study was done by using

Model 5 of Appendix B. Each cross section was varied individ-

ually in one of the regions and samples of the results are

given on Tables 6.1 and 6.2. These tables show the sensitivity

of the results to variation in one cross section relative to

the same variations in another. Altered boundary conditions

and different reference cross sections were also considered,

but these changes did not significantly influence the results.

The next step involved estimating the amount by which

the cross sections would actually change during a transient.

This was done by multiplying the calculated feedback

parameters by anticipated temperature changes and then normalizing



78

TABLE 6.1,

CROSS SECTION SENSITIVITY - PART I.

PROBLEM: MODEL 5 OF APPENDIX B, REFLECTING BOUNDARY CONDITIONS,
CROSS SECTIONS AT SUBCOOLED CONDITIONS

Cross Section

Reference
Value
(cm-1)

% Variation From Reference3

Cross
Section

K- 1 Region 2

Effective Power

0.6808

0.001860

0.007351

2.855

0.04462

0.03398

0.01687

0.6808

0.001860

0.007351

2.855

0.04462

0.03398

0.01687

1Reference K-effective is 1.14797.
2 Reference region power is 1.000.
3 % variation =Case Value - Reference Value

Reference Value

1-1

~f2

Ecl2
)D2 -1

f2

c2

Esl+2

D 2

E f2

Ec2

E si+2

1.0

1.0

1.0

1.0

1.0

1.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

0.00

0.05

-0.14

0.00

0.18

-0.18

0.09

0.00

0.48

-1.33

0.00

1.78

-1.65

0.93

0.00

0.21

-0.37

0.00

0.68

-0.64

0.62

0.00

2.04

-3.71

0.00

6.34

-6.22

5.95

x 100.
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TABLE 6.2,

CROSS SECTION SENSITIVITY - PART II.

PROBLEM: MODEL 5 OF APPENDIX B, ALBEDO BOUNDARY CONDITIONS,
REFERENCE CROSS SECTIONS AT BOILING CONDITIONS

Reference % Variation From Reference

Value Cross K- Region2

Cross Section (cm-1) Section Effective1 Power

D 0.5805 50.0 0.43 2.92

Ef 0.001857 1.0 0.11 0.17

Ecl 0.007262 1.0 -0.25 -0.17

D 12 2.186 50.0 0.02 0.21

Ef2 0.04459 1.0 0.23 0.30

Ec2 0.03136 1.0 -0.22 -0.26

2 0.01027 1.0 0.19 0.37

D 0.5805 -50.0 - .47 -3.15

E f1 0.001857 10.0 1.11 1.61

Ecl 0.007262 10.0 -2.42 -1.75

D2-1 2.186 -50.0 -0.04 -0.37

Ef2 0.04459 10.0 2.19 2.72

0.03136 10.0 -2.16 -2.57
02
E 1+2 0.01027 10.0 1.92 3.64

S

1Reference K-effective is 0.979413.
2Reference region power is 1.2538.
3% variation_ Case Value - Reference Value x 100.

Reference Value
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to a percentage. In equation form,

Xl _ / a/TM XATM / x 100

and

C / /-Tc XATC / x 100, 9(6.3)
X ii

where ai/aTc accounts for both subcooled density and tempera-

ture changes. ATm and ATc are anticipated changes in metal

and coolant temperature for an arbitrary transient. Tm was

taken as 1000* C while T was 40* C.

The final step consisted of evaluating the uncertainty

of the linear feedback approximation. The method used here

involved the calculations

O /9TM)l - t /3T M 2 x Tm
X2 M =x 100,

and

/a3T -(iT 2 c A
X = / c1 a c c2 x 100, (6.4)X2C

where "1" and "2" represent different ranges over which the

feedback parameters were evaluated and the other terms are

defined after Eq. (6.3). This calculation may seem redundant

with that of Eq. (6.3), but both are included due to the

uncertainty of the data.
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The results of the cross section sensitivity study, the

calculations with Eq. (6.3) and the computations with Eq. (6.4)

are tabulated on Table 6.3. All values in columns A, B, C,

and D are percentages. Column A and B indicate the effect on

K and power distribution when a particular cross section is

altered by 10%. Column C represents the expected percentage

change in cross section value for an arbitrary transient

(i.e., XlM and XlC of Eq. (6.3)). Column D measures the

uncertainty of the linear cross section change (i.e, X2M and

X 2C of Eq. (6.4)). In order to predict which feedback para-

meters are the most important with respect to the calculational

strategy in MEKIN, all four columns of this table must be con-

sidered together. With respect to metal temperatures,

3Eci/3 3Ef2 1E 23
PTM' /DT M, and, to a lesser extent, M

appear to be the most important feedback parameters. Concern-
1+2 1+2

ing the coolant, 3Es /3T (or as /3 c) can be expected

to have a greater influence on the solution than the other

feedback parameters.

In summary, these results point out the most important

feedback parameters and indicate that some sensitivity of

solution should be expected5 this data does not describe

the sensitivity of the MEKIN solution to feedback effects.

The latter is addressed in the. nexttwo sections of this

chapter.



TABLE 6.3.

ESTIMATION OF FEEDBACK PARAMETER SENSITIVITY,

(SEE TEXT FOR COMPLETE EXPLANATION)

A B C .2 D
1% Changel 1% Change( 1% Change/ J%Changei

Cross Region
Section Value /K Power Fuel (Coolant) Fuel (Coolant)

D 0.68080 0.0 0.0 0.5 (6.0) 0.3 (0.6)

Efl 0.00186 0.48 2.04 2.2 (1.3) 0.7 (0.3)

cl 0.00735 1.33 3.71 9.0 (1.6) 1.1 (0.3)

D2-1 2.85500 0.0 0.0 0.5 (15.3) 0.2 (0.8)

Ef2 0.04462 1.78 6.34 2.4 (1.4) 0.7 (0.5)

Ec2 0.03398 1.65 6.22 1.8 (0.7) 0.4 (0.4)

ERl+ 2 0.01687 0.93 5.95 2.1 (14.1) 0.3 (1.7)

ISee Fig. 6.1,

2 See

10% increase in cross section.

Eq. (6.3).

3 See Eq. (6.4)
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6.2 FUEL FEEDBACK SENSITIVITY

This section deals exclusively with the cross section

feedback parameters associated with fuel temperature (i.e.,

Ei /DTM of Eq. (6.1)). All test cases were performed with

Model 6 of Appendix B. Thermal-hydraulic feedback was included

and an off-center rod ejection was tile reactivity force driving

the transient. Each calculation was carried out to 0.05

seconds, and peak power was always reached between 0.040 and

0.045 seconds. A time step sensitivity preceded the test

cases, so the level of the power turnaround was due entireLy

to feedback effects rather than numerical instabilities. As

shown in Chapter 5, this will always be a concern with the

NSADE technique in its current form.) In order to assure that

all thermal-hydraulic feedback occurred in the fuel, the

feedback parameters associated with the coolant were all set

to zero. In addition, each calculation involved one set of

feedback parameters for the entire reactor. All feedback

parameters in this section are based on a pressurized water

MWDreactor assembly with a burnup of 6000 /MT and an initial

enrichment of 2.73% U-235.

Research was divided into three areas: individual

variation of the linear feedback parameters, variation of the

parameters as a group, and implementation of higher crder

fits to represent cross section changes as a function of

temperature.

The feedback parameters were varied individually in

the first set of test cases. Based on the results given

in Section 6.1, attention was focused on aEcl/TM' f2 /DT M
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1+2

and .Es. /3TM. The range over which these inputs were

varied and the reference set of feedback parameters are given

on Table 6.4. These values were chosen from LEOPARD calcula+ons

over a wide fuel temperature range, and realistic upper and

lower bounds are therefore represented. As an example, the

group one capture cross section is plotted against fuel tempera-

ture in Fig. 6.1. The data points are assumed to be the

benchmark temperature-cross section behavior, while the

slopes of the three linear approximations yield the input

value for Ecl/aT M. All lines intersect at the first point

because the user inputs of reference cross section and refer-

ence temperature make this point a known starting condition.

The input values of a2f2/aTM and 3Esl+2/DTM were determined

in the same manner.

When used as input to MEKIN, the different feedback

parameters significantly affected both peak power level (i.e.,

power at "turnaround" time) and energy deposition. Energy

deposition is inferred by the rise in the average fuel tempera-

ture from steady state to 0.05 seconds. Using the two

extreme arcl/3TM cases as an example, the peak power levels

differed by 32% and the hot channel fuel temperature changes

disagreed by 27%. Similar results were obtained for the

f 2 1 1+2
- / TM cases, while the 3rs /3TM cases were much less

sensitive. Although the power level varied noticeably in

all cases, the power shapes were almost identical at
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TABLE 6.4,

INDIVIDUAL VARIATION OF FEEDBACK PARAMETERS - RESULTS,

Case Peak Power TM (2) /TM(3)

c (MW) (*F) (/*F)

Reference:

d1/3T M= 0.630E-6

f2 43TM = 0.108E-5

s /'TM =-0.353E-6

cl/TM= 0.540E-6

(% variation')

cl/3TM = 0.720E-6

(% variation')

Ef 2/3TM = 0.132E-5

(% variation')

f /aTM = 0.0675E-5

(% variation')

s /aTM = -0.312E-6
(% variation)

E / T = -0.394E-6

(% variation')

2229.9

2650.2

(18.9)

1925.6

2470.9

(10.8)

1919.0

(-13.9)

2300.1

(3.2)

2165.4

(2.9)

649.9

749.0

(15.3)

574.1

702.5

(8.1)

577.3

(-11.2)

667.2

(2.7)

633.6

(-2.5)

-1. 25E-5

-1. 07E-5

(-14.4)

-1. 44E-5

(15.2)

-1.12E-5

(10. 4)

-1. 48E-5

(18.4)

-1. 22E-5

(-2.4)

-1. 28E-5

(2.4)

1% variation = Case Value - Reference Value

Reference Value
x 100.

2Metal temperature rise in hot channel from 0.0 seconds
to 0.05 seconds.

3 Temperature coefficient of reactivity; calculated from
steady state runs.

(-13.7) (-11.7)
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1

3

Curve Cl mm

1 0.720E -6

2 0.630E -6

3 0.540E -6

274 774 1274 1774 2274

METAL TEMPERATURE: TM (*C)

TEMPERATURE AND LINEAR APPROXIMATIONS.FIG. 6.1: Eci VS. METAL

. 4i

0.0074

0.0072

0. 00 70i

0.0066

0.0064

I
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turnaround time. Results are given in Table 6.4 and graphed

on Figs. 6.2, 6.3, and 6.4.

In reference to Table 6.4, the temperature coefficients

of reactivity serve as an attempt to predict the transient

behavior from steady state data. For each case, these values

were developed from two steady state computer calculations

with the following conditions: Model 6 of Appendix B, control

rod fully inserted, reactor power of 26 MW for the first run,

and reactor power at 36 MW for the second run. Results for

the two power levels yielded two different values of K-

effective (K) and two different average reactor fuel tempera-

tures (T). Thus, the temperature coefficient of reactivity

is defined as

30/DT = 36 - 26 (6.5)
M T3 6 - 26

As indicated by Table 6.4, the percentage differences for

/3Tm give a crude estimate of the relative variations in

peak power and energy deposition.

The results are depicted differently on Fig. 6.5, where

the effect on power level is shown to be almost linear as

the /aTMD are varied. This figure also does an excellent

job of indicating that variations in 3 f2/9TM and Icl/aTM

have similar effects on the solution, both of which are much

1+2
greater than the effect induced by changing ./ag.
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The above results point out that the solution of the

MEKIN code is quite sensitive to individual variation of the

most important feedback parameters associated with metal

temperature. However, this data alone does not preclude the

possibility of cancelling effects if the feedback parameters

are varied as a group. To answer this question, three tempera-

ture ranges were selected and a set of feedback parameters was

calculated for each range. In other words, the conditions

were varied and each test case involved an entire set of

i/aT corresponding to particular conditions. The actual

cases input to MEKIN were:

Case A (referenge): All i/TM linearly approximated
from cross section differences at 5250 F and
21250 F,

Case B:all /3TM linearly approximated from cross
section differences at 525* F and 13250 F,

Case C:all / T linearly approximated from cross
section differences at 5250 F and 3500 0 F

The input values are tabulated on Table 6.5.

For the extreme cases (i.e., B and C), peak power level

differed by 27% while fuel temperature rise varied by 24% in

the hot channel. Results are given on Table 6.6 and Fig. 6.6,

and the temperature coefficient of reactivity calculation is

described elsewhere in this section. As before, the power

shapes were nearly identical.

Another view of the results is presented on Fig. 6.7,

where peak power level is plotted against the temperature
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TABLE 6.5,

FEEDBACK PARAMETERS VARIED AS A GROUP.

(C 4_

Feedback
Parameter

aDl-l/a
D TM

DEcl /aTM

D21 /3TM

azc2 /aTM

aEf 2 /aT
1+ 2 M

DES /aT M

(Reference)
Case A Case B

(525 to 21250 F) (525 to 13250 F)

0.331E-5 0.149E-5

0.616E-6 0.643E-6

0.407E-7 0.304E-7

0.134E-4 0.099E-4

0.614E-6 0.475E-6

0.108E-5 0.0835E-5

-0.353E-6 -0.371E-6

Case C
(525 to 3500* F)

0.388E-5

0.559E-6

- 0.425E-7

0.143E-4

0.633E-6

0.111E-5

-0.317E-6
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TABLE 6. 6,

FEEDBACK PARAMETERS VARIED AS A GROUP - RESULTS,

Peak Power ATM /dT4
Case (MW) (*F) (/*F)

A: 525 - 21250 F 2287.5 663.7 - 1.23E-5

(Reference)

B: 525 - 13250 F 2027.4 601.5 - 1.39E-5

(% variation)(2) (-11.4) (-9.4) (13.0)

C: 525 - 3500* F 2656.4 750.6 - 1.06E-5

(% variation) (16.1) (13.1) (-13.8)

1 Feedback parameters listed on Table 6. 5

2% Variation = Case Value - Reference Value x 100
Reference Value

3Metal temperature rise in hot channel from 0.0 seconds
to 0.05 seconds.

4
Temperature coefficient of reactivity; calculated from

steady state runs.
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range over which the feedback parameters were evaluated. The

curve is close to being linear. Numerically, this graph inf.ers

that an 800* F difference in the range of feedback parameter

calculation will result in a relative error of 10% in peak

powers.

Only results pertaining to linear cross section changes

have been discussed thus far. The next step involved repre-

senting the cross section-temperature behavior by higher order

polynomials, specifically a fourth-order curve and a quadratic.

As displayed by Eq. (6.1), cross sections are currently

updated in MEKIN by Ei(TM) = Ei + C3 (TM - TM*), (6.6)

where C3 = ec and Tc dependence has been dropped

because all test cases in this section have C1 and C2 of Eq.

(6.1) set to zero. Quadratic and fourth-order approximations

require calculations of the form:

Ei(TM) = + C3 (TM - TM*) + C3  (TM - TM) 2  (6.7)

and

Fi(TM) = i + C3 (TM - TM 2

+ C3 (TM - TM2

+ C3 (M - TM)

+ C (TM - TM 4 (6.8)

where C3 , C3  , and C3  are the coefficients of higher order

terms. Attention was restricted to the group one capture cross

section. The five data points in Fig. 6.1 were fit to quadratic
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and fourth order curves, where each of the five points was

weighted equally. The fits are plotted and the corresponding

coefficients are listed on Figs. 6.8 and 6.9. Note that the

zero order coefficients are slightly different from the refer-

ence cross section because the fits were not exact.

In order to implement these equations in the MEKIN code,

a temporary modification of SUBROUTINE CROSU1 was necessary.

Appendix E gives the programming details.

When comparing the results of the quadratic fit to the

fourth order fit, peak powers differed by 6% and the fuel

temperature rises in the hot assembly disagreed by 5%. Power

vs. time is plotted on Fig. 6.10 for both cases, and further

details are given in Table 6.7. As expected, these curves

fall between the upper and lower power peaks from the linear

approximations of DEcl/ TM shown on Fig. 6.2.

These results must be interpreted carefully. For one

thing, they indicate that the solution is sensitive to the

order of the polynomial fit. However, the peak power differ-

ences were far less when comparing the quadratic to the fourth-

order results (6%) than when comparing the extreme linear

approximations (34%). In all fairness to the linear cases,

a feedback parameter would be chosen between the extremes,

and when input to MEKIN, deviation from the exact answer

would be less than 34%. Unfortunately, this data deals with

only one feedback parameter. Further qualitative conclusions

may be unwarranted.
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FIT
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0
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TABLE 6.7.

NON-LINEAR FEEDBACK - RESULTS.

Peak Power ATM(2 )
Case (MW) (OF)

Fourth-order polynomial 2425.7 697.9

Quadratic 2568.5 730.5

(% variation') (5.9) (4.7)

1% variation = Quadratic Value - Fourth-Order Value x 100Fourth-Order Value

2Metal temperature rise in hot channel from 0.0 seconds to
0.05 seconds.

= -
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6.3 COOLANT FEEDBACK SENSITIVITY

Up to this point, the feedback parameter study has only

dealt with those parameters associated with fuel temperature.

The sensitivity of the coolant cross section feedback para-

meter (i.e., the i/@T , i/ae ) is addressed here.
c c

In order to observe significant feedback in the coolant,

a slow reactivitiy insertion rate is necessary; otherwise,

doppler feedback in the fuel will stop the power rise before

the coolant is adequately effected. For this reason, a very

slow rod withdrawal was used. (9 cm/sec, a rod worth double

the delayed neutron fraction). The reactor was Model 7 of

Appendix B. Coolant density changes the most rapidly in the

two-phase state, so boiling was induced by the input of a high

coolant inlet temperature.

In developing a test transient, a neutronics-only calcula-

tion was the initial step. As shown on Fig. 6.11, the

neutronics-only power-time behavior is well behaved with

tight time steps at the start and coarse time steps as the

transient evolves. However, when this set of time steps was

used for the same model with thermal-hydraulic feedback, the

results were unacceptable (Compare Figs. 6.11 and 6.12; the

only difference between the two cases is the time step size,

yet the solutions differ greatly). Even with a significant

tightening of the time step size, non-physical power-time

oscillations remain. Furthermore, these oscillations are
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not dampened as the transient evolves (see Fig. 6.12). The

"dips" in the curve can be explained by the interfacing of

the neutronics with the thermal hydraulics. Note how each

dip involves several neutronic calculations, but only one

thermal hydraulic time step. Because the cross sections are

updated only after thermal-hydraulic calculations, large

thermal-hydraulic time steps lead to large step-insertions of

reactivity. (In calculating temperature changes and energy

deposition, COBRA extrapolates the current power back to

the previous thermal-hydraulic calculation.) These reactivity

insertions cause problems for the intermediate neutronics

calculations. Such perturbations instantaneously change

the reactor period, while the neutronics solution technique

(NSADE method) predicts a constant period. The resulting

curve is shown on Fig. 6.12.

In an attempt to achieve a more reasonable power-time

behavior, a thermal hydraulic calculation was performed with

every neutronic calculation. Results show an improved, yet

still suspicious, curve (see Fig. 6.13). Note how both feed-

back curves initially start above the neutronics-only curve.

This should be expected because the steady state power

distributions differ. For this reason, the control rod is

being withdrawn from a relatively more important region in the

feedback cases. A disturbing feature is the lack of agreement

between the two feedback curves up to .1 sec. The suspected
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problem involves the convergence of the COBRA solution. Con-

cerning the interval from 0 - 0.3 sec, note the agreement

in reactor power at 0.3 seconds for the two feedback cases.

However, the power-time curves do not tell the whole story

as energy deposition, indicated by fuel temperature rise,

differs by almost 25% (see Table 6.8). Efforts using this

transient were halted here because expenses become prohibitive

for such small thermal-hydraulic time steps. Keep in mind

that the original purpose of this transient involved a feed-

back parameter sensitivity, and for meaningful results, well

behaved power-time behavior is essential.

As an alternative approach to investigating the sensiti-

vity of the coolant feedback parameters, a series of steady

state calculations was performed. Model 7 of Appendix B

served as the reactor. The coolant inlet temperature was

chosen close to saturation to permit significant boiling.

The variable parameters were the3Ei /aec and all input values

were based on a pressurized water reactor assembly with a

burnup of 11,481 ""O/MT and an initial enrichment of 2.73%

U-235. The fuel feedback parameters were identical in all

calculations. The ai/DTc were set to zero because these

inputs have no effect in boiling conditions.

Previous work (see Section 6.1) indicated that the

scattering feedback parameter ( lc) should be expected

to have a larger effect on the solution that the other coolant

feedback terms. For this reason, the initial cost of runs
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TABLE 6.8.

SOLUTION BEHAVIOR OF A SLOW TRANSIENT WITH FEEDBACK,

AtN 2=.001 sec AtN 2=.001 sec

Att-H 3=.001 sec At-H 3=.l sec

Power at 0 seconds (MW) 12.0000 12.0000

Power at .3 seconds (MW) 13.0952 13.1156

Average period (sec) 3.4349 3.3748

% difference of period -- -1.75

at 0 seconds' (*F) 1922.88 1922.88

T at .3 seconds' (*F) 1926.70 1927.65

(0 F) 3.82 4.77

% difference4 of T-- 24.90

1Average fuel temperature in hottest region

2Neutronic time step size

3Thermal-hydraulic time step size

4Column 2 value - Column 1 value 100
Column 1 value
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E1-+2
involved varying only s a c. This process was repeated

for several different levels of boiling. (The level of boiling

was altered by varying the coolant flow rate.) This combina-

tion of computer runs yielded the curves of K-effective vs.

outlet coolant density shown on Figs. 6.14. The average slopes

of these lines estimate density coefficients of reactivity as

a function of 1 s+ /ec- The coefficients vary by as much

as 14% (see Table 6.9), indicating a noticeable sensitivity.

The next set of calculations consisted of varying the

coolant feedback parameters as a group. To accomplish this

task, three groups of coolant feedback terms were calculated

over three different density ranges. Using the procedure

described in the previous paragraph, the temperature coeffi-

cients of reactivity varied by as much as 32%. See Fig. 6.15

and Table 6.10.

Thus, when coolant density exhibits the dominant

reactivity feedback effect, the solution is sensitive to the

linear approximation of cross section-coolant density behavior.

6.4 USER APPLICATIONS OF THE FEEDBACK PARAMETER SENSITIVITY

When selecting a set of cross section feedback para-

meters for input to the MEKIN code, the user faces two

problems not encountered when choosing a neutronic mesh size

and a neutronic time step size. First, in an initial calcula-

tion there is no sure way of avoiding error due to the feedback

parameters while uncertainty in the neutronic finite difference

-
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TABLE 6.9,

DENSITY COEFFICIENT OF REACTIVITY AS A FUNCTION OF 3Es1+2
C

1+2
s Bec

AK/Aec (LBM/FT )
% Difference
from Reference

.02596 (reference)

.02625

.02713

.01478

.01526

.01685

3.25

14.01

TABLE 6.10.

DENSITY COEFFICIENT OF REACTIVITY AS A FUNCTION OF THE SET OF

COOLANT FEEDBACK PARAMETERS,

Density Range of
Feedback Parameter
Calculation (LBM/FT3 )

AK/Ae FT 3)
Aa (LBM/FT)

% Difference
from Reference

38.226 to 22.936
(reference)

38.226 to 30.581

38.226 to 7.645

.01478

.01531

.01963

3.59

32.81
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calculations can always be eliminated by choosing a tight

enough spatial mesh and time step. Second, generating a set

of feedback parameters requires calculations prior to using

MEKIN.

As a first approximation for accurate answers, the linear

feedback parameters can be calculated over the same reactor

averaged temperature rise that the transient actually follows.

The problem with this criteria is that the user mus t know

the answer before it is computed. As a partial solution to

this problem, Fig. 6.7 suggests two transient calculations and

linear interpolation., Unfortunately, this procedure still

does not promise the best solution because non-linear tempera-

ture cross section behavior is approximated by linear func-

tions. If all feedback parameters in the reactor are identi-

cal, feedback can be represented by higher oder polynomials

as outlined in Appendix E.

The user must do some background work before a set of

cross section feedback parameters is ready for input to MEKIN.

Appendix D provides the use of the LEOPARD code as an example.

As mentioned in Section 6.1 the feedback parameters are

dependent on material compositions as well as temperature.

For example, past studies involving the MEKIN code have

used parameters signdificantly different from those employed

in this project (see Table 6.11). Properties such as burnup

and initial enrichment must be adequately considered while

preparing input for a code like LEOPARD. Under no



115

circumstances should the MEKIN user blindly extract feedback

parameters from a previous study.

Table 6.11 illustrates extreme cases, but smaller dif-

ferences in burnup and initial enrichment also cause noticeable

changes in the feedback parameters. Table 6.12 gives an in-

elication of the relative importance of temperature range,

burnup, and initial enrichment. Each case involved holding

two of these variables identical with the reference while the

third was varied as shown. Although temperature range appears

to have the most sensitivity, the others should not be ignored.

6.5 IMPLICATIONS OF THE FEEDBACK PARAMETER SENSITIVITY

The results presented in this chapter pose several

implications. First, reactor power level and thermal-hydraulic

energy deposition are both sensitive to the linear cross

section feedback parameters. Second, these inputs have no

mechanism to guarantee accuracy (within 10%). This situation

is different in the previous two chapters, where decreasing

the neutronic spatial mesh interval and tightening the time

step size cause convergence to better answers. Third, repre-

sentation of the cross section-temperature behavior by higher

order polynomials (i.e., quadratic, cubic, etc.) is one means

for improvement. However, such a modification does not remove

importance from the preliminary calculations used to generate

the feedback parameters.

Data storage is a potential drawback in the event of
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TABLE 6.11.

FEEDBACK PARAMETER COMPARISON,

(CMc )

Feedback
Parameter

3D 1- 1 31 /9TM

a~cl/'Tt

/aM

a~fl/@TM

3D
2 1/3TM

c2/ 
T
TM

af2

E 1+2
s /3TM

Case A

+0. 331E-5

+0. 616E-6

+0.407E-7

+0. 134E-4

+0. 614E-6

+0.108E-5

-0.353E-6

Case B2

-0. 660E-5

+0.330E-6

-0. 570E-7

-0.260E-5

-0. 380E-6

-0.100E-5

-0. 850E-7

Case C3

-0. 880E-5

+0. 143E-6

-0. 230E-7

-0. 153E-5

-0. 131E-6

-0.277E-6

-0.130E-6

lThis project, PWR assembly, 6000 MWD/MT of burnup.

20, PWR assembly, no burnup.

21, BWR assembly, no burnup.

2 Ref.

3Ref.
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TABLE 6.12,

EFFECT OF BURNUP, INITIAL ENRICHMENT, ON TEMPERATURE RANGE

ON FEEDBACK PARAMETERS,

(C4 C

% Difference from Reference4

Temperature! 2Feedback Reference Range Burnup Enrichment3

Parameter Value Varied Varied Varied

aD1 /3' 0.331E-5 55.0 1.5 4.0

3Ecl/3TM 0.616E-6 4.4 7.8 1.2

a fl/3TM 0.407E-7 25.3 4.4 7.9

-1
3D2 /3TM 0.134E-4 26.1 1.5 6.0

aEc2/3TM 0.614E-6 22.6 7.3 5.5

aEf2/3'T 0.108E-5 22.2 0.0 11.1
M

1+2

Es /3 -0.353E-6 5.1 7.4 .8

TM

Reference temperature
to 5250 F - 13250 F.

range = 5250 F - 2125* F, varied

2Reference burnup = 6000 MWD/MT, varied to 11,481 MWD/MT.

3
Reference initial enrichment - \2.73% U-235, varied to

3.03% U-235.

Case Reference

4% difference = / Parameter - Parameter /.x 100
Reference Feedback Parameter
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of implementing an alternate means of representing cross

section-temperature behavior in the MEKIN code. This is

particularly true for problems involving many sets of material

compositions (i.e., the N8 input cards) because a complete set

of feedback parameters is required for every composition.

Consequently, difficulties might arise for a modification

such as a fourth order polynomial equation for all cross

sections with respect to all three thermal properties. On a

more positive note, several options exist where additional

storage requirements are negligible. For example, a quadratic,

or possibly a higher order polynomial, could replace the

linear approximation for only the most important feedback
1+2

parameters (i.e. , aEcl/T M, af2/DT m, Es /? ),

In any case, the results of this project appear to encourage

further investigation of methods to replace the linear cross

section feedback representation.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

Based on the results of the three preceding chapters, the

solution generated by the MEKIN code is rather sensitive to

neutronic spatial mesh size, neutronic time step size, and the

linear cross section feedback parameters. The user may encounter

problems if these sensitivities are not properly considered.

As theory predicts, the neutronic finite difference solu-

tion is most sensitive to mesh size for problems which are

spatially long and which contain significant region to region

material discontinuities. Fortunately, for these extreme cases,

the steady state power distribution converges to better answers

in a somewhat linear manner as the mesh size is decreased.

However, large problems which demand a high degree of accuracy

may be prohibitively expensive. For time dependent calculations,

errors induced by mesh size grow as the transient evolves. The

main reason for this growth appears to be the sensitivity of

rod worth to mesh size.

Neutronic time step size was found to be dependent on

the rate of change of the frequency (g as well as the fre-

quency (6) itself. In fact, much smaller time steps were needed

than originally anticipated when the power-time behavior deviated

from an exponential. This makes the NSADE method less attract-

ive from an economic point of view. Fortunately, the solution

converged to better answers as the time step was tightened.

An automatic time step selector would help avoid such problems
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as non-physical oscillations, but the requirement for extremely

small time steps would remain. If the NSADE method is to be

modified, the frequency transform may be the place to start.

Power level and energy deposition were both found to be

very sensitive to the linear approximation of cross-section

temperature feedback. This was true when the parameters were

varied individually and as a group. Perhaps more interesting

than the exact level of sensitivity is the fact that the linear

feedback approximation cannot be depended upon, apriori, to give

highly accurate answers (i.e., within 10%). Representing

the cross section-temperature behavior by a higher order poly-

nomial appears to reduce the uncertainty. This conclusion

encourages future efforts to improve the method by which cross

sections are updated with temperature and density. Regardless

of the coupling of temperature to cross sections in MEKIN, the

feedback parameters, and therefore the solution, are also

sensitive to the preliminary calculations.

If economy must be tied with accuracy in MEKIN calcula-

tions, additional studies should involve modifications or new

methods for solving the steady state and transient neutron

diffusion equations. At the same time, the reader and future

researchers should never forget that this project has only

investigated several aspects of the MEKIN code. Thus, when

striving for an accurate answer through a MEKIN calculation,

the entire code must be considered.

- - .M.
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On a more positive note, the results presented here quantify

errors and bracket uncertainties with respect to several import-

ant input parameters. Consequently, this work can provide a

users' guide for selecting neutronic spatial mesh intervals,

choosing time step sizes, and determining the cross section

feedback parameters.



122

REFERENCES

1. Barry, R. F., "LEOPARD - A Spectrum Dependent Non-Spatial
Depletion Code for the IBM-7094," WCAP-3269-26,
Westinghouse Electric Co. (1963).

2. Bowring, R. W., J. W. Stewart, R. A. Shober, and R. N. Sims,
"MEKIN: MIT-EPRI Nuclear Reactor Core Kinetics Code,"
Research Project 227, Computer Code Manual, Massa-
chusetts Institute of Technology (1975).

3. Breen, R. J., "A One-Group Model for Thermal Activation
Calculations," Nucl. Sci. Eng. 9, 91 (1961).

4. Cadwell, W. R., "PDQ-7 Reference Manual," WAPD-TM-678,
Bettis Atomic Power Laboratory (1967).

5. Clark, M., and K. F. Hansen, Numerical Methods of Reactor
Analysis. New-York: Academic Press, 1964.

6. Fergusen, D. R., and K. F. Hansen,"Solution of the Space-
Dependent Reactor Kinetics Equations in Three-
Dimensions," Ph.D. Thesis, Department of Nuclear
Engineering, Massachusetts Institute of Technology,
MIT-3903-4, MITNE-132 (1971).

7. Fowler, T. B., D. R. Vondy, and G. W. Cunningham, "Nuclear
Reactor Core Analysis Code: CITATION," ORNL-TM-
2496, Oak Ridge National Laboratory (1971).

8. Greenspan, H., C. N. Kelber, D. Okrent, Computational Methods
in Reactor Physics. New York: Gorden and Breach,
1969.

9. Henry, A. F., Nuclear-Reactor Analysis, Cambridge, Mass.:
MIT Press, 1975.

10. Kalambokas, P. C., and A. F. Henry, "Replacement of Reflectors
by Albedo Type Boundary Conditions," Ph.D. Thesis,
Department of Nuclear Engineering, Massachusetts Insti-
tute of Technology (1975).

11. Kast, S. J., and K. F. Hansen, "Solution of the Reactor
Kinetics Equations in Two Dimensions by Finite
Difference Methods," S. M. Thesis, Department of
Nuclear Engineering, Massachusetts Institute of
Technology (1970).



123

12. Lamarsh, J. R., Introduction to Nuclear Reactor Theory.
Reading, Mass.: AddisonHs-Wesley Publishing Company
(1966).

13. Reed, W. H., and K. F. Hansen, "Finite Difference Techniques
for the Solution of the Reactor Kinetics Equations,"
Sc.D. Thesis, Department of Nuclear Engineering,
Massachusetts Institute of Technology, MITNE-100
(1966).

14. Rowe, D. S., "Cobra IIIC: A Digital Computer Program for
Steady State and Transient Thermal-Hydraulic Analysis
of Rod Bundle Nuclear Fuel Elements," BNWL-1695
(1973).

15. Science Applications, Inc., "Dynamic Analysis of Scrammed
Power Reactors Interim Informal Reoort," SAI/SR-
147-PA (1976).

16. Shober, R. A., and A. F. Henry, "Nonlinear Methods for
Solving the Diffusion Equation," Ph.D. Thesis,
Department of Nuclear Engineering, Massachusetts
Institute of Technology (1976).

17. Sims, R. N., and A. F. Henry, "A Coarse-Mesh Nodal Diffusion
Method Based on Response Matrix Considerations,"
Department of Nuclear Engineering, Massachusetts
Institute of Technology (1977).

18. Solan, G. M., "Neutronic Analysis of a Proposed Plutonium
Recycle Assembly," Nucl. Eng. Thesis, Department of

Nuclear Engineering, Massachusetts Institute of
Technology, MITNE-175 (1975).

19. Stewart, J. W., and K. F. Hansen, "Finite Difference Equations
for the MEKIN Code," MEKIN, Program Development Notes,
Massachusetts Institute of Technology (1975).

20. Stewart, J. W., "Linear Correlations of Neutron Cross
Sections with Thermal-Hydraulic State Variables for
MEKIN Testing," MEKIN, Program Development Notes,
Massachusetts Institute of Technology (1975).

21. Valente, J. U. and K. F. Hansen, "Multidimensional Modeling
of the Rod Drop Accident," Nucl. Eng. Thesis,
Department of Nuclear Engineering, Massachusetts
Institute of Technology (1975).



124

APPENDIX A

SPECIAL EXAMPLES INVOLVING INPUT PREPARATION

A.l THE USE OF MIXED NUMBER DENSITY CROSS SECTIONS IN MEKIN

As a data base for test problems, mixed number density

(MND) data was provided for the thermal spectrum. A discussion

of mixed number density theory and its application to test prob-

lems is presented in the following paragraphs.

Flux and current continuity are the conventional boun-

dary conditions when using regionwise thermal constants in the

standard diffusion equation. For one group,

-- DV + Z S. (A.1)a

The unknown variable is _p (region averaged flux), while D (av-

erage diffusion coefficient) and i (average absorption crossa

section) are user inputs. S is a constant source term. Usually,

5 and 7 are averaged over the Wigner-Wilkens spectrum. Such ana

approach leads to discontinuity of activation (a$) at boundaries

because microscopic cross sections are different in each region.

As a result, thermal flux peaking near water gaps may be under-

estimated.(3)

For a absorber, continuity of activation implies contin-v

uity of number density:

a(E)$(E)dE =$ (E)dE =JN(E)dE = N, (A. 2)

where o(E) = energy dependent cross section,

$(E) = energy dependent neutron flux,

V(E) = energy dependent neutron velocity,

N(E) = energy dependent neutron density.

Thus, the standard diffusion equation (A.1) may be rewritten in
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one group as:

-V-DV V N + E V N = S. (A.3)
a

Required inputs become:

D D(E) V $(r,E) dE D

V $(r,E) dE 1

and r(E) (r,E) dE (A.4)

a fl $(r,E) dE
V(E) (

Note that these terms need not be averaged over identical spec-

trums. Advanced codes (3 ) indicate that the leakage coefficients

are most accurately obtained by averaging over the maxwellian

model. Conversely, the absorption coefficients are best obtained

by averaging over the Wigner-Wilkens spectrum. The difference

can be attributed to the fact that leakage is tightly linked to

neutrons in the water gap, where the spectrum is softer than in

the fuel. With the above considerations, the diffusion equation

can take the form:

D
_ max .2N + N = S. (A.5)

(I) (I)
V max Vw.

Such a form is the foundation for the MPD section of LEOPARD.

Since the maxwellian model represents a softer spectrum than the

Wigner-Wilkens model, peaking near water schannels no longer

suffers a large underestimation. (3 )

For the test problems of this project, flux weighted cross

sections were generated with the use of LEOPARD and PDQ. LEOPARD
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can be employed to compute and print both conventional and MND

spectrum averaged cross sections. Then, spacial weighting of

the constants can be done by running PDQ. However, in the par-

ticular data base for this project, only the MND constants are

spatially weighted.

MEKIN was programmed to solve a semi-discrete form of

the transient diffusion equation. For the thermal group: (only

two terms are given in order to simplify the following explana-

tion):

where $.

v

'k is t
$ijkis

v 1 - =- X .. + etc.,
dt ijK R 13K

K = thermal flux at mesh point ijK,

= inverse of average thermal neutron velocity,

ER = thermal removal cross section (cmf) of a

homogeneous neutronic region (Ec + Ef)

he unknown, while v~1 and ZR are user inputs. ER

always have the conventional spectrum, spacial averaged form

(E in Eq. (A.1)). MND data can be used only if Eq.(A.6) cana

be transformed into a mathematically equivalent equation with

N .. as the unknown. Proper conditions exist only if ijK
1K 3t =0

as in the static representation of Eq.

.3$ijK / 0 in a MEKIN transient.
at

The previous two paragraphs indicate a paradox: only MND

constants will be spacially weighted by PDQ, but these constants

can not be fed into a MEKIN transient analysis. Fortunately,

A.6)

can

(l. A) . However,
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LEOPARD will print ( ) and ( ) , the average normalized

inverse velocities for the maxwellian and Wigner-Wilkens distri-

butions. MEKIN input can then be determined as follows: (Recall

that in LEOPARD the leakage coefficient is averaged over the

maxwellian spectrum and the absorption coefficients over the

Wigner-Wilkens spectrum.).

[MND constant from PDQ] x [the appropriate (-)] = [MEKIN input
v parameter],

max x = D(cm),
v max

Vmax

a w.w. - w. X= (cm~), (A.7)

(-) (-)w.w. W.

v w.w. f

D5, Zc, and E can be the thermal group constants of a homogen-

eous neutronic region which are supplied to MEKIN.

A.2 REFLECTOR ALBEDOES IN MEKIN

Below is a brief explanation of the application of albedoes

in MEKIN.

According to Volume 1, Part 1, p. 56 of the MEKIN manual:

Ji(x) = an ' 0 , (A.8)

J 2 (x) I = a 2 1 $1 (x) + a22 $2 W I
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or, J = a (A.8)

where, $ = group flux at interface.

J = group current at interface,

al = group 1 albedo,

a2 = group 2 albedo,

a21= transfer albedo (group 1 to group 2).

One method of calculating an appropriate set of albedoes

it the procedure developed by P. Kalambokas (see Vol. 2.2, p. 597

of the MEKIN manual). The formulas involve only reflector

constants such that:

a = fl(reflector constants),

22 = f 2 (reflector constants),

U 21 = f 3 (reflector constants), (A.10)

where Kalambokas defines:

Ji 
(A.11)

$2 = a 23 JI + a22 J2 ,

or, = J . (A.12)

To convert these albedoes to the form necessary for MEKIN input,

note that:
$ = a J

J = $ ~. (A.13)

From Eqs. (A.9) and (A.13),

3-= a ,(A.14)
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adjoint a

det. a

adjj. au0
U21 a 22

det. 0
21 a 224

aX 22 
0

Ca2i aitl

a 11 a 22

Thus, the elements of ()- 1 relate to those of a such that:

all 1

(-22 (A.15)
a 22

a 21 _ 21

a11 a 22

Small test problems were used to verify that the albedoes

in MEKIN are employed described above. From a qualitative

viewpoint, very low albedoes model reflected boundary conditions

and very high albedoes cause the flux to approach zero at the

interface. Both results are physically consistent with Eq. (A.8)

where a ~ However, reference 9, pp. 531-533 suggests that

the magnitude of the albedoes must be less than 1/2 at interfaces

where diffusion theory is considered valid.

For most of the test problems in this thesis, the albedoes

were calculated by Kalambokas's method (10). The reactor for

which the data was approximated is a large PWR having an effec-
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tive horizontal reflector of one inch of stainless steel shroud

followed by five inches of water. The horizontal albedoes were

calculated from the following equations in terms of reflector

constants:

CS . R R /DR) + CR S ( S DS

aX 9 9 99 9 9 . 9 g=1, 2
= g g g g g g g g*a2 (LR/DR ( S / S R + Cs - a R 2

(121 t 11i 1i a 22 0 Q2 A,

R
[(CS-CS)-rS# - S 1 +

Di

S
R r S S S S

+ C 1 -- (L, Si - L2
Di

02 [( - ) r- 2S S .S S R

Li L 2  Li

+ (C1 C2).r C +
S

D
2

R

C*-~ *(L1 S- L2 S2 )+
Di

52S) + (C R-C R)-r R.L2 .SS.

D 2 Di

/[Numer ator o f at i]d

(A.16)

+ S 2 (L S - L S) +

R (A.17)
.R_ R R.D2-2 (C 2 -C 2) -r R RDi

/[Denominator of atid,

A
Cz = cos z
g gz

A
Sz =sinh( Lz)
g gz

g = 1, 2; z = zone (A.19)



131

rz z ,(A.20)
1 1

L2 L2
2z 2z

L2 z (A.21)
gz ~gaz

A zone thickness

S = steel
z =

R = light water

Above and below the core, no shroud exists, but equipment (nozzles,

etc.) means that the top and bottom reflectors are more than just

water. Therefore, homogenized constants will be used in calcu-

lating the vertical albedoes from the following equaitons:

Dn tan( (A.22)

a22 tanh A (A.23)
L2 L2

E 12 DDianl -D2-22) (A.24)
U21 1 E2-D2E1

Although these formulas are not exact, a "reflector represented

by albedoes leads to extremely accurate flux and power distributions

for large, shrouded reactors." (10) Calculations produced the

following set of albedoes at the indicated reflector core inter-

faces:
TOP BOTTOM HORIZONTAL

au .045 .051 .105

a .132 .169 .203

Ct22 - .0396 -. 0204 -. 0067
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APPENDIX B

REACTOR MODELS FOR TEST CASES
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z

Y

LLK

1 23 56 891 10 11 12 13 14 15 16 17

Reactor Data:

region dimensions: 20.8 x 20.8 x 29.8 cm3

steady state power: 5 MW

boundary conditions: albedoes on ends, reflecting on top,

bottom and sides

2 neutron energy groups.

Transient Data:

rod worth: ~ 0.6 x

rod location: Channel E

ejection time: 0.005 seconds

6 precursor groups.

FIG. B..

MODEL 1.
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z

YX

1 2 3 4 5 6 7 8 91 10 11 12 13 14 15 16 7

REACTOR DATA

region dimensions: 20.8 x 20.8 x 29.8 cm3

steady state power: 40 MW

boundary conditions: albedoes on ends, reflecting

on top, bottom and sides

2 neutron energy groups.

FIG. B.2.

MOEL 2.

- AM-M. W.M
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Y

910

REACTOR DATA

region dimensions: 20.8 x 20.8 x 29.8 cm3

steady state power: 47 MW

boundary conditions: different albedoes on top and bottom,

reflecting on all sides

2 neutron energy groups.

TRANSIENT DATA

total rod worth: 0.6 x

rod location: E channels

ejection time: 0.01 seconds

6 precursor groups.

FIG. B.3. MODEL 3.
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2

3
z

4

5 Y

REACTOR DATA

region dimensions: 20.8 x 20.8 x 29.8 cm3

steady state power: 18.8 MW

boundary conditions: albedoes on bottom, reflecting

on top and all sides

2 neutron energy groups.

FIG. B.4.

MMEL 4.

- AWAN.0-



REACTOR DATA

region dimensions: 20.8 x 20.8 x 29.8 cm3

steady state power: 2 MW

boundary conditions: (case dependent)

2 neutron energy groups.

FIG, B,5,

MDEL 5,

137

z
Y

X



138

z
E

Y

z

REACTOR DATA

reactor dimensions: 20.8 x 20.8 x 29.8 cm3

steady state power: 26 MW

boundary conditions: albedoes on ends, reflecting

on sides, top and bottom

2 neutron energy groups.

TRANSIENT DATA

rod worth: ~ 2 x

rod location: channel E

ejection time: 0.01 seconds

1 precursor group.

FIG. B.G.

tMDEL 6.

- 'Oft- -
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Y

REACTOR DATA

region dimensions: 20.8 x 20.8 x 29.8 cm3

steady state power: 12 MW

boundary conditions: albedoes on top and bottom,

reflecting on bottom, reflecting

on all sides

2 neutron energy groups.

TRANSIENT DATA

total rod worth: ~ 2 x

rod location: E channels

withdrawal time: 10.0 seconds

1 precursor group.

FIG. B.7.

MODEL 7.
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APPENDIX C

MESH SENSITIVITY TEST CASE RESULTS

The tables of this appendix consist of the power distri-

butions of each test case in Chapter 4 and the errors incurred

as the mesh spacing was varied. In steady state, total reactor

power is a user input while the power distribution represents

the neutronic solution. The sum of all region powers yields

the total reactor power. For example, the sum of the 10 region

powers on Fig. C.6 corresponds to one-fourth of the total reac-

tor power of a 40 region reactor (Model 3 of Appendix B). For

the neutronics-only cases, the input power levels were somewhat

arbitrary. For the cases involving thermal-hydraulic feedback,

the power represents a fraction of a PWR's operating power level,

This fraction is identical to the volume of the model divided

by the volume of a full core. This effort was undertaken to

assure a reasonable amount of feedback.

For each region, error is measured by

% error = case power - reference power x 100,
reference power

where the reference power corresponds to the solution of the

smallest mesh interval for the given case.
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TABLE C.1

HORIZONTAL SPACIAL MESH SENSITIVITY: CASE I

CASE DESCRIPTION (CASE 1): MODEL 1 OF APPENDIX B,

STEADY STATE, NEUTRONICS-ONLY, ALL REGIONS IDENTICAL.

REFERENCE
POWERS (MW x 10)

2.6cm MESH

0.7912

1.5263

2.2045

2.8169

3.3450

3.7731

4.0884

4.2814

4.3464

3.5 cm

0.36

0.11

0.05

0.01

-0.01

-0.03

-0.04

-0.05

-0.05

PERCENTAGE DIFFERENCE*
FROM REFERENCE (%)

5.2cm 1

1.06

0.31

0.13

0.02

-0.04 -

-0.08 -

-0.11 -

-0.12 -

-0.13 -

0. 4cm

2.62

0.73

0.28

0.04

0.10

0.19

0.25

0.28

0.29

Region

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

* % DIFFERENCE = CASE POWER - REFERENCE POWER X 100REFERENCE POWER

(SYMMETRY ABOUT REGION 9)
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TABLE C.2

HORIZONTAL SPACIAL MESH SENSITIVITY: CASE 2

CASE DESCRIPTION (CASE 2): MODEL 1 OF APPENDIX B,

STEADY STATE, NEUTRONICS-ONLY, ALL REGIONS IDENTICAL

EXCEPT # 3 (ROD WITHDRAWN)

REFERENCE
POWERS (MWX 10)

2.6 cm MESH

1.6329

3.1926

4.6263

4.6246

4.4860

4.3186

4.1126

3.8699

3.5926

3.2833

2.9446

2.5797

2.1917

1.7842

1.3608

0.9252

0.4746

PERCENTAGE DIFFERENCES*
FROM REFERENCE (%)

3.5 cm 5.2 cm 10.4 cm

0.49 1.34 3.98

0.22 0.55 1.99

0.30 0.84 3.31

0.11 0.21 0.90

0.07 0.11 0.47

0.02 -0.03 -0.03

-0.03 -0.16 -0.46

-0.08 -0.26 -0.84

-0.12 -0.34 -1.16

-0.16 -0.40 -1.42

-0.19 -0.45 -1.62

-0.21 -0.48 -1.78

-0.23 -0.48 -1.87

-0.24 -0.47 -1.88

-0.23 -0.40 -1.77

-1.26 -0.24 -1.42

.05 0.48 0.35

* % DIFFERENCE = CASE POWER - REFERENCE POWER X 100
REFERENCE POWER

Region

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17
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TABLE1 C.3

HORIZONTAL SPACIAL MESH SENSITIVITY: CASE 3

CASE DESCRIPTION (CASE 3): MODEL 1 OF APPENDIX B,

STEADY STATE, NEUTRONICS-ONLY, MATERIAL COMPOSITIONS

VARY FROM REGION TO REGION

REFERENCE
POWERS (MW X 10)

Region 1.3 cm MESH

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

5.3254

5.9229

3.7514

3.3263

4.3263

1.6625

0.3785

0.2176

0.2136

2.6 cm

0.86

0.50

-0.46

-0.34

-0.70

-0.64

-1.33

-0.36

-0.76

PERCENTAGE DIFFERENCES
FROM REFERENCE (%)

5.2 cm 1

2.88

1.44

-1.90

-1.29

-1.75

-1.93

-4.49

-0.44

-1.71

6.72

2.40

-6.64

-4.01

-1.03

-3.75

-10.61

-2.31

-0.26

(SYMMETRY ABOUT REGION 9)

*% DIFFERENCE = CASE POWER - REFERENCE POWER x 100
REFERENCE POWER

)

0.4 cm
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TABLE C.4

HORIZONTAL SPACIAL MESH SENSITIVITY: CASE 4

CASE DESCRIPTION (CASE 4): MODEL 2 OF APPENDIX B,

STEADY STATE, FEEDBACK INCLUDED, ALL REGIONS IDENTICAL

REFERENCE
POWERS (MW)

Region 2.6 cm MESH

1 0.4214

2 0.7706

3 1.0367

4 1.2296

5 1.3629

6 1.4508

7 1.5054

8 1.5349

9 1.5443

10

11

12

13

14

15

16

17

PERCENTAGE DIFFERENCES*
FROM REFERENCE (%)

5.2 cm

1.30

0.48

0.24

0.09

-0.04

-0.14

-0.23

-0.28

-0.30

10.4 cm

2.80

0.70

0.15

-0.09

-0.21

-0.27

-0.30

-0.30

-0.30

(SYMMETRY ABOUT REGION 9)

* % DIFFERENCE = CASE POWER - REFERENCE POWER x 100
REFERENCE POWER
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TABLE C.5

HORIZONTAL SPACIAL MESH SENSITIVITY: CASE 5

CASE DESCRIPTION (CASE 5): MODEL 2 OF APPENDIX B,

STEADY STATE, FEEDBACK INCLUDED, SAME MATERIAL COMPOSITIONS

AS CASE 3'

REFERENCE
POWERS (MW)

2.6 cm MESH

1.8527

2.1086

1. 4449

1.4139

1.8591

0.7662

0.1934

0.1463

0.1586

PERCENTAGE DIFFERENCES*
FROM REFERENCE (%)

5.2 cm

1.29

0.44

-1.37

-0. 29

-0.24

-0.21

-2.04

1.11

0 .28

10.4 cm

3.70

0.56

-5.20

-1.77

-1.46

-0.40

-6.60

5.84

3.74

(SYMMETRY ABOUT REGION 9)

*% DIFFERENCE = CASE POWER - REFERENCE POWER x 100
REFERENCE POWER

Am,- -. a f

Region

1

2

3

4

5

6

7

8

9

11

12

13

14

15

16

17
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TABLE C.6

AXIAL SPACIAL MESH SENSITIVITY: 10 REGIONS

CASE DESCRIPTION: MODEL 3 OF APPENDIX B, STEADY STATE,

NEUTRONICS ONLY, MATERIAL COMPOSITIONS VARIED FROM REGION

TO REGION

REFERENCE
POWERS (MW)

Recgion 7.2 cm MESH

1

2

3

4

5

6

7

8

9

10

1.2457

1.5108

1.5736

1.5352

1.4268'

1.2740

1.0976

0.9105

0.7099

0.4660

- PERCENTAGE DIFFERENCES*
FROM REFERENCE (%)

9.6 cm

-2.21

-1.21

-0.60

-0.09

0.34

0.68

0.99

1.28

1.57

2.04

14.5 cm

-4.64

-2.65

-1.39

-0.27

0.65

1.43

2.12

2.77

3.51

4.89

29.0 cm

-4.13

-3.31

-2.33

-0.89

0.27

1.25

2.16

3.19

4.87

9.58

* % DIFFERENCE = CASE POWER - REFERENCE POWER
REFERENCE POWER X 100
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TABLE C.7

AXIAL SPACIAL MESH SENSITIVITY: 5 REGIONS

CASE DESCRIPTION: MODEL 4 OF APPENDIX B, STEADY

STATE, NEUTRONICS-ONLY, MATERIAL COMPOSITIONS VARY

FROM REGION TO REGION

REFERENCE
POWERS (MW)

PERCENTAGE DIFFERENCES*
FROM REFERENCE (%)

4.1 cm MESH 7.2 cm 9.6 cm 14.5 cm 29.0 cm

1.1958 -0.20 -0.32 -0.54 -1.23

1.1297 -0.15 -0.26 -0.47 -1.21

1.0040 -0.05 -0.11 -0.23 -0.77

0.8202 0.13 0.21 0.34 0.64

0.5503 0.65 1.11 2.03 5.60

* % DIFFERENCE = CASE POWER - REFERENCE POWER X 100
REFERENCE POWER

mb - - w A

R gion

2

3

4

5
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TABLE C,.8

HORIZONTAL SPACIAL MESH SENSITIVITY: TRANSIENT

CASE DESCRIPTION: MODEL 1 OF APPENDIX B, TRANSIENT,

NEUTRONICS-ONLY, MATERIAL COMPOSITIONS VARY FROM REGION

TO REGION, AT 0.03 SECONDS

REFERENCE
POWERS (MW)

2.6 cm MESH

1.4847

1.6709

1.1021

0.9134

1.1401

0.4318

0.0948

0.0469

0.0361

0.0278

0.0380

0.1632

0.4224

0.3282

0.3759

0.6044

0.5489

PERCENTAGE DIFFERENCES
Fi)OM REFERENCE (%)

5.2 cm 10.4 cm

-1.99

-3.08

-5.12

-4.76

-8.28

-4.97

-6.70

-3.35

-3.55

-1.68

-3.42

-1.39

-0.64

-1.03

-1.47

0.91

2.01

-9.05

12.60

-18.37

-17.11

-13.89

-16.27

-21.39

-9.66

-9.05

-3.15

-10.10

-3.40

0.02

-3.95

-5.82

1.72

5.76

9.4318

Region

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

TOTAL
REACTOR -2.83 -10.23
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APPENDIX D

FEEDBACK PARAMETER GENERATION WITH THE LEOPARD CODE

All cross section feedbac parameters employed in this

pr Ject were obtained by using LEOPARD (1), a spectrum depend-

ent computer code. The user supplies only geometry, composi

tions for either an assembly or single pin, and temperatures.

The paragraphs that follow consist of an explanation of the

manner in which LEOPARD has been and can be applied to input

preparation for MEKIN.

With respect to the metal (fuel and clad) temperature,

relevant inputs to LEOPARD are the average fuel temperature

(Tf ), the effective resonance temperature (Tr ), and the aver-

age clad temperature (Tk ). In a LEOPARD calculation, Tr is

used to determine the Doppler contribution to the U-238 reson-

ance integral, while Tf and Tk correct dimensions and number

densities (1). If these parameters are varied as a group with

all other inputs held constant, the metal temperature-cross

seqtion behavior can be predicted. The linear feedback para-

meters (i.e., /9T of Eq. (6.1)) can then be estimated frQm

this data. As a first approximation, T can be assigned the

same value of T (21).

Regarding the coolant, the situation is more complicated

because two inputs are involved, C1 and C2 of Eq. (6.1). Av rage

coolant temperature (T c) and system pressure are LEOPARD user
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inputs, while the corresponding average coolant density (ec) is

calculated in the code. Holding the system pressure constant

and varying the coolant temperature in subcooled conditions,

the cross section behavior is a function of both T andV.
c c

The effects cannot be separated with only subcooled coolant

data. To accommodate the input for MEKIN, /9Tc could be

set to zero and an "effective" /De would account for both

coolant temperature and coolant density changes. In equation

form,

*

S e c ' / ( D .1 )c p c TP c p

where T, P, and C represent coolant temperature, pressure,

and density. Unfortunately, this procedure breaks down when

boiling occurs because temperature is no longer changing. How-

ever, LEOPARD can be used to predict the cross section-coolant

density behavior in boiling conditions. Coolant temperature

and pressure must be specified at saturation, while the

variable input becomes the void fraction (i.e., the fraction of

moderator volume which is in void form). From this data,

/Bec TP of Eq. (D.1) can be estimated for boiling condi-

tions. Assuming this term has the same linear value in sub-

cooled and boiling regimes, /3T I of Eq. (D.1) can bec Pe
found by * I I

axi/c p /aec pa (D.2)
c Pe 3Tc I

cp

- .dw -
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Thus, /3 P and /DT can be input to MEKIN for
cPT c PC

C1 and C 2 of Eq. (6.1) . However, the reader should be aware

that LEOPARD was developed for pressurized water reactors

with a subcooled moderator. For this reason, the accuracy of

calculations with LEOPARD is questionable under conditions of

high void fractions.
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APPENDIX E

MODIFItATION OF THE CROSS SECTION FEEDBACK PROCEDURE

As mentioned in Section 6.2, a temporary modification of

SBJROUTINE CROUSUI was necessary in order to represent the cross

§ction-temperature behavior by higher order polynomials. The

entire subroutine is listed on the following pages and changes

should be made on cards 36760 to 36790. In the particular

example presented here, the group one capture cross section

was represented by the quadratic fit shown on Fig. 6.9. This

modification consisted of replacing the operation performed

by card 36770 by the operation of card 36775. With respect

to the group two feedback parameters, the same procedure can

be applied to SUBROUTINE CROSU'2.

This method has several limitations. First, this sub-

routine must be recompiled every time a non-linear polynomial

is studied. Second, this procedure forces the polynomial to

apply to all regions of the core. The programming required.

to make this technique a general user option was beyond the

scope of this project.



SUBROUTINE CROSU1(ND3,CROS,STATE,CCPP,PFRT,IPRT)
C
C
C=====0BJECTIVE:
C
C=====CALLED FROM: SIGGEN
C
C=====CALLS TO:
C

UPDATE GROUP 1 CROS BLOCK FOR AXIAL SEGMENT ND3

NONE

C=====BLOCKS USED: NONE, EXCEPT THROUGH ARGUMENT LIST
C
C=====COMMON AND TYPING INFORMATION
C
C---------BLANK CUMP

COMMON
CIBM

REAL*6
CIBM
CCDC
C
CCDC

DI iNNSION

INTEGER
EQUI VAL E NCiE

C
C---------INTEGER LI

COMMVON/IMITS/
1 NP3X ,NPG
3 IQCONXMX
2 NPTX ,NGI
4 NTINDXNPW
5 NSLNPXNAL

C
C---------SCALARS AN

COMMON/FIXED/
1 HXI ,HYI
2 ITSTEPTIN

ON
DATA (1)

DDAT(1) ,XKEFF

DDAi(1)

IDAT(1)
(DAIA (1) , DDA I (1) ,II (1))

MITS
NBXX ,ND1X ,ND2X ,ND3X ,NP1X ,NP2X ,

X ,NTHRGXNTHBXXNTH3X ,NPBX ,NPBDX ,NPPX ,
,NALBX ,ND3GX ,NCOEFXNPP3X ,NGANGXICRDX ,

X ,NDFX ,NP3GX ,NP3FX , NCPX ,NCOaX ,
FX ,NINT1X,NINT2X,NINT3XNCF1DXNSLN1X,NCFPKX,
X ,NDMNX ,NNPRTXNINTXXNINTYX

D FI

,1
E

[ED-LENGTH ARRAYS
XKEFF ,ICENTRNSYM ,PITCH ,HX
iAREA ,ZMAX ,BSQDT ,YXE ,YIO
rIMEO ,DT ,DTI ,HT ,H TI

,1Hy ,
,ANDAXE,
,ITHSTP,

00035610
00035620
00035630
00035640
00035650
'0035660
00035670
00035680
00035690
00035700
00035710
00035720
00035730
00035740
00035750
0003576C
0nn3R77A
00035780
.00 35790
00035800
0f10358 10
00035820
00035830
00035840
00035850
00035860
00035870
00035880
00035890
00035900
00035910
00035920
00035930
00035940
00035950

Fa
Ln



3
4

6
7
8
9
A
B

TIMTH ,TIMTHO,DT
OMEGMN,OMEGDF,ND
ISSXFN,ITERX ,EP
DSG3 ,RVOL ,IT
PWRF0 ,PWRT ,PW
PALFAPIRODS ,NC
TSCRM ,ICRDR ,IC
TDECAY,LTTh ,LT
DIFMAX,

TH ,DTTHI ,NSWITCSCRIT1,SCRIT2,0MEGMX,
MN ,ITHC ,INEUTCINIT ,IEDSSRIEDSSP,
SSPR,EPSSK ,OMGP ,IBCT ,IBCB ,KORGD ,
H3B ,ITH3T ,DZP3 ,FCSAT ,PWRTO ,PWRDO ,
RD ,PWRF ,PWRTO ,PWRDO ,PWRFO ,PTIMEO,
RDRVIDRIVE,ISCRAMPSCRAM,PRSCRM,FSCRM ,
RSC ,IN ,IOUT ,ILAST ,ICROS ,IDSKED,
PR ,LIS ,1DCAY,1CNVSs,TRiVE,NTilD ,
BETAF(6),AMDA(6), TFINAL(10) ,NNTPD(10),

C NTHFRQ(10),PTHMAX(10),IPRNTF(10),IDSKF(10),IPRNTL(10),,
D TITLF(20)

C
C----------DATA BLOCK N

1 WNB2T ,WISTR
2 WTCOL ,WDCOL

WATBT ,WALPR
5 WPWME ,WPWCO

7 WSLN1 ,WOMG1
8 WTF10,WTFPK,

C---------ORIGINS OF C
COMMON/OPIGIN/
1 KISTR ,KIEZND
2 KCFPK ,KSLNP

C

1

3

AMES & DATA TYPES
'A L

,WIEND
, WFLUX

F LTJikXj

W ALRX
,WPWRT

,WCFPK

, WNBO0X
,WNPPS
, WFLXO

W A T. 3
, WATBYV
,WPWD0

,WSLNP

, WND1
,WNP1T

,WCFAX

,

,WNP2T
,WXENO

,wC('FX
,WCFAY

WI T 2
,WI NTX

,WNP3T
,WSPC

,WCFAZ

,WINTY

,WTMET
, WSPC1

, W.

, WNCRB

,WXPRT
WTHD1, WTHD2, WGFACITYPE (65)

ORE-CONTAINED
KNBOX ,KND1T
,KNPPS ,KuP1T

COMMON/CONSTS/ IZERO ,
ISEVFN, IEIGHT,

THIRD ,QUARTR,

IONE
ININE

EIGHTH

BLOCKS
,KND2T

KNT 

,ITWO
,ITEN
,SEVEN

,

,

,

,F

,

,KNTHB ,KNB1T ,KNB2T
,tNP3T ,KTPWF ,KOM1,,;

, ITHREE,IFOUR
,ZERO ,ONE
,?IAGT ,XNI* E

,IFIVE
TWO

,T7N

,ISIX
,TH REE

,!AL T

,F

,

00035960
00035970
000335980
00035990
00036000
00036010
00036020
00036030
00036040
00036050
00036060
00036070
00036080

0903619n
0003611i
3 _1_ 3 _- 12?'-
00036130
00036140

00036160
00036170
4n0 33618 0

00036190
00036200
0r36210
00036220
00036230

00362 00
00036250
00036260
00 036270
00336280
00036290
00036300
00036310

C
C
C

H~
u,
X__



C
C
C
CIBM

CIBM
C
C

DOUBLE PRECISION XKI

XKI=ONE
IF(ITSTEP.
DIMENSION
DIMENSION

GT.IZERO) XKI=ONE/XKEFF
IPRT(7,1)

CROS (NBXX, 1) , STATE (6, 1) , CORR (NCORKX, 1) ,P ERT (7, 1)
C
-=====LOOP OVER BOXES
C

DO 100 NBX=1,NBXX
NCP=STAT2 (1, NBX)

C
C-----StT BASE VALUES
C

SIGS=ZERO
IF (NGIX. EQ.ITNO)

1S1CS = CORR (4C,NCP)
SIGC = CORR(11,NCP)
SIGF = CORR(15,NCP)
DI = CORR( 7,NCP)
SIGX = CORR(20,NCP)
XNU = CORR(19,NCP)
VI = COFR(21,NCP)
BET = CORR( 4,NCP)

C
C-----INCLUDE T-H FEEDBACK,
C

IF (ITHC. EQ.IZERO) GO
F2 = STATE(2,NBX)
E3 = STATE(3,NBX)

IF ANY

TO 110

O003632m,
00036330
00036340
00036350
0003636)
00036370
00036380
00 036193
00036400
00036410
00036420
00036430
00036440
00036450
00036460
00036470
o0036480
00036490
00036500
3351

000365 2)
00036530O036 -

L) -) 4i

00036550
00036560
00036570
00036580
00036590
O0036600
00036610
00036620
00036630
00036640
00036650
00036660
00036670

H



(k0OLEOOO
0669EOU0
0869EGOO
OL69EOUU
$J969f.000
OS69CO0UO
Qti69ECOVC
OE69COOO0
0Z69E000
JL b9CQO
0689C~O

06 89cv0 00

o L89 ?CCOV
09 891000
us69E uuU,
0tI89EOG0
QE 89EU'V'0

00z 89E0 00

08L9E000

OLL9COCuv

09L9E?000
c sL 9 ?c 0 f f
OtL9C000
CC L9C00
0ZL9E0"0
OL L9OO
UOL9E?000
06 99E00Q
08 99c000

OS j, 0E)o (oaa zvi x Ja N N) aI0 CL

iaV ai *sNollva[flaad saINOdinag 'IVNaaIXa 2f'3'I--

(xh N'9)
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(L-8Z8L 09)e tiOLOO00 0 = Xl)

+ Z~?*(d3PONLh0d3 + 391IS = :)I 5T
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#a + ota-= #~a
Ea + oca-= Ec!
Za + oza-= za

(a3)N H) kloo A0tla
(dom 'zh1aHOD =0Ea
(d0N L ) a aoD =oZZ

(xsm 0 0 aLvJs = t

I



DO 200 NNPRT=1,NNPRTX
MCP =IPRT(1,NNPRT)
MCOR=IPRT(2,NNPRT)
V =PERT(7, NNPRT)
IF(MCP.NE.NCP) GO 10 200
IF (MCOR. EQ. IONE) D=D+V
IF(MCOR.EQ.ITWO) SIGC=SIGC+V
IF (1COR.E.I3REE) SIGF=SIGF+V
IF(MCOR.EQ.IFOUR) XNU=XNU+V

200 CONTINUE
C
C=====STORE IN CROS
C
150 CROS(NBX,1) = D

CROS(NBX,2) = SIGC+SIGF+SIGS
CROS(NBX,3) = SIGF
CROS(NBX,4) = SIGF*XNU+rXKI
CROS(NBX,5) = SIGX
CROS(NBX,6) = VI
CEOS (NBX,7) = D-
NRG=NBX+NBXX*ND3
IF(D ) 901,901,310

310 IF(SIGC) 9C2,32C,320
320 IF(SIGF) 903,330,330
330 IF(SIGX) 904,340,340
340 IF(BET ) 905,350,350
350 IF(XNU ) 906,360,360
360 IF(VI ) 907,370,370
370 CONTINUE

C
C=====lNCLUDE TRANSVERSE BUCKLING IF NDMNX=2
C

IF(NDMNX.EQ.ITHREE) GO TO 140
CROS(NBX,2) CROS(NBX,2) + D*BSQDT

C
C=====END LOOP OVER NBX

00037020
00037030
00037040
00037050
00037060
00037070
00037080
00037090
00037100
00037110
10037123
00037130
00037140
C0037150
00037160
00037170

00037190
00037200

00037220
00037230
C43 7240

0C037250
00037260
00037270
00037280
00037290

A0037300
00037310
00037320
00037330
00037340
00037350
00037360
00037370 t.n



C
140 CONT1NUE
100 CONTINUY

C
C=====FINISHED
C

RETURN
901 kRITE(6,9010)

GO TO 999
902 WRITE(6,9020)

GO TO 999
903 WRITE(6,9030)

GO TO 999
2 A- ? 1TZ(6,90 4)

GO TO 999
905 WRITEF(6,905A)

906 WRTTE(6,9060)
GO TO 999

I97 WR1TF(6,9070)
GO TO 999

999 STOP 1
9010 FOM\AT(10,50

N-nGrNCP,D ,(STATE(INBX) ,I=2,7)

NRGNCP,SIGC,(STATE(I,NBX),1=2,7)

NRG,NCP,SIGF, (STATE (I,NBX) I=2,7)

NESCP,:GX (STATE(",E I),= 2,)

NRG,NCP,BET

NRG,NCP,XNU

N AT, C) Iv

,(STATE(INBX) ,I=2,7)

, ( - ( , y , #7)

(13*)//10X, 39HCrOSS SCTION PPOr~vSSING PTmR.
1,15,12H COMPOSITIONIS,
21OX, 37HD
31OX,
41OX,
510X,
6 10X,
710X,

9020 FORM

210X,
31OX,
410X,
510X,

9H GROUP 1 //
IS NEGATIVE 0? ZERO

28HCOOLANT DENSITY (Gm"/CC)
28HCOOLANT TEMPERATUBE (0 C
28HMETAL TEMPERATURE (0 C
28TIXENN CONC. (A TOM/3-C')
28HCONTROL ROD FRACTION

AT(1H0,50(1H*)//10X,39HCROSS
12H COMDOSTTINITr, OF) r o
37HCAPTURE XSECTION IS NEGAT

28HCOOLANT DENSITY (GM/CC)
28[ICOOLANT TEMP'RATURF (0 C
28HMETAL TEMPERATURE (0 C

)
)

= ,1PV12.,,/
= ,1PE12.5/
= ,1PE12.5/
* ,1PE12.5/

- ,1PE12.5)
SECTION PROCESSING
1 //

ERROR.

IVE
,1PE12.5/

1PE 12. 5/
1PE12.5/

000373RMaE
000373-g
00037Weg
0003741T
00037420
0003743ff
00037440
00037450
00037460
00037470
00037480
00037490
00037500
"04275 1"
00037520
00037530

0 0 3 74 53f)

00037550
00037560
003757A
00037580
00037590

PEGI7ON0 037600
00037610
01137620
nnn37630
00037640
00037650
00037660
00037670

RPGI ON 000 3 76 80
n1037690
00037700
00037710
00037720
00037730 ul

00



610X, 28HXENON CONC. (ATOM/B-CM) ,1PE12.5/ 10037740

710X, 28HCONTROL ROD FRACTION = ,1PF12.5) 00037750

9030 FORMAT(1H0,50(1h*)//1OX,39HCROSS SECTION PROCESSING ERROR. REGION00037760

1,15,12H COMPOSITIONI5, 9H GROUP 1 // 00n37770

210X,37dFISSION XSECTION IS NEGATIVE OC037780

310X, 28HCOOLANT DENSITY (GM/CC) = ,1PE12.5/ 00037790

410X, 28HCOOLANT TEMPERATURE (0 C) = ,1PE12.5/ 00037800

51'X, 285M ETAL TEMPERATURE (0 C) = ,1PE12.5/ 00037810

610X, 28HXENON CONC. (ATOM/B-CM) = ,1PE12.5/ 00037820

71OX, 28HCONTROL ROD FRACTION = ,1PE12.5) 00037830

9040 FORMAT(1HO,50(1H*)//10X,39HCROSS SECTION PROCESSING ERROR. REGI0N03037840

1,I5,12H COMPOSITION,1S, 9H GROUP 1 // 00037853

210X,37HXENON XSECTION IS NEGATIVE 00037860

310X, 28HCOOLANT DENSITY (GM/CC) = ,1PE12.5/ 00037870

410X, 28RCOOLANT TEMPERATURE (0 C) = ,1PE12.5/ 0"037880

510X, 28HMETAL TEMPERATURE (0 C) = ,1PE12.5/ 00037890

610X, 28HXENON CONC. (AIOM/U-CM) = ,1Pr12.5/ 30037900

710X, 28HCONTROL ROD FRACTION = ,1PE12.5) 00037910

9050 FORMAT(1H0,50(1H*)//1OX,39HCROSS SECTION PROCESSING ERROR. REGION00037920

1,I5,12H COMPOSITION,I5, "HG 1 // 42 373

210X,37HDELAYED FRACTION IS NEGATIVE 00037940

310X, 28HCOOLANT DENSITY (GM/CC) ,1PE12.5/ 00037950

410X, 28HCOOLANT TEMPERATURE ( C) =,

510X, 28HMETAL TEMPERATURE (0 C) = ,1PF12.5/ 00037970

610X, 28HXENON CONC. (ATOM/B-CM) = ,1PE12.5/ 00037980

710X, 28HCONTROL ROD FRACTION = ,1PE12.5) 00037993

9060 FORMAT(1HO,50(1H*)//1OX,39HCROSS SECTION PROCESSING ERROR. REGION00038000

1,15,12H COMPOSITIONI5, 9H GROUP 1 // 00038010

210Y,37HNU IS NEGATIVE o003802n)

310X, 28HCOOLANT DENSITY (GM/CC) = ,1PE12.5/ 00038030

410X, 28HCOOLANT TEMPERATURE (0 C) = ,1PE12.5/ 00038040

510X, 28HMETAL TEMPERATURE (0 C) = ,1PE12.5/ 00038050

6101, 28HXENON CONC. (ATOM/B-CM) = ,1PE12.5/ 00038060

710K, 28HCONTROL ROD FRACTION = ,1PE12.5) 00038070

9070 FORMAT(1HO,50(1*)//10X,39HCROSS SECTION PROCESSING ERROR. PEGION0038080

1,S5,12H COMPOSITIONIS, 9H GROUP 1 // 00038090



2101,37HINVERSE VELOCITY IS NEGATIVE
310!, 28HCOOLANT DENSITY (GM/CC) = ,1PE12.5/
410!, 28HCOOLANT TEMPERATURE (0 C) = ,1PE12.5/
510X, 28HMETAL TEMPERATURE (0 C) = ,1PE12.5/
610U, 28HXENON CONC. (ATOM/B-CM) = ,1PE12.5/
710X, 28HCONTROL ROD FRACTION = ,1PE12.5)

C
C=== ==N k
CE

END

00038100
00038110
00038120
00038130
00038140
00038150
00038160
CC 33 81 70
00038180
00038190

C:T
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