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ABSTRACT

The experimental and analytical bases of the determination
of the material bucklings of uranium-D 2 0 lattices are presented.
Techniques which were developed, particularly with the intent of
measuring material bucklings in the MIT lattice facility, are
described.

The design considerations and experiments dealing with the
spatial distribution and magnitude of the neutron source in the lattice
facility are discussed. The source distribution was analyzed as it
entered the subcritical assembly tank when the tank contained only
D20 and when the tank contained a lattice of uranium rods in D 2 0.
The detailed investigation of the over-all flux distributions in lattices
included a study of the non-separability of the macroscopic and
microscopic radial distribution.

A set of computer codes was developed to reduce and analyze
fully the data from flux distribution measurements.

The bucklings of three lattices of 1. 010-inch diameter natural
uranium rods in D2 0 were measured. These measurements are
shown to be in good agreement with measurements made in similar
lattices at other laboratories.

This report is based on a dissertation submitted by Philip F. Palmedo
to the Nuclear Engineering Department of the Massachusetts Institute
of Technology, in partial fulfillment of the requirements for the degree
of Doctor of Philosophy. The work was performed in part at the MIT
Computation Center
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CHAPTER I

INTRODUCTION

1.1 PURPOSES OF THE WORK

The work which will be reported was undertaken with several

purposes in mind. Generally, it was initiated with the intent of

studying the methods of measuring material bucklings of hetero-

geneous systems. Specifically, the study was to be applied and

exemplified in preparing for, and in making, buckling measure-

ments in lattices of uranium rods in D2 0 at MIT. The specific

purposes can be distinguished as follows:

a) The investigation of present techniques of measuring the

bucklings of lattices with an eye to improving these techniques

where possible.

b) The establishing of experimental and analytical techniques

which would allow the convenient and accurate determination of the

bucklings of various lattices to be studied by the MIT Lattice Project.

c) The design of aspects of the MIT lattice facility directly re-

lated to the measurement of bucklings in the facility.

d) The investigation and "adjustment" of the source flux

distribution to make it satisfactory for the various types of experi-

ments to be performed.

e) The investigation of the details of flux distributions in

lattices which are related to the measurement of bucklings.

f) The determination of the material bucklings of three

spacings of 1. 010 inch diameter natural uranium rods in D 2 0.

The measurements of bucklings are an important part of the

MIT Heavy Water Lattice Project. The project is one of the research

programs of the Nuclear Engineering Department at MIT and is being

carried out under a contractwith the U.S. Atomic Energy Commission.

A preliminary description of the project, the first annual report, has



2

already been published (H6).

The first stage of the work consisted of the design and con-

struction of the lattice facility. During this period, the author was

particularly concerned with those aspects of the design directly re-

lated to the buckling measurements. Chapter II of this report is

devoted to a description of the studies made to design a flux-shaping

pedestal for the experimental tank. The experiments designed to ex-

amine the resultant flux distributions in the tank are described in

Chapter III.

Chapter IV is devoted to a discussion of the theoretical bases

of buckling measurements. Particular emphasis is given to the

assumptions made when the theory is applied in particular experi-

ments. A detailed investigation of the various contemporary

approaches to the measurement of buckling was made and is summa-

rized in Chapter V. On the basis of this investigation, the combi-

nation of experimental methods and analytical techniques to be used

at MIT were chosen. A description of these methods, the equipment

used, and the analytical techniques employed is given in Chapter VI.

In choosing the methods to be used, consideration was given, not only

to the accurate determination of the bucklings of the systems to be

studied, but also to the investigation of some of the details of such

measurements.

For purposes of accuracy, completeness, and convenience, a

set of IBM-709 computer codes was developed to analyze experimental

data. Brief descriptions of the various codes, their theoretical basis,

and their operation are given in Chapter VI, while detailed descriptions

of the codes are presented in Appendix Al.

Various aspects of the flux distribution in lattices were investi-

gated experimentally and are reported in Chapter VII. The material

bucklings of three lattices of natural uranium rods in D 2 0 were

measured and are also reported in Chapter VII. Chapter VIII summa-

rizes the work performed and suggests the experimental methods to be

used in future buckling measurements at the MIT Lattice Project.
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1.2 THE EXPONENTIAL EXPERIMENT

Exponential experiments have played an important and changing

role in the history of nuclear reactor physics. Early in the develop-

ment of the field, Fermi conceived of, and.employed, this type of

experiment to investigate the possibility of achieving a self-sustaining

chain reaction (Al). In principle, the experiment is quite simple,

consisting essentially of observing the neutron flux distribution in a

volume of the material of interest when one face of the volume is

bombarded by neutrons. The significance of such experiments stems

from the fact that important quantities - in particular, the material

buckling - are quite easily obtained in this way.

Today many other quantities are measured in exponential

experiments in addition to macroscopic flux distributions, and the

uses of such experiments have similarly ramified. The present

state of theoretical reactor physics makes it necessary to rely to

some degree on either critical or exponential experiments for a

sufficiently accurate prediction of the details of reactor criticality.

Moreover, a variety of empirical data may be obtained in expo-

nential assemblies which can serve as the necessary checks of, and

stimuli for, theoretical developments.

Integral multiplication experiments are a possible alternative

to exponential experiments and have been widely used to investigate

various multiplying assemblies. This was the technique primarily

employed by the Germans in their early research (HI) and has been

used quite recently by Persson (P1). Such experiments involve the

study of the multiplication of neutrons from some source as a function

of the amount of the materials of interest near the source. Except in

rather unusual circumstances, however, integral experiments yield

a smaller amount of, and less accurate, information than do expo-

nential experiments (P1), (Wi).

Although pulsed neutron methods are becoming more widely

used to investigate macroscopic lattice properties, such techniques

are as yet not as productive as exponential experiments (S1), (D1).

It is to be expected, however, that pulsed neutron measurements
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will become complimentary to exponential experiments, particularly

with regard to a multigroup, theoretical formulation of such experi-

ments. For, although there is great flexibility in an exponential

type experiment to study microscopic lattice properties, the pulsed

method entails the potential for studying the dynamics of the neutron

slowing-down process in lattices.

Critical experiments involve both.advantages and disadvantages

when compared to exponential experiments. Among the advantages

is that in a critical system, one can measure reactivity effects quite

directly, and that the critical, geometric (as well as the material)

buckling can be measured. Some measurements which can be per-

formed in both types of experiments are simplified by the higher

fluxes generally available in critical systems. The major disad-

vantages of critical experiments are that they require greater

amounts of material, as well as greater safety precautions.

It has been suggested by some investigators that a fundamental

difference exists between bucklings measured in a critical facility

and those determined in exponential experiments (W9). One of the

difficulties involved in evaluating the validity of such an effect is that

there is no published account of complete exponential and critical

measurements being made in the same facility. Although no con-

vincing theoretical justification for the suggested effect has been

proposed, a number of laboratories are beginning to use critical

experiments to calibrate their exponential facilities (I1).

A primary objective of the exponential experiment in general

and, in particular, of the exponential experiments being performed
2

at MIT, is the measurement of the material buckling, Bm, of sub-

critical assemblies. A theoretical definition of the material buckling

is given in section 4. 1, but it can be considered as that quantity that

must be maximized to produce a nuclear reactor of minimum size

out of given materials. The maximization is with respect to the

various possible configurations of the materials. Similarly, it may

be considered as the single measurable parameter which describes

the over-all multiplicative properties of a chain reacting system.
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Furthermore, in the usual theoretical description of reactors, the

leakage of neutrons is described in terms of the buckling.

1. 3 THE MIT LATTICE EXPERIMENTS

The lattice experimental program at MIT is designed to study

the physics of slightly enriched uranium-D2 0 lattices. In order to

provide comparisons with other experiments and to add to them

where possible, the first lattices studied were of natural uranium.

They consisted of single rods, one inch in diameter, spaced in

various configurations as described in Chapter VII.

In addition to the measurements of the buckling, three other

aspects of the first lattices were examined in detail. These were

the microscopic thermal neutron distribution, to be reported by

Brown (B1); the fast fissions in U238 as reported by Wolberg(W10);

and the resonance capture in U238 as reported by Weitzberg (W1 1).

These three measurements provide the basis for the derivation of

the factors, f (thermal utilization), E (the fast fission factor), and

p (the resonance escape probability), respectively. The infinite

multiplication factor, k., may then be derived from the product of

these factors and a value for the neutron regeneration factor, il.
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CHAPTER II

PEDESTAL EXPERIMENTS

2. 1 INTRODUCTION

Neutrons from the MIT Reactor diffuse to the experimental

area through the reactor thermal column. The latter is a graphite

stack, 63 inches square and 37-1/2 inches long. In order to direct

the generally horizontal beam from the thermal column upward to

the experimental tank, a four-walled graphite cavity, or "hohlraum",

is used. The physical configuration of the system is shown in

Fig. 6. 1. The design and performance of the cavity has been de-

scribed by Madell (Ml). Above the cavity, an aluminum platform,

approximately 7 feet square, supports whatever pedestal is re-

quired for flux-shaping beneath the experimental tank. The tank is

supported from above, leaving approximately 16 inches between the

platform and the tank bottom for the pedestal. Other aspects of the

facility are described in section 6. 1, and diagrams of the facility

are shown in Figs. 6. 1 and 6.2.

2.2 GENERAL CONSIDERATIONS

In the design of the pedestal, two criteria had to be considered.

The first of these was the requirement of a favorable over-all spatial

distribution of the flux. The second was a neutron flux of sufficient

magnitude to permit accurate experiments to be carried out.

The first criterion was imposed by the measurement of the

material buckling of the lattices. The accurate determination of the

axial buckling requires that through a considerable vertical distance,

only the fundamental harmonic exist. In the present case of a cy-

lindrical tank, this means that the radial distribution of the flux

should be describable by a single J0 Bessel function (see Chapter IV).

To the extent that the source distribution at the bottom of the tank

............. .............
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does not correspond to a pure J (of the correct argument), higher

harmonics will exist in the tank. If the source distribution resembles

the correct J to a sufficient extent, the harmonic contribution will

be small and will become negligible in the bottom region of the lattice

(see Chapter IV).

The second criterion, that of magnitude, is effectively imposed

by the measurement of the microscopic properties of the lattices. In

general, such measurements are insensitive to over-all flux distri-

butions. It is true that in the measurement of the thermal utilization,

an intracell flux plot must be corrected for the macroscopic flux

distribution. However, the measurement can be made high enough in

the lattice so that a simple J0 distribution is known to exist. (It need

not exist over any considerable distance, as in the buckling measure-

ment.) The most critical of the measurements with respect to

magnitude are those related to the determination of resonance capture.

One such experiment involves the activation of dilute (about one per

cent) uranium in aluminum foils in the moderator and requires ex-

posures of the order of 24 hours at a flux of 109 n/cm2 sec. Flux

levels of much less than 109 n/cm2 sec would make such experi-

ments impractical. (The flux required for accurate macroscopic

measurements is about 107 n/cm2 sec.) It was therefore required

that as little diminution in flux as possible occur between the thermal

column and the tank bottom.

Since the two criteria of shape and intensity tend to conflict

with one another, their resolution provided an interesting and in-

formative series of experiments.

The material decided upon for the pedestal was graphite. If

water had been used, the attenuation through the pedestal would have

been excessive. For example, in a H2 0 pedestal, 46 inches on a

side, the intensity of the fundamental harmonic would decrease by

a factor of 10 in 3 inches. A pedestal of D2 0 would produce approxi-

mately the same attenuation of harmonics as one of graphite because,

with the large diffusion lengths characteristic of these materials,

side leakage is the chief cause of the attenuation. Graphite, however,
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has the distinct and obvious advantage of being more easily manage-

able and adaptable to various configurations.

2.3 EXPERIMENTAL METHODS

Flux distribution measurements were made both in the pedestals

and in a "pseudotank", a 50 in. X 50 in. X 8 in. stack of graphite

placed on top of the pedestal to simulate the experimental tank. In

all the experiments, both the pedestal and pseudotank were wrapped

in cadmium. Copper foils, one inch in diameter and 0. 020 inch thick,

were used to make flux traverses in a direction parallel to the thermal

column face (the north-south direction) and in a direction perpendicular

to the thermal column face (the east-west direction). In all the runs,

foils were located four inches from the top of the pseudotank. They

were placed in holes milled in the (4 in. X 4 in. X 50 in.) stringers

which formed the bottom of the pseudotank. In some runs, foils were

also distributed in the pedestal itself.

The beta activity of the foils was counted either with a Nuclear-

Chicago proportional flow counter and automatic sample changer, or

with a Baird-Atomic G-M flow counter and changer. In all cases,

errors due to statistics of counting were less than one per cent.

To obviate repetition of runs, several internal checks were

made in the taking and processing of experimental data. Only the flux

distribution in the east-west direction was asymmetric and, thus, was

of primary concern with respect to flux-shaping. Because of the

symmetry of the north-south distribution, two simultaneous measure-

ments of the east-west distribution could be made by taking one

traverse 6 inches to the north and one 6 inches to the south of the

east-west centerline. Normally, each set of foils was counted at

least three times. The usual corrections (for decay before and during

counting, and for variation in foil weight) were applied independently

each time a set of foils was counted. In this way, the flux distribution

was calculated from at least three sets of foil activities at various

times after irradiation. Whenever a set of foils was counted, a

standard foil was also counted, to check the constancy of the counter

sensitivity.
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All irradiations were made for 30 minutes at a reactor power

of 40 kw. The flux entering the cavity was monitored by placing two

foils at the bottom of the vertical thermal column, thus allowing

intercalibration of runs.

2.4 RESULTS

A total of seven steps (Runs P1 through P7) was taken in ap-

proaching the final pedestal configuration. The salient points of

difference between the various configurations are shown in Fig. 2.1.

Madell had used a 72 in. X 72 in. X 16 in. pedestal during

most of his cavity experiments. Run P1 was made with the same

pedestal with the 50 in. X 50 in. X 8 in. pseudotank added (see

Fig. 2. la). The east-west flux distribution as a function of distance

up into the pedestal and pseudotank is shown in Fig. 2. 2. The distri-

bution near the top of the pedestal was satisfactory neither as far as

shape was concerned (too flat) nor in terms of magnitude (too low).

In order to produce a flux shape nearer to that required in the

tank, a pedestal 50 in. X 50 in. X 16 in. was tried next. The flux

distribution in the pseudotank obtained in this run (P2) is compared

to that of P1 and subsequent runs in Fig. 2. 3. The flux values

plotted are corrected to a reactor power of 1 Mw. The calibration

from copper foil activity to flux was obtained by exposing a cobalt

foil and copper foil simultaneously at the face of the thermal column.

The absolute disintegration rate of the cobalt foil (and thus the flux)

was obtained by means of a coincidence technique, while the copper

foil was counted in the same arrangement as the experimental foils.

Although the distribution obtained in Run P2 seemed satis-

factory as far as shape was concerned, the intensity was too low.

Two steps were taken to increase the intensity. First, in Run P3,

a pedestal was made with outside dimensions 72 inches but with a

48 in. X 50 in. hole in the center, as shown in Fig. 2. 1c. The

magnitude of the flux was indeed increased, as can be seen from

Fig. 2. 3. The shift in the distribution toward the west indicated

that a significant fraction of the flux in the pseudotank was due to



P1 P2.11

P5

P6

e

FIG. 2-I TRIAL CONFIGURATIONS OF THE GRAPHITE PEDESTAL

16"

TC.

P7

f



I I I I I I I I
ALL FOILS 6" NORTH OF E-W CENTER-LINE

Ih= HEIGHT ABOVE HONEYCOMB

h = 4"

I-
wC')

w

h = 12"

I

I I I I I Ii
20
DISTANCE

10 10 20
FROM CENTER- LINE, inches

FIG. 2.2 EAST- WEST FLUX DISTRIBUTION AS A FUNCTION

OF HEIGHT IN 72 INCH PEDESTAL

6.0 [-

5.0 F-

4.0 1-

E
0

(0

x

:3

_-

-

z
w
-J

w

2.0 --

1.0-

30 30

1 1 1 , .,, , I " 11

I I I | I _ J _ _

3.0 1--

. ............
h = 2 0 "



0. 5 -

-18

P 5

P4

C')
w

P 3

E

0

U,

N
E
C.)

w

p 2

-12 -6 0 6 12 18
DISTANCE FROM N-S CENTER-LINE ,inches

FIG. 2.3 FLUX DISTRIBUTIONS 4 INCHES INTO PSEUDO

TANK TAKEN 6 INCHES FROM EAST-WEST
CENTER- LINE FOR REACTOR POWER OF I Mw

5.0

4.5 1-

4.0 -

3.0 F-

THERMAL COLUMN

P

2.5
(n

2. 0

1.5

I I

I I I Ii

3.5 -

. -I

I I I



13

neutrons which came directly from the thermal column face. The

removal of the central portion of the pedestal gave the rear of the

pseudotank a better view of that neutron source. The second step

to increase the flux magnitude (in Run P4) was the removal of a

group of graphite stringers forming a saw tooth arrangement at the

top of the space between the thermal column and the cavity. The

flux distribution shown as P4 in Fig. 2. 3 was then obtained. In

order to get a more detailed picture of the flux distribution, more

foils were used in this and subsequent runs than in Runs P1 to P3.

In the earlier runs, foils were placed at -18, -6, +6 and +18 inches;

foils at +12 and -12 inches were added for Run P4. Thus, the

slightly double-humped effect in Run P4 may have existed, but not

have been detected in the earlier experiments. The hump toward

the west again suggests the importance of the direct view of the

thermal column face afforded the western part of the pseudotank.

To shift the distribution toward the east and, at the same

time, increase somewhat the magnitude of the flux, the number of

stringers forming the east side of the pedestal was varied. In

Runs P1-P4, this section of the pedestal consisted of a stack of

4-inch-square stringers (50 inches long), four stringers high and

three wide. In Run P5, six stringers were removed to allow the

east part of the pseudotank a view of the thermal column face. The

configuration of the stringers remaining and the resultant flux

distribution are shown in Figs. 2. 1d and 2.3, respectively. The

attempt to shift the distribution was evidently too successful. In

Runs P6 and P7, two other arrangements of the east section of the

pedestal were tried, as shown in Fig. 2. 1, e and f, and resulted in

flux distributions, again shown in Fig. 2. 3.

The pedestal configuration finally chosen was basically that

of Run P6. The slight asymmetry toward the east was considered

advantageous for the following reason. As is discussed above, it

was found that a significant contribution to the flux at the top of the

pedestal arose from neutrons coming directly from the thermal

column. Because of the angle of incidence of these neutrons, they
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provide a non-isotropic contribution to the flux distribution. Hence,

the distribution would be expected to shift somewhat toward the west

as it entered the bottom of the tank. The only other changes in the

pedestal were, first, the removal of some graphite in the south-west

corner (to allow space for piping) and, second, the insertion of

graphite pieces in the inside corners to approximate more closely a

circular hole. The resultant pedestal configuration is shown in

Fig. 2. 4. The side and upper graphite surfaces were covered with

cadmium.

The distribution obtained in Run P6 can be roughly approximated

by

4 =A cos cos (2.1)FI-0Cos110

where x and y are distances (inches) in the east-west and north-

south direction. The adequacy of this approximation may be seen in

Fig. 2. 5 where it is compared to the measured fluxes. A rough esti-

mate of the relative contribution of higher harmonics to the funda-

mental, in the tank, may be made in the following way. The 48-inch

diameter tank is approximated by a tank in the form of a parallele-

piped, with sides of 46 inches (extrapolated dimension); such a

substitution allows for equal radial buckling in the two cases. Then

the empirical flux distribution given by Equation (2. 1) is expanded in
I n7Tx m7\ an

characteristic functions of the square tank cos n cos and
46s~-o 46 )

the decay constants for each mode determined from the equation,

2 = -B 2 + n)2 2, (2.2)Im m k46 (46 /

2 -
where B is the material buckling. A representative value of 8m 2

istaen m  2
is taken for B . In this way, it is found that the contribution of them
higher harmonics is about one per cent at a height of 60 cm. in the

tank, and 0. 1 per cent at a height of 104 cm. As preliminary results,

these estimates were considered adequate until flux distributions

could be measured in the lattices, themselves.
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CHAPTER III

MODERATOR EXPERIMENTS

3. 1 INTRODUCTION

The first series of experiments that was performed in the

completed facility was designed to study the flux distribution in the

exponential tank filled with D 20. The experiments connected with

the design of the graphite pedestal were described in Chapter II.

The pedestal experiments were performed between May and August,

1960. At that time, since the exponential tank was not in place, the

adequacy of the flux distribution entering the tank could be es-

tablished only crudely. By June, 1961, the facility was completed

to the extent that experiments could be performed in the expo-

nential tank filled with D 2 0.

The moderator experiments, performed during June and July,

1961, were designed to serve three purposes:

1) The fundamental intent of the experiments was to examine

the adequacy of the spatial distribution of the thermal flux entering

the exponential tank. The criteria of adequacy have been discussed

in section 2. 2, and the main requirement is that the flux be charac-

terized by a single J0 Bessel function over a considerable vertical

distance in the tank. No attempt was made to obtain highly precise

flux plots in these experiments. Rather, they were designed to

point up any large flux irregularity before experiments in the lattices

were begun.

2) The experiments were used as a comparing and testing

ground for experimental and analytical techniques. During the

investigation of the spatial distribution of the flux, several ex-

perimental methods were employed. The experience gained in

trying various methods was used to establish the techniques to be

used to make flux plots in the lattices.

......................
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3) A further purpose of the experiments was the investigation

of one source of background neutrons - the epithermal component of

the flux entering the tank. As is discussed in Chapter IV, it is

necessary to assure that energy harmonics have died out at the

points where the experiments are performed in the lattices. Such

harmonics may be due in part to the- fact that the source thermal

spectrum is characterized by a temperature different from that

characterizing the lattice thermal spectrum. This effect can, of

course, be studied only in the lattice, itself. However, the effect

may also result from epithermal neutrons entering with the source

thermal neutrons, a phenomenon which can be studied in the pure

moderator.

3.2 EXPERIMENTAL PROCEDURES

Many of the experimental and analytical procedures used

during the moderator experiments were the same as those used in

the lattice runs. Since these experimental techniques are described

in detail in Chapter VI, they will not be discussed here. Other tech-

niques employed in the moderator experiments will be described in

this section, particularly with regard to the choice of methods to be

used in the lattices. There are four criteria that must be met by a

fully successful method of flux mapping. First, the flux measuring

device must be sufficiently sensitive to the neutrons of interest.

Second, the device must not distort unduly the flux that is being

measured. Third, the location of the flux measuring device must

be known accurately; and finally, the whole operation must be rela-

tively simple and efficient.

Many of the criteria are well satisfied by a remote-operated,

traveling neutron scanner. However, such a device is usually

limited to one plane of the experimental tank. (A scanner designed

to operate in the lattices is described in section 6. 3. 3.) Various

methods of flux plotting with foils and wires were, therefore, tried.

With these, there is no difficulty of sensitivity, and flux perturbation

need only occur at the point of detection. The main difficulty of using

.......... ................
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foils or wires in the experiments described here was in their accurate

positioning. This difficulty is due to the fact that, during the experi-

ments, access to the tank is gained through the glove box in the

rotating tank lid (see section 6. 2).

Many of the radial flux plots in the moderator were obtained

with the aid of an aluminum frame built to fit into the exponential tank.

The frame was made of 1/8 in. X 1/8 in. X 1 in. type 6063 aluminum

angle. The bottom element of the frame remained fixed across a

diameter of the tank at the tank bottom. The upright members could

be located and "locked" to the bottom member from the top of the

tank, through the glove box. Figure 3. 1 shows one corner of the

frame, in the locked position. The uprights were also clipped to a

double beam located on the tank top, below the lid.

The upright elements contained holes and adjustment screws

for the fixing and stretching of wires or strings. A duplicate bottom

member was located in the set-up area so that the wires or foil-

carrying strings could be set up outside of the tank. Three different

ways of using the frame were tried. In the first, thin (0. 020 inch

diameter) copper wire was stretched between the uprights to obtain

flux plots. The wire was counted in a wire scanner adapted from a

chromatogram scanner. A second method entailed the use of thin

nylon string from which aluminum foil holders were suspended.

Foils suspended in this way are shown in Fig. 3. 1. In the third

method, pure aluminum wire replaced the string.

Although all three methods of making radial traverses proved

manageable, each had disadvantages. In general, it was found diffi-

cult to be sure that the positions of the wires or foils set up outside

the tank were exactly maintained in the tank. To reduce sagging of

the string or wire, considerable tension had to be applied. It was

difficult to insure that the same amount of tension was applied in

the tank, under water, as existed in the setting up of the frame out-

side. The difficulties of handling and positioning the copper wires,

combined with inaccuracies in their counting, were sufficient to dis-

courage their use in the remainder of the experiments.

I I ---- I I ".. .- I I W Rr"I" _-_ __ M



FIG. 3.1 LOWER CORNER OF EXPERIMENTAL FRAME
SHOWING STRING - SUSPENDED FOIL HOLDERS.
(FOILS ARE 1/2 INCH IN DIAMETER)
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Another method of making radial traverses was used, in which

the foils were placed on an aluminum foil holder. These could be

suspended from the double beam resting on top of the tank. With

this method, the relative positions of the foils are accurately es-

tablished by placing them in depressions milled in the holder.

The axial traverses presented a simpler problem of foil

location. Strings of foils could be inserted through the glove box

fairly easily. In this case, three methods were used to space the

foils. In the first, the foils were placed on small, individual,

aluminum foil holders, these being spaced along a nylon string. In

the second method, the foil holders were spaced by means of alumi-

num bead chain; and in the third, the foils were taped to the alumi-

num foil holder used for the radial traverses. The three different

types of suspension are shown in the photograph of Fig. 3. 2.

The foils used throughout the moderator experiment were of

gold, 0. 010 inches thick and 0. 5 inches in diameter. Their induced

activity was counted in an automatic sample changer, as described

in Chapter VI.

During these experiments, the MITR operated at a power level

of 1 Mw. Under these conditions, the irradiations of bare gold foils

were usually 30 minutes long. The irradiations of cadmium-covered

foils were at least 4 hours in duration, the length of irradiation de-

pending on the other experiments being performed.

3.3 THERMAL NEUTRON DISTRIBUTION

3. 3. 1 Axial Distribution

As will be shown below, the epithermal activation of the gold

foils irradiated in these experiments is very small, compared with

the thermal activation. Hence, the flux distributions reported here

are obtained from bare foil data.

Axial flux plots were made to examine roughly the harmonic

contributions to the flux in the tank. Of primary interest was the

height in the tank at which the flux could be said to behave in an



FIG. 3.2 METHOD OF SUSPENDING FOILS FOR AXIAL
TRAVERSES. FOILS SHOWN ARE 1/2 INCH IN DIAMETER
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exponential manner. A secondary purpose of the axial flux plots was

to ascertain whether the type of foil holder had any effect on the

measured relaxation length.

Figure 3. 3 represents data from two separate axial traverses.

The curve is an exponential fit (by eye) to the points. It is clear

from these data that at least above a height of 55 cm in the tank, the

flux can be considered exponential in nature.

In Run No. 2, the foils were suspended with the string foil

holder shown in Fig. 3. 2, whereas the solid aluminum foil holder

was used in Run 11. As is apparent from Fig. 3. 3, the relaxation

lengths derived from the two runs are equal within the experimental

uncertainties.

3. 3. 2 Radial Distribution

The radial flux distribution in the tank was studied in two ways,

with the measured fluxes being fitted by a single J0 function and by

fitting a sum of J harmonics.

Figure 3. 4 represents the data from three separate radial

distribution measurements made at three different heights. Data

taken on two sides of the central axis are represented on the plot

(i.e., the data are "folded" to one side). The plotted Bessel function

curve is the theoretical distribution fitted by least-squares to the

data of Run 1. It is clear from the plot that the data of the three runs

are in agreement within the accuracy of the experiments and that the

data are well represented by the fitted Bessel function.

In the experiments, it was not always easy to determine

accurately the absolute position of the foils in the tank or, in other

words, the position of the center of the tank with respect to the

center of the string of foils. It was of interest, therefore, to de-

termine the effect on a measured radial buckling of an uncertainty

in the center of the distribution. The data from one of the runs were

analyzed three times, with the foil positions being shifted 0. 5 cm,

first in one direction and then in the other. Table 3. 1 shows the result

of this analysis.
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TABLE 3.1 EFFECT OF FOIL POSITION SHIFT

ON A MEASURED BUCKLING

Run Amount of shift Buckling

101 0.0 cm 14. 70 m- 2

105 0. 5 cm 14.71 m- 2

106 1. 0 cm 14. 70 m_ 2

Since the foils are positioned symmetrically about the center,

a total shift of one centimeter is seen to have an insignificant effect

on the neasured buckling. The Bessel function is sufficiently linear

over a distance of one centimeter in this situation, so that the shift-

ing of the foils on opposite sides of the center balance one another.

As is described in section 6.4, it is possible to fit a measured

flux distribution to a function of the form:

<p(r) =A 1 J (a 1 r) + A2 o(a 2 r) + A3 o(a 3 r) , (3. 1)

where

2. 4048 5.5201 and 8.654
R, a 2  R, , a R, and

R= the extrapolated radius.

In Run 5, flux distributions were determined at three heights.

These were fitted to single J0 functions to obtain a value of the

appropriate extrapolated radius, R' ; and, with that value of R' , the

data were analyzed to determine the coefficients of Equation (3. 1).

Table 3. 2 shows the results of this analysis.

TABLE 3.2 RESULTS OF HARMONIC ANALYSIS IN MODERATOR

Run Height of traverse A1 A 2  A3

504 131 cm 1.005 0.004 -0.006

505 99 cm 0.995 -0.005 0.008

506 57 cm 1.006 0.008 -0.013

The main conclusion to be drawn from these results is that very

P1 .,"I . I . I I W Imm" _qFM "Op. P WF '_ .' , 1. P- q I
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little, if any, higher harmonic contribution can be observed in the

data. It is doubtful whether an analyzed contribution of less than one

per cent is meaningful, in view of the small number of experimental

points involved (11 points in each run). This conclusion is supported

by the inconsistency of the signs of the coefficients in Table 3. 2. The

fact that the signs of A 2 and A 3 are always complementary (and that

A 2 and A 3 are of the same order of magnitude) indicates that there is

no large flux flattening or peaking, as compared to a simple J0
Bessel function.

3. 3. 3 Azimuthal Distribution

Although the radial distribution experiments showed the flux to

be quite symmetric, all the radial experiments were performed in the

same plane. To examine the azimuthal distribution, six strings of

foils were irradiated. The strings were located in such a way that,

at each of three levels, six foils were spaced equally around a circle

4 feet in diameter.

Figure 3. 5 represents the azimuthal flux distribution as

measured at the three heights. The distribution is seen to be sym-

metric except for a bulge in the south-west side. This asymmetry

was not explained until the multiplication experiment on the first

lattice was performed. At that time, it was found that certain pieces

of shielding (for neutrons) had not been in place during the moderator

runs. Thus, neutrons had been entering the tank through the ioni-

zation chamber port, which is located about half way up the tank on

the south-west side. That this was really the cause of the asymmetry

is supported by the fact that the greatest perturbation in the flux

occurs part way up into the tank and not at the bottom. Furthermore,

because of the symmetrical arrangement of the components below the

tank, a perturbation caused by the incoming flux should be symmetric

about a direction toward and away from the reactor.

On the basis of the experiments and analyses discussed above,

it was concluded that the flux distribution entering the tank would

probably be adequate for the buckling measurements in the lattice.
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Further checks on the flux distributions were, of course, made in

the lattices, themselves, and these are reported in Chapter VII.

3.4 EPITHERMAL NEUTRON DISTRIBUTION

The epithermal component of the flux in the tank was studied

by making traverses with 1/2 inch diameter gold foils covered with

0.020 inch cadmium.

Figures 3.6 and 3. 7 show the results of an axial and a radial

cadmium-covered traverse. The unexpected shape of Fig. 3. 7

indicates that a significant fraction of the epicadmium component of

the flux enters the tank from the side, from the direction of the

reactor. (It is possible that these neutrons result from photoneutron

interactions caused by gamma rays from the reactor.) This phe-

nomenon also explains the rather long relaxation length indicated by

the curve of Fig. 3. 6.

In Figs. 3.8 and 3.9, the bare and cadmium-covered foil data

are combined to give plots of the cadmium ratio as a function of

radial and axial position. The plots were made from the curves

fitted to the data of Figs. 3.6 and 3. 7 and the thermal distributions

discussed above. From these curves, it can be seen that the cadmium

ratios in the tank are generally around 1000 to 3000. In the lattice ex-

periments, cadmium ratios of 5 to 10 are characteristic. Hence, as

would be expected from the source configuration, it was concluded that

the epicadmium component of the source, or background, would not be

a serious concern in the lattice experiments.

.......... . ...........
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CHAPTER IV

THEORETICAL BASIS OF BUCKLING MEASUREMENTS

4.1 THE HOMOGENEOUS, ONE GROUP THEORY

2The material buckling, B , may be defined as the lowest

eigen-value of some critical equation for a bare, homogeneous

reactor. In a one neutron velocity description, the critical equation

may be written (as by Weinberg and Wigner (W2) ):

-L 2 B -_ 1 + k;X(Bm) = 0 ,(4.1)

where JC(B ) is the Fourier transform of the slowing-down kernel,
2 mand L is the thermal diffusion area. The most commonly used

approximation to Equation (4. 1) is the age-diffusion equation as

given, for example, by Glasstone and Edlund (G1):

-B 2T 1
k, e m (1+ L2B = 1 (4.2)

Implied in Equations (4. 1) and (4. 2), and allowed by the qualification

that the system be bare and homogeneous, is the assumption that far

from sources and boundaries, the neutron distribution satisfies the

Helmholtz equation:

2 + 2 +
( + B (r) = 0 (4.3)

The measurement of the buckling consists of measuring the

flux distribution implied by Equation (4.3). The basis of the

measurements to be discussed here is the one velocity analysis

assumed above. Higher energy neutrons were considered to de-

termine the region of the facility in which Equation (4.3) was valid

(see sections 4. 2 and 6. 4).

The experiments were performed in a cylindrical assembly.

, -. I Q', "I'll" 1- ,"-- 11 ............... .... -- PA.
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Thus, the form of Equation (4. 3) of interest is that in cylindrical

coordinates, or

-r 81b- +--- + + B 2 = 0 (4.4)r 8r r r2 2 3z2 m

where

4= ( r) = O(r, 0, z).

With the boundary conditions that the flux is finite everywhere inside

the experimental tank, and that the flux vanishes at some extrapo-

lated height, h' , the solution to Equation (4.4) may be written:

sin sinh ' vk~h -z)
f(r, 0, z) = [A sin ve + Fvk Cos v] Jv(avkr) s - vk (5)

vk Y vkh 4.5)

k= 1,2,3, .v 0, 2, 2,...

where, for each set of values of k and v, a value of B is given bym

2 2 2
Bm avk vk (4. 6)

Mvk vv

Another boundary condition to be satisfied is that the flux vanish at

r = R', the extrapolated radius. Thus, avk must be such that

Jv(avkR') = 0. The A vk and F vk are constants, the relative magni-

tude of which can be adjusted to match any azimuthal flux dependence

(at the plane, z = 0).

Equation (4. 5) must be simplified considerably before deter-
2

mining B from experiment. Each step in the simplification must

be justified, however, either theoretically or experimentally, in each

particular experimental arrangement. The first simplification to be

considered is the elimination of the e-dependent terms. Normally,

azimuthal independence is tacitly assumed, but it may be readily

checked experimentally (see section 3. 3. 3). If azimuthal inde-

pendence is valid, then Equation (4. 5) may be written:

(i
4O(r, z) = ZA nJ o(a nr) s inh y (h'-z) (4.7)

nl n1
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where A now contains all the constants of Equation (4.5). Since

sinh yn(h'- z) = Ce n1 -e (4.8)

it can be seen that, since yn >n-1 > . > to, the higher har-

monics will die out spatially more rapidly than the fundamental. For

the sake of experimental accuracy and analytical convenience, it is

customary to make measurements in the region where higher spatial

modes are not significant (W3). This assumption and the limitation

to a one neutron velocity theory will be examined in section 6. 4.

However, the equation which will provide the basis for analysis may

be written:

* = AJ (ar) sinh y(h'- z) (4.9)
0

In some interpretations, for the sake of analytical ease, the hyper-

bolic sine term is replaced by an exponential, and a correction

factor corresponding to the second factor on the right of Equation

(4. 8) is used (KI).

4.2 ASSUMPTIONS OF SEPARABILITY

Two fundamental assumptions are usually made (explicitly or

tacitly) when the foregoing theory is applied to actual measurements;

it is assumed that the over-all flux distribution is separable from

the cell distribution and that the spatial distribution is separable from

the energy distribution.

The assumption of the separability of the two spatial components

arises from the way in which the theory evolved. The theory was

originally derived for, and is strictly applicable only to, homogeneous

systems. When the theory is applied to heterogeneous systems, it is

assumed that the radial flux distribution may be expressed:

= AJ 0 (ar) . f( r ) (4.10)

where f,( r) represents the flux distribution in one cell of an infinite

array of cells. This assumption is basic to the use of an effective
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multiplication factor made up of the product of k., and terms to

account for the leakage. Measurements of the "four factors" of

k0 in a lattice assume that only the value of fc(ir) need be con-

sidered, at the particular energy involved. The separability

assumption is implied, for example, whenever a value of the

thermal utilization measured in the central cell of a lattice is

considered to apply to every cell in the lattice (the "measure-

ment" of the thermal utilization consists of determining f,(r)

for thermal neutrons) . In terms of the measurement of the

buckling, the assumption takes the form operationally of assuming

that one need only make measurements of the macroscopic flux

distribution at equivalent points in lattice cells.

Despite the fundamental nature of the assumption of spatial

separability (or perhaps because of it) , it is mentioned only

rarely (B2) . Its analysis in terms of diffusion or related theories

is difficult (W4), with attempts having been made only in greatly

simplified systems, such as semi-infinite slab lattices (D2), (G2).

Small source theory, as developed by Teller (T4) and Horning (H7)

in this country and Feinberg (Fl) and Galanin (G5) in the USSR,

would seem to be better suited to such an analysis (Li).

An experimental approach to the question may be made in

basically two ways. Either one may study the effect of the fine

structure on the measurement of the macroscopic distribution or

the effect of the macroscopic distribution on measurements of the

cell flux distribution. The former method would involve examin-

ing the macroscopic distribution, using points at various positions

in the cells. The latter alternative was chosen by Cohen when he

investigated the cell thermal flux distribution in two points in a

lattice (Cl). The microscopic flux distribution was measured in a

cell 6.7 inches from the tank wall in a 4-foot diameter tank and in

a cell at the center. The lattice was composed of 1-inch diameter,

enriched uranium rods in D2 0, with a square lattice spacing of

4.9 inches. Each measured value of the flux was divided by the

appropriate value of the J term describing the macroscopic distri-

1 -11.-1. -1 .A6 d" , - -- _1-1-
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bution. The resulting microscopic distribution measured in the outer

cell was "only slightly distorted from" that measured in the central

cell.

On the other hand, recent attempts to observe non-separability

by examining the effect of the cell distribution on macroscopic

measurements have indicated a positive effect. Such experiments

have recently been reported by Wood for graphite lattices (W8) and

have also been performed in Sweden on uranium-D 2 0 lattices (W14).

The other fundamental assumption which has been made in the

foregoing theoretical development is that the stationary neutron

distribution is separable in space and energy. Although the "First

Fundamental Theorem of Reactor Theory" (W5) maintains that this

is the case in a critical bare reactor, it is also held to be true in

an exponential experimental not too far from critical at distances

far from the source (W6). This assumption, of course, can and

should be tested experimentally by making flux plots with detectors

sensitive to neutrons of different energies (K2), (B3). Energy-

space separability must obtain if the use of detectors sensitive over

a range of energies is to be valid (unless the detector has a 1/v

sensitivity). Gross energy harmonics are expected to exist at the

bottom of the tank, due to the high ratio of source (thermal)

neutrons to lattice-born (fast and thermal) neutrons. Even if only

the thermal group is considered, the source thermal distribution

may have a characteristic temperature different from that character-

izing the lattice flux. In the experiments under consideration here,

energy transients are expected to exist at the bottom of the tank

since the source neutrons are well thermalized, with a very small

epithermal component. Experiments must therefore be used to

determine the height in the system at which the spectrum has become

characteristic of the lattice under study.
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CHAPTER V

CONTEMPORARY APPROACHES

TO THE MEASUREMENT OF BUCKLING

5.1 THE GENERAL APPROACH

The actual experimental determination of material bucklings

admits of variation in detail but not in basic approach. This section

will deal with the various techniques that have been used in studying

the bucklings of subcritical systems. Although the buckling of a

critical system can be determined by measuring its physical di-

mensions, bucklings of subcritical assemblies must be determined

by measuring the distribution of the flux in at least one dimension.
2

The most common method of determining B in cylindrical systemsm
is to make measurements of the flux in both the radial and the axial

directions, fitting these to an expression such as Equation (4.9). In

the fitting process, a and y are determined, and B then obtained as:m

2 2 2
B a -y (5.1)m

2In some cases, the measurement of the radial buckling, a , is not

repeated with, say, change of lattice spacing, but assumed constant,

and only the axial distribution, and y, determined.

Of course, data may be fitted to more refined theoretical ex-

pressions for particular purposes. For example, the azimuthal flux

distribution was investigated during the preliminary testing of the

North American exponential assembly. The four Po- Be neutron

sources used to feed the assembly might reasonably have given rise

to azimuthal harmonics. In this case, the measured neutron flux was

fitted to the Fourier-Bessel expansion of the flux at a particular

height, as given by the equation,

4(r, 0) = b (r) + (an(r) sin no + bn(r) cos ne) (5.2)
n=1

- - - .11- - ...................................... ................................- - --..................
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The fitted coefficients, an(r) and b n(r), could be expressed as series

of Bessel functions:

an(r) = AnkJn(ankr) , (5.3)
k

and

b n(r) = Z BnkJn(ankr) . (5.4)
k

The analysis validated the assumption of azimuthal independence.

The experimental facilities in use for exponential experiments

are usually quite similar. A three- to five-foot diameter tank is

normally situated on a graphite pedestal three to five feet thick. The

pedestal may be part of a reactor thermal column, or it may contain

neutron sources. The tank is usually covered around the outside

with cadmium. The Swedish experiments are distinguished by the

use of a small diameter tank (1 m diameter) and a borated plastic

coating around the tank (P3).

5. 2 DETECTORS

A great variety of methods has been used recently to obtain

flux distributions in lattice experiments. Probably the most common

method makes use of foils, the most popular foil material being

indium (C1), (K3). Gold foils are used primarily for detailed

measurements, while the use of both lindium (75 per cent indium,

25 per cent lead) (El) and manganese foils (H2) has been reported.

In the axial direction, the foils may be placed as close as

possible to each other, consistent with avoiding interaction (flux

depression) between them; placement of foils as close as 3 cm

apart has been reported (R1). In the radial direction, however,

it is usual to take one point per cell. The points are typically the

centers of the cells, but measurements may be made in any point

in the cell, including in the fuel rods, themselves (K3). For the sake

of experimental accuracy, placement of the foils in cell flux gradients

should be avoided if possible.



41

In some types of experiments, it is necessary to correct for the

flux depression in and around the detecting foils. The correction

factors are, however, functions only of the properties of the foil and

the diffusion properties of the surrounding medium (T1), (B4). Thus,

in measurements of relative flux distributions, such corrections are

unnecessary. It is possible to use wires for flux scanning although

they have been used, so far, mostly in operating reactors or critical

facilities (P2). The use of cobalt wire has been troubled by manga-

nese impurity, but an alloy of indium and magnesium has been used

successfully (K4). Pure manganese wire has been used in Canada

for microscopic flux distribution measurements (H2), while Tuttle

has used an alloy of manganese, copper and nickel for measurements

of macroscopic distributions (T2), (T3).

The fuel rods of a lattice have, themselves, served as a means

of determining the flux shape, the induced fission product activity

being measured (B3). Although this is a fairly straightforward

process in the case of axial traverses where only one fuel rod is

used, radial traverses with such a technique involve problems of

normalization, etc.

The use of a large detector, such as a large section of a fuel

rod or an ionization chamber, has been justified theoretically by

Harris (H3). In a proof similar to that of the second fundamental

theorem by Weinberg and Wigner, he shows that, if the flux is

distributed as a single eigen-function of the wave equation, the center

of a symmetric detector may be regarded as a point detector in the

mapping of the flux. The agreement found by Brown between flux

distributions measured with foils and fuel rods lends credence to the

theory (H3).

In some situations, it is convenient to use a travelling

chamber of some sort inside the lattice. A small travelling BF 3
counter has been used by Uhrig (U1), and a gamma compensated

ion chamber has been employed at Savannah River (B5), (J1).

Persson has used a BF3 detector, 1 cm in diameter and 3 cm in

effective length (P1). The placement of the detectors may be such

M'M'1R-M1RRM PIN RM, .1111 M 1,
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as to reduce the efforts of harmonics (P3), or the size of the detectors

may accomplish this. For example, Persson has also used a BF 3
proportional counter with an effective length of 35 cm and oriented

horizontally, to measure axial distributions (P4). The higher radial

harmonics are suppressed by the integrating effect of such long

detectors. In this case, the counter is moved continuously and the

integrated intensity over 5-15 cm is recorded. However, a discon-

tinuous motion of the counter could be employed to yield grez4ter

accuracy. Current reading (ionization) chambers are particularly

appropriate in source fed subcritical assemblies where flux levels

are too low for either pulse counting or foil activation (A2), but

pulse operation is preferable where possible.

5. 3 DATA ANALYSIS

There are a number of methods of analyzing the flux distri-

bution data after they have been collected. All methods aim at ex-

tracting from a theoretical distribution such as (4.9) a value of the

axial and/or radial buckling. This may be done by expanding the

expected distribution, say a J0 , in a power series for ease of analy-
sis (P1). Various functions may be defined to provide an iteration

scheme to approach more and more accurate values of the bucklings

(K2), (K3), (Cl). A common technique with the axial distribution is

to fit to an exponential and treat the sinh behavior as a correction

factor (K3). If a computer of some kind is available, however, there

is no reason why a least-squares fitting process cannot be applied

directly to the J Bessel function and to the sinh distributions.

An unusual method of determining the axial buckling has been

suggested by Uhrig. In this technique, the data from two measure-

ments of the radial buckling at two levels in the lattice are used to

obtain the axial buckling (U1), (U2). This method would seem to be

inferior to the more straightforward methods, however, because of

the greater difficulties involved in measuring the radial than the axial

distribution. In the axial direction, one may usually take as many

points as are useful. In the radial direction, on the other hand, it is

............. ...
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usual to take only one point per cell, resulting in less than ten points

along a diameter in some cases (e.g., where heavy water is the

moderator).

Another factor should be mentioned pertaining to the relative

accuracies of axial and radial bucklings. As shown by Equation

(5. 1), the final answer is given by the difference between the two

measured quantities. In the first lattice measurements in the MIT
2

exponential facility, the radial buckling, a , will be approximately
2

twice as great as the axial buckling, y . Thus, if the percentage
probable errors of a 2 and -y2 are comparable, the probable error of

22B will be influenced most strongly by that of a .

Nevertheless, it should be noted that there is one type of situ-

ation in which the method suggested by Uhrig would be useful. In

order to measure the axial buckling accurately by axial flux plotting,

the flux distribution must be characterized by only the fundamental

harmonic over a considerable axial distance (see Chapter II). If,

for some reason, this is experimentally unattainable, Uhrig's

method could be used.

In a least-squares fit to the axial distribution, the experimental

quantities to which the fit is to be made may have a range of magnitudes

of two or three decades. Unless some weighting scheme is used, the

points of higher magnitude, i.e., those near the source, will be favored

in the fitting process. According to Seren and Tsakarissianos (S2),

during the fitting process, the points should be weighted inversely pro-

portional to the square of the magnitude of the flux at that point. Their

conclusion was arrived at by critically testing various weighting schemes.

This conclusion can also be arrived at on the basis of a statistical an-

alysis. For the minimum error in the final value of -y 2, the experimental

points should be given weights inversely proportional to the square of

their standard deviations (W13). If the fractional errors of all the points

are the same, the standard deviations are proportional to the magni-

tudes of the flux. Hence, a weighting inversely proportional to the

square of the flux is the appropriate one in this case.

Several different approaches have been taken to the problem of

Iwo- ----------
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handling the radial distribution data as far as the outer points are

concerned. Two questions are involved: whether energy-space

separability exists, and whether a simple J0 distribution exists. For

example, during the experiments on H2 0-U lattices at Brookhaven,

two criteria were considered to determine how many of the outer

points of a radial traverse could be used to obtain the radial buckling.

First, the fitting process was made with fewer and fewer outer points

until the resultant buckling was no longer altered. Second, both

thermal and epi-cadmium traverses were considered, points again

being dropped until the two derived bucklings were in agreement

(W12). On this basis, it was decided to reject from the analysis all

points within three lattice units of the edge of the core (K3). In

most of these experiments, however, there was a reflector of con-

siderable thickness between the core and the containing tank.

Brown suggests a seemingly effective procedure for handling

the outer points of radial distribution data (B3). First, a J fit is

made to those points which do not appear to be affected by the

boundary. The fitting process yields the buckling and the deviation

of each measured point from the best fit. The latter compose the

residuals, the sum of whose squares is minimized in the fitting

process. The J function is then subtracted from those points near

the boundary not used in the fitting process and residuals are ob-

tained. It has been found in light water lattices that these residuals

may be fitted by an exponential function (which is to be expected if

the function describing the flux near the boundary is a sum of a J0
and an 10 Bessel function). A least-squares fit is made to these

residuals and the curve obtained is extrapolated back to the central

points. The extrapolated values can be used either as correction

factors or as a basis for the rejection of points. In these experi-

ments, energy-space separability was assumed in the asymptotic

region, flux plots being made with foils (of uranium) sensitive to

neutrons of various energies. It should be noted that the reflector

effect in a D2 0 lattice is, in general, not as great as in a H 20

lattice. However, the fewer cells characteristic of D 2 0 lattices
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provide fewer points for any fitting process. In the Canadian experi-

ments on heavy water lattices, spectrum considerations were em-

ployed to decide which points could be used in the fitting process. On

the basis of cadmium ratio distributions, it was decided to exclude

all points 1. 5 migration lengths from the lattice boundaries (H2).

Some experimenters have considered it appropriate to make

two radial traverses to obtain a "bare" and a "Cd-covered" value of

the buckling, from which a "thermal buckling" is obtained (K2).

However, if there is a difference between these two bucklings, it is

due to a reflector effect and points have been used in the "bare"

buckling which do not correspond to a simple J0 . It would seem

preferable to use only those points which give the same value of the

buckling for the bare and Cd-covered traverses.

5.4 CORRECTIONS

In the measurement of the material buckling of lattices,

various kinds of correction factors to the basic data must be con-

sidered.

One type of correction factor is that which must be applied,

owing to the disturbance of the flux distribution to be measured by

the measuring instruments. For example, in some experiments,

there is a vertical foil holder in the center of the lattice during the

axial traverses which is not present during the radial traverses.

In this case, the flux distribution during the axial traverse will not

be given by Equation (4.9) but rather by

* = A[J 0 (a'r) + Y 0 (a' r)] sinh y'(h' -z) (5.5)

2 2 2where Bm is given by a' - . However, it is a (of Equation

(4.9) and y' which are measured. Under the assumption that the

effective (extrapolated) radius of the tank is the same in both cases,

it can be shown that

a = a' (1+0.409 S)(5.6)

where S is the absorption cross section per unit length of the foil

............... ................. 11 ............
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holder, and D is the diffusion coefficient of the moderator (K2).

Another type of correction that must be considered is that for

neutrons other than those of experimental interest. In most cases,

the neutrons of interest are those in the fundamental mode. As has

been discussed in section 4. 1, the consideration of higher modes

may be eliminated by only using points described by the fundamental

mode. Three other undesired types of neutrons are: a) epithermal

neutrons from the neutron source, b) distributed neutrons due to

y's from the neutron source or other regions, and the y-n reaction

in D 2 0, and c) neutrons which originate from fast neutrons leaking

from the facility and being reflected back into the tank.

The first source of neutrons is usually assumed to have the

form of an additional sinh (K5) or exponential (K6) distribution.

Interference by this type of neutron source or the y- n source can

be obviated by taking experimental points only at locations with

constant cadmium ratios (K7). A standard background measurement,

covering the source with a cadmium- or boron-containing sheet, may

also be used to evaluate the intensity of these two extraneous sources

of neutrons. When a cadmium sheet is used in experiments involving

heavy water, it should be realized that a new, extraneous, neutron

source is being introduced. Neutron capture gamma rays from the

cadmium will produce photoneutrons in the D 20. Unless this effect

can be proved negligible in a particular situation, it would be prefer-

able to make the background measurement, using a boron-containing

sheet. In the MIT experiments, this problem is not serious because

of the unusual configuration of the lattice facility. As is shown in

Fig. 6. 1, the cadmium shutter is located far enough from the experi-

mental tank so that it is not a source of gamma rays in the tank.

The third extraneous neutron source, reflected fast neutrons,

is more difficult to evaluate. In the radial direction, it may be con-

sidered as a reflector effect to be handled in the fitting process, as

discussed above. Persson has determined theoretically the effect of

these neutrons on the measurement of the axial relaxation length (P3).

He analyzes the axial distribution, assuming it has the form:
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= A .e + Cqi(z) (5.7)

where 4*(z) is the contribution of the background.

The final type of correction to be considered is that which

allows for intercomparison between experiments made under slightly

different conditions. The most common correction of this sort is

that for differences in D 20 purity. The method of correction depends

on the calculation scheme used to analyze the particular experimental

results but usually consists of the evaluation of the various parame-

ters such as p, L 2, r and f at different D 2 0 purities in a two-group

analysis (B6), (B7), (G3). It would be useful to check these calcu-

lations by using a standard lattice at various stages of H2 0 contami-

nation. Dessauer has reported a comparison between experimental

and theoretical results with respect to this correction (D3).

It is sometimes also necessary to correct for different clad-

dings used in various experiments. Such corrections have been dis-

cussed by Andrews and Dastur (A2).

5.5 VARIATIONS ON THE CONVENTIONAL APPROACH

There are a number of interesting variants of the normal

buckling measurement which should be mentioned briefly.

The first is the so-called "substitution method". It consists

of replacing one or more fuel elements at the center of a measured

lattice and deriving the buckling that would be obtained in a complete

lattice of the substituted type of element. At the Brookhaven National

Laboratory, this type of experiment was carried out as a critical

experiment employing two-region, one-group perturbation theory

(D4). The theory was checked by using in the substitution, rods

which had been employed in a full scale experiment. Critoph has

outlined the calculational methods to be used in this approach when

one rod is substituted (C2), while Persson has described the theory

pertaining to the substitution of a varying number of rods or clusters

(P5), (P6). Anderson and Aspedlund have also reported on such ex-

periments (A3). By increasing the size of the central foreign zone

in steps, they found it possible to obtain the buckling of the substituted
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rods by extrapolation. At the Savannah River Laboratory, critical

substitution experiments are used extensively to obtain bucklings.

The two-group, two-region theory used to evaluate these experiments

has been reported by Dessauer (D3) and Carmichael (C3). The type

of experiments performed at the Physical Constants Testing Reactor

(PCTR) at Hanford is closely related to the substitution type of

measurement (H9). The unusual features of the PCTR experiments

include the attempt to make null type measurements, and the use of

a "buffer" region around the test region to shift the spectrum of the

feed distribution to that characteristic of the test area.

Perhaps the ultimate simplification of the exponential experi-

ment is represented by measurements on a single fuel rod in a

moderating material (E2), (E3). Such experiments are based on

heterogeneous reactor theory as developed by Feinberg and Galanin

(G4). The experiments consist primarily of observing the flux

distribution around the single element or cluster and have been

described by Zink and Rodeback (Z1).

An interesting minor variation on the usual exponential ex-

periment is found in the possibility of investigating xenon poisoning

with buckling measurements. Copper foils of various thicknesses

can be placed between the uranium slugs of a fuel rod to simulate

xenon absorption and the normal type of experiment is then performed

(K8).

..............
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CHAPTER VI

EXPERIMENTAL AND ANALYTICAL METHODS

6. 1 INTRODUCTION

This chapter and Chapter VII deal with the measurements

made in the lattices of 1. 01 0-inch diameter natural uranium rods.

The experimental techniques and the methods of analysis that

were used are described in the current chapter, while the results

of the measurements are given in Chapter VII.

The experimental and analytical methods to be described

were designed to be applicable, not only to the particular lattices

studied, but also to the various types of lattices which will be

investigated in the future by the MIT Lattice Project. These

methods were also designed to analyze various details of the

macroscopic flux distribution, other than those usually studied

in the measurement of the buckling.

6.2 THE FACILITY

The lattice facility has been described in a previous report

(H6). The aspects of the facility germane to the buckling measure-

ments are shown in Figs. 6.1 and 6.2.

The neutron source for the experiments is the thermal

column of the MIT reactor. The MITR is a highly enriched uranium,

D 20 moderated reactor which operated at power levels up to 1.8 Mw

during the experiments reported here. A graphite-lined cavity serves

to reflect neutrons from the thermal column up to the bottom of the

experimental tank. The graphite pedestal, located directly beneath

the exponential tank, has been described in Chapter II. The flux at

a height of two feet in the tank, with all shutters open and the MITR

operating at 1.8 Mw, is about 109 n/cm2 sec and is about 1010 at the

tank bottom. The steel shielding doors shown in Fig. 6. 1 have boral



CONCRETE SHIELDING BLOCKS

STE

-b E(
- R(

CONTROL ARM

ROTATING LID

- .1-T2"TANK
L COLUMN
HUTTER 48 TANK

SHUTTER - -FUEL ROD

- -DUMP LINE

t0

. - .. * - -

SHIELDING DOORS

BORAL LINING

GRAPHITE REFLECTED HOHLRAUM

FIG. 6.1 VERTICAL SECTION OF THE SUBCRITICAL ASSEMBLY

THERMA
LEAD S

CADMIUM

STEEL



LIFTING EYE

NOTCHED GIRDER

UPPER ADAPTOR

FUEL ROD SECTION

END PLUG 72" TANK

-- URANIUM ROD
--- ALUMINUM CLAD

CONNECTIONS

LABYRINTH
ENTRANCE

FUEL

DOUBLE
GIRDER

REMOVABL
CENTER
ASSEMBLY

CONTROL ARM DRIVE

PLAN VIEW OF THE SUBCRITICAL ASSEMBLY

p

F IG. 6.2



52

on the surface toward the reactor, and their closing reduces the
3neutron flux in the facility by at least a factor of 10 . The opening

and closing of the shield doors, or of the cadmium thermal column

shutter, was used to start and terminate runs.

As is shown in Fig. 6. 2, the fuel rods are suspended from

double girders at the tank top. The spacing of the fuel rods is

established by the relative spacing of the girders and by notches in

spacing bars at the top of the girders. Tabs in the fuel rod upper

adapters fit into the spacing bar notches. In addition, a grid-plate

near the tank bottom contains locating holes for the lower adapters

of the fuel rods. Three central rods are attached together to pro-

vide a removable central assembly.

Normally, the lattices are assembled on the floor of the

reactor building and then loaded in their entirety into the experi-

mental tank. Figure 6. 3 shows the 4-1/2-inch spacing, 1.010-inch

natural uranium rod lattice ready for insertion in the tank. Note

that the central cell has not been put in place. A photograph of the

top of the 5-inch spacing lattice in the tank is shown in Fig. 6. 4.

The fuel rod spacing arrangements are clearly shown in this photo-

graph, which also shows the relative location of the vertical drive

motor of the traveling neutron counter.

The aluminum subcritical assembly tank in which the experi-

ments to be reported here were performed is 48 inches in diameter

and 67-1/4 inches high. It is surrounded by a sheet of cadmium

0. 020 inches thick. A concentric, outer tank, 72 inches in diameter,

surrounds the experimental tank. The concrete shielding around the

facility, as shown in Figs. 6. 1 and 6. 2, is at distances of 1 to 3 feet

from the outer tank.

The facilities described above were designed to be adaptable to

various types of experiments and experimental conditions. When the

experimental situation was required to approximate, as closely as

possible, bare - i.e., unreflected - assemblies, several alternatives

existed. One of the major considerations in this case was to preclude

to as great a degree as possible the scattering back of neutrons from

.............. ................
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the surrounding shielding. One alternative to the current approach

of encasing the inner tank with cadmium, and leaving the outer tank

empty, consisted of filling the outer tank with a solution of B2 0 3 in

H2 0. A theoretical investigation of such a configuration (made on a

two-group, two-region basis) showed that very high concentrations

of boron in the water (about 90 gm/liter) were required before the

thermal reflector effect was eliminated. The solubility at 100* C is

only 157 gm/liter and is 11 gm/liter at 0* C. Furthermore, because

of the efficient reflection of fast neutrons by the waters, even at

very high boron concentrations, the resultant thermal buckling does

not correspond to the buckling of a bare system. A summary of the

calculations which were originally performed by Mr. F. Becker,

and their results, are reported in Appendix A2.

The tank lid is normally supported on a gasket which provides

a seal for the nitrogen cover-gas. Alternatively, it can be supported

by a ring of ball bearings which permits the rotation of the lid. A

smaller eccentrically located lid makes up part of the larger, and

includes a shutter and removable glove box. With this arrangement,

any location on the lattice top is accessible through the glove box by

the proper rotation of the two lids. The configuration of the lids is

indicated in Fig. 6. 1.

Most of the experimental apparatus that had to be inserted for

short periods in the exponential tank was designed so that it could be

introduced through the glove box. With the D2 0 out of the tank and

the tank dried, the lid could be removed in order to insert other

types of apparatus. The central cell can be inserted through the glove

box, and small pieces of equipment can be introduced with it. Perma-

nent pieces of apparatus can, of course, be attached to the lattice

before it is introduced into the tank.

6.3 EXPERIMENTAL TECHNIQUES

6. 3. 1 Foil Preparation and Irradiation Techniques

Because of the great experimental flexibility which it allowed,
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the method of foil activation was used in all the macroscopic flux

measurements to be reported. Gold was chosen as the foil material

because it combines the following four advantages:

1. The metal is readily available in pure form and is easily

handled.

2. There is only one stable isotope, Au 9 , to undergo

activation.

3. The activation cross section of 96 barns is conveniently

high so that irradiation times can be low.

4. The activity produced is of conveniently long half-life,

2. 7 days, so that the foils need not be counted hastily

after irradiation.

One of the disadvantages of using foils, as opposed to some sort of

movable counter to map flux distributions, is that of assuring that

all foils used have the same neutron sensitivity (or the necessity of

knowing the relative sensitivity of each foil). Variations in sensi-

tivity may arise from variations in foil purity, thickness, or surface

area. The first hazard is avoided by using foils of very pure (99.9

per cent) gold. The difficulties of foil weight, or thickness, were

handled in the following way. First, it was decided to count the beta

activity of the irradiated foils. An experiment was performed to

study the effect of foil thickness on foil activity as observed in the

counting arrangement to be used in the later experiments. A set

of 1/2-inch diameter gold foils of varying thickness was irradiated

on a wheel turning in the flux over the graphite cavity mentioned

above. The foil wheel arrangement is a standard method of assuring

that all the foils of a set are exposed to the same flux for the same

length of time. The beta activity of each foil was then counted, all

the activities being corrected back to some common time.

Figure 6.5 presents the results of this experiment. As would

be expected, for very thin foils, the induced activity is approxi-

mately proportional to the thickness of the foil. For thicker foils,

owing to absorption of beta particles in the foil, the activity becomes
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insensitive to foil thickness. Flux depression by the foil and self-

absorption would also tend to flatten the curve of Fig. 6. 5. On the

basis of this experiment, it was decided to use foils 0. 010 inch thick.

Furthermore, all foils used were punched from the same sheet of

material. As a further precaution, all the foils used were weighted

and placed in groups, each group containing foils with no more than

1 per cent variation in weight. In any one experiment, the foils of

one-group (or, in some cases, two adjacent groups) were used.

In Chapter III, various methods of making radial and axial

flux plots were described. On the basis of the experiments de-

scribed there, the following techniques were decided upon for the

lattice experiments.

Radial Traverses:

All the radial traverses were made with gold foils, usually

1/4-inch in diameter, attached to thin 6063-type aluminum foil

holders. Since we are concerned only with relative flux values

(or relative foil activities), any flux depression caused by the

aluminum foil holder should not affect the final results. Further-

more, with the very light holders used, such depression would not

be significant, compared to that caused by the foils, themselves.

At various times during the experiments, traverses were made with

foils supported by string which could be compared to runs made with

an aluminum holder. No systematic difference was ever observable

in these cases. (See, for example, Fig. 3. 3 and Table 7.10.) The

locations of the foils along the foil holders were determined by

depressions milled in the aluminum at the required positions. A

description of the three lattices studied is given in Chapter VII.

They were all hexagonal arrays of nominally 1-inch diameter rods,

with a fuel rod situated at the tank center. Since all "radial"

traverses were taken in the moderator, they could not pass through

the center 'of the tank, or fuel rod array, but were rather taken along

...........
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a chord. The analysis of these traverses, however, was made in

terms of the radial positions of foils. In the first lattice, in which

the rod spacing was 4-1/2 inches, the radial foil holder was sup-

ported by two aluminum pieces, each being attached between two

adjacent rods at the outer edge of the lattice. The location of these

supports is shown in Fig. 7. 1.

In the 5-inch and 5-3/4-inch spacing lattice, a more versatile

scheme for suspending the radial foil holders was developed and

used. The holder was suspended with aluminum bead chain at each

end from the top of the lattice. Its position relative to the fuel rods

was fixed by adjustable arms at the ends of the holder. One end of

such a holder is shown in Fig. 6.6.

Axial Traverses:

The axial traverses were made with all three types of foil

holders described in section 3.3. 1 and shown in the photograph of

Fig. 3. 2. The most convenient and most accurate technique involved

the use of a solid foil holder such as the one shown in Fig. 3. 2, but

milled to accommodate 1/4-inch foils at a minimum separation of

1-1/8 inch.

6. 3. 2 Foil Counting

In most of the experiments, 0.010-inch thick, gold foils of

either 1/4-inch or 1/2-inch diameter were irradiated, and their

beta activity was then counted. A Geiger-Muller gas-flow counter

was used in connection with a Baird-Atomic automatic sample changer.

Several checks on the constancy of the counter sensitivity were made

over the course of the experimentation; whenever the activity of a set

of foils was counted, the activity of a standard source was also

counted. Furthermore, each set of foils was counted at least three

times, with a background count being taken each time. The activity

of each foil was then corrected back to a standard time for each of

the times it was counted. These corrected activities were then com-

pared for consistency before averaging.

M., . "- _--c- - RRR"Ra" Im. 1. 'M' 4 .0 I'M I -"W" - " I I P? , M-1 "WRRW-
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In some cases, when other types of foils were used, a NaI

scintillator was uled for foil counting. The scintillator was part

of a system including a Nuclear-Chicago automatic sample changer

and a single-channel pulse height analyzer.

The foils were always washed with acetone and wiped clean

before counting, as well as before being weighed or being irradi-

ated. Normal care was taken not to damage the foil surfaces or

edge.

6. 3. 3 The Automatic Flux Scanner

Although only foil activation techniques were used to obtain

the results reported in the next chapter, an automatic flux scanner

has been designed and built to operate in the facility. The scanner,

developed primarily by Mr. M. Quinteiro (Q1), is designed to oper-

ate in one plane of the lattice. One corner of the scanner frame, in

the 5-inch spacing lattice, is shown in Fig. 6.4. It can be program-

med to move either continuously or discontinuously in any pattern

in that plane, involving any combination of axial and radial traverses.

When it is operated discontinuously, the count rate from the minia-

ture fission chamber (1/4-inch diameter) prints out automatically at

the control station. A fixed monitor counter determines the length

of each counting time.

Foil activation was a versatile technique for the various types

of flux distribution measurements made in the first lattices. How-

ever, it is expected that in future routine measurements of the buck-

ling, the flux scanner will be an adequate and convenient instrument.

6.4 ANALYTICAL TECHNIQUES

6. 4. 1 Analysis of Radial Measurements

The theoretical basis of the experiments, and thus of their

analysis, has been given in Chapter IV. The analytical treatment of

the experimental data was made efficient, complete, and rapid by

the development of a set of codes for an IBM 709 computer. The
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computer used was that of the MIT Computation Center.

The codes were written with primarily two ideas in mind. The

first and basic purpose was the derivation of a value of the material

buckling of a lattice from measured axial and radial flux distributions.

Secondarily, the codes were designed to examine some of the as-

sumptions and approximations mentioned in Chapter IV. The details

of the theoretical basis and the operation of the codes, along with

Fortran listings, are presented in Appendix A2. Only their analyti-

cal structure will be reported in this section.

The basic code for the radial distribution performs the follow-

ing steps:

1. Experimental values of the flux at various radial positions

are calculated from measured foil activities by correcting for

a) decay during and before counting, b) the measured counter back-

ground, c) the counter dead-time measured as a function of count

rate, and d) the perpendicular distance of the chord along which the

measurements are made from the lattice center.

2. The values of the corrected foil activities for each radial

position are printed out for comparison and then averaged to obtain

a flux at that point. A multiplicative correction factor may then be

applied to any points to correct for foil weight, microscopic distri-

butions, etc. The fluxes are normalized, the flux nearest the center

being set equal to 1.0.

3. The measured values of the flux are fitted, according to

the least-square criterion, to the theoretical distribution given by

= AJ [a (r-c)] (6.1)

2
where the "best" values of A, the normalization factor, and a , the

radial buckling, are determined in the fitting process. Since the

equation is not linear in a, an iterational scheme must be used for

the solution. The value of c, the center of the distribution, is preset.

4. The fitted and experimental fluxes at each point are printed
2

out, along with the fitted values of a , A and their probable errors.

5. The fitting process is repeated for all experimental points

, poolt"911 I - " ".
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except the outermost until some preset number of points has been

used in the fit.

6. The process is repeated for other values of c.

The fitting process can be performed with any point-weighting

desired, and the iteration can be accelerated or decelerated. The

details of these variations are described in Appendix Al. Usually,

in the radial analysis, all points were given unit weight. Although

this tends to accentuate the center points in the fitting process, the

variation in the magnitude of the foil activities along an experi-

mental chord was usually only a factor of 5. Furthermore, the

central points would be expected to be somewhat "better" than the

outer ones, since the latter would be subject to reflector effects,

etc., if such exist. Other weighting schemes were used for analyti-

cal purposes, as described in section 7. 3. 1. It is shown there that

the final value of the radial buckling obtained is insensitive to the

weighting used. It can be seen that, although this code is designed

primarily to extract values of a2 from radial flux distributions, it

can be used to examine edge effects (by refitting with points dropped),

gross distribution shifts (refitting with various c's), microscopic

effects (by employing periodic correction factors), etc.

As is discussed in Chapter IV, the theoretical analysis used in

the measurement of the buckling depends on the assumption that the

radial flux distribution is describable by a single J0 Bessel function

over a certain vertical distance in the tank. The simple J0 flux

shape may be distorted through two effects: higher harmonic contri-

butions may be present (due, perhaps, to the inadequate attenuation

of the harmonics in the source distribution), or there may be a re-

flector effect. The latter may arise from incomplete filling of the

tank by the lattice, or the back-scattering of epicadmium neutrons.

Thus, one code is designed to analyze a measured radial

distribution for the presence of higher harmonics. The data re-

duction portion is identical to that included in the J code (steps 1

and 2); but in this case, the experimental flux is fitted by least-

squares to the equation
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*(r) = A 1 J 0 (a 1 r) + A2 0 (a 2 r) + A 3 o(a 3 r) , (6. 2)

where

2.4048 5.5201 8.654
a- R a 2  R a 3  R'

and

R'= the extrapolated radius.

In this case, R' is an input quantity and may be determined by use of

the J code. The code solves for the "best" values of A1 , A 2 , and

A 3 and prints them out, along with values of the experimental and

fitted fluxes at the experimental points.

The third code used to analyze radial flux distributions is de-

signed to look for reflector effects. Again, the same data reduction

portion is included; and, in this case, the measured flux is fitted to

the formula,

*(r) = A 1 J0 (a 1 r) + A 210 (a 2 r) , (6.3)

where the quantities A 1 , A 2 , a1 and a 2 are determined in the iterative,

least-squares fitting process.

As will be shown in the next chapter, no observable reflector

effect existed in the lattices studied, nor were there higher harmonic

contributions except at the bottom of the lattices. However, a note of

caution should be entered here concerning the use of the codes de-

scribed above to analyze a flux distribution that possibly involves both

reflector and harmonic effects. Each code takes into account one of

the effects and assumes that the other does not exist. Let us consider

how one could use the codes if both effects were extant. First of all,

the codes could be applied to radial traverses taken at various heights

in the lattice. The higher harmonic contribution to the fundamental

mode should diminish with height while the reflector effect should be

constant. Thus, hopefully, the reflector effect as determined by the

code should vary with height 'but approach some asymptotic or con-

stant value. Secondly, the codes could be applied to fewer and fewer

points of a radial traverse. The harmonic contribution, as determined

by the code, should vary as outer points are dropped only if a reflector
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effect is involved. As fewer points are used, the reflector-effect

contribution should decrease and the harmonic contribution, as

determined by the code, should approach an asymptotic, "true"

value.

Of course, other techniques may be used to look at both of

these effects. For example, if the radial distribution contains

higher harmonic contributions, so does the axial distribution.

(See section 4. 1.) Thus, the axial distribution can be used for the

harmonic analysis if a reflector effect interferes with the radial

harmonic analysis. Similarly, alternative methods for looking for

a reflector effect may be used, such as refitting the measured

distribution to a J with successively fewer points and observing

the trend in the fitted radial buckling. (See section 7. 3. 1.)

While the set of computer codes was used to check the spatial

"purity" of the fitted J flux distributions, the requisite energy-

space separability was checked in two other ways. The bare gold

foils used in the experiments have a relatively high response

(particularly at the 4.9 ev resonance) to epithermal neutrons. If

the neutron energy spectrum shifts appreciably near the edge of

the lattice, different values of the measured buckling should be

obtained as fewer points are used in the fit. A second, and more

sensitive, test of energy-space separability in the radial direction

can be made by measuring the flux distribution with cadmium-
2

covered foils. If separability holds, the value of a , determined

by fitting the cadmium-covered foil data, should be the same as

that derived from the bare-foil data. This effect can be studied

with greater accuracy by examining the cadmium ratio as a function

of radial position. A region of constant cadmium ratio indicates a

region of energy-space separability.

6. 4. 2 Analysis of Axial Measurements

As is described in section 4. 1, the axial flux distribution in

the lattices is expected ideally to have the form

4(z) = A sinh y(h '- z), (

. . . ..........

(6. 4)
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where -y 2 is the required axial buckling and h' is the extrapolated

height. The experimentally measured distribution is expected to

deviate from the distribution of Equation (6.4) for various reasons

in different regions. The situation is represented in Fig. 6.7,

where four distinct regions are distinguished. The solid line repre-

sents the distribution given by Equation (6. 4), while the circles

represent fictitious values of the flux as might be determined by

the activation of bare gold foils. The various effects, which are

exaggerated in the figure for the sake of clarity, are as follows.

Region I.

Near the bottom of the tank, it is expected that higher spatial

harmonics will be evident. This is due to the fact that the source

distribution is not a perfect J.0 Since the higher harmonics have

shorter relaxation lengths than the fundamental (see section 4. 1),

a more rapid decrease in the flux would be expected than that given

by Equation (6.4).

Region II

The source neutron energy distribution contains practically

no epithermal component (see section 3.4). As the source neutrons

enter the lattice, the epithermal component of the lattice flux

gradually builds up. In Region II, the ratio of epithermal to thermal

neutrons is still lower than the ratio characteristic of the lattice

spectrum. Thus, gold foils sensitive to both kinds of neutrons

exhibit an activity lower than the theoretical curve. Although

Regions I and II are distinguished in this discussion for the sake of

clarity, the phenomena characteristic of the two regions do, of

course, occur simultaneously. Which phenomenon determines the

lower limit of Region III will depend upon the particular experimental

situation involved.

Region III

Throughout this region, the spectrum is that characteristic of
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the lattice, energy and space separability holds; and the experimental

points conform to the theoretical distribution.

Region IV

At the top of the lattices, neutrons of different energies may

respond differently to the upper boundary conditions, and may again

cause a discrepancy between the measured points and the theoretical

distribution. Equation (6.4) assumes that neutron fluxes of all ener-

gies go to zero at an extrapolated height, h'. However, the upper

boundary of the tank is not as clearly defined as the radial boundary

(defined by the cadmium sheet). Both fast and thermal neutrons are

expected to be scattered back to the top of the lattice by the aluminum

(fuel rod upper adapters, support beams, etc.) above the nominal

lattice top. The neutrons scattered back will augment the lattice flux

and cause the experimental points to fall above the ideal curve.

Before the measurement of y can be made, the extent of Region

III must be determined; only points from this region are then used in

the analysis for -y. The region can be specified experimentally by

examining the gold-cadmium ratio as a function of height in the lattice.

In Region III, this ratio should be constant. In other regions, the ratio

should vary from that in Region III for the following reasons. In

Regions I and II, the epithermal component of the flux is small, com-

pared to that in Region III, thus producing a higher cadmium ratio. In

Region IV, the spectrum of the excess neutrons will be determined by

the energy dependence of the scattering and return effects above the

tank. It is to be expected that the spectrum of the returning neutrons

would be quite different from the spectrum characteristic of the lattice,

thus producing a shift in cadmium ratio in Region IV.

Another, independent, method may be used to determine the

extent of Region III: a hyperbolic sine function can be fitted to all the

experimental points of a run. The residuals of the experimental

points and the fitted curve can be examined for the systematic vari-

ations that would appear because of the effects occurring in Regions

I, II, and IV. The points whose residuals show no systematic variation
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can then be used to make the final fit to determine y.

As in the case of radial traverses, a code was written to ana-

lyze the axial distributions. The axial code performs the following

steps:

1. The raw input data of either neutron-counter output or foil

activities are reduced to normalized flux values. The same oper-

ations specified under steps 1 and 2 of the J code description are

performed. The flux values are normalized, with the first input

point set equal to 1.0.

2. A value of h' is chosen and the experimental points are fitted

by least-squares to a function of the form of Equation (6. 4). The

"best" values of A and y are determined and are printed out along

with their probable errors. At each experimental point, the experi-

mental and fitted fluxes and the residual are printed out. Again, an

iterational approach must be used in the analysis.

3. Other values of h' are tried and step 2, repeated. The

best value of h' can be deduced by comparing the value of the probable

errors of y for various h' and by considering the axial distribution of

the residuals.

4. End points are dropped successively and steps 2 and 3

repeated. In this way, the number of points used in the fitting pro-

cess is reduced to those corresponding to the theoretical distribution,

i.e., corresponding to Region III of Fig. 6. 7. Points are dropped by

the code, starting with the last point read in as data, until some

specified number of points has been used in the fit. Since, in this

process, only one end of a traverse is examined, the code must be

run twice if points of both ends of the traverse are in doubt. When

one end of the distribution is being examined, any points on the other

end that may not correspond to the theoretical distribution should not

be included in the analysis.

The fitting process may be performed with any weighting scheme

desired. Usually, the experimental points were weighted inversely

proportional to the square of the magnitude of the flux for reasons
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discussed in section 5.3. Other weighting schemes were used for

specific analytical purposes (see section 7.3.3).

The details of the theoretical basis and of the operation of the

axial code are presented in section Al. 5 of Appendix Al.

In describing the experimental results in the next chapter,

examples will be given of some of the features of the analysis.
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CHAPTER VII

EXPERIMENTAL RESULTS

7. 1 INTRODUCTION

In presenting and discussing in this chapter, the results of the

lattice experiments, two basic purposes are to be served. It is

shown, first of all, that the flux distribution in the lattices is satis-

factory for buckling measurements. This step is, then, the final

one in the series of design considerations and experiments described

in Chapters I, II and III. Second, the material bucklings of three

natural uranium lattices in D 20 will be reported. These represent

a contribution to the available data on such lattices. A comparison

with experimental results obtained at other laboratories provides a

test for the theoretical, experimental, and analytical bases of the

experiments, described in Chapters IV and VI.

The experimental results of an investigation of the separability

of the macroscopic and microscopic components of the radial flux

distribution will also be presented.

7.2 DESCRIPTION OF THE LATTICES STUDIED

The experiments to be reported were made on three lattice

spacings of natural uranium rods in D 20.

The cylindrical fuel rods are of natural uranium metal,

1. 010 * 0. 005 inches in diameter and 60 inches long. They are

canned in Type 1100 aluminum tubes, 0.028 inches thick, with an

outside diameter of 1.080 inches. Upper and lower aluminum

plugs and adapters bring the total length of the fuel rods to about

71 inches (see Fig. 6. 2). Figure 7. 1 shows the vertical configu-

ration of a fuel rod with respect to the tank. The top of the lattice

is defined by the top of the fuel and the normal height of the D2 0

at about 64 inches (163 cm) from the tank bottom.

.1.44 . .................... .1
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In the lattices, the fuel rods were arranged in triangular arrays

with rod-to-rod spacings of 4-1/2, 5, and 5-3/4 inches. The three con-

figurations are shown in Figs. 7. 2, 7. 3, and 7. 4.

7.3 FLUX ANALYSIS RESULTS

7. 3. 1 Radial Flux Distribution

Whenever a radial flux distribution was measured to obtain a

value of the radial buckling, the validity of the assumption of a simple

J distribution was checked. An example of a measured radial distri-

bution is shown in Fig. 7. 5. As can be seen, the experimental points

are well represented by the fitted J distribution, and no reflector

effect is apparent. A more sensitive test for a reflector effect can

be made by examining the residuals, i.e., the differences between

the experimental and the fitted flux, as a function of radial or chordal

position. If there is a reflector effect, the residuals, 6, near the out-

side of the lattice would tend to become more positive. A plot of the

residuals from a traverse in the 4-1/2-inch lattice is shown in Fig. 7.6.

Points from both sides of the center are included in the plot. The

outermost points recorded were taken in the outer cell of the lattice.

The random distribution of the residuals attests to the adequacy of a

J distribution in characterizing the flux.

It was mentioned in section 6.4 that the experimental points

could be weighted in any way desired in the fitting process. By vary-

ing the weighting inthe Jo-fit routine, another test for non-ideal

behavior of the radial distribution is provided. With all points re-

ceiving unit weight, the points near the center of the lattice are

accentuated in the fit. If a weighting inversely proportional to the

square of the flux is used, the outer points are weighted much more

heavily. If a departure from the J distribution occurs, the value

of the radial buckling derived in the two cases should differ. Such a

test was made with a distribution measured in the 4-1/2-inch lattice.

The two bucklings determined by the code were 14.17 * . 10 m.

and 14. 18 *. 09 m. 2 , again verifying the J distribution.

..........
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As was discussed in Chapter VI, a point of concern during the

design of the facility was the possibility of the scattering back into

the lattices of fast leakage neutrons. Although this phenomenon

would lead to a distortion of the J distribution, and would probably

be detected by the methods discussed above, a more sensitive test

can be made by examining the gold-cadmium ratio as a function of

radial, or chordal, position. Figure 7.7 shows the result of such

an experiment. The cadmium ratios that will be reported in this

chapter are defined as

Activity of bare gold foil
R cd =(7.1)

Activity of Cd-covered gold foil

No attempt was made to reduce the cadmium ratios to values at

infinite dilution since they were used only relatively, as a spectral

indicator. The average value of the cadmium ratios of all the points

shown in Fig. 7. 7, except the outermost, is 10. 5 and the standard

deviation of this value is 0. 10. Since the cadmium ratio of the outer

point, 10.8, is three standard deviations from the average, a sta-

tistically significant shift in the cadmium ratio may be indicated.

Nevertheless, the effect is small, since a 3 per cent shift in the

cadmium ratio indicates a change in the epicadmium flux of about

0. 3 per cent.

Correcting for the Cell Distribution

When the radial buckling is determined from an experimental

flux distribution, the cell (or microscopic) flux distribution is ac-

counted for in the following way. First, the J code is used to

obtain a first estimate of the over-all flux distribution. Correction

factors are then estimated, by which the experimental points can be

corrected for the microscopic effect. This may be done in two ways;

either a separate experiment can be performed to analyze the intra-

cell flux distribution, or the residuals (obtained in the fit made to

the over-all distribution) can be analyzed. The J code is then applied

again, to get a corrected value for the buckling. Each method of

....................
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determining the correction factors will be exemplified by a particular

example. These examples will also serve to point out further details

of the radial flux distribution.

In the 4-1/2-inch lattice, a separate experiment was used to

obtain the correction factors. In order to obtain accurate radial

traverses, the foils for the macroscopic measurement were placed

along a line midway between the two rows of fuel (see Fig. 7. 2).

Three points were taken in each cell. These points were used to

obtain the first estimate of the over-all flux distribution. A separate

experiment was then performed in the central cell of the lattice to

measure the cell distribution in the direction used for the macro-

scopic traverse. A matched set of eight 1/8-inch diameter, 0.005-

inch thick gold foils were used and located as shown in Fig. 7.8.

Figure 7.8 also shows the measured microscopic distribution. Each

point has been corrected for the macroscopic distribution determined

in the first experiment and represents the average of two experi-

mental points, one on either side of the cell center. In this case, the

microscopic distribution is flat within the accuracy of the experiment,

so that no correction factors need be applied to the measured macro-

scopic flux. A microscopic effect would appear as a periodicity in

the macroscopic distribution and in the residuals. No such periodicity

is evident, for example, in the uncorrected distribution shown in

Fig. 7. 5. The neutron flux terrain through which our traverse passes

is undoubtedly quite variable, owing to depression of the flux around

fuel rods. The position of the traverse is "well chosen", however, in

that it follows a path that is relatively level.

For reasons that will be discussed in the next section, the

traverses taken in the 5-inch, and 5-3/4-inch lattices were made near

rows of fuel rods. In these traverses, correction factors for the cell

distribution were obtained by examining the residuals obtained in a J0
fit to the over-all distributions. This process is exemplified in

Fig. 7.9, where the residuals obtained from a fit to the uncorrected

points of Run 41 (computer Run 4101) are plotted. From the distri-

bution of the residuals, it was estimated that a correction factor of
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1. 05 should be applied to all points taken near a fuel rod, (i. e., that

the value of the flux at points such as in the sketch in Fig. 7.9

should be multiplied by 1.05). The corrected points were then fitted

again, by using the J code, to obtain a new estimate of the over-all

flux distribution and thus of the radial buckling. The Residuals ob-

tained in this analysis are also shown in Fig. 7.9. The periodicity

of the residuals has been effectively eliminated by use of the cor-

rection factor, 1. 05. Hence, the buckling determined in the last

J analysis is the buckling corrected for the microscopic distribution.

If the residuals still show a periodicity after the first-estimated cor-

rection factor has been applied, the process can, of course, be

repeated until the proper correction factor (or factors) has been found.

Two additional remarks should be made with respect to the

residuals for the uncorrected traverse shown in Fig. 7.9. First, it

should be observed that the residuals tend to diminish as the chordal

distance increases. This is a phenomenon related to the macroscopic-

microscopic separability, and will be discussed in the next section.

Second, it might be suggested that a trend is indicated by the fact that

the inner of each of the pairs of positive residuals is always greater

than the outer. This trend is not corroborated by other runs, however,

and is not considered to be real.

The Interdependence of Analytical Conditions

As is discussed in Chapters V and VI, a common and useful

method of looking for edge effects in fitting a radial distribution is to

compare fitted values of the buckling obtained with successively fewer

points used in the fit. Such refitting was performed wherever the J0
code was used. The changes in the resulting values of the fitted

radial buckling depended on the other analytical conditions, i.e., on

whether the traverse was corrected for the cell distribution and on

the point weighting used. The interdependence of the various analyti-

cal conditions is displayed in Table 7. 1. The change in the radial

buckling as points are dropped is tabulated for various analytical

conditions. Again, experimental Run 41 is considered.

-W.UA"" fiw"W" i;_ , - I I _j
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TABLE 7. 1 FITTED RADIAL BUCKLING FROM RUN 41

UNDER VARIOUS ANALYTICAL CONDITIONS

Corrected Weighting Points Radial 2
Run for Micro. ? Exponent Used in Fit Buckling, a

4101a No 0 23 14. 29 * .23

b 21 14.31 *.25

c 19 14. 34 . 28

4102a No -2 23 14.22 .18

b 21 14.32 *.21

c 19 14.48 *.25

4103a Yes 0 23 14.30 .06

b 21 14.31 * .06

c 19 14.30 .06

4104a Yes -2 23 14.29 ± .09

b 21 14.34 .08

c 19 14.31 * .08

Several characteristics of the fitting process are evident in the

table. First, it can be seen (by comparing Runs 4101a and 4103a)

that correcting for the microscopic distribution does not effect the

resultant buckling significantly although the probable error is reduced.

The probable errors quoted are those calculated by the code and are

determined by the scatter in the experimental data. Other experiments

indicated that the probable errors determined by the code are some-

what larger than those suggested by the reproducibility of the

measurements.

If a weighting exponent of -2 is used, i.e., if the points are

weighted inversely proportional to the square of the magnitude of the
2

flux, a slight difference in the resulting value of a is apparent

(compare Runs 4102a and 4104a). The effect of dropping points can

best be seen where the outer points are emphasized; that is, when a

weighting exponent of -2 is used. Thus, it can be noted that a signifi-
2

cant shift in the measured value of a occurs between Runs 4102a, b,
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and c, where corrections are not made for the microscopic distri-

bution. However, when the microscopic flux is corrected for, as in

Run 4104, no significant change in the fitted value of a 2 is observed

as points are dropped in the fitting process. The reason for the effect

is obvious; as points are dropped, and no microscopic correction has

been applied, the relative number of points whose residuals are nega-

tive (or positive) changes. Of greatest importance are the points at

the edge that remain in the fitting process. As the last three points

of Run 41 are dropped in the fitting process, the low experimental

point, third from the end, would tend to predominate (see Fig. 7.9).

Thus, in Table 7. 1, we see that the buckling increases in Runs 4102a,

b, and c.

It is of interest to examine the higher harmonic contribution to

the radial flux distribution as a function of height in the lattice. Such

a study was made in the 5-3/4-inch lattice. The experimental distri-

butions, measured at various heights, were fitted to a distribution

given by Equation (6. 2), using values of R' determined by the J code.

The results of the analysis are shown in Table 7. 2.

TABLE 7.2 RADIAL HARMONIC ANALYSIS

Height A A A
of Traverse 1 2 3

127 cm 1.027 0.002 -0.005

103 cm 1.021 0.0006 -0.002

61 cm 1.029 0.006 -0.016

Even at a height of 61 cm, the higher harmonic contribution is very

small. The contributions at 103 cm and 127 cm are negligible.

Two other aspects of the radial flux distribution were studied,

in order to determine whether radial bucklings measured at one par-

ticular location in the lattice were characteristic of the lattice as a

whole. The first was the azimuthal dependence of the radial distri-

bution. Table 7.3 summarizes three runs made in the 5-3/4-inch

...........

-- - , I- - - wsm."... , " , 'R " IR 1PI



87

spacing lattice in the three directions indicated in Fig. 7.4.

TABLE 7.3 AZIMUTHAL DEPENDENCE

OF RADIAL FLUX DISTRIBUTION

Run Traverse Direction Fitted Radial Buckling

40 a 14.19 * .20 m-2

41 b 14.29 *.23

42 c 14.26 .19

For this comparison, all points were used in the fitting processes,

and given unit weight. No correction was made for the microscopic

distribution (for reasons discussed with reference to Table 7. 1), a

fact which explains the large quoted errors. The three bucklings are

all within * 0. 05 m-2 of the average, 14. 24 m- 2, so that there are no

significant differences among them.

The other aspect of the radial distribution, which is important

in terms of the generality of the measured buckling, is its axial vari-

ation. Three runs summarized in Table 7.4 were made to study this

effect.

TABLE 7.4 AXIAL DEPENDENCE

OF RADIAL FLUX DISTRIBUTION

Run Height of Extrapolated Fitted Radial
Traverse Radius Buckling, a 2

60 61 cm 64.0 cm 14.10 .15 m-2

46 103 cm 64.0 cm 14.14 .11 m- 2

47 124 cm 64.7 cm 13.83 + .24 m-2

All distributions were taken in direction a' shown in Fig. 7. 4. There

is certainly no significant difference between the values derived in

Runs 60 and 46; however, the difference between these values and that

derived in Run 47 is probably meaningful. Two reasons for the



88

difference are possible. It was observed during the experiments that

the radius of the tank slightly increased (about 1/4 inch) with height

near the tank top; it can be seen from Table 7.4 that the difference

in radius corresponding to the variation in radial buckling is only
2.

0. 7 cm. Another possible explanation of the variation in a is the

presence of neutrons scattered back from the aluminum above the

lattice. Because of the possible presence of these effects, consider-

able care was taken in fitting the axial distributions. Successively

fewer points were used in the axial fit, to assure that points in a

region of changing relaxation length (corresponding to a region of

changing radial buckling) were not used (see section 7.3.3 below).

7. 3. 2 Radial Spatial Separability

An examination of the fine structure of the radial flux distri-

bution was prompted by two considerations. When it was decided to

take more than one point per cell on the radial traverses, it was

recognized that the over-all distribution would have to be corrected

for the cell distribution if an accurate buckling was to be obtained

(see section 7. 3. 1). Also, as is discussed in section 4. 2, the

question of the separability of the microscopic and macroscopic

distributions was of interest in itself.

Although results of microscopic investigations, such as those

shown in Fig. 7.8, are to be welcomed in terms of the accurate

measurement of the buckling, they are hardly adequate in terms of

observing a possible interaction between the microscopic and macro-

scopic flux distributions. In the 5-inch and 5-3/4-inch lattices,

traverses were made near rows of fuel rods in order to observe both

the over-all distribution and the fine structure. The distribution of

residuals shown in Fig. 7.9 is typical of such experiments. The

separability effect was studied in the following way. First, the

experimental points were corrected for the fitted J flux distribution.

Then, for each cell, a quantity related to the difference between the

flux near the fuel rods and the flux in the moderator was determined.

This quantity, A, can be expressed as
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f m (7.2)

where 6 is the residual (difference between the experimental and

fitted flux) at a point near a fuel rod, e. g., at point in Fig. 7. 9,

and 6 m is the average of the residuals at adjacent points in the

moderator, e. g., at points and Qin Fig. 7. 9. 0 is the flux

at the center of the lattice and acts as a normalization factor. If

the cell flux distribution is uneffected by the macroscopic lattice

distribution, and is thus unaltered across the lattice, the quantity,

A, should, of course, remain constant throughout the system. If,

on the other hand, the microscopic and macroscopic flux distri-

butions are not separable, A should vary as a function of position.

Figure 7. 10 is a plot of A as a function of radial position. Each

point is an average of six measurements; the six radial directions

possible for experimental plots are determined by the first ring of

six rods around the central rod of the lattice (see Fig. 7.4). The

standard deviations shown are determined from the scatter of the

data in the averaging process. The figure clearly indicates that the

fluxes are non-separable. The radial variation in the microscopic

distribution is apparent in Fig. 7.9 if the uncorrected residuals are

examined. It can also be observed in Fig. 7. 11, which is a plot of

the radial distribution of the cadmium ratio. That the shift in cad-

mium ratio evident in that figure is not a macroscopic effect, is

supported by the plot of Fig. 7. 7. In the latter, where microscopic

effects are not observable, the trend in the cadmium ratio at the tank

edge is upward if anything. In terms of the macroscopic distribution,

the effect is small; Fig. 7. 10 indicates a shift of about 2 per cent in

the microscopic contribution between the central and the outer cell.

However, the interest in the effect stems partly from the prevalence

of the tacit assumption of the separability of the macroscopic and the

microscopic fluxes in the diffusion theory approach to lattice analy-

sis, as discussed in Chapter IV. It is not within the scope of this

report to discuss in detail the effect of a result such as that shown
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in Fig. 7. 10 on the measured microscopic properties of lattices,

although some comments will be made in this regard in Chapter VIII.

7. 3. 3 Axial Flux Distribution

As was the case with the radial distribution, several aspects

of the axial distribution were studied in the three lattices. The

purpose of these experiments was to establish the region of validity

of Equation (6.4) and to use experimental points in that region to
2

determine 7y , the axial buckling.

As is discussed in section 6.4. 2, two methods were used to

establish the extent of Region III of Fig. 6. 7. The first involved the

study of the spectrum as a function of axial position. Axial traverses

made with bare and cadmium-covered gold and cadmium-covered

uranium foils are shown in Fig. 7. 12. The line plotted in the same

figure corresponds to a sinh function fitted to the bare gold data.

The "uranium" foils used were an alloy of natural uranium in alumi-

num. The activity counted was that due to resonance absorption in

U 238; techniques described by A. Weitzberg (W15) were used in the

counting process. It can be seen that the three sets of data are in

agreement, at least between 40 cm and 120 cm. A similar method

would be to examine the cadmium ratio as a function of height. This

type of measurement was made in the 5-3/4-inch lattice to study in

detail the lower end of the lattice (Regions I, II, and III). The results

of this experiment are shown in Fig. 7. 13. It should be noted that no

substantial region corresponding to Region II of Fig. 6. 7 is evident.

The constancy of the cadmium ratio between 40 cm and 120 cm attests

to the energy-space separability in that region. A similar (though

less precise) experiment performed in the 5-inch lattice shows the

same behavior at the bottom of the lattice and a decrease in the cad-

mium ratio above 140 cm.

The second method of establishing the region of validity of

Equation (6. 4) was refitting the data points of a traverse with suc-

cessively fewer points. Figure 7.14 exemplifies this technique when

applied to the upper region of the lattice. As points are dropped from
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the fitting process, the fitted value of y rapidly approaches the
-2

asymptotic value - in this case, of 5.46 m . The point at which

the asymptotic value is attained indicated the point below which the

distribution can be considered a sinh function. The results of the

particular run shown in Fig. 7.14 indicates that points below

145 cm are acceptable. It is also of interest to examine the vari-

ation in the probable error of the fitted buckling as a function of

the number of points used in the fit. The first three points at the

left side of Fig. 7.14 show the expected trend of decreasing error

with increasing number of points used in the fit. This trend is not

continued when more points are used. This result also indicates

that the upper points are not in agreement with the, fitted curve.

By using the two methods discussed above - of examining

the spectrum and successively dropping points - the valid points

of each run were determined. By collecting evidence from all the

runs, there was established a vertical span in the tank corres-

ponding to Region III of Fig. 6.7. This region extends at least

from 40 cm from the tank bottom to about 130 cm.

The other question of analytical importance was that of the

correct extrapolated height to use in each lattice. Again, this

problem was looked at in two ways. One method was to fit a

traverse with various values of the extrapolated height, h' , and to

examine the error in the fitted value of y2 as a function of h' . An

example of such an analysis is shown in Fig. 7.15, where the fitted

22value s of -y 2and the probable errors are plotted as a function of h' .

Such an analysis indicates clearly the "best" value of y and h' for

a particular run. The other method used to choose between values

of the extrapolated height was to examine the distribution of re-

siduals with various trial values of h' . When the correct value of

h' is used, the residuals should be randomly distributed (plus and

minus) over the length of the traverse. A value of h' that is too

large would produce a bunching of negative residuals near the top

of the tank and create a preponderance of positive residuals else-

where. Similarly, a guessed value of h' that is too small would



6.0

E .5 5 E
-5.0

z
POINT OF 0

o1 MINIMUM

-- 4.

PRBwL RRWI EXTORAOTE HEGD-RN2

a:
w0

w
m.05

m~ 4.0

'a.

164 165 166 167 168 169 170

EXTRAPOLATED HEIGHT, cm

FIG. 715 VARIATION OF THE FITTED AXIAL BUCKLING AND ITS
PROBABLE ERROR WITH EXTRAPOLATED HEIGHT-RUN 29

lilln Ill Irl 1111111111111111111 111111101111m



98

also be expected to produce a nonrandom distribution of residuals.

Figure 7. 16 shows the basis for such an analysis for the same run

used in Fig. 7. 15. It can be seen that with an h' of 164 cm, the

residuals near the center of the tank are almost all negative and,

with an h' of 170 cm, they are all positive. However, with h' =

167 cm, the residuals are randomly distributed. These analyses

were applied to each run and the most consistent value of h' de-

termined for each lattice. The axial bucklings reported in the next

section were those corresponding to that value of the extrapolated

height.

7.4 MATERIAL BUCKLING MEASUREMENTS

7. 4. 1 Experimental Results

The analytical techniques having been described and exempli-

fied in detail above, this section presents the results of the measure-

ments of the axial and radial bucklings and, thus, of the material

bucklings.

4-1/4-inch Spacing Lattice

Table 7. 5 summarizes the radial buckling measurements.

2
TABLE 7.5 MEASURED RADIAL BUCKLING, a ,

OF 4-1/2-INCH SPACING LATTICE

Run a2 Remarks

20 14.14 m- 2  1/4-inch bare Au foils

23 14.04 m- 2  1/2-inch foils

25 14.23 m- 2  Cd-covered 1/2-inch foils

26 14. 16 m- 2  Duplicates the conditions of Run 20

50 14. 10 m- 2  Used 10 dilute U foils, Cd-covered

Average 14. 11*. 06 m- 2

The average value was obtained from Runs 20, 23 and 26. Runs 25

..........................
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and 50 were made to check the energy-space separability of the radial

flux distribution. Being made with a relatively small number of cad-

mium-covered foils, they did not yield as accurate values of the

buckling as did the other runs. However, the bucklings from Runs 25

and 50 are included in the table for the sake of comparison. The

quoted uncertainty is larger than that which would be derived in the

averaging process and is an estimate based on the possibility of

systematic as well as random, errors. A small systematic error

may derive from the fact that all traverses were taken in the same

location, although this possible effect was investigated separately,

as discussed in section 7.3. 1. The precision of the individual

measurements with bare foils is indicated by the excellent agreement

between Runs 20 and 26.

The axial buckling measurements are summarized in Table 7.6.

2TABLE 7.6 MEASURED AXIAL BUCKLING,

OF 4-1/2-INCH SPACING LATTICE

Run 72  Remarks

21 5.62 m-2 Traverse at lattice center

22 5.72 Cd-covered 1/4-inch foils

24a 5.70 1/2-inch foils, off center

24b 5.55 1/2-inch foils, off center

29 5.60 Foils attached to central fuel rod

Average of 2all runs 5. 63 .08 m

The quoted values of -y2 are those for the best value of h' of 167 cm.

The results represent a variety of experimental approaches; however,

again, the standard deviation of the average is higher than the spread

of data would require to allow for systematic effects.

5-inch Spacing Lattice

Tables 7.7 and 7.8 summarize the radial and axial bucklings

obtained in the 5-inch spacing lattice.

M"M"I"M 01 "1 1 - '-." I
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TABLE 7.7 MEASURED RADIAL BUCKLING OF

5-INCH SPACING LATTICE

2a Remarks

14.05 m- 2

14. 21

In direction a of Fig. 7.3

In direction a of Fig. 7. 3,
height = 3 feet

37

Average of
all runs

14.10

14. 12 .06 m-2

In direction b of Fig.
height = 3-1/2 feet

TABLE 7.8 MEASURED AXIAL BUCKLING

OF 5-INCH SPACING LATTICE

I2 Remarks

31

33a

34

Average of
all runs

-2
5.39 m-2

5.53

5.36

Measured near edge of lattice

Foils at surface of centra] rod

1/2-inch diameter foils

-25. 47 ±.08 m

The value of h' was again 167 cm.

5-3/4-inch Spacing Lattice

TABLE 7.9 MEASURED RADIAL BUCKLING

OF 5-3/4-INCH SPACING LATTICE

Run

40

41

42

46

60

Average of
all runs

2
Ru-2

14. 19 m-2

14.29

14. 27

14. 13

14. 10

Remarks

Direction a of Fig. 7. 4, height = 3 feet

Direction b

Direction c

Direction a'

Height = 2 feet

14. 20 .05 m-2

Run

32

35

7.3,

Run
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TABLE 7.10 MEASURED AXIAL BUCKLING

OF 5-3/4-INCH SPACING LATTICE

y2 Rema

43

48

49

Average of
all runs

5.98 m-2

6.00

6.08

rks

Off-center traverse

In-center cell, foils on Al holder

1/2-inch foils on string holder

-26.05*.05 m

The best value of h' for this lattice was 168 cm.

The material bucklings of the
2 2 2

Table 7. 11, where Bm = a - ly.

three lattices are given in

TABLE 7.11 MEASURED MATERIAL BUCKLINGS

OF 1.010-INCH DIAMETER NATURAL U RODS IN D 2 0

D 0 Purity. 99.75 per cent
2

Lattice Pitch
V /V B2

m

4-1/2 inches

5 inches

5-3/4 inches

21.0

26.4

35.6

8.48 0.10 m -2
-2

8.65+ 0.10 m
-2

8.15*0.08 m

Two remarks should be made concerning the probable errors speci-

fied in Table 7. 11. The first has to do with the general program of

experimentation employed. As was indicated in the first sections of

this chapter, the investigation of experimental techniques and the ex-

ploration of general properties were carried on in the three lattices,

concurrent to the measurements of the buckling. Thus, during the

measurements, the details of the experimental and analytical tech-

niques were still being perfected. The higher precision of the last

buckling measured arises from this feature of the experimental

program. The second remark to be made in this regard has to do

with the conservatism of the quoted, estimated, probable errors.

Run
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If the probable errors are calculated from the standard deviations of
a2  ,2 todrv

the mean values of a and y used to derive Bm, considerably smaller

errors would be obtained. For example, the probable error of Bm
for the 5-inch spacing lattice would be 0.05 m -2, and that for the

5-3/4-inch spacing lattice would be 0. 03 m 2 .

The purity of the D2 0 moderator was determined by means of

mass spectroscopic measurements at the Savannah River Laboratory.

At the termination of the experiments, the purity was 99.75 * .02 mole

per cent D 2 0. The purity of the D02 before it was inserted into the

system was 99.77:*.02 percent (S3). If any degradation occurred, it

was assumed to take place in the filling process. In any case, cor-

rection to a buckling measured at 99. 77 per cent, to bring it to a

value for 99. 75 per cent, is negligible (D3).

7. 4. 2 Comparison with Other Experimental Results

Lattices of natural uranium rods in D2 0 have been studied at

a number of laboratories over several years in both critical and ex-

ponential experiments. Figure 7. 17 presents a compilation of these

various experiments and includes the MIT results reported above.

The line drawn through the points considers primarily the North

American and Savannah River measurements. The Zebra experi-

ments were conducted in a very small assembly and have recently

been subjected to considerable revision (I1). Similarly, the Aquilon

critical measurements are currently undergoing re-evaluation (C4).

The MIT measurements are seen to be in good agreement with the

other results reported when the errors of the measurements are taken

into account. To the extent that a difference can be said to exist, the

current results indicate slightly higher values of the bucklings than do

the other measurements. To that extent, the MIT results support the

measurements made at Savannah River and at North American Aviation

over those from Zebra and Aquilon.



9

20
MODERATOR

30 40
TO URANIUM VOLUME RATIO, Vm / Vu

FIG. 717 BUCKLINGS OF 1.0 INCH DIAMETER, NATURAL URANIUM RODS IN D2 0 -ALL MEASUREMENTS
CORRECTED TO 99.75 MOLE % D2 0

I I 'EIIEIIIU

I

o NORTH AMERICAN, EXPONENTIAL (CI) (II)
a ZEBRA(SWEDISH), EXPONENTIAL (P4)(P3)(l)
o AQUILON (FRENCH), CRITICAL (G3)(I I)
V SAVANNAH RIVER, SE, EXPONENTIAL (T5)
0 SAVANNAH RIVER, PDP, CRITICAL (H8)
e MIT, EXPONENTIAL

8H

71K

N

NE

c0

z

u

I-

6

5 H_-

3H I

10 50

4 -

,I I j J I'' 1. 1,



104

CHAPTER VIII

CONCLUSIONS AND SUMMARY

8.1 GENERAL CONCLUSIONS

Several conclusions can be drawn from the work described in

this report. These conclusions can be divided into four groups

corresponding to four aspects of the investigation.

The first aspect of the work was the design of parts of the MIT

lattice facility related to the measurement of bucklings. In par-

ticular, methods were investigated for adjusting the distribution and

magnitude of the flux entering the experimental tank. Experiments

on the flux-shaping pedestal below the tank were described in

Chapter II. The results of preliminary flux distribution measure-

ments were presented in that chapter, and the complete investigation

of flux distributions in the tank and in lattices was described in

Chapters III and VI. The flux-shaping results may be summarized

by saying that the shape and magnitude of the incoming flux could be

varied considerably by changing the pedestal configuration. A con-

figuration was devised that provided an incoming flux appropriate

for both macroscopic and microscopic measurements in lattices.

The second aspect of the work was the investigation of the ana-

lytical and experimental foundations of the measurement of material

bucklings of subcritical assemblies. Chapters IV and V described

the theoretical and experimental bases of the measurements. On the

basis of the investigation, the techniques to be used in the MIT

Lattice Project were chosen. The evolution of some of the experi-

mental techniques was described in Chapter III, while Chapter VI

included a discussion of the analytical and experimental methods

finally employed. The experimental techniques described there were

both easy to use and productive of accurate results. The computer

codes that were developed were found to be well adapted to the experi-

............ ..........
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mental techniques and efficient and accurate in deriving the buckling

from measured flux traverses. Furthermore, the variety and flexi-

bility of the codes made them well suited to the investigation of

details of the flux distribution and of the fitting process. These

uses of the codes were discussed in section 7. 3. Section 8. 2

summarizes the experimental techniques suggested for use in future

buckling measurements.

The third aspect of the work described in this report was the

investigation of some of the details of flux distributions in lattices

as they applied to the measurement of bucklings. The experimental

and analytical techniques used for these measurements were described

in section 6.3, and the results were presented in section 7. 3. Two

conclusions of this study may be mentioned. First, it was shown that

the macroscopic flux distribution, except for microscopic effects, had

a simple form throughout most of the system. That is, in most of the

lattices, the flux was describable by a single J0 function (radially)

and a single hyperbolic sine function (axially). Negligible reflector

effects were observed, and macroscopic energy-space separability

held throughout most of the volume of the lattices studied. Second,

it was shown that the macroscopic and microscopic distributions in

the radial direction were not separable. This effect is small, how-

ever. It was shown that the microscopic distribution must be con-

sidered when over-all flux plots are made and that this can readily

be accomplished with the experimental and analytical techniques

developed.

Finally, the fourth aspect of the work was the determination

of the material bucklings of three lattices of natural uranium rods

in D 2 0. These measurements served as a test of much of the work

discussed above. The measured bucklings were reported and com-

pared with previous measurements in section 7. 4. These results

were of high precision relative to previous measurements and in

good agreement with the trend of those measurements.

In general, it may be concluded that the technical and ana-

lytical foundation has been laid for the future accurate investigation
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of bucklings in the MIT lattice facility.

8.2 RECOMMENDED EXPERIMENTAL TECHNIQUES

The various experimental methods employed in the work have

been described and discussed in sections 6. 3, 6. 4 and 7. 3. A

number of conclusions may be drawn from the experience gained

from the experiments with regard to the general approach to be used

in future buckling measurements.

In general, the recommended technique consists of two steps:

a) determining the volume of the lattice in which a simple separable

flux distribution exists, and b) using a convenient detector to

determine flux distributions accurately in the acceptable volume.

It was found that the most discriminating method of determining the

useful volume was that of examining the gold-cadmium ratio as a

function of position in the lattice. The techniques of examining

residuals and successively dropping points are recommended as

useful and informative checks, but they tend to provide more lenient,

or less exact, criteria for determining the acceptable volume. Once

the volume has been established, any convenient, accurate detector,

such as the traveling fission counter described in section 6.3.3, can

be used to determine the flux distributions and, thus, the buckling.

The advantage gained by using this general approach is one of

accuracy. This can be made clear by comparing the method proposed

with a possible alternative approach in a simplified case where foils

are used as detectors. Let us consider the measurement of an axial

traverse. The simplest form of the proposed method would entail

the irradiation of two sets of foils, one bare and one Cd-covered. The

cadmium ratio would be examined as a function of height, and then the

bare foil data from the region of constant cadmium ratio would be

used to obtain the relaxation length. Further bare foil measurements

could be made, concentrating on the acceptable region, to increase

the accuracy of the measurement. -The alternative approach would

be to examine the thermal activation (bare minus Cd-covered) as a

function of height. However, the difference between the bare and
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covered activity at a point is always less accurately known than the

bare activity, so that a determination based on these differences is

somewhat less accurate than one based on bare foil data. This

example indicates the general advantage of separating the part of an

experiment devoted to determining the valid region of investigation

from the part devoted to measuring a property of that region.

When new types of lattices are studied, the radial buckling

should be examined as a function of height and azimuth. For lattices

such as those discussed above, radial buckling traverses should be

made midway between rows of fuel rods to obtain the most accurate

results. The use of 1/4-inch diameter, 0.010-inch thick, gold foils

on thin, milled aluminum holders is recommended in situations when

the use of the traveling counter is impossible or inconvenient.

8.3 GENERAL SUGGESTIONS

The future plans of the MIT Lattice Project include the study

of lattices of partially enriched uranium rods of various diameters

in D 2 0 (H6). The analytical and experimental techniques discussed

above should provide the basis of the buckling measurements to be

made in those systems. The experiments reported here also suggest

other areas of investigation which might be interesting and fruitful

for future study.

It has recently been observed at other laboratories that the

radial bucklings of fully filled lattice tanks may vary with the lattice

composition (C4). This possibility could be studied by measuring

the radial bucklings of lattices of greatly varying degrees of homo-

geneity, i.e., large (one inch) rods at large spacings vs. small

(1/4-inch) rods spaced close together. If such an effect exists, it

may be of importance in the question of the difference between buckl-

ings measured in exponential experiments and those measured in

critical experiments.

Another interesting study could result from the investigation

of the non-separability observed in the radial flux distribution.

Theoretically, a small-source theory approach would probably be
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fruitful. Experimentally, it would be of interest to study the vari-

ation in the microscopic properties of the lattices, particularly the

thermal utilization, as a function of position. It would then be a

question of whether the microscopic properties averaged over a

finite system were independent of the size of the system.

The question of the difference between critical and exponential

bucklings may be resolved by the investigations now being made. If

not, it can best be decided by measuring the bucklings of lattices in

the same facility, with both exponential and critical techniques. The

MIT lattice facility could be easily adapted to such measurements.
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APPENDIX Al

COMPUTER CODES

Al. 1 INTRODUCTION

The availability of an IBM 709 Computer made possible a rapid,

complete, and efficient analysis of the experimental data. This

section deals with the various codes that were developed to perform

different parts of that analysis. Such a description will serve to

describe in detail the analytical methods employed in the interpre-

tation of the experimental data, and will provide a guide to those who

want to make use of the codes in this or a related type of experiment.

The ultimate purpose of the analysis, and thus of the codes, is

to derive values of the material buckling from measured radial and

axial flux distributions. The heart of the computer calculations is

thus the least-squares fitting of a measured flux distribution to a J

Bessel function in one case, and to a hyperbolic sine function in the

other. Another important aspect of the measurements is the verifi-

cation that certain theoretically important conditions hold with respect

to the experimental data. For example, as has been discussed in

chapter IV, it is important that the radial data that is analyzed corre-

spond to a simple J distribution. The distribution should be contami-
0

nated neither by higher harmonics nor by reflector effects. Hence,

two additional codes have been developed: one which analyzes a

radial distribution for harmonic effects, and one which analyzes for

an 10 reflector effect. Although the codes are designed to be used

independently, the three radial codes may use the same basic input

data. Some of the ancillary parts of the codes - the foil data reduction

section, for example - are common to all the codes.
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Al. 2 FITTING TO A J BESSEL FUNCTION

Al. 2. 1 Foil Data Reduction

The first calculation made by all the codes is the reduction of

the raw experimental data to quantities proportional to the flux. The

data may be in the form of foil activities as measured at various

times after an irradiation or in the form of count rates, or currents,

from a neutron counter. The codes are written so as to deal with foil

activities, since neutron chamber data may readily be cast in that

form for input to the code. This part of the calculation proceeds as

follows.

Let A.. be the activity (i. e., the total number of counts re-

corded) of the i th foil counted for the j th time interval starting at a

time, T2.. , after the end of the irradiation. Consider the foil to be

counted for a length of time given by T1 . The number of counts is

first corrected for dead-time losses in the counter. The dead time is

assumed to have the form

- = p + q- C (Al. 1)

where C is the count rate, found from A.. and Tl1 . , while p and q

are specified in the input to the code. The next operation is to correct

for the (measured) background count rate, B, to get a corrected

activity, A!. Decay, before and during counting, are corrected for

to obtain a corrected activity, A!'', given by:
13

XT1.. -XT2.. 1

A!. = A!.e 1 1- e 1 3  , (Al. 2)13 13

with

A..
A!. = - --- - B-T1..

13 (1-r. C) j

where X is the decay constant for the foil material being used. The

average activity of the ith foil is then obtained and corrected (with a

quantity Ci) for any further corrections such as foil weight, etc. ; C.
is a multiplicative correction factor for foil i and is part of the input

to the code. Thus, a quantity, Pi, proportional to the flux is obtained

................
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by forming the average:

P. C A".. (A1. 3)=N i 13

where each foil is considered as having been counted N times. For

convenience in the other portions of the code, the P 's are normalized,

setting the largest equal to 1.0.

Several methods for testing for, and rejecting, bad foil data

were considered, but none was found satisfactory. However, pro-

vision is made in all the codes to print out all the values of A. so
13

that a check can be made for wayward data.

Normally, in these experiments, flux distributions will not be

made along a radius of a lattice, but along a chord. The code calcu-

lates the radial position from the position of the foil along the chord

and the perpendicular distance from the chord to the center of the

lattice.

Al. 2.2 Theoretical Basis of the J Code

In the case of a measured radial distribution, the quantities,

Pi, derived above correspond to values of the flux at various radial

positions, r. Let us call these measured values of the flux 4 (r )

(equal to the normalized Pi). The code described in this section fits

these 4 ex(r.) to the theoretical distribution given by

4(r.) = AJ (a r ) (A1. 4)

where the two parameters, A and a 2, the radial buckling, are to be

fitted by the least-squares criterion. The possibility of including the

center of the distribution in the fitting process (i. e., fitting to

AJ [a(r-c)J) was also investigated. However, to accomplish this, the

convergence criterion had to be so loose as to be meaningless because

of the flatness of the distribution at the center. Furthermore, in any

reasonable experiment, the actual center of the lattice, or flux distri-

bution, should be known. A provision in the code to allow a scan of

various values of c is described below.
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The least-squares process may be applied directly only to

parameters in a linear relationship. In order to apply it to

Equation (Al. 4), we must linearize the equation by expanding in a

Taylor series. (The mathematical technique employed here is simi-

lar to that described by Jedruch (J2) (J3)). We expand the "true"

fitted flux at each point, ti(A,a), in a series about A and a , the

values of our first guesses of A and a, so that

p (Aa) = A J (a0 r) (Al. 5)

and

4.(A, a) = 4(Ao, a) + ua + v b +... (Al. 6)

where a and b are the first-order correction terms to A and a 0 ,

respectively, and

u. = A o(a r.) (Al. 7)
1 aA 001

10

v. -rA J(ar.) . (Al.8)

Terminating the series of Equation (Al. 6) at the first-order terms,

the residuals, di may be written

d. = ce (r.) -c (Ao,a) - uia - vib, (Al.9)

or

d. = F. - u.a - v.b , (Al. 10)
1 1 1 1

where

F =x (r.)-c*.(A ,a) . (A. 11)

In the fitting process, it is the sum of the squares of the d 's that is

minimized with respect to A and a. That is, if

62 di (Al. 12)

where .M is the total number of experimental points, it is required that
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8(b 2 ) 4- 2  0 (Al. 13)aA

Putting Equations (Al. 10) and (Al. 12) into (Al. 13), we obtain

2 M
8(6) = 2(F.-u.a-v.b)(-u.) = 0 (Al.14)

aA i l i
i=1I

and

8(62) M
() 2(F.-u.a-v.b)(-v.) = 0 , (Al.15)

Da1 1 1 1

i= 1

or

EF.u. - a~u.u. - blu.v. = 0
1 1 1 1 1 1

and

1F.v. - alu.v. - bEv.v. = 0
1 1 1 1 1 1

all summations being taken from i = 1 to M.

Hence,

F u. Eu iv.i
1F1v1 12F v. Ev v.

a = (Al. 16)
D

where

Eu.u. Eu.v.
D uv 1 1 1 (Al. 17)

1 1 1 1

and

Zu.u. E;F.u.
11i 11i(1.8

Eu.v. EFv (Al. 18)
1 1 1 1

b=
D

so that the next guesses to A and a may be obtained as A = A + a

and a1 = a + b, and the process repeated until adequate convergence

has been obtained. If, for any reason, the convergence is to be slowed

down or accelerated, a fraction (or multiple) of a and b, specified in

the input, may be used as correction factors. Adequate convergence

. . .................. ..............
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is effectively defined as the satisfaction of the conditions:

a< e and < E (Al - 19)
A 1 a 2

where E and E2 are arbitrarily small quantities which may be speci-

fied in the code input.

Provision is made in the code for the weighting of the residuals

in the fitting process, i. e., in Equations (Al. 11) and (Al. 12). In this

case, it is the sum

M

2 =- w d.)2 (A1.20)61 i (wi 1

i= 1

that is minimized with respect to A and a. The weighting is effected

in the code by multiplying each of the Equations (Al. 7), (Al. 8) and

(Al. 11) by the square root of the applicable weight, w. (W13). The

analysis remains as described above.

It is of interest to determine the standard deviations or probable

errors of a and b, and thus of A and a. To do this, one can carry

out the above analysis with (a+ 6a) and (b + 6b) substituted for a and b

(M2). Such a process gives for the standard deviations of A and a:

2 E v.v. 62
-2 1 i 6 (Al.21)

A D M-2

and

2 Zu ui 62
a D M-2'

so that the probable error of the radial buckling, E 2, is given by
a

E 2 =2a. E,aa

!Eu.u. 2
= 2a 1 1 6- 0.675 (Al.22)

D (M-2)

As has been discussed above, variations in the J distribution

are expected to exist near the boundary of the lattice. The J code is



a7

therefore designed to perform the fitting process first with all experi-

mental points, and then with all points except the outermost. This

procedure is continued until a certain number of points (specified in

the input to the code) has been used in the fit.

It is clear that in several places in the code it is necessary to

have values of the J and J1 Bessel functions . These are calculated

by a subroutine, which may be "called" by the main program. Its

call name is "BESSIE ".

The calculations are based on the series representation of the

Bessel functions of interest given by

2k+p

J (x) = -(kX) (Al. 23)

k=O

The code operates by calculating successive terms in the series until

adequate convergence has been attained. Equation (Al. 23) can be

used to obtain the following recursion relations, where Tk is the kth

term in the particular series:

for J

2

T T V 2(-1(l4
Tk+l = k+ (A. 24)

for J

(-)
Tk+l T k 2  (Al. 25)

(k+1)(k+2)j

Al. 2. 3 Outline of the J Code

The detailed operation of the code can best be understood by

means of a schematic block diagram and a Fortran listing.

Figure Al. 1 represents the logical operation of the J code.

Input to the code is punched on cards. The quantities required as

input and the formats in which they are to be punched are specified
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Read in data k

Correct and
normalize raw
data

Print corrected
data

Set iteration
number to zero

Calculate theoretical
distribution

-T
Obtain corrections
to theoretical
distribution

L

Increase iteration
number

-no

Has iteration yes
limit been reached?

'1'
Print new A, a,
and corrections

Is a/A < E ?

yes

Is b/a < E 2 ?

no Correct A and a

no 1'
~,yes--I

Print out results

Has last center
trial been made?

yes

Has final total
number of points
been tried?

I

no Change position
of all points
one step

no Drop off
n outside point

yes

Print "FINIS"

Has last run
been analyzed?

yes

Stop

no

Fig. Al. 1 Schematic Outline of the J Code

I

1 4

I

I

I

I
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in the Fortran listings of section Al. 2. 4. It should be mentioned,

however, that, because of the point-dropping process, data corre-

sponding to outer points of the distribution should be read in last.

The vocabulary of section Al. 2. 5 defines the terms used in the code

language.

The first calculation made by the code is the calculation of

normalized quantities proportional to the flux as described above

The weighting factor for each point, w., is also calculated, where

[x (r.)]R
wi = R ; (A1.26)

R is specified in the input.

The theoretical fluxes corresponding to the guessed values of

A and a are then calculated by subroutine "BESSIE". In calling

BESSIE, the call statement must specify:

a) The name in the main program of the quantities whose

Bessel functions are to be calculated.

b) A quantity, Q. If Q < 0, the subroutine calculates only

J0 ; if Q > 0, only J1 is calculated; and if Q = 0, both are

calculated.

c) The name in the main program of the value of the J0
Bessel function.

d) The name in the main code of the J Bessel function.

Correction factors to the guessed values of A and a of the distri-

bution are then calculated as outlined in section Al. 2. 4. If both

these corrections are not smaller than some specified fraction of

A and a, respectively, the iteration is continued. The number of

iterations that may be made is limited to a certain number specified

in the input.

The fitting process can be repeated automatically with all the

foils shifted in one direction and then the other, allowing a "search"

for the center of the distribution. The amount of shift and the number

of times the shift is to take place are input quantities.

_..UWWAA" - ..................
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The entire process is then repeated with successive outer points

dropped. Whenever a value of the buckling is determined (or if the

iteration limit is reached), the quantities of interest are printed out.

An example of such a print-out is given below.

The first section of the print-out consists of the corrected

activity of each foil each time it was counted. These quantities

correspond to the A' of Equation (Al. 2) and are printed out to permit

checking for inconsistencies in the basic input. There follow the

values of A, a, a, and b (of Equations (Al. 4), (Al. 16) and (Al. 18))

used in the fitting process at successive iterations.

Print-out from J Code:

RUN NUMBER 4004

FOIL ACTIVITIES

0.9924E 08 0.9966E 08 0.9789E 08
0.1022E 09 0.1026E 09 0.1012E 09
0.1029E 09 0.1027E 09 0.1024E 09
0.1010E 09 0.1002E 09 0.1000E 09
0.9990E 08 0.1003E 09 0.9850E 08
0.9206E 08 0.9201E 08 0.9171E 08
0.9027E 08 0.9181E 08 0.9051E 08
0.8956E 08 0.9062E 08 0.9027E 08
0.8935E 08 0.8901E 08 0.8963E 08
0.8289E 08 0.8276E 08 0.8304E 08
0.8238E 08 0.8189E 08 0.8337E 08
0.7156E 08 0.6002E 08 0.7104E 08
0. 7097E 08 0. 7059E 08 0. 7081E 08
0.6489E 08 0.6398E 08 0.6478E 08

0. 1006E 01 0. 3836E-01 0. 3028E-02 0. 2585E-03
0.1005E 01 0.3841E-01 -0.1480E-02 0.4879E-04
0.1004E 01 0.3842E-01 -0.2816E-03 0.9064E-05
0.1004E 01 0. 3842E-01 -0. 5239E-04 0.1661E-05



all

RUN NUMBER 4004 (continued)

X POSITION-

0.5000
4. 3680,
5. 3680
9.2360

10.2360
14.1040
15. 1040
18.9720
19.9720
23.8400
24.8400
28. 7080
29. 7080
33. 5760

R POSITION

4.2426
6.0687
6. 8238

10.1515
11.0691
14.7198
15. 6806
19.4341
20. 4115
24.2094
25.1947
29.0155
30.0052
33. 8393

EXP. FLUX

1.000000
0. 982022
0.988499
0.966412
0.958564
0.929521
0. 918490
0.867890
0.859980
0.798069
0.794675
0. 682697
0.715599
0.621434

FIT FLUX

0. 997761
0.990816
0. 987234
0.966581
0.959512
0.925692
0. 915320
0.869216
0.855811
0.798624
0.782536
0.715748
0. 69 7393
0. 622728

DELTA

0.002239
-0.008794

0. 001265
-0.000169
-0.000948
0.003829
0.003170

-0.001326
0.004168

-0.000555
0.012139

-0.033051
0. 0 18207

-0.001294

RADIAL BUCKLING = 0.14763E-02 CM.SQ. -2

EXTRAPOLATED RADIUS = 62.5882 CM. A= 1.0044

POINTS USED = 14 EPSILON A = 0. 5101E-02

EPSILON BSQ = 0. 2193E-04 WEIGHTING EXPONENT = 0.

4 ITERATIONS WERE USED

The results of the final iteration are then printed out. Both

the position of the foil (or chamber) along the chord and its radial

position are listed. The experimental values of the flux, corre-

sponding to the normalized P of Equation (Al. 3), and the derived

theoretical values of the flux at the same points are printed, along

with the residuals (the differences between the two). Because of the

processes of normalization and point-dropping, the points are listed

in order of increasing distance from the center. Finally, the fitted

value of the buckling and normalization constant are printed out

along with their probable errors. Other quantities of interest

printed out are: the extrapolated radius, the number of points used

in the fit, the.number of iterations used, and the weighting exponent

(the R of Equation (Al. 26)).
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Al. 2. 4 Fortran Listing of the J Code

DIMENSION A1(40, 5), T2(40, 5), T1(40, 5), PHI(40), CORR(40),
A2(40, 5), U(4X0), V(40), W(40), F(40), X(40), RO(40), ALPHA(40),
BJO(40), BJ1(40), XACTY(5), FIT(40), XLOC(40), DIFFR(40), WT(40)

1 FORMAT (13, 13, 14, 14, 13)
5 FORMAT (F10. 7, F10. 4, F10. 4, E12.4, F8.6, F8.6)
2 FORMAT (29H PALMEDO BESSEL FUNCTION FIT)
6 FORMAT (F10. 4, F10. 6)
3 FORMAT (F10. 0, F10. 3, F10. 3)
7 FORMAT (12HORUN NUMBER 14)

WRITE OUTPUT TAPE 2,2
8 FORMAT (2E 10. 2)
9 FORMAT (13)

10 FORMAT (3F5. 2)
11 FORMAT (2F5.2)
4 READ INPUT TAPE 4, 1, M, N, NORUN, LASTRN, MFINAL

READ INPUT TAPE 4,9, ITSFNL
READ INPUT TAPE 4, 10, XTRA, XTRG, RISE
READ INPUT TAPE 4, 3, (( A1(I, J), T2(I, J), T1(I, J), J=1, N) I=1, M)
WRITE OUTPUT TAPE 2, 7, NORUN
READ INPUT TAPE 4,5, ADAM, BKG, Y, BZERO, EPS1,EPS2
READ INPUT TAPE 4, 11, STEP, QUANTO
READ INPUT TAPE 4,6, (X(I), CORR(I), I=1, M)
READ INPUT TAPE 4, 8, PX, QX
SPIN=0. 0
D027 I=1, M
ASUM=0. 0
D020 J=1,N
CR=A1(I, J)/T2(I, J)
TAU=PX+QX* CR
A1K=(CR/(1. 0-CR*TAU) )*T2(I, J)-(BKG*T2(I, J))
A2(I, J)=A1K*EXPF(ADAM*T1(I, J) )/(1 0-EXPF(-ADAM*T2(I, J)))

20 ASUM=ASUM+A2(I, J)
FUNNY=N

21 A2AV=(ASUM/FUNNY)*CORR(I)
IF(I-1)25, 25, 26

25 SPIN=A2AV
26 PHI(I)=A2AV/SPIN

WT(I)=PHI(I)** RISE / PHI(1)** RISE
27 CONTINUE
60 FORMAT (17HO FOIL ACTIVITIES)
61 FORMAT (1H, 6(4H, E.10 4))
47 WRITE OUTPUT TAPE 2,60

DO 49 I=1, M
DO 48 J=1, N

48 ACTY(J)=A2(I, J)
49 WRITE OUTPUT TAPE 2,61, (ACTY(J), J=1,N)
28 AA=1.0

C=G. 0-QUANTO*STEP
B=BZERO
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29 ITS=0
291 DO 30 I=1, M, 2

30 RO(I)=SQRTF(Y**2+(X(I)-C)** 2)
XLOC(I)=X(I)-C
DO 33 I=2, M, 2

33 RO(I)=SQRTF(Y**2+(X(I)+C)** 2)
XLOC(I)=X(I)+C

31 DO 32 I=1, M
32 ALPHA(I)=B*RO(I)

CALL BESSIE(ALPHA, 0. 0, M, BJO, BJ1)
SUMUU=0. 0
SUMUV=0. 0
SUMUF=0.O
SUMVV=O. 0
SUMVF=0. 0
SSQRE S=0. 0
DO 35 I=1, M
U(I)=BJO(I)*WT(I)
FIT(I)=AA* BJO(I)
V(I)=-(RO(I))*AA* BJO(I)*WT(I)
F(I)=(PHI(I)-FIT(I))*WT(I)
DIFFR(I)=PHI(I)-FIT(I)
SUMUU=SUMUU+U(I)**2
SUMUV=SUMUV+U(I)*V(I)
SUMUF=SUMUF+U(I)*F(I)
SUMVF=SUMVF+V(I)*F(I)
SUMVV=SUMVV+V(I)**2
SSQRES-=SSQRES+F(I)**2

35 CONTINUE
D1=SUMUF*SUMVV-SUMVF*SUMUV
D2=SUMUU*SUMVF-SUMUV*SUMUF

D33=SUMUU*SUMVV-SUMUV**2
DELTAA= D1/D33
DELTAB=D2/D33
EM=M
IF(ABSF(DELTAA)/AA-EPS1)36, 36,38

36 IF(ABSF(DELTAB)/B-EPS2)40,40,38
38 AA=AA+XTRA*DELTAA

B= B+XTRG*DELTAB
300 FORMAT (4E12.4)

WRITE OUTPUT TAPE 2, 300, (AA, B, DELTAA, DELTAB)
IF(ITS-ITSFNL) 301, 302, 302

301 ITS=ITS+1
GO TO 31

303 FORMAT (30HOTERMINATED ON ITERATION LIMIT)
302 WRITE OUTPUT TAPE 2,303

40 DELA=SQRTF(SUMVV/D33)*SQRTF(SSQRES/(EM-2. 0))*0. 675
DELB=(SQRTF(SUMUU/D33)*SQRTF(SSQRES/(EM-2. 0))*0. 675)*2. Q*B
EXRAD=2.4048/B
B2=B**2

41 FORMAT(58HO X POSITION R POSITION EXP. FLUX FIT FLUX DE
1LTA)

43 WRITE OUTPUT TAPE 2,41
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69 FORMAT (2F12.4,3F12.6)
WRITE OUTPUT TAPE 2, 69, (XLOC(I), RO(I), PHI(I), FIT(I), DIFFR

(I), I=1, M)
42 FORMAT (18HO RADIAL BUCKLING=E12.5,9H CM.SQ.-2,22H

EXTRAPOLATED RANDIUS =F10. 4,44H CM., 4H A=F8. 4,/13H
POINTS USED=I2, 11H EPSILON A = E11. 4, 13H EPSILON BSQ=E11. 4)

72 FORMAT (2 1HO WEIGHTING EXPONENT=F6. 2)
44 WRITE OUTPUT TAPE 2,42, (B2, EXRAD, AA, M, DELA, DELB)

421 FORMAT(I3, 21H ITERATIONS WERE USED)
WRITE OUTPUT TAPE 2, 72, (RISE)
WRITE OUTPUT TAPE 2,421,(ITS)
IF (C-QUANTO*STEP) 401,402,402

401 C=C+STEP
GO TO 29

402 IF (M-MFINAL) 452,452,46
46 M=M-1

C=-QUANTO*STEP
GO TO 29

451 FORMAT (10HOF I N I S)
452 WRITE OUTPUT TAPE 2,451

45 IF (LASTRN-NORUN) 51, 51, 50
50 GO TO 4
51 CALL EXIT

END (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Subroutine BESSIE:

SUBROUTINE BESSIE (X, Q, M, BJO, BJ1)
DIMENSION X(40), BJO(40), BJ1(40), SQX(40)
EPS=0. 000 1
DO 100 I=1, M

100 SQX(I)=(X(I)**2)/4. 0
IF (Q)102, 102, 110

102 DO 109 I=1, M
COUNT=1. 0
TERM=1.
BJO(I)=1. 0

103 TE RM=- TERM* SQX(I) /COUNT** 2
BJO(I)=BJO(I)+TE RM
IF (TERM)105, 104, 104

104 IF (TERM-EPS)109,109,105
105 COUNT=COUNT+1. 0

GO TO 103
109 CONTINUE
110 IF (Q)121, 111, 111
111 DO 121 I=1, M

COUNT=1. 0
TERM=X(I)/ 2.0
BJ1(I)=X(I)/2. 0

112 TE RM=-TERM*SQX(I)/(COUNT*(COUNT+1. 0))
BJ1(I)=BJ1(I)+TERM
IF (TERM)114,113, 113
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113
114
121
122

IF (TERM-EPS) 121, 121, 114
COUNT=COUNT+1. 0
CONTINUE
RETURN
END (1, 1,0,0,0,0,0,0, 0 ,0,0,, 0,0)

Al. 2. 5 Vocabulary of the J Code

This section presents a list of all the important symbols of

the J Code and an explanation of their use. Symbols clearly defined

in the Fortran listings or those whose meanings are obvious are not

listed.

Correspond-
ing Symbol
in Appendix

Equation
of

Appendix

M

N

NORUN

LASTRN

MFINAL

ITSFNL

RISE

Al(I,J)

T2(I,J)

T1(I, J)

ADAM

BKG

Y

BZERO

EPS1

EPS2

STEP

QUANTO

Number of points used

Run number

Last run of a series

Last number of points
to be used in fit

Limit of iterations

Perpendicular distance
of experimental chord
from center of lattice

Amount of shift of foil
position in center search

Number of times foils
are to be shifted

Symbol
in Code

Meaning Input
Quantity

Output
Quantity

*

*

M

N

R

A.

T213

T1..

B

*

*

*

*

*

*

*

*

*

*

*

*

*

Al. 11

Al. 3

A1.26

Al. 2

Al. 2
Al. 2

A1.2

Al. 2

Al. 5

Al. 19

Al. 19

a0
*

*

*

*

*

.............



Correspond-
ing Symbol
in Appendix

Equation
of

Appendix

X(I) Original position along
chord of i'th foil

CORR(I)

PX
QX
CR

AlK(I, J)

A2(I, J)

PHI(I) Normalized value
of P.

WT(I)

AA

B

ITS Iteration number

RO(I)

XLOC(I) Shifted chordal
position of foil

BJO(I)

BJ1(I)

SUMUU

SSQRES

FIT(I)

DIFFR(I)

DELTAA

DELTAB

XTRA Multiple of a to be
used as correction
factor to A

XTRG Multiple of b to be
used as correction
factor to a

*

U

*

Symbol
in Code

Meaning

a16

Input
Quantity

Output
Quantity

*

*

*

*

Al. 3

Al. 1

A1.1

Al.1

C.

p

q
C

A!.
13

A!
13

* (ri)

Al

Al

Al

2

2

9

20

4
w.
A

*

*

*

*

*

*

*

*

Al.

Al.

a Al. 4

Al.9

Al. 4

r.

J (ar.)

J1 (ari)

Eu.u.
1 1

62
AJ (a r.)

F .

a

b

Al.

Al.

Al.

Al.

Al.

15

12

6

11

16

Al. 18

*

*

*

*

...... .....................................
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Al. 3 RADIAL HARMONIC ANALYSIS CODE

Al. 3. 1 Theoretical Basis of the Code

The code designed to analyze the higher radial harmonic con-

tributions to the fundamental mode is similar to the J code described
0

in section Al. 2. Again, a least-squares analysis is made to

determine the coefficients of the functions describing the higher

modes. In particular, we are interested in the lower order har-

monics since any large distortion of the distribution from a simple

J function would entail their presence. Furthermore, harmonics
Q

of higher orders attenuate rore rapidly through the lattice and would

not effect the distribution through any significant distance (see

chapter IV). Thus, let us consider the flux distribution as composed

of three harmonics in all so that we may write the theoretical distri-

bution as:

(r) =A 1 J(al r) + A2 J o(a 2 r) + A3 Jo(a 3 r) (Al. 26a)

where

2.4048 5.5201 8.6537
a = Ra 2  R' , 3 ~R

and

R= the extrapolated radius which, in this case, is
assumed known.

The sum of the squares of the residuals may then be written:

M

62 = [4 -AJ(ari)-A 2 Jo(a2 ri)-A 3 o(a 3 ri)]2 (Al. 27)
i= 1

and' it is required that

2 8 2 2 0 (Al. 28)3A 1 A 2 a3

In this case, the coefficients may be determined analytically;

the three equations of (Al. 28) become, upon expansion and substi-

tution of Equation (Al. 27),
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A 0.2 (a r.)] + A 2  Jo(air) J0 (a 2 r )] + A 3  Jo(air ) J,(a 3 r)]

1 J21Ei )oc231

A Jo(alr ) Jo(a 2r)] + A 2  Jce 2 r )] + A 3  J(a 2 r ) J(a 3 r )]

= ; J J3(a2 r )

A, [ J(air ) J (a 3 r )] + A2  o 0 ( 2 r ) J(a 3 r )] + A3  J2 (a3 r)]

E* Jo(a 3 rj) (Al. 29)

Equation (Al. 29) is readily solved for A, A2, and A3. For example:

$J 0(a 1r) E J0(a1 r) Jo(a 2 r) E J 0 (a 1 r) J0 (a 3 r)

* 2 r) J (a 2 r) E J (a 2 r) J (a3 r)

*; 4Jo(a r) 2; J (a r) J (a r) J,1 (a r)

1 2

J0 (a r) J (a2 r) J (a 2 r) J (a2 r) J (a 3 r)

SJ (a r) J (a3 r) E J (a 2 r) J0 (a 3 r) 1 J (a r)

(Al. 30)

Al. 3. 2 Outline of the Code

Since no iterational procedure is required in this code, its

general format is more straightforward than that of the J Code.

The input is very similar to that of the other codes, and the same

data-reduction process is followed. With the extrapolated radius

introduced as input to the code, and with the use of subroutine

BESSIE, the code calculates directly the- three coefficients, A1 ,

A 2 , and A 3 of Equation (Al. 26). An example of the output of the

code is given below.
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Harmonic Analysis Output:

PALMEDO HARMONIC ANALYSIS
RUN NUMBER 506

R POSITION EXP. FLUX FIT FLUX

1.5200 1.000000 0.999739
11.6000 0.963727 0.958737
9.6300 0.968125 0.971793

22.4000 0.837616 0.842459
19.9400 0.877098 0.875555
32.5600 0.668860 0.669041
30.3600 0.0.711.034
43.8400 0.436438 0.430158
41.8400 0.473633 0.474272
54.2500 0.194574 0.201990
53.1400 0.226093 0.225737

SUM OF THE SQUARES OF THE RESIDUALS= 0. 1597E-03

P1 = 1.00585 P2 = 0.00785 P3 =0.01325

FOIL ACTIVITIES
0.72020E 08 0.72349E 08
0.69729E 08 0.69403E 08
0.69381E 08 0.70386E 08
0.60921E 08 0.60005E 08
0.63480E 08 0.63145E 08
0.48364E 08 0.48199E 08
0.51363E 08 0. 51367E 08
0.31629E 08 0.31379E 08
0.34155E 08 0.34223E 08
0.14131E 08 0. 13959E 08
0.16313E 08 0.16328E 08

Al. 3. 3 Fortran Listing of the Harmonic Analysis Code

P. F. PALMEDO HARMONIC ANALYSIS

DIMENSION A1(40, 5), T2(40, 5)T1(40, 5), PHI(40), CORR(40), A2(40, 5),
X(40), RO(40), ALPHA (40), BJO 1(40), BJ11(40), BJO2(40), BJ12(40),
ACTY(5), FIT(40), BJO3(40), BJ13(40), ALPHA1(40), ALPHA2(40),
ALPHA3(40), F(40)

DET3F(A11, A12, A13, A21, A22, A23, A31, A32, A33)= A11*(A22*A33
-A23*A32)-A12*(A21*A33-A23*A31)+A13*(A2 1*A32-A22*A31)

1 FORMAT(13 , 14,14)
4 READ INPUT TAPE 4, 1, M, N, NORUN, LASTRN
2 FORMAT(28H PALMEDO HARMONIC ANALYSIS)

WRITE OUTPUT TAPE 2,2
7 FORMAT (12H RUN NUMBER 14)

WRITE OUTPUT TAPE 2, 7, NORUN
3 FORMAT (F10 .0, F10. 3, F10 . 3)

, w)"



a20

Fortran Listing of the Harmonic Analysis Code (continued)

READ INPUT TAPE 4, 3, ( (A1(I, J), T2(I, J), T1(I, J), J=1, N)I=1, M)
6 FORMAT (F10. 4, F10. 6)

READ INPUT TAPE 4,6, (X(I), CORR(I), I=1, M)
5 FORMAT (F10. 7, 3F10. 4)

READ INPUT TAPE 4, 5, ADAM, BKG, Y, EXRAD
SPIN=0.0
DO 27 I=1, M
ASUM=0. 0
DO 20 J=1, N
A1K=A1(I, J)-(BKG*T2(I, J) )
A2(I, J)=A1K*EXPF(ADAM*T1(I, J) )/(1. 0-EXPF(-ADAM*T2(I, J)))

20 ASUM=ASUM+A2(I, J)
FUNNY=N

21 A2AV=(ASUM/FUNNY)*CORR(I)
IF (1-1)25, 25, 26

25 SPIN=A2AV
26 PHI(I)=A2AV/SPIN
27 CONTINUE

B1=2. 4048
B2=5. 520
B3=8. 654
SKIP=0. 0
DO 30 I=1, M

30 RO(I)=SQRTF(Y**2+X(I)**2)
31 DO 32 I=1, M

ALPHA1(I)=B1*RO(I)/EXRAD
ALPHA2(I)=B2*RO(I)/EXRAD

32 ALPHA3(I)=B3*RO(I)/EXRAD
CALL BESSIE (ALPHA1, -1. 0, M, BJO1, BJ11)
CALL BESSIE (ALPHA2, -1. 0, M, BJO2, BJ12)
CALL BESSIE (ALPHA3, -1. 0, M, BJO3, BJ13)
ZFJ1=0. 0
ZFJ2=0. 0
ZFJ3=0 .0
ZFF=0 .0
ZJ1J1=0. 0
ZJ1J2=0. 0
ZJ1J3=0. 0
ZJ2J2=0. 0
ZJ2J3=0. 0
ZJ3J3=0. 0
DO 35 I=1,M
F(I)=PHI(I)
ZFJ1=ZFJ1+F(I)*BJ01(I)
ZFJ2=ZFJ2+F(I)*BJO2(I)
ZFJ3=ZFJ3+F(I)*BJ0 3(I)
ZFF=ZFF+F(I)**2
ZJ1J1=ZJ1J1+BJO1(I)**2
ZJ1J2=ZJJ2+BJO 1(I)* BJO2(I)
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ZJ1J3=ZJ1J3+BJO 1(I)* BJO3(I)
ZJ2J2=ZJ2J2+BJ02(I)**2
ZJ2J3=ZJ2J3+BJO2(I)* BJO3(I)
Z J3J3=Z J3J3+BJO3(I)** 2

35 CONTINUE
DEM=DET3F(ZJ1J1, ZJ1J2, ZJ1J3,ZJ1J2,ZJ2J2,ZJ2J3, ZJ1J3,ZJ2J3,

ZJ3J3)
P1=DET3F(ZFJ1, ZJ1J2, ZJ1J3, ZFJ2, ZJ2J2, ZJ2J3, ZFJ3, ZJ2J3,

ZJ3J3)/DEM
P2=DET3F(ZJ1J1, ZFJ1, ZJ1J3, ZJ1J2, ZFJ2, ZJ2J3, ZJ1J3, ZFJ3,

ZJ3J3)/DEM
P3=DET3F(ZJ1J1, ZJ1J2, ZFJ1, ZJ1J2, ZJ2J2, ZFJ2, ZJ1J3, ZJ2J3,

ZFJ3)/DEM
ZFFT=O .-O
ZFTFT=O. 0
DO 36 I=1,M
FIT(I)=P1* BJ01(I)+P2*BJO2(I)+P3* BJO3(I)
ZFFT=ZFFT+FIT(I)*PHI(I)

36 ZFTFT=ZFTFT+FIT(I)**2
ZRESSQ=ZFF-2. O*ZFFT+ZFTFT

63 FORMAT (38H SUM OF THE SQUARES OF THE RESIDUALS= E10. 4)
41 FORMAT (F12.4,2F12.6)
46 FORMAT (36HO R POSITION EXP. FLUX FIT FLUX)
61 FORMAT (1H, 6(4H, E11. 5) )
47 FORMAT (4HOP1=F8. 5, 10H P2=F8. 5, 10H P3=F8. 5)
62 FORMAT (17HO FOIL ACTIVITIES)

WRITE OUTPUT TAPE 2,46
WRITE OUTPUT TAPE 2, 41, (RO(I), PHI(I), FIT(I), I=1, M)
WRITE OUTPUT TAPE 2,63, ZRESSQ
WRITE OUTPUT TAPE 2, 47, P1, P2, P3
WRITE OUTPUT TAPE 2,62
DO 49 I=1, M
DO 48 J=1, N

48 ACTY(J)=A2(I, J)
49 WRITE OUTPUT TAPE 2, 61, (ACTY(J), J=1, N)

IF (LASTRN-NORUN)51, 51,50
50 GO TO 4
51 CALL EXIT

END (1, 1,0, 0,0,0,0, 0, 0,0,0,0, 0)

Al. 3. 4 Vocabulary of the Harmonic Analysis Code

Many of the symbols used in this code are the same, and

have the same meaning, as those used in the J code. The other

symbols of importance, and their meaning, are defined below .

-Iwo
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Symbol Meaning Correspond- Equation Input Output
in Code ing Symbol in Quantity Quantity

in Appendix Appendix

EXRAD R' Al. 26a *

BJ0 1 (I) J 0(al r) A1. 27

BJO2 (I) J 0 (a 2 r ) A1. 27

BJO3 (I) J (a 3 r) A1. 27

Summation of M
Z... quantities whose Al.27

symbols follow

ZJlJ3 J o(ar2)

-J(a 3 r) A1.29

P1 A1  Al. 26 *

P 2  A 2  A1. 26 *

P 3  A3  Al. 26 *

ZRESSQ 62 Al.27 *

Al.4 RADIAL REFLECTOR EFFECT CODE

Al. 4. 1 Theoretical Basis of the Code

The second code, which provides a test of the radial distri-

bution, analyzes for the possible effect of a reflector. In this case,

the function to be fit is given by

O(r) = A 1 J (a 1 r) + A 21(a 2 r) (A1. 31)

where the quantities A, A 2 , a , and a 2 are solved for in the least-

squares fitting process. The theoretical basis of this code is the

same as that of the J code described in section Al. 2. The data-

reduction portions of the codes are identical. In this case, di, the

ith residual (see Equation Al. 10), is given by

d = Fi - pia - qib - r c - s d (A1. 32)

where



a23

P a1 (a10r) (Al. 33)

0

q -A 2  10 (a 2 0rj) (A1. 34)
o0

r. - rA1 1(a10r ) (A1. 35)
0

and

s r.A 2 0 I1(a 2 0 r ) (Al. 36)

62 is then minimized with respect to A1 , A2 , a1 , and a2, and

equations for a, b, c, and d may be obtained corresponding to

Equations (Al. 16) and (Al. 18). An iterative procedure must be

followed until

a <E 1 , <E c < , and < E (Al. 37)
A"1 2 a 1  V 2 4

where the epsilons are input quantities.

The code uses the subroutine BESSIE described above to calcu-

late J and J Bessel functions. Another subroutine, BESIO, is used

to calculate 1 0and 1 Bessel functions. The series representation

which forms the theoretical basis of the code is

2k+p

IPx = (2(Al. 38)
k=k' (k+p)'Ik=O

The subroutine operates by calculating successive terms in the' series

expansion until adequate convergence is attained. The following

recursion relations, derived from Equation (Al.38), are used in the

code:

"M Om _-1-11--l -11, - _
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for I

T = T (x/2)2 (A1. 39)
k+1 Tk[Lk+1) 2

for I,

Tk+1 = Tk (kx)+2) (A1. 40)

where Tk is the kth term in the particular series. The calling state-

ment must include the same information as that required for BESSIE

(with obvious changes of nomenclature).

Al. 4. 2 Outline of the Reflector Effect Code

The logical flow of the code is shown in Fig. Al. 2. Because

of the nature, of the code, no search for the center of the distribution

or dropping of outer points is included, although these can be effected

by rerunning the code. An input quantity limiting the number of

iterations is included to preclude excessively long runs.

An example of the output of the code is given below. The output

is for a trial run in which A2 /A, 0.10.

PALMEDO JO + 10 FIT

RUN NUMBER 5

04 ITERATIONS WERE USED

R POSITION EX. FLUX FIT FLUX

5.0000 1.0000 1.0031
10.0000 0.9780 0.9826
15.0000 0.9451 0.9491
20.0000 0.9003 0.9035
25.0000 0.8381 0.8471
30.0000 0.8060 0.7815
35.0000 0.7365 0.7087
40.0000 0.6185 0.6308
45.0000 0.5389 0.5501
50.0000 0.4648 0.4691

B12= 0. 1291E-02 B22= 0. 1222E-02 AA1 = 0 .9316 AA2= 0 .078315

EXTRAPOLATED RADIUS = 66.94171 ITERATIONS = 10.0

DELAA1 = 0. 2845E-00 DELAA2 = 0 . 9348-01 DELB1 0. 4337E-02
DELB2 = 0. 1085E-00

...........
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Fig. Al. 2 Schematic Outline of the Reflector Effect Code
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Al. 4. 3 Fortran Listing of the Reflector Effect Code

C P. F. PALMEDO PROB NO. M1297

DIMENSION A1(40, 5), T2(40, 5), T1(40, 5), PHI (41), CORR(40),
A2(40, 5), Q(40), R(40), S(40), F(40), X(40), RO(40), ALPHA(40),
BJO(40), BJ1(40), BIO(40), BI1(40), ACTY(40), FIT(40), P(40),
ALPHA2(41)

DET3F(A11,A12,A13,A21,A22,A23,A31,A32,A33)=A11*(A22*A33-
A23*A32)-A12*(A21*A33-A23*A31)+A13*(A21*A32-A22*A31)

DET4F(A11, A12, A13, A14, A21, A22, A23, A24, A31, A32, A33, A34,
A41, A42, A43, A44)=A11*DET3F(A22, A23, A24, A32, A33, A34,
A42, A43, A44)-A12*DET3F(A21, A23, A24, A31, A33, A34, A41,
A43, A44)+A13*DET3F(A21, A22, A24, A31, A32, A34, A41, A42,
A44)-A14*DET3F(A21, A22, A23, A31, A32, A33, A41, A42, A43)

1 FORMAT (13, 13, 14, 14)
2 FORMAT (19HOPALMEDO JO+IO FIT)
3 FORMAT (F10. 0, F10. 3, F10. 3)
5 FORMAT (F10. 7, F10. 4, F10. 4,2F12. 8)
6 FORMAT (F10. 4, F10. 6)
7 FORMAT (12H RUN NUMBER 14)
8 FORMAT (2E 10. 2)
9 FORMAT (4F8.6)

10 FORMAT (F5.0)
WRITE OUTPUT TAPE 2,2

4 READ INPUT TAPE 4, 1, M, N, NORUN, LASTRN
READ INPUT TAPE 4, 10, ADLAST
READ INPUT TAPE 4,3, ((A1(I, J), T2(I, J), T1(I, J), J=1, N) I=1, M)
WRITE OUTPUT TAPE 2, 7, NORUN
READ INPUT TAPE 4,5, ADAM, BKG, Y, BZERO, B2ZERO
READ INPUT TAPE 4,9, EPS1, EPS2, EPS3, EPS4
READ INPUT TAPE 4,6, (X(I), CORR(I), I=1, M)
READ INPUT TAPE 4,9, PX, QX
SPIN=0. 0
DO 27 I=1,M
ASUM=O.0
DO 20 J=1,N
CR=A1(I, J)/T2(I, J)
TAU=PX+QX*CR
A1K=(CR/(1 .0-CR*TAU))*T2(I, J)-(BKG*T2(I, J))
A2(I, J)=A1K*EXPF(ADAM*T1(I, J) ) /(1 . 0-EXPF(-ADAM*T2(I, J)))

20 ASUM=ASUM+A2(I, J)
FUNNY=N

21 A2AV=(ASUM/ FUNNY)* CORR(I)
IF (1-1)25, 25, 26

25 SPIN=A2AV
26 PHI(I)=A2AV/SPIN
27 CONTINUE
45 FORMAT (F12.4, F10. 4, F10. 4)
60 FORMAT (17H FOIL ACTIVITIES)
61 FORMAT (11E10.6)
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Fortran Listing of the Reflector Effect Code (continued)

SUMSS=SUMSS+S(I)**2
SUMPP=SUMPP+P(I)**2

35 CONTINUE
DOO=DET4F(SUMPP, SUMPQ, SUMPR, SUMPS, SUMPQ, SUMQQ,

SUMQRSUMQS, SUMPR, SUMQR, SUMRR, SUMRS, SUMPS, SUMQS,
SUMRSSUMSS)

DLTAA1=DET4F(SUMPF, SUMPQ, SUMPR, SUMPS, SUMQF, SUMQQ,
SUMQR,SUMQS,SUMRF,SUMQR,SUMRR,SUMRS, SUMSF,SUMQS,
SUMRS,SUMSS)/DOO

DLTAA2=DET4F(SUMPP, SUMPF,SUMPR, SUMPS, SUMPQ, SUMQF,
SUMQR, SUMQS, SUMPR, SUMRF,SUMRR, SUMRS, SUMPS, SUMSF,
SUMRS, SUMSS)/DOO

DLTAB1=DET4F(SUMPP, SUMPQ,SUMPF, SUMPS, SUMPQ, SUMQQ,
SUMQF, SUMQS,SUMPR, SUMQR,SUMRF, SUMRS, SUMPS, SUMQS,
SUMSF, SUMSS)/DOO

DLTAB2=DET4F(SUMPP,SUMPQ,SUMPRSUMPF.,SUMPQ,SUMQQ,
SUMQR, SUMQF, SUMPR, SUMQR, SUMRR, SUMRF, SUMPS, SUMQS,
SUMRS, SUMSF)/DOO

300 FORMAT (4E 12. 4)
WRITE OUTPUT TAPE 2, 300, (AA1, AA2, B1, B2)
WRITE OUTPUT TAPE 2, 300 (DLTAA1, DLTAA2, DLTAB1, DLTAB2)
IF (ABSF(DLTAA1) /AA1-EPS1)36, 36, 38

36 IF (ABSF(DLTAA2) /AA2-EPS2)37, 37, 38
37 IF (ABSF(DLTAB1)/B1-EPS3)39, 39, 38
39 IF (ABSF(DLTAB2)/B2-EPS4)40, 40,38
38 AA1=AA1+DLTAA1

AA2=AA2+DLTAA2
B1=B1+DLTAB1
B2=B2+DLTAB2
IF (ADDUP-ADLAST) 301, 302, 302

301 ADDUP=ADDUP+1.0
GO TO 31

303 FORMAT (13, 21H ITERATIONS WERE USED)
302 WRITE OUTPUT TAPE 2,303, (ADDUP)

40 DELA1=SQRTF(DET3F(SUMQQ, SUMQR,SUMQS,SUMQR,SUMRR,
SUMRS, SUMQS,SUMRS,SUMSS)/DOO)

DELA2=SQRTF(DET3F(SUMPP, SUMPR, SUMPS, SUMPR, SUMRR,
SUMRS,SUMPS, SUMRS, SUMSS)/DOO)

DEL B1=SQRTF(DET3F(SUMPP, SUMPQ, SUMPS, SUMPQ, SUMQQ,
SUMQS, SUMPS, SUMQS, SUMSS)/DOO)

DELB2=SQRTF(DET3F(SUMPP, SUMPQ, SUMPR, SUMPQ, SUMQQ,
SUMQR,SUMPR,SUMQR,SUMRR)/DOO)

EXRAD=2. 4048/B1
B12=B1**2
B22=B2**2

41 FORMAT (32H R POSITION EX. FLUX FIT FLUX)
42 FORMAT (5H B12=E13.4, 5H B22=E13.4, 5H AA1=F1O.4, 5H AA2=

F10.6//21H EXTRAPOLATED RADIUS=F12. 5, 12H ITERATIONS=
F6. 1//8H DELAA1=E12.4, 8H DELAA2=E12. 4, 7H DELB1= E12. 4,
7H DELB2=E12.4)
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WRITE OUTPUT TAPE 2,41
WRITE OUTPUT TAPE 2, 45, (RO(I), PHI(I), FIT(I), I=1, M)
WRITE OUTPUT TAPE 2, 42, (B12, B22, AA1, AA2, EXRAD, ADDUP,

DELA1, DELA2, DELB1, DELB2)
IF (LASTRN-NORUN)51, 51, 50

50 GO TO 4
51 CALL EXIT

END (1, 1,0,0,0,0,0,0,0,0, 0, 0, 0, 0)

Subroutine BESIO:

SUBROUTINE BESIO (X, Q, M, BIO, BI1)
DIMENSION X(40), BIO(40), BIl(40), SQX(40)
E PS=0. 0001
DO 200 I=1, M

200 SQX(I)=(X(I)**2)/4
IF (Q)202, 202, 210

202 DO 219 I=1, M
COUNT= 1. 0
TERM=1 0
BIO(I)=1. 0

203 TERM=TERM*SQX(I)/ COUNT** 2
BIO(I)=BIO(I) +TERM
IF (TER1I-EPS)209, 209, 205

205 COUNT=COUNT+1. 0
GO TO 203

209 CONTINUE
210 IF (Q)221, 211,211
211 DO 221 I=1, M

COUNT=1. 0
TE RM=X(I)/ 2. 0
BI1(I)=X(I) /2. 0

212 TERM=TERM*SQX(I)/(COUNT*(COUNT+1))
213 IF (TERM-EPS)221,221,214
214 COUNT=COUNT+1

GO TO 212
221 CONTINUE
222 RETURN

END

Al. 4. 4 Vocabulary of the Reflector Effect Code

There follows a list of symbols used in the code which have

not been defined before and are not defined clearly in the Fortran

listing of the code.
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Correspond-
ing Symbol
in Appendix

Equation
in

Appendix

Input Output
Quantity Quantity

BZERO First guess at a

B2ZERO First guess at a2

AA1

AA2

B1

B2

P(I)

Q(I)

R(I)

S(I)

ADDUP Iteration number

ADLAST Iteration limit

a 1 0

a 2 0

A 1

A
2

a1

a
2

pi

r.

S.I

Al.33

A1. 34

Al. 31

Al. 31

Al. 31

Al. 31

Al.33

Al. 34

Al. 35

Al.36

*

*

*

*

*

*

*

*

Al. 5 FITTING TO THE AXIAL SINH DISTRIBUTION

Al. 5. 1 Theoretical Basis of the Code

The axial distribution code again uses the same data analysis

section as is used by the codes described above. In this case, the

quantities, P, of Equation (Al. 3) correspond to values of the flux

at various axial positions, z The axial distribution code fits the

measured values of the flux, e (z.), to the theoretical distribution

given by

4(z1 ) =A sinh y(h'-z.) (Al. 41)

2
where the normalizing constant, A, and the buckling, y , are

determined in the least-squares fitting process; h' is the extrapo-

lated height of the tank.

Symbol
in Code

IU
U
U
I
I
U

..............................



a31

Again, a linearization of the fitting equation must be performed to

allow application of the least-squares method. Expanding the ex-

pression for the flux about the initial guessed values of A, A0 , and

y, To , one obtains

$0,(A, -y) -= 4 (Ao, -to) + u-a + v b + ... (A1. 42)(A1.41

where a and b are the first order correction terms to A and -y ,

respectively, and

U. = sinh y(h'- z ) (A1. 43)
1 8Ao0i

v. = - A (h'- z.) cosh y (h' - z.) (A1. 44)
1 IY1 01

The theoretical development follows the same lines from this point as

that for the J code described in section Al. 2.2. The corrections to

A and y may be a given fraction (or a multiple) of a and b, so that
0 o

the new A, A., is given by

A. = A. + a -x (Al. 45)
S - 1 a

and

I y 1 + b .xb (Al. 46)

where xa and xb are specified in the code input.

As in the J code, the residuals may be weighted in the fitting

process with a power of the flux specified as input. This is of par-

ticular importance in this code because of the large range of values

of the experimental flux. With no weighting function, the points near

the bottom of the tank are automatically weighted too heavily in the

fitting process.

Al. 5.2 Outline of the Axial Code

Figure Al. 3 represents the logical flow of the axial code. The

iterative procedure is followed until either adequate convergence is
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Fig. Al .3 Schematic Outline of Axial Sinh Code

b 
.........
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attained or the limit of iterations is reached. It is possible to try

several different values of the extrapolated height, h' . This is

accomplished by means of the input quantities, q' and s', along

with the estimated extrapolated height, h ; s' specifies the amount

that the h' is to be varied at each trial and q', the number of times

h' is to be varied in each direction. Thus, the first trial of h' is

given by

(Al. 47)h' = h' - q . s'
0

and the last trial is given by

h' = h' + q' - st
0

(Al. 48)

It is possible that, owing to harmonic effects, the points taken

near the bottom of the tank do not actually correspond to a sinh

function. To study this effect, provision is made in the code to re-

peat the fitting process, using successively fewer points (down to

some present, i.e., input, number). When this aspect of the code

is being used, the input data should be given starting with points at

the top of the tank. An example of the output of the code is given

below.

Print-out from Axial Code:

RUN NUMBER 3106

FOIL ACTIVITIES

0.96697E 07
0.11012E 08
0.12924E 08
0.14621E 08
0.16931E 08
0.19129E 08
0.22049E 08
0.24857E 08
0.28854E 08
0.32705E 08
0.38165E 08
0.42626E 08
0.50509E 08
0.57232E 08

0. 96401E
0. 11186E
0. 12648E
0. 14764E
0. 16948E
0. 19171E
0 .21991E
0.24540E
0.28549E
0. 33093E
0. 37896E
0.42928E
0. 50175E
0. 57261E

07
08
08
08
08
08
08
08
08
08
08
08
08
08

0.96459E
0. 11038E
0. 12659E
0. 14600E
0. 16802E
0. 18999E
0. 22372E
0. 25013E
0. 29017E
0 .33116E
0. 37502E
0.42224E
0.49445E
0. 56371E

07
08
08
08
08
08
08
08
08
08
08
08
08
08



a34

Print-out from Axial Code (continued)

0.3923E-00
0.4467E-00
0. 4471E-00

Z POSITION
102. 8700
97. 1600
91.4400
85. 7300
80.0100
74. 3000
68. 5800
62.8700
57.1500
51. 4400
45. 7200
40.0000
34.2900
28. 5700

0. 2358E-01
0. 2322E-01
0 . 2325E-01

0. 1690E
0. 1690E
0*. 1690E

03
03
03

EXP. FLUX
1. 000000
1.147816
1.320341
1.519052
1. 750288
1. 978840
2. 293578
2.569817
2.984586
3. 416041
3. 921943
4.412869
5.184760
5.900889

0. 1337E-00
0. 5438E-01
0.3507E-03

FIT FLUX
0.991900
1.145502
1.319643
1.516786
1.741114
1. 995800
2.286248
2.616566
2.993762
3. 423173
3.913909
4.473956
5.112040.
5.841699

-0.5185E-02
-0.3585E-03

0 . 309 1E-04

DELTA
0.008100
0 . 002314
0.000698

-0.002266
0. 009174

-0.016960
0.007330

-0.046749
-0.009176
-0.007132

0. 008035
-0.061088
0.072720
0 . 059189

EXTRAPOLATED HEIGHT = 169. 00000 CM.
AXIAL BUCKLING = 0. 000540458 INV. SQ. CM.
A=0. 4471 DELA=0. 7844E-04 DELG=0 . 3778E-02
3 ITERATIONS WERE USED
14 POINTS WERE USED
WEIGHTING EXPONENT = -1.00
EPSILONS USED = FOR A 0.000010 FOR GAMMA

DELC=0 .

0.000010

Al. 5. 3 Fortran Listing of the Axial Code

PHILIP F. PALMEDO AXIAL FIT TO GAMMA AND A

SINHF(Q)=0. 5(EXPF(Q)-EXPF(-Q))
COSHF(Q)=0. 5(EXPF(Q)+EXPF(-Q))
DIMENSION A1(50, 5), T2(50, 5), T1(50, 5)PHI(50), A2(50, 5), U(50),

W(50), X(50), F(50), Z(50), FIT(50), HYSINE(50), HYCOS(50), ACTY(5),
WT(50), DIFFR(50)

1 FORMAT' (I3, 13, 14, 14, 14)
3 FORMAT (F1O. 0, F10. 3, F10. 3)
5 FORMAT (F10 . 7, F10. 4, F12. 5, F10 .4, 2F8.6)
2 FORMAT (32H PALMEDO AXIAL DISTRIBUTION FIT)
6 FORMAT (F10. 4, F10. 6)
7 FORMAT (12HORUN NUMBER 14)
8 FORMAT (2E10.2)
9 FORMAT (13)

10 FORMAT (3F5.2)
11 FORMAT (2F5.2)

WRITE OUTPUT TAPE 2,2
4 READ INPUT TAPE 4, 1, M, N, NORUN, LASTRN, MFNL

F

0.
0.
0.
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READ INPUT TAPE 4,9,ITSFNL
READ INPUT TAPE 4, 10, XTRA, XTRG, RISE
READ INPUT TAPE 4, 3, ((A1(I, J), T2(I, J), T1(I, J), J=1, N)I=1, M)
WRITE OUTPUT TAPE 2, 7, NORUN
READ INPUT TAPE 4, 5, ADAM, BKG, GZERO, CZERO, EPS1, EPS2
READ INPUT TAPE 4, 11,STEP,QUANTO
READ INPUT TAPE 4,6, (Z(I), CORR(I), I=1, M)
READ INPUT TAPE 4,9, PX, QX
SPIN=0. 0
DO 27 I=O,M
ASUM=0.0
DO 20 J=1,N
CR=A1(I, J)/T2(I, J)
TAU=PX+QX* CR
A1K=(CR/(1. 0-CR*TAU))*T2(I, J)-(BKG*T2(I, J))
A2(I, J)=A1K*EXPF(ADAM*T1(I, J)) /(1 O-EXPF(-ADAM*T2(I, J)))

20 ASUM=ASUM+A2(I, J)
FUNNY=N

21 A2AV=(ASUM/ FUNNY)* CORR(I)
IF (1-1)25,25, 26

25 SPIN=A2AV
26 PHI(I)=A2AV/SPIN

WT(I)=PHI(I)** RISE / PHI(1)** RISE
27 CONTINUE
60 FORMAT (17HO FOIL ACTIVITIES)
61 FORMAT (1H, 6(4H, E11. 5))
47 WRITE OUTPUT TAPE 2,60

DO 49 I=1,M
DO 48 J=1, N

48 ACTY(J)=A2(I, J)
49 WRITE OUTPUT TAPE 2, 61, (ACTY(J), J=1, N)

FITTING PROCESS IS TO BEGIN
28 AA=2. 0*EXPF(-GZERO*(CZERO-Z(1)))

G=GZERO
C= CZERO-QUANTO* STEP

29 ITS=0
291 DO 30 I=1,M

ALPHA=G*(C-Z(I))
HYSINE(I)=SINHF(ALPHA)

30 HYCOS(I)=COSHF(ALPHA)
SUMUU=O. 0
SUMUW=0. 0
SUMWW=0 . 0
SUMFU=O . 0
SUMFW=0. 0
SSQRES=0. 0
DO 35 I=1, M
U(I)=HYSINE(I)*WT(I)
W(I)=AA*(C-Z(I))*HYCOS(I)*WT(I)
FIT(I)=AA* HYSINE(I).
DIFFR(I)=PHI(I)-FIT(I)
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Fortran Listing of the Axial Code (continued)

F(I)=(PHI(I)-FIT(I))*WT(I)
SUMUU=SUMUU+U(I)**2
SUMUW=SUMUW+U(I)*W(I)
SUMWW=SUMWW+W(I)**2
SUMFU=SUMFU+F(I)*U(I)
SUMFW=SUMFW+F(I)*W(I)
SSQRES=SSQRES+F(I)** 2

35 CONTINUE
DOM=SUMUU*SUMWW-SUMUW**2
DELTAA=(SUMFU*SUMWW-SUMFW*SUMUW) /DOM
DELTAG=(SUMUU*SUMFW-SUMFU*SUMUW) /DOM
IF ((ABSF(DELTAA)/AA-EPS1)36, 36,39

36 IF (ABSF(DELTAG)/G-EPS2)40, 40, 39
39 AA=AA+XTRA*DELTAA

G=G+XTRG*DELTAG
369 FORMAT (6E 12.4)

WRITE OUTPUT TAPE 2, 369, (AA, G, C, DE LTAA, DE LTAG, DE LTAC)
IF (ITS-ITSFNL)391, 392, 392

391 ITS=ITS+1
GO TO 291

393 FORMAT (30HOTERMINATED ON ITERATION LIMIT)
392 WRITE OUTPUT TAPE 2, 393
40 EM=M

ZIP=SQRTF(SSQRES/ (EM- 2. 0))* 0.675
DE LA=SQRTF(SUMUU/DOM)*ZIP
DE LG=SQRTF(SUMWW/ DOM)* ZIP
GAMMA2=G**2

70 FORMAT (13, 21H ITERATIONS WERE USED)
41 FORMAT (F12.4,3F12.6)
46 FORMAT (45HO Z POSITION EXP. FLUX FIT FLUX DELTA)
42 FORMAT (21HO EXTRAPOLATED HEIGHT=F10. 5, 4H CM. , 17H

BUCKLING=12.9, 11H INV.SQ. CM., //4H A=FO.4, 6H DELA=
E12.4,6H DELG=E12.4,6H DELC=E12.4)

71 FORMAT (23H EPSILONS USED=FOR A, F8.6, 11H FOR GAMMA, F8.6)
72 FORMAT (21HOWEIGHTING EXPONENT=F6.2)
721 FORMAT (13, 17H POINTS WERE USED)

WRITE OUTPUT TAPE 2,46
43 WRITE OUTPUT TAPE 2,41, (Z(I), PHI(I), FIT(I), DIFFR(I), I=1, M)
44 WRITE OUTPUT TAPE 2, 42,(C, GAMMA2, AA, DE LA, DE LG, DE LC)

WRITE OUTPUT TAPE 2, 70, (ITS)
WRITE OUTPUT TAPE 2, 721,(M)
WRITE OUTPUT TAPE 2, 72, (RISE)
WRITE OUTPUT TAPE 2, 71, (EPS1, EPS2)
IF (C-CZERO-QUANTO*STEP)401, 402, 402

401 C=C+STEP
GO TO 29

402 IF (M-MFNL)404, 404,403
403 M=M-1

C=CZERO-QUANTO*STEP

"Imm"PM- W 11 .1 .9 P r 1,
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GO TO 29
404 CONTINUE
405 FORMAT (1OHOF I N I S)

WRITE OUTPUT TAPE 2,405
45 IF (LASTRN-NORUN)51, 51, 50
50 GO TO 4
51 CALL EXIT

END(1, 1, 0, 0, 0, 0,0, 0,0,0, 00,0, 0, 0)

Al. 5. 4 Vocabulary of the Axial Code

The Axial Code once more uses much of the vocabulary common to

the other codes. New symbols, not otherwise defined, are listed below.

Symbol
in Code

GZERO

XTRA

XTRG

CZERO

QUANTO

Meaning Correspond-
ing symbol
in Appendix

go

x
a

xb

h'
0

q'

s'

u.
1

V.
1

STEP

U(I)

W(I)

Equation Input
of Quantity

Appendix

A1. 41

A1.44

A1. 45

A1. 46

Al. 46

A1. 46

A1. 41

A1. 41

*

*

*

*

*

*

SINHF(x)

COSH(x)

DELA

sinh x

cosh x

probable error of A

DELG probable error of y

Output
Quantity

*

*
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APPENDIX A2

TWO-GROUP REFLECTOR ANALYSIS

During the design of the lattice facility, considerable attention

was directed toward the flux shape that would exist in the experi-

mental tank. In particular, since the theoretical analysis was to be

made in terms of a bare system, the back-scattering of fast leakage

neutrons by the surrounding shielding seemed to be a possible

problem. One of the methods suggested for avoiding such "room

return", if necessary, was to fill the outer tank of the facility with

borated H2 0. The calculations made to evaluate this scheme, as

performed by Mr. F. Becker, are summarized in this appendix.

For a first, rough treatment, the following assumptions were

made.

1. The physical situation could be represented as a two-region

system, a cylindrical core surrounded by an annular reflector to

which an absorber can be added. The shielding around the facility is

neglected, mainly to avoid the need for a three-region treatment.

This assumption is justified by the fact that, for the fast group, the

thickness of the reflector (12 inches) is large, compared to rT- where

' is the Fermi age of fission neutrons in the borated water, or about

5. 5 centimeters. In the thermal group, likewise, the assumption is

justified by the fact that, due to the boron loading, the thickness of

the reflector is large in comparison with the thermal mean free path.

2. Two-group diffusion theory could be applied to the problem.

This assumption finds its justification in the exploratory nature of

the calculation.

Fast neutrons back-scattered into the outer region should be

slowed down and absorbed in that region, while slow neutrons should

simply be absorbed. The problem, then, is to examine the theoreti-

cal form of the slow neutron flux in the core to see how the buckling
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can be obtained from the flux distribution.

Two-region, two-group diffusion theory has been treated in so

many places (W7), (H4), (G1), that we need only summarize its

results. The standard assumption of the separability of the axial,

azimuthal, and radial components of the flux is made. Only the

radial component of the fast and slow fluxes will interest us here.

The fast and thermal fluxes in the core are given respectively by

41ic(r) = AJO(ar) + CI(Ar) , (A2. 1)

and

$ 2 c(r) = aAJO(ar) + a 2 CIo(r) , (A2. 2)

where

_ 1cD 1 B( + 1 1c
D B 2 k (A2. 3)

2c1 2c p 2c
and

1c_ D1cB + c
a 2 k (A2. 4)

2 2 cB 2 + Z2c p 2c

The symbols have their usual meanings with subscripts 1 and 2

referring to the fast and thermal groups, respectively, and c

referring to the core. The "resonance" capture is assumed to

occur in a small energy band between the fast and the thermal

groups. The functional dependence of the fluxes has been obtained

by assuming that they both satisfy the Helmholtz equation, i. e.,

that

\ 2 Z + B 2 Z = 0 (A2. 5)

2 2
where Z is either +1c(r) or 42c(r). The quantities, B1 and B2 '
are the two solutions of the two-group criticality equations. They

can be expressed in the form

2 - a2 _2 and v2 _9 2 _y 2 ,(A2. 6)

2 2 2 2 2
where 2 is the axial buckling and =2 B, v = -B2 The solution
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of the criticality equation gives

2 _ 1 + 1 +)
2 L 1 L 22

+ 4(k-1) (A2. 7)
L 2L2

(a relatively small but positive quantity) and

v2 - - 1+(1+ 1)-2 L=
1 2

(A2. 8)

(a relatively large but negative quantity). It also follows from (A2. 6),

(A2. 7) and A2. 8) that

2 v - 2 + 02 and 2 + v2 = - + -
L L

The fast and thermal fluxes in the reflector are given by

O1r(r) SK0(K1rr)

# 2 r(r) = TK (K2 rr) - a 3SKo(K1rr) ,

pr(1r/ 2 r) _ _ pr(D 1r / 2 r)
a3  2 2 L2 L 2

1 r K2r L 1 - 2r

. (A2.9)

(A2. 10)

(A2. 11)

(A2. 12)

where

K r 1 2 and

1r

2 1

2 r

The conditions that have been assumed in the derivation of the

above equations are that the flux be finite and non-negative in the core,

and that it vanish at r = co. Four other boundary conditions are im-

posed; namely, that the fast and thermal fluxes, and the fast and

thermal net currents, are continuous across the core-reflector inter-

face. I. e ., that

(A2. 14)
$Ic(R) = # 1 r(R) ,

and

with

-2 (A2. 13)

+ 1

L2 L+

-1+ 1 + 4(k-1)
L 2 L 2

1 21
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(A2. 15)

(A2.16)

2c (R) = +2 r(R) ,

D*1c Dir
D1c 8r R Dr 8r R

D a2c D ____rR R
D~carcR =DrrR

(A2. 17)

where R is the core radius. By substituting the relations for the

fluxes, Equations (A2. 1), (A2. 2), (A2. 10) and (A2. 11), into Equations

(A2. 14) - (A2. 17), we obtain a determinantal equation. It is this

equation that is usually solved to obtain a value for the critical radius.

The determinantal equation can be reduced to the form:

P - Q = R -S (A2. 18)

aJ1 (aR)
P= -Dc J 0 (aR)

PI 1 (OR)
Q= a2D 2 c I (R)

R=D 2c 10 (OR)

KlrK, (K1rR)
+ D1 c K(,1rR)

KrKi(x~rR) ) 2rK, (K2rR)

3 D 2 r K0(K1 rR) (a 2 a 3 ) D2 r K0(x2rR)

D 1r K,(K 1rR)
Dlr K0(K1 rR) '

and

S= aDc 1aJ(aR) aD K1 rK,(K1rR) ) 2rK,(K2rR)
- 2c J 0 (aR) + 2r K0(K1 rR) + (aa 3 ) D 2 r K0(K2rR)

Our primary interest is in the thermal flux in the core. It is

convenient to recast Equation (A2. 2) in the form

J 0 (ar) + XI (or)
$ 2 c(r) = +2c(o) 1+ , (A2.19)

where

_ a2
A a1

(A2. 20)

and

where
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The ratio C/A can be obtained from the following equations derived

from (A2. 14), (A2. 15), and (A2. 16):

AJ 0 (aR) + CI 0 (#R) = SK0(K1 r R)

a AJ (aR) + a2 CI (or) = TKo(x 2 rR) - a 3 SKo(IcrR)

and

D1 cAaJ,(aR) - DcCPI(PR) = D1 r 1K K( 1 R) (A2. 21)

Solving these, we get

C D 1 K(K 1rR) aJ,(aR) - J 0 (aR) D1r K1rK 1rR)
A K 1r1o(OR) D 1rK(KirR) + K9(K1rR) DcPI1(PR) . (A2. 22)

We are now in a position to use the above equations to examine

the problem at hand. Basically, we would like to determine X, and

examine Equation (A2. 19) for various values of the boron concen-

tration in the water of the reflector region. As an example, the

numbers were calculated for a lattice of 0. 50 inch diameter, 1 per

cent enriched rods, with a value of 23. 66 for the ratio of the volume

of moderator to the volume of uranium. The quantities needed for

the calculation and their derivation are given below:

Pr

Basis of Calculation:

1p E 0
1n p = f-- ,f

s E

a dE'
1 + Za /

Even for quite large concentrations of B in H 20, the epithermal flux

varies as 1/E (P7). We calculate p from 20 key to thermal with the

following data (H5):

TsH =20b

0aB(th) = 755b

-sB= 3.8b

T aO 0

a- = 0.3b

(1/v dependence)

sO s 3.8b

The results of the calculation are shown in Fig. A2. 1.

(A2. 23)
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Basis of Calculation:

_1

Dr -

M(1 FL) (1

1LH = 0.333

I

4 a
(A2. 24)

+ a 0

.LO0 = 0.958

B= 0.944

and the cross section given above.

The results of the calculation are shown in Fig. A2. 2.

L 2

Basis of Calculation:

L2 = D 2 / (A2. 25)

The cross sections given above were used, and the resultant

diffusion areas are shown in Fig. A2. 3.

D1r

Basis of Calculation:

E
fEo D(E) c (E) dE

D r th
1 r E

f 4(E) dE
Eth

Assumptions:

(A2. 26)

oc 1

E = 2 Mev,
0

(see ref . P7)

Eth = 0.025 ev

Data:
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ra(E) E(E)(ED(E) = 1/3M(E) [1 - (E)] 1 - (E) + T(E) - (E)

Data:

1 (E) constant for all materials other than H

H(E) = 0. 065 6  0.088 ev < E < 2 Mev

H(E) = E 025 (0.45) + 0.15 0.025 ev < E < 0.088 ev

(from reference D5)

SaB =1.8b 1 kev < E < 2 Mev

aB 755b E = 0.025 ev

aaB cc 1/v 0.025 ev < E < 1 kev

aO =0

waH 0.3b

esB= 3.8b 1 kev < E < 2 Mev

sB= 4.Ob 1 ev < E < 1 kev

asB =4.2b 0.025 ev < E < 1 ev

sO= 3.7b

sH = 2. 5b E = 2 Mev

sH = 20b E = 10 kev

esH cc 1/v 10 kev < E < 2 Mev

asH = 20b 1 ev < E < 10 kev

esH = 32b E = 0.025 ev

H oc E-5. 3  0.025 ev < E < 1 ev

The above cross sections are taken from BNL-325 (H5). The results

of the calculation are shown in Fig. A2. 4.

r

Basis of Calculation:

T = L r= D 1 / 1  (A2. 27)

The data for this calculation have been given above, and the results of

the calculation are shown in Fig. A2. 5.
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It is now possible to calculate the fast-thermal coupling coef-

ficient, a 3 , as given by Equation A2. 12. The dependence of a3 on

boron concentration is shown in Fig. A2.6. The fast-thermal

coupling coefficients for the core, a 1 and a 2 , as defined by Equations

(A2. 3) and (A2. 4) can be calculated by using the following data (from

references R2, E4, and H5):

p = 0. 863 B 2= 12.81 cm 2

2= 66.2cm 2  Z(D -4 -1
2c=a2)10 cm

Llc = 123.8 cm 2  E (U) = 0.405 cm1
Lic a

((D2O) = 0.509 Es(D2O) = 0. 351 cm-

t(U)= 0.0084 s(U) = 0. 264 cm~

These data lead to

a1 = 0. 489 and a 2 = -0.855

Other dati used are:

Dlc = 1. 29 cm D2c = 1.092 cm

With the above data, the variation of X with boron concentration in

the reflector may be calculated as follows: A value of x, the boron

concentration, is chosen. Try a value of a. From Equations (A2.9),

(A2. 7) and (A2. 8), deduce the corresponding value of A. The right

and left hand sides of Equation (A2. 18) are then evaluated. This is

repeated for different a's until Equation (A2. 18) is found to be satis-

fied. The process is then repeated for other values of x. The vari-

ation of k with x is then found by using Equations (A2. 20) and

(A2. 22). The results of this calculation are shown in Fig. A2. 7.

It is now straightforward to calculate the thermal flux distri-

butions that would exist in the tank with various concentrations of

boron in the reflector. The results of this calculation are shown in

Fig. A2.8.

It should be noted, first of all, that an appreciable boron

concentration is required before the flux assumes a pure Bessel

function shape. At a B 2 0 3 /H 2 0 volume ratio of 5X10 2, the boron
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concentration is 90 gm./liter. Even at this concentration, the I0

term is 3 per cent of the total value of the flux at 60 cm. The

necessity for very high boron concentrations in order to obtain a

pure J0 flux can be understood by examining the curves of Figs.

A2. 1 - A2. 5. Many of the important parameters are strongly

affected only at x values of 10 to 10 2 . This fact is further dis-

played by the shape of the curve for X of Fig. A2. 7.

Secondly, it should be noted that even at very high boron

concentrations, the flux distribution does not correspond to that

for a bare reactor. The reason for this is, of course, that the

boron has very little effect in the fast groups. The reflector, al-

though it may be a sink for thermal neutrons, still acts as a good

reflector for epithermal neutrons.

In conclusion, it may be said that the method discussed above

for dealing with the problem of fast reflection is, at best, difficult

and, at worst, not feasible. It is doubtful whether sufficiently high

boron concentrations can be obtained, for example. In any case, if

such a method were used, the flux in the core would have to be

fitted to an expression such as (A2. 1)) to obtain the buckling.

Despite the complexity of even the straightforward approach

used here, it would probably be advisable to examine fast reflection

effects from shielding with a three-region, multigroup treatment.

Only in such a calculation can a sufficiently accurate picture of fast

neutron effects be obtained.

4 OW, 1 .1 -- o-M
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