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ABSTRACT

A class of consistent coarse mesh modal-nodal approximation
methods is presented for the solution of the spatial neutron flux in
multigroup diffusion theory. The methods are consistent in that they
are systematically derived as an extension of the finite element
method by utilizing general modal-nodal variational techniques.
Detailed subassembly solutions, found by imposing zero current
boundary conditions over the surface of each subassembly, are modi-
fied by piecewise continuous Hermite polynomials of the finite element
method and used directly in trial function forms. Methods using both
linear and cubic Hermite basis functions are presented and discussed.

The proposed methods differ substantially from the finite element
methods in which homogeneous nuclear constants, homogenized by
flux weighting with detailed subassembly solutions, are used. How-
ever, both schemes become equivalent when the subassemblies them-
selves are homogeneous.

One-dimensional, two-group numerical calculations using repre-
sentative PWR nuclear material constants and 18-cm subassemblies
were performed using entire subassemblies as coarse mesh regions.
The results indicate that the proposed methods can yield comparable
if not superior criticality measurements, comparable regional power
levels, and extremely accurate subassembly fine flux structure with
little increase of computational effort in comparison with existing
coarse mesh methods.
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Chapter 1
INTRODUCTION

1.1 Preface

The large variety of approximation methods and techniques used
in computational reactor analysis and simulation has caused the area
of numerical reactor physics to become one of the most exciting
areas in applied nuclear reactor physics today. The application of
numerical analysis is most important in two phases of reactor design;
feasibility studies and safety analysis. The primary consideration of
the reactor physicist has been and must continue to be the safety of
the reactor during and after any foreseeable nuclear accident. A
realistic safety analysis can be obtained only if all the physical
processes occuring within the reactor can be adequately described
and related. Since all of these processes can be shown to be
dependent upon the neutron density distribution throughout the reactor
core, a detailed solution of the spatial neutron flux is vital. 1

The dynamic characteristics of a reactor strongly depend upon
the spatial approximation and solution of the neutron flux. Approxi-
mation methods utilizing gross averaging of the flux near localized
strong absorption and production regions, such as cruciform control
rods or small water channels, can lead to inaccurate results. Large
errors may result from the use of such methods in spatial kinetics
problems such as depletion and xenon oscillation calculations. Much

attention has therefore been focused upon approximation methods
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which can obtain detailed spatial neutron flux distributions within
large reactor cores.

The Boltzmann neutron transport equa‘cion2 is considered to be a
sufficiently detailed description of the physical processes occuring
within a nuclear reactor, and naturally is most difficult to solve.
The P-1 and diffusion theory approximations3 greatly simplify the
transport equation into more tractable equations which have been
found to approximate adequately the flux distributions for most
large-core reactors such as PWR, BWR, and LMFBR core geome-
tries. The advent of high speed digital computers has enabled wide-
spread use of diffusion theory because of its simple mathematical
form and straightforward numerical solution techniques inherent
with its use.

The treatment of the spatial approximation in diffusion theory is
the primary concern of this report. There is in existence an
increasingly abundant variety of such approximation methods
currently in use. Fine mesh methods ,4 for example, can yield very
accurate results through the use of extremely large numbers of
unknowns. However, such methods may well exceed the storage
capacity of present day computers, as well as being exceedingly costly.
Coarse mesh methods and particularly synthesis techniques,5 on the
other hand, have recently become attractive as the number of un-
knowns can be drastically reduced, although the accuracy of many of
these methods is in doubt,

The purpose of this report is twofold: first, to present the general

development of variational approximation methods used to derive



13

difference approximations to the neutron diffusion equation; and second,
to extend this development in order to develop systematically a class of
consistent coarse mesh approximation methods which can approximate
accurately the detailed spatial neutron flux and can also be easily
incorporated into present day computer codes. As this report will

deal only with the spatial approximation, the inclusion of time depend-

ence will be set aside for future study.

1.2 The Time-Independent, Multigroup Diffusion Theory Equations

The energy discretized multigroup P-1 approximation to the
Boltzmann neutron transport equation excluding time dependence can
be written in standard group notation for each energy group g as

follovvs:3

Jglr) + D (x) Y6 (r) = 0 (1.1a)

G G
\ 1 Al
V-j(r)+Z (r)¢ (r)- ), L__[(r)¢_,(r)=+ vE, (1) _,(r)
~ g g% L PagTgr) = xxg L Vi,

g':l g':l

g'*g

(1.1b)

where the group index g runs from the highest energy group, 1, to the
lowest energy group, G. The symbols and notation used throughout this
report are summarized in Appendix A. Equations 1.1 are the standard
.P-llequations which relate the vector neutron current ig(r) for each
energy group g with the scalar neutron flux ng(r). The current may be

eliminated via Fick's law, Eq. 1.1a, in order to obtain the multigroup

diffusion equation:

>

G
-¥ D (r)V9 (r) +L (r)é (r) - legg,<r)¢g,<r>= Xg
= g

T MQ

; v):fg,(r)tﬁg,(r)

1

(1.2)



Equation 1.2 can be written in operator matrix notation as
- - D(r)¥a(r)+ [M(r)-T(r)] &(r) = x B(r)a(x)
where ID, IM, T, and IB are G X G group matrices defined by
D(r) = Dlag[Dl(r) Dg(r) DG(r)]

IM(r)= Diag[Z,(r) ... Eg(r) con Eglo)]

0 “Iiglr) L L))
ey - | E1® 0 o TEg)
b—EG.l(r) —z('}z(r) L 0 |
(1) [Ba - v ]
B(r) = | .
\XG/

and &(r) is the group flux vector

a(r) = Col[4,(r) ... §(r)]

14

(1.3)

(1.4a)

(1.4b)

(1.4c)

(1.4d)

(1.4e)

In problems where no upscattering is present, Egg,(r) =0forg<g,

and T becomes G X G lower triangular.

It is also convenient to define the group current vector J(r)

J(r) = Col[_il(r) e _;_iG(r)]

(1. 4f)

and the G X G group absorption, scattering and production matrix A(r)

A(r) = M(r) - T(r) - X B(r)

(1.4g)
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Equations 1.1 and 1.2 may then be written simply as

J(r) + D(r)Va(r) =0 (1. 5a)

V-J(r) + Al(r)a(r) = 0 (1.5Db)
and

-V - D(r)Va(r) + Alr)a(r) = 0 (1.6)

respectively. These forms of the group diffusion equations will be
used throughout this report. The boundary conditions on &(r) are of
the homogeneous Neumann or Dirichlet type,6 while the normal com-
ponent of the current J(r) is required to be continuous across all

internal interfaces.

1.3 Solution Methods

All of the solution methods which can be employed in order to
obtain approximate solutions to the time-dependent, multigroup
diffusion equations may be conveniently classified as belonging in the
area of either nodal analysis or modal analysis, or a combination of
the two: modal-nodal analysis, The principal concept in each of
these analyses is that the neutron flux, a continuous function of
many variables, may be approximated as a set of unknown coef-
ficients and/or functions of possibly fewer variables. The ultimate
goals of such approximation methods are to produce easily solvable
coupled equations which relate the unknowns to each approximation
and yield results of acceptable accuracy at a low cost. Various

commonly used methods and their drawbacks are discussed below.
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1.3.1 Nodal Methods

Nodal methods involve the local approximation of an average flux
at points called nodes, where each node represents a distinct region
within the reactor in which the average flux is define;d. An ordered
set of nodes connected by a grid of mesh lines is then used to approxi-
mate the spatial flux behavior. The accuracy of such methods is
generally governed by the internodal coupling or neutron current

approximation inherent in each method.

A. Conventional Finite Difference Equations

The common finite difference equations used in diffusion
theory can be derived using Taylor series expansion, variational
techniques, or box integration methods about each spatial node. 7
The second-order diffusion term at each node is replaced by three-
point difference equations relating consecutive nodes in each spatial
direction. The resulting band-structured matrix equations exhibit
many advantageous mathematical properties and can be solved with
the use of simple solution algorithms.

The attractiveness of these difference equations is further
enhanced by the fact that, for properly posed problems (including
proper boundary conditions), the approximation can be shown to
converge to the solution of the differential equation as the mesh size
approaches zero, Also, the accuracy of the approximation can be
shown to be in general of order O(h),8 thus error estimates for the
approximation are available. It is for these reasons that these
equations are frequently invoked as "exact' solutions to diffusion

equation problems. The main disadvantage, however, is that, as the
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number of nodes increases, the amount of labor and cost involved in
order to obtain an accurate solution increases geometrically. A point
of diminishing returns is then quickly reached where further accuracy
is prohibitively expensive. Another disadvantage is that any known
physical insight or a priori detailed flux behavior cannot be used with
this approximation.

A formal derivation of the conventional difference equations is

given in section 2.3 of Chapter 2.

B. Gross Coupling Models

In gross coupling or coarse mesh nodal techniques an attempt
is made to decrease drastically the number of nodes needed for
solution without significantly decreasing solution accuracy. Many such
methods have been proposed by postulating various forms of neutronic
coupling or communication interaction between nodes.

1. Phenomenological Modelg’ 10,11

From a physical viewpoint, the reactor can be divided into
several distinct regions, each represented by a node located some-
where in that region. Equations of balance relating state variables
of interest (average neutron flux, regional power, etc. ) can then be
written for each region and between region nodes. Internodal coupling
is governed by a set of coefficients, say pij’ which may account for
the number of neutrons born in region i which appear in region j. A
set of algebraic equations can then be written which describe the

coupled core dynamics of the nodal interactions.
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The principal drawback of such methods lies in the definition of
the interaction parameters pij‘ Although the describing equations of
the phenomenological model can be directly formulated from diffusion
theory,12 the method of calculating the coefficients pij remains
unclear. However, the physical simplicity of this model has made it
very appealing in coupled kinetics methods development. Much of the
work in this field is based on deriving approximations which reduce

to this simple conceptual model.

2. Effective D/L Coupling13
These methods are very similar to finite difference approxi-

mations in that the structural forms of the resulting difference
equations are identical. In order to compensate for the use of large
internodal mesh spacing, the reactor constants, and the diffusion
coefficients in particular, may be altered so that they correspond in
an average sense to those obtained from a fine mesh calculation, 14
In this way it is hoped that the gross internodal coupling will be suf-
ficiently improved to compensate for the large mesh spacings.

It has been shown that such methods can indeed improve inter-
nodal coupling for large mesh regions; howevef, the results are
generally not satisfactory since the coupling constants are dependent

in an unpredictable way on changes in the properties of the nodes.

3. Fission Source Coupling15
The assumption that the reactor flux can be separated into
partial region fluxes due to nodal fission sources permits a consistent

derivation of nodal coupled kinetics equations from multigroup
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diffusion theory. Fission modes can be found from detailed flux
solutions which are then used to account for internodal coupling,
This method gives reasonably accurate results for fast and thermal
reactor transients, although the number of nodes necessary to
achieve an accurate solution must increase as the form of the spatial

flux becomes more detailed.

4., Multichannel Coupling16

By partitioning the reactor into regions called channels and
allowing only adjacent channel-to-channel interactions, coupling
coefficients pij can be found which represent the net leakage of
neutrons from channel i into channel j in terms of the corresponding
averaged channel fluxes. The coupling coefficients can be calculated
using diffusion theory or variational techniques which yield the dif-
fusion equations.as stationary conditions. This model is appealing in
that it can be shown to reduce to the conventional difference equations
when a regular grid of small channel regions is used.

The above examples of gross coupling models are generally
unsatisfactory because they require the use of average fluxes defined
within large regions of the reactor. More acceptable results are
obtained by utilizing known or a priori detailed spatial flux shapes in
the regions in the approximation method.

1.3.2 Modal Methods!"

Modal methods imply an extensive rather than local approximation

to the spatial neutron flux. In general the flux is represented by a

combination of known functions defined over the regions of interest
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with unknown functions as mixing coefficients. Depending upon the
approximation employed, relationships among these coefficients can
be derived which are hopefully simpler to solve than the original
equation.

A. Helmholtz Modes 18

The diffusion equation for a completely homogeneous reactor
formally has an infinite solution set of eigenvalues and corresponding
orthogonal eigenfunctions, called Helmholtz modes, which satisfy the
homogeneous boundary conditions. For the general case of a hetero-
geneous reactor, the spatially dependent flux can be approximated as
a linear combination of these modes. The major difficulty with this
approach is that a large number of modes is required in order to
approximate the solution flux, and thus the appeal for this simplistic
modal approach is quickly lost.

B. Lambda19 and Omega Modes20

Although included in the class of modal approximations, these
methods require the use of known spatial solutions for time-
dependent analysis. Lambda modes belong to the set of detailed flux
solutions of the time-independent diffusion equations which correspond
to different lambda eigenvalues,

A set of detailed flux solutions can also be found from the time-
dependent diffusion equations by allowing the time-dependent flux to be

wt

separable and given in the form e The solutions of the resulting

equations, called w modes, correspond to different omega eigenvalues.
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Both of these methods have successfully been used in the transient

analysis of coupled nodal kinetics.

C. Synthesis Methods5’21

The use of synthesis techniques for the derivation of modal
approximations is the most exciting and fastest growing area of
reactor analysis methods development. This can be attributed to the
fact that all diffusion theory approximation schemes, both modal and
nodal, and those including time dependence, can be ultimately derived
from one single variational principle. Each approximation scheme is
therefore dependent solely upon the form of the trial functions used to
represent the flux, current, and weighting functions (or adjoint
functions) in the synthesis procedure. The outstanding advantage of
the synthesis method is that knowledge of a priori detailed flux
shapes or other physical insights can be incorporated directly into
the approximation method.

1. Multichannel Synthe51522

This method may be viewed as a modal extension of the multi-
channel gross coupling method. Assuming the flux to be separable in
its variables (x,y,z), the number of unknowns can be reduced by
specifying detailed flux shapes in any dimension. A common example
assumes that in each channel, k, of the reactor the flux trial function,
Uk(x,y,z), can be expressed as the product of a known transverse flux,

l//k(x,y), with an unknown spatially dependent axial flux, pk(z), as:

Uk(x,y,z) = pk(z)(//k(x,y) (1.7)
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The specification of the flux in two dimensions reduces the problem to
an approximation involving only one dimension. If, however, the flux

is approximated by a full spatial solution times an unknown constant,
Uk(X:y,Z) = kak(x:y:z) (1,8)

the method reduces to an approximation similar to the multichannel
nodal method. Figure 1.1 illustrates the resulting flux shape charac-
teristics of such a method for the one-dimensional case.

The major disadvantage of these multichannel synthesis methods
lies in the fact that in general the flux is discontinuous at channel

interfaces. 23,24

Therefore the adjacent channel coupling currents,
which then must be continuous across these interfaces,T are defined

in terms of averaged channel fluxes. Although these methods can
produce detailed flux distributions in each channel, their accuracy
appears to be not much better than nodal multichannel methods because
of the averaged gross neutronic coupling requirements inherent in

these methods. 25

2. Overlapping Multichannel Synthesisz6’ 21

The interchannel neutronic coupling can be improved by
requiring that the flux trial functions be continuous across channel
interfaces. This can be accomplished by modulating the known
expansion functions, t[/k, by piecewise continuous normalized poly-

nomial functions, Py s which are nonzero only within coupled channels

TVanr'iational techniques used with diffusion theory in general do
not allow the flux and current to be simultaneously discontinuous.
Further clarification is given in section 2.2 of Chapter 2.
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of interest, providing the expansion functions are continuous over all
channels for which the corresponding polynomial functions are nonzero,
Such polynomials are required to be normalized to unity at the coupling
interface and zero along the external boundary of the channels in order
to preserve flux trial function continuity.

In one dimension represented by the continuous variable z and

K mesh regions bounded by the nodes z, where k =1 to K+1, for

k
example, the simple linear functions
zZ -z
Z —zk-1 Zk-—1<ZS %k
k k-1
z i/
k+1
p, (z) = | ——— z, S z<z (1.9)
k Zi1 T %k k k+1
\ 0 otherwise
satisfy these conditions. The flux can then be approximated as
K
U(z) = ), F, p (20 (2) (1.10)

k=1
where the set of Fk's are the unknowns of the method. The resulting
flux shape characteristics of this approximation are illustrated in
Figure 1.2,

Approximations based on this synthesis method are dependent
upon the class of overlapping polynomial functions used as well as the
form of the current trial functions employed. The form of the current
is extremely important in that it specifies the coupling interaction

between regions and in this sense governs the usefulness and accuracy
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of the approximation. Work performed with this method to date has
used current trial functions of a form similar to those of the flux trial
function. Although the results of these investigations have been
encouraging, such methods do not reduce to more simple known
approximation methods. In addition, the band-structured matrix
equations which arise from the use of such methods do not exhibit
mathematical properties desired of such approximation schemes

and may be difficult and costly to solve,

1.3.3 Modal-Nodal Methods

Approximation methods have also been developed in which the flux
has a known extensive definition, or shape, and the unknowns are local
flux values averaged in accordance with their corresponding extensive
definition. Such modal-nodal methods retain all of the advantages of
modal methods while generally reducing the number of unknowns and
producing matrix equations which have desirable mathematical
properties for numerical approximation and solution.

The finite element method is the best example of a modal-nodal
approximation. Greater accuracy than that of conventional difference
techniques can be obtained by allowing the flux in each region of
interest to be represented as a polynomial which is continuous at
region interfaces. The forms of the flux approximations and the
resulting difference equations which arise from the use of the finite

element method are described in detail in section 2.3 of Chapter 2.
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The purpose of this report is to present an original and consistent
class of modal-nodal coarse mesh approximation methods which retain
given or known detailed flux structure within the regions of interest,
while providing detailed neutronic coupling between adjacent regions.
These methods are consistent in that they are derived from a general
variational principle and are a systematic extension of the finite ele-
ment method as applied to diffusion theory reactor analysis.

For purposes of simplicity, the methods will be developed for the
case of one-dimensional, time-dependent, multigroup diffusion theory,
although it is expected that these methods can be extended to the
general spatially dependent kinetics problem with relative ease.

The remainder of this report is organized as follows. Chapter 2
summarizes the use of variational principles and synthesis techniques
in time-independent diffusion theory. The difference equations of the
finite element methods applied in one dimension are derived using
modal-nodal trial function forms in order to illustrate the use of these
techniques. The forms of the proposed approximation methods are
given in Chapter 3. The resulting finite difference equations are pre-
sented and boundary conditions discussed for approximation methods
involving both linear and cubic Hermite basis functions. The numeri-
cal properties of the resulting matrix equations, as well as their
numerical solution scheme, and useful programrﬁing techniques are
discussed in Chapter 4. Chapter 5 presents results of the proposed
methods for four representative one-dimensional PWR configﬁrations,
and compares the results with those of coarse mesh finite element
methods. Finally, Chapter 6 presents conclusions and recommendations
as well as comments concerning the possibility of extending the pro-

posed methods tc multidimensional geometries.
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Chapter 2

VARIATIONAL DERIVATION OF FINITE DIFFERENCE
APPROXIMATIONS IN TIME-INDEPENDENT
MULTIGROUP DIFFUSION THEORY

The application of variational calculus to the describing equations
of physical systems is perhaps the most general and powerful method
of obtaining approximate solutions in mgthematical physics, Vari-
ational methods seek to combine known ''trial functions' into approxi-
mate solutions through the use of a variational functional which charac-
terizes the equations of the system.

Essentially, variational methods consist of first finding a charac-
teristic functional whose first-order variation when set to zero yields
the describing equations of the system as its Euler equations. A
class of trial functions, given in terms of known functions and unknown
coefficients (or functions), is then chosen to approximate the solutions
of the describing equations. These trial functions are then substituted
into the variational functional, and its first variation is set to zero.
Allowing arbitrary variations in all of the trial function unknowns
results in a set of relationships among the unknowns. These relation-
ships when solved then yield the "best" obtainable approximate solution
within the space of trial functions given.

Variational methods can be thought of as a class of weighted
residual methods since ”weighting functions' appear in the functional
and in the equations that result from setting the first variation of the

functional to zero. The weighting functions are determined by the
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form of the functional itself; or equivalently, by the set of Euler
equations selected to describe the system. In non-self adjoint
problems, the adjoint equations are generally included in the set of
Fuler equations. The inclusion of corresponding ”adjoint trial
functions' in the functional results in adjoint weighting in the vari-
ation equations and allows greater approximation flexibility of the

variational method.

2.1 Calculus of Variations Applied to Diffusion Theory

The time-independent multigroup diffusion equations as given by

Eqg. 1.3 can be written as
_ 1
He = y Bo (2.1a)

where

H=-V.DV+IM-T (2. 1b)

Since the multigroup diffusion equations are not self-adjoint, it is

convenient to introduce the adjoint diffusion equations

3 e

H e =

e e
b >

1
~ B & (2.2a)

where I and IB  are the adjoint operators corresponding to H and IB,
respectively, and are defined as:3

H =H' =-V-DY+M-T"
IBT

(2.2b)

B

Il

(2.2c)

e

since ID and IM are diagonal. & is the group adjoint flux vector, or

importance {}ector, which must obey the same boundary conditions

as @_28
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The exact solutions &(r) and <I>*(r) of the diffusion equations and
the adjoint diffusion equations can be approximated by flux and adjoint
flux trial functions denoted as U(r) and U*(r) using a variational
functional of the form

>::T
[ Uv" mUar
_ 'R
= T (2.3)
[ " BUar
R

>

where it is assumed that the group-theory flux trial function vectors
U>:< and U as well as the group current vectors ]DZU::< and DYU are
everywhere continuous, and that U>:< and U vanish outside the reactor
region R. Allowing arbitrary trial function variations, denoted by
6U>:< and 68U, making 551 stationary first with respect to U>:< and then

with respect to U r'esul’cs29 in the following equations:

>}<T
[ sU" [HU-4 BU]dr = 0 (2.4a)
R

:{:T 1 >:<T
J (U m-5U" Bléudr=o0 (2. 4b)
R

The above equations, containing the desired Euler equations, are the
equations upon which the approximation method is based.

A significant characteristic of this approximation form is the
property of exact solution reproduction. Although general choices of
the trial functions U and Uﬂ< result in approximate eigenvalues which
may differ substantially from the exact solution eigenvalue, the exact
solutions, when chosen within the given class of trial functions, are
yielded as the result of the approximation along with the exact solution

eigenvalue.
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The nature of the above approximation depends solely upon the
forms of the flux trial functions given. Each trial function can be
defined in terms of unknown coefficients (or functions) and known
functions. Independent variation of the unknown coefficients of the
adjoint trial function in Eq. 2.4a will yield the 'best' flux solution
obtainable for that class of flux and adjoint flux trial functions given.
The corresponding "best" adjoint flux solution can be found in an
analogous manner using Eq. 2.4b. These techniques are illustrated
in the next section.

Another functional incorporating the flux and adjoint flux diffusion

equations can be defined as

Sk >:<T 1
F,[U",u] = fRU [HU - + BU]dr (2.5)

Although the forms of the above functionals differ, it can be shown
that both produce the same variation equations, Eqgs. 2.4, when made
stationary. The form of 9-'2 and its first variation are much less

complex than the form and first variation of 3’-'1. For these reasons,

functionals of the form of 3/-'2 will be used in this report.

2.2 Discontinuous Trial Functions

The  addition of discontinuous flux trial functions into the class of
allowable trial functions for use in diffusion theory variational
methods greatly enhances and generalizes the versatility of such
methods.25 However, special provisions must be made in the approxi-
mation method itself in order that such trial functions can be properly
used.23’24’30

In order to account for the discontinuities in the flux

(and in general also the current) trial functions, it is necessary to
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include special terms specifying continuity conditions directly within
the approximation method. This can be accomplished through the use
of a variational functional whose Euler equations include the P-1
equations and continuity conditions for both flux and current. A
general functional of this type which allows discontinuous flux,
current, and adjoint trial functions can be derived from previous

30,31

work and is given as follows:

\

¢ ES >:<T >:<T -
FIU*, U,V ,V,e,]= [ {U" [v-v+aU]+V - [vU+D lv]}dr
R

A >‘<T >{<T
+ [ n-{[U] a+U. @T-0)](V,-V)
. T

*'<T >:<T
+[V, B+V_ (1-p))(U,-U )}ds (2.6)

where U>'<, U, \_[*, and V are the group flux and group current approxi-
mations to cb* , &, J_*, and J, respectively, and where the fifst
integral extends over the volume R of the reactor and the second
extends over all interior surfaces I" upon which discontinuities are
defined. 1 is the unit vector perpendicular to interior surfaces, and
quantities evaluated on sides of surfaces toward which n is pointing
are denoted with the subscript (+). Quantities evaluated on sides of
surfaces from which fi is pointing are denoted with the subscript (-).
a and B are in general G X G undefined variable matrices, and I is in
general a G X G unit matrix, which allow a general treatment of the
discontinuities.

The restrictions generally imposed upon trial functions for use

in functionals of this type are the following:
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1. The trial functions must be piecewise continuous.

2. The trial functions U and \_/'>'< as well as U>'< and V are not

allowed to be discontinuous at the same point.

%k >'<T
3. The components of UT\_I" and U V normal to the exterior

surface of the reactor must vanish.

Due to restriction 2, the general quantities @ and 8 always cancel
and are never used within these approximation methods.

The first variation of # can be found in a straightforward
manner, and can be simplified to the following form which indicates
the desired P-1 and adjoint P-1 equations and the trial function

continuity conditions as Euler equations:

>:<T >:<T -1
6 = [ {6U" [V-V+AU]+6V - [VYU+D V]
R

>:<T >}<T -1 *T *T
+[-YU" +v' D ]-6V+[-V-V  +U A]sUldr
>:<T *T
+ [ a-{eu" (v,-v)+eV (U,-U)
r
sk B T sk S
+(U-U)) 8V +(V_-V_ )éUlds (2.7)

In most applications, only approximations to the flux and current
solutions are desired. In such instances variations in only the adjoint
trial functions need be taken. Setting the first variation of # equal to
zero under these conditions and imposing the above trial function

restrictions results in the following variation equation for flux and

current approximations:
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>‘<T >:<T -1
[ {sU" [v-v+AU]+sY - [YU+D V]}dr
R

>'<T >‘<T
+ [ f-{eU" (V,-V)+8V (U ,-U_)}Hds =0 (2.8)
r

The above approximation can also be expressed independently of adjoint

trial functions. If the adjoint trial functions are defined as

= U (2.9a)

At

vV o= -V (2.9Db)

then Eq. 2.8 reduces to the Rayleigh-Ritz Galerkin method, a weighted
residual method based upon flux weighting.

Regardless of the choice of weighting, the variation equations can
be further simplified for those approximation methods which require

the currents to obey explicitly Fick's laws:

V = -DVU : (2.10a)

V' = +DYU (2.10b)

Under these conditions the variation equations for discontinuous flux

and discontinuous current trial functions reduce to

>:<T >:<T -1
[{sU" AU-sV -D 'V}dr
R

Sk Sk T >:<T
+ frn-{(au_-aU+) V+6V (U,-U_)}ds =0 (2.11)

If in addition the flux is required to be everywhere continuous, the

variation equations reduce to the appealing forms

/ >:<T >}<T -1
[ {su” au-s6v" -D 'vldr=o0 (2.12a)
R
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or equivalently

T . T
[ {6U" AU+(V6U') - D(Y U)}dr=0 (2. 12b)
R

Variation equations 2. 11 and 2,12 are the approximation equations
which are used with the finite element methods and the proposed
approximation methods.

2.3 The Finite Element Approximation Methodssﬁ‘;’j{ag”

This section introduces the notation and techniques used in con-
junction with the modal-nodal variational analysis of the finite
element method approximations in one-dimensional multigroup
diffusion theory. These fundamentals are presented in these simple
approximations before applying them to the more general proposed
approximation method in the next chapter.

The one-dimensional problem is defined by the continuous variable
z and divided into K adjoining regions which are in general inhomo-

geneous. KEach region k is bounded by nodes Zp and Z1 and has

+1

width hk = Zk+1 K

variable x within each region k as

-z It is convenient to define the dimensionless

< = Z;Zk (2.13a)
k
so that region k can be described in terms of z as
2, <2<z th =~z | (2.13b)
or equivalently in terms of x as
0sx<1 (2.13c)

for each of the regions k, k=1 to K. This notation will be used

throughout this report.
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2.3.1 The Conventional Finite Difference Equations

The conventional nodal flux-averaged, three-point, finite difference
equations of one-dimensional diffusion theory can be derived from
Eq. 2.8 using discontinuous flux and current multigroup column vector

trial functions of the following form:7’ 81

=) = Fy “he1 F3 Moy (zk+éhk \
<z < > k=1 to K+1,
Z]. lf k =1 [\ZK+1 ]_f k=K+1/
U (2) = Fk 0 otherwise
(2.14)
V(z) = Gk
9 N Zk< z < Zk+hk; k=1 to K,
vV (z)= Gk 0 otherwise

The forms of these trial functions are illustrated in Figure 2.1.
Inserting these trial functions into variation equation 2.8 results

in the equation

<t T

1
2
v, { fo A F h dx+G -G}

K :
k) -
+ Zz 5F) {f A, F b 1dx+f0 A Fh dx +G -G, }

>:<T 1
oFg i1, AxFriPy 3%+ Geyy~ Gl
2

+Z 5Gy, {f D, 'Ghy dx+F,, -F } = 0 (2.15)
k=1

TShifting the domain of definition of the trial functions results in
other approximation schemes with equivalently averaged nuclear
constants.
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} B

lij+1

k+1

ﬂ—

Region k

k-1 %k Zk+1

Figure 2.1. Conventional Nodal Finite Difference
Approximation Trial Function Forms
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Independent variation of all Fk and Gk then results in a system of
2K+1 equations and 2K+3 unknowns (including G, and GK+1)‘ The
choice of boundary conditions supplies the missing equations, Zero
flux boundary conditions can be imposed by setting Fl = FK+1 =0,
which also requires 6F1 = 6F;<{+1 = 0 thereby eliminating GO and
GK+1’ and results in a system of 2K-1 equations and 2K~-1 unknowns.
Symmetry boundary conditions can be imposed on the left by G0= —G1

and on the right by G -GK, resulting in a system of 2K+1 equations

K+1
and 2K+1 unknowns,
Elimination of all Gk’ k=1 to K, results in the standard three-

point difference equations

blFl + ClFZ =0 (2.16a)
aka +bka+ck ke1 = 05 k=2toK (2.16Db)
F_+b =0 (2.16¢)

dK+1'K K+1 K+1

where Eqs. 2.16a and 2. 16c are used for the cases of symmetry
boundary conditions. The G X G matrix coefficients {ak, K’ k} are
of the form A - %B and are defined assuming homogeneous regional
nuclear constants in section 1 of Appendix B. The matrix form of
Eqgs. 2.16 for the use of zero flux boundary conditions on the left and

symmetry on the right is illustrated in Figure 2.2,

2.3.2 Multichannel Polynomial Synthesis
The one-dimensional neutron flux q:k(z) defined as nonzero only
within each region k for each region (k=1 to K) can be approximated

within each region as a polynomial of order N by the power series



SO ] AN

aI‘<+1{3K+1 Frt1 CK+1

I

Figure 2.2. Matrix Form of the Conventional Finite Difference Equations.
Boundary gonditions chosen are zero flux on the left and

symmetry ‘on the right.

aka_1+bka+cka+1= 0; k= 2 to K.
a1 Fr * Prir Frer = O
- 1. =
where: bk = Bk % €k’ k 2 to K+1,

!

ke

K+l

8¢
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N
(N)_\_ ¥ -
U, (2) = %,0 a % (2.17)

where the distinction between z and x is understood since 0 < x < 1

within each region k. Such approximations are not useful in diffusion

!
.'s
k,i

contain full matrices similar to Hibert matrices which may be very

theory because: (1) the resulting matrix equations relating the a

difficult to solve; and (2) such matrices are almost always highly
singular and may produce numerical instabilities in the solution
method. These difficulties can be eliminated by employing poly-

nomials in the trial functions in the following form:

. N
Uf{N)(z) ) fNwF (2.18)
. 1 1
i=0 k+5

where the pgN)(x) are polynomials in x of degree N. This form is
convenient because for a particular selection of the p§N)(x) the

unknowns F ; can be defined as the approximate flux solution evalu-

k+N

ated at points z; + =

N

1> 0, the flux can be made continuous by imposing the following

within region k. For high order approximations,

restrictions on pgN)(x):

1 2=i
pgN) (Ng> = for £=0to N (2.19)
0 L%

The specific polynomial flux approximations of this form through

degree N=3 are given below:

U{{O)(x) = F, (2. 20a)

U{{l)(x) = (l—x)Fk +xF (2.20b)

k+1
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(2), v _ (q_ 2 .2 _ 2
Uk (x) = (1-3x+2x )Fk+(4x 4x )Fk+%+< x+2x )Fk+1 (2.20c)
(3) =<-H 2 9.3 45 2,27 3
Uk (x) 1 5 x+ 9% 2x)Fk+(9x 5 X + 5 X Fk+-1—
3
9 2 27 .3 9.2 9.3
+( -2—x+18x 5 X)Fk+2+(x 5 X + 2x )Fk+1
3
(2.20d)

An immediate drawback of these approximations lies in the defi-
nitions of the corresponding current trial functions. Given a flux
polynomial approximation of degree N, polynomial approximations for
the current can be of order zero through N, and may even be of higher
order than the flux approximation. Each set of chosen trial function
pairs ultimately results in a characteristic complex band-structured
matrix problem which may or may not have desirable numerical
solution properties and is usually very difficult to solve,

Such problems can be eliminated by noting that the use of vari-
ational analysis attempts to force the current approximation to obey
Fick's law. The obvious solution is direct use of Fick's law in the

trial function forms

V,(2) = -D,(z) -(% U, (2) (2.21)

which results in simple band-structured matrix equations relating
only flux unknowns. The use of current polynomial approximations
of order N-1 as given in Egs. 2,20 with flux approximations of order
N, however, does not improve the situation.

The accuracy of these difference equations can be found first by
eliminating all non-integer subscripted unknowns, then expanding

the resulting three-point difference equations in a Taylor series about
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node k, and comparing results to the exact three-point difference

7,35 By comparison of

solution known for the one-dimensional case.
terms containing equal powers of hk, it can be shown that the N=1 and
N=2 polynomial approximations are accurate to order G(hz) while the
N=3 approximation is accurate to order 6(113).

The approximation of a function by a polynomial of order N leads
immediately to the concept of basis functions. The N+1 polynomial
functions which multiply the N+1 unknowns in Eq. 2. 18 form a basis
for the approximation and can be called basis functions. The sim-
plicity of basis functions becomes apparent in an error analysis of

the approximation as follows. An approximate solution U(N)(z) of

order N to the exact one-dimensional solution &(z) can be expressed

as
K
tNi) = ) ez e (2.22a)
k=1
where Q{{N)(Z) is a basis function of order N centered about node Zy -

By Taylor series expansion about any node, it can be shown36 that

if ©,(z) satisfies:

K
Z k {{N)( ) = <h ) for lal € N (2.22Db)
k=1

then U(N)(z) is an approximation to &(z) accurate to order 6(h

Basis functions found using Eqgs. 2.22 are unique for each N and
generally extend over surrounding regions. The forms of the basis
functions for N < 3 are summarized below and illustrated in Figure 2. 3.
Since the following basis functions are symmetric, only the right half,

z 2 z, , is expressly given.

k,
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.1 7z, €< z< 7z, + %h
N=0: QLO)(Z) = k k k (2.23a)
0 otherwise
(1-x) z, £ z< 2
N=1. o) - k k+1 (2. 23b)
0 otherwise
3 2
/Z—x zk$zszk+%hk
N=2: @®z=/1 (2- )2 +1h < z< (2.23¢)
: k 2 \g3~ ¥ 2 T2 T 2S 2y .
1/1_\2 R
5(5 X) 2141 S 2 S Zyp Y2y
0 otherwise
/1 642 3 i .
36 (30-54x"+28x") 2y < g < ZL 11
= a. 3y 11, 2 .,.3
N=3: Qk (z) 36 (4-24x+30x"-11x") Zpt1 € gz < Zp 4o (2.23d)
1, e o2, 3
%( 1+3x-3x"+x") Zyio S 2 < 2143
0 otherwise

where 0 < x < 1 within each region k in the above cases.

Use of these basis functions results in approximate solutions
which are continuous for N = 1 and whose derivatives dU(N)(z)/dz

through aN” 1U(N)(z)/dzN_1

are also continuous. In high order
approximations in diffusion theory, it is advantageous to retain flux
and current continuity and employ basis functions defined over two
adjacent regions in order to produce three-point difference equations.

This can be accomplished in the N=3 approximations with the cubic

Hermite basis functions,
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1
(0), .
‘Qk (z):
| )
| |
k-1 %k Zr+1
1
(1), .
Qk (z):
I
“k-1 %k Zk+1
41
(2) o
2), 7
Qk (z): 1
| , . A ¢ |
l | | || 1 I A '
) “x-1 “k 21 2142
41 5
6
(3)
Qk (z)
| 1 ? |
“k-3 “k-2 “x-1 2y Zx+1 ZKk+2 Zx+3

Basis Functions of Egs. 2.23

Figure 2.3.
for N = 0, 1, 2, and 3
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The above cubic basis function Qi{g)(z) can be constructed from a

combination of either cubic B splines,

. Hy Hy 37
nomials, Qk (z) and Qk (z), as follows:
2@ = -1aP (@ +iale -1l @
where:
QE(Z) =2 QE (z) + % Qfﬂ(z) - % foi(z)

QE(Z), or cubic Hermite poly-

(2.24)

(2.25)

The forms of these cubic B and Hermite polynomials are given below

and illustrated in Figures 2.5 and 2.6.

H

Again, only the right half of

the functions are expressly given as QE and Qk ! are symmetric,

H

while Qk

where again 0 <

is antisymmetric.

otherwise

S z< 2z

k k+1

otherwise

V4

x € 1 in each region k.

(2.26)

(2.27a)

(2.27Db)

The fact that the cubic Hermite polynomials form a basis for the cubic

basis functions and extend over only two adjacent regions makes them

very attractive for use in diffusion theory approximation methods.
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B
Qk(z). 2
3
I I i I
1 | | |
“k-2 “k-1 “k “k+1 Zk+2
Figure 2.4. Cubic B Spline 2(z) of Eq. 2.26
1
H .
1 o
Q, (z):
{ . . I
| ’ |
Zx-1 2k Zk+1
H
20.).
Q, “(z):

Figure 2.5, Cubic Hermite Basis Functions

) Hy
Qk (z) and Qk (z) of Egs. 2.27

45
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2.3.3 The Linear Basis Function Approximation
The group flux trial functions defined as nonzero within each
region k can be expressed in modal-nodal form in terms of linear

basis functions as

Uk(z) = (l-x)Fk + ka+1 (2.28a)
; k=1toK.
Uk(z) = (l-X)Fk + XFk+1 (2.28b)

where Fk is the approximate group flux column vector at node 2y and
0 < x < 1 with each region k. Although the flux trial functions are
continuous, the current trial functions defined within each region by

Egs. 2.10 are not, and are given by

_ 1

v, (z) = q D, &) [F -F ] (2.28c)
; k=1to K,

k(Z) = hk D (x)[ kﬂ-Fi;] (2.28d)

Insertion of these trial function forms into variation equation

2.12a results in the equation

Z hy f ((1 -x)6F, +x<st+1] )[(1-X)Fk+ka+1]
IS sk T 1 _
+ [6Fk— 6Fk+1] 5 ]Dk(x)[Fk—Fk_l_l]} dx = 0 (2.29)
h
k

Allowing arbitrary variations in all Fk

equations and K+1 unknowns which can be written as:

results in a system of K+1

blFl + CIFZ =0 (2.30a)

a, F +b,F, +c¢ =0

k™ k-1 e Y e ; k=2,K, (2.30Db)

g P TPy Frey =0 (2.30¢)
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where the G X G matrix coefficients {ak,bk, ck} are of the form
A - 71CB and are defined assuming homogeneous regional nuclear
constants in section 2 of Appendix B. Zero flux boundary conditions

can be imposed by use of only Eq. 2.30b with F1 = FK = 0, while

+1

symmetry boundary conditions require the use of the other equations

as well, The matrix form of these equations for the boundary

conditions of zero flux on the left and symmetry on the right is given

in Figure 2.6.

2.3.4 The Cubic Hermite Basis Function Approximation38’ 39
The cubic Hermite polynomials can be incorporated into modal-

nodal flux trial functions which allow continuous flux and continuous

current by defining the flux trial functions within each region k as

yau2.5.3 2 .3
Uk(z) = (1-3x"+2x )Fk + (3x7-2x% )Fk+1
C0u2 30 6 -1 2 3, 0 -1
+(-x+2x"-x )hk ]Dk (X)Gk+(x X )hk ]Dk (X)Gk+1 (2. 31a)
5K N B 2 3 3k 2— 3 Sk
Uk(z) = (1-3x"+2x )Fk + (3x“-2x )Fk+1
C0l2. 3y 0 =1k 2 309 -1 %
+ (-x+2x°-x%x )h ]Dk (x)Gk+ (x“-x )h ]Dk (X)Gk+1 (2.31b)

k k

where k =1 to K,

Fk is again the approximate group flux solution vector at node 2y
and Gk is proportional to the approximate group current solution
vector at node 2 - Application of Fick's law defines the current

trial functions for each k as



k P %k k X k xSk

SO || NN

o 11PK 1

®K+1°K+1)

Figure 2.6. Matrix Form of the Linear Finite Element Method Approximation.
Egs. 2.35 for the case of zero flux on the left and symmetry
boundary conditions on the right.

= 21
where: ak = ak N 6k
- -1 -
bk = Bk X €k k 2 to K+1.
= - .]_'_ t
°k T "k T X k

8%



49

_ 1 ‘ _po? _
Vv, (z) —qu(x)«sx 6x )[Fk+1 Fk]
2 _ 2
+ (1-4x+3x )GGk + (-2x+3x% )9Gk+1 (2.31c)
Vi(z) = = D, (x)(6x-6x°) [ B oF ]
k h, k kK k+1
+ (- 1+4%-3x2)0G. + (2x-3%2)6G (2.31d)
k k+1 .

Continuity of flux and current are automatically guaranteed since

U0 =U,_ (b _)=F

k-1~ Fx
U (0) = Uy _y(hy )= Fy
(2.32)
Vi (0) = V, (b, ;) = 6G,
Vi) = v* (n )= -ec*]
K k-1PK-1 K

The normalization constant 6 is introduced in order to produce stiff-
ness matrices having small condition numbers and can be chosen

such that 1.

L ~
D, (0)
Insertion of these trial function forms into variation equation

2.12a results in a lengthy equation which can be written as follows:

TSuch a choice of —Gii allows the matrix of coefficients to be
positive definite. Cf,, Chapter 4.
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>'<T
6F, {bl,F +b2 G +cl Fo+c2 G, }

LT

G, {b3,F +b4 G +c3 Fo+cd G,}
K T

+ 6F, {al F, _ +a2
k=2

K >'<T
8G, {a3 F _,+a4

1+b1 F, +b2, G +cl, F +c2, G

k~k- k"k ""kTk "k k+1 k k+1}

+ 1+b3 F, +b4

kY Kk ka+C3 F +c4, G

k k- k™ k+1 k k+1}

k=2
T

8F falg Frta2e, Ggtbl b2

K+1FR22K 11Ok Pk 11 Fr1 02K 4Gk 1 )

T

8Gy {83k, Frtady 1 Grtd3

K+1" K K+17K K+1FK+1+b4

k+1Ck+11 = O
(2.33)
where the G X G matrix coefficients {al, . ,04} are of the form
1

A - = B and are defined assuming homogeneous regional nuclear

constants in section 3 of Appendix B,

K- 0 as well as 6Fk= 0, or zero

=0, boundary conditions for k=1 or

The choice of either zero flux, F
current, Gk= 0 as well as 6Gk

K +1 along with arbitrary variations of the remaining F

. and G,
results in a system of 2K equations and 2K unknowns. Figure 2.7
illustrates the matrix form of such a system for the case of zero flux
on the left and zero current on the right boundary conditions.

The basis functions and approximation techniques presented in
this section are applied to the proposed approximation methods in the
next chapter. Also, various techniques for treating zero flux and
symmetry boundary conditions are discussed. The matrix properties

of the equations resulting from the above finite element approximations

and their solution methods are discussed in Chapter 4.
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Egs. 2.39 for the case of zero flux on the left and symmetry boundary
conditions on the right.

where: ank

bnk

Cl’lk

an

k

Bnk -

'Ynk -

b I I d

n =1 to 4;
and
k = 1 to K+1,

16
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Chapter 3

DEVELOPMENT OF A CONSISTENT COARSE MESH
APPROXIMATION METHOD

3.1 Formulation

32,33 to approximate

The finite element methods have been shown
accurately flux solutions and criticality measurements of multigroup
diffusion theory when applied to problems allowing homogeneous
nuclear material within the mesh regions. Use of such homogeneous
material, while simplifying the calculation of the matrix elements
(since numerical integrations are not required), may result in limiting
the region mesh sizes allowed unless some type of homogenization
procedure is used. If the mesh spacing is chosen such that some or
all mesh regions are heterogeneous, then direct application of the
variational techniques given in Chapter 2 results in weight averaging
the nuclear constants with products of the basis functions and their
derivatives, as given by the approximation. Although such a pro-
cedure is a direct application of the finite element technique, the
accuracy of such methods depends upon the placement of the mesh
regions and may vary significantly as their placement is altered.

A more useful homogenization procedure which is commonly used
in reactor diffusion theory analysis allows the nuclear material within
each mesh region to be homogenized by flux weighting with an assumed
flux shape determined a priori within that region in order (hopefully)

to preserve reaction rates.
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In large reactors the core can be thought of as composed of a
lattice of heterogeneous fuel subassemblies containing fuel, clad,
coolant channels, and/or absorption control rods. Each subassembly
can be divided into several distinct homogeneous regions whose few-
group microcell macroscopic nuclear constants are found by multi-
group energy-dependent calculations. 40 Detailed subassembly
solutions, l//k(r), are then found for each subassembly k by assuming
that the current on the boundary of the subassemblies is zero. Flux
weighting the nuclear material in each subassembly with the corre-
sponding detailed subassembly solution for each subassembly region
then results in regional homogeneous nuclear constants (Ek> which
may better approximate the physics of the region.

Y. (r)Z. (r)dr
fk k k

¢, (r)d
fkkrr

(Z,) = (3.1)

Proper use of detailed flux weighted constants can lead to accu-
rate criticality measurements, but the detailed a priori fine flux
structure within each region is lost since it appears only in cross-
section homogenization and not in the approximation. Attempts to
retain the fine flux structure have only recently been proposed in
several multichannel synthesis approximations. 217,41,42,43
Unfortunately, each of these approximations are approximations in
themselves and do not reduce to desirable approximations if the

detailed flux solutions are themselves constant, as would be the case

in large homogeneous regions.
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Just as the discontinuous multichannel synthesis approximation
method can be shown to reduce to low order difference equations
(of the type which could result using the finite element method with
constant or flat basis functions) when constant trial functions are
used, approximation methods are presented below which retain the
given detailed flux structure and also reduce to the higher order
finite element approximations. The use of linear or cubic Hermite
basis functions in the approximation provides flux continuity and
results in better approximation accuracy.

The approximations are presented and discussed for the case of
one-dimensional, multigroup diffusion theory. Extension to higher
dimensions remains a problem that will require some further study.
The approximations which are the linear basis functions are con-
sidered in the next section, while the approximations using the cubic

Hermite basis functions are considered in section 3. 3.

3.2 The Proposed Linear Basis Function Approximations

The proposed approximation method utilizing linear basis
functions and defined as nonzero within each mesh region k, k=1

to K, is given by the following modal-nodal trial function forms:

Up(2) = 4. [ (O)(1-0F +o M Dx B, ] (3. 2a)
Uy (2) = w;’;x)[wi‘;ﬂ(oxl—x)F;’;w;’;_l(l)xF;l] (3. 2b)

Vi(2) = 0,60 [y ONL-0F g () xF ]
+ 2 D) g, ()[4 HOF, - wr N F ] (3. 2¢)

k
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sk sk % 1 b3 s 1 S
Vi (z) = n (x) [ll/k (0)(1-x)F +¢ (1)ka+1]
s sk -1 sk Sk -1 3k
e i D, )[4y (DF =¥ (0F,] (3. 2q)
where:
X = (z—zk)/hk (3.2e)

< < < < i =
and 0 < x< 1, as 2, S 2SS Zp 005 for each region k = 1 to K.

Fk is the unknown approximate group flux column vector at
node Zy s and (//k, (//k, nk, and nk are G X G diagonal matrices composed

of the detailed group flux gl/g k(z) and group current n_, (z) solutions,

gk

]

and their adjoints, defined as nonzero only within region k. Because
of the variable transformation between z and x, (//k(O) represents
wk(zk), and (//k(l) represents z//k(zk+1); neither of which, for the
moment, is allowed to be zero for any region. The detailed current

solutions are given from the detailed flux solutions by Fick's law as

dwk(Z)
nk(z) = —]Dk(z) 1 (3. 3a)
SUE
T)k(Z) = +]Dk(Z) 4z (3. 3b)

As a result, the current trial functions are related to the flux trial
functions by analogous expressions.

Continuity of the flux is imposed by the form of the trial functions

since

U(0) =T, _,(h _)=F, (3. 4a)

Uk(O) = U, )=F

(h Kk

(3.4Db)

-17k-1

The current trial functions, however, are discontinuous. It is evident
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by comparison to Eqs. 2.28, that this approximation reduces to the
linear basis function finite element method if the detailed flux solutions
for each group are taken to be constant.

Insertion of these trial function forms in Eq. 2. 12a results in the

following variation equation:

K 1y >{<T >:<T~1 >}<T
1;——1 e J. iwk Wy (O(1-x)6F, A (XU, (x)

>}<T >}<T_1 T
+ Uy (x)wk (1)x6Fk+1 k(X)U (x)
i >:<T >:<T—1 T T_l ::<T _1
+ ;nk (x)wk (0)(1-x) - k]D (x)z//k (x)wk (0) 6F, Dy (X)Vk(X)
r - - )
>:<T >{<T ! T T ! T k
+ _nk (X)ll/k (1)x+ k]D (X)‘/’k (X)‘// (1) ]D (X)Vk(X)= dx=0
(3.5)
This equation can be written in the form
>:<T
6F, [b F, +c, F,]
K LT
+ ), SF [ayFy _th Fiie Fy ]
k=2
>E<T
tO0Fglag FrtPry Freg ] =0 (3.6)

where the G X G matrix coefficients {a b, k} are integral quantities

of the form A - X B and are defined in detail in section 1 of Appendix C.
External zero flux boundary conditions are easily imposed by
setting F1 = FK+1 = 0. This requires that F1 and FK+1 must then also

be zero, which in turn requires the <SF>'1< and 6F;;+1 coefficients in
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Eqgs. 3.5 and 3.6 to vanish. Allowing independent variations in the
remaining F*, k = 2 to K, results in a matrix problem of the form
illustrated in Figure 2.6 which would contain K-1 equations and K-1
unknowns,

Zero current boundary equations are found using symmetry
considerations. If, for example, a zero current or symmetry

boundary condition is imposed on the right at z then a I'boundary

K+1°
condition equation'' can be derived by assuming a pseudo-region

k = K+1 of width hy having mirror image properties of region K about
2Kl with corresponding symmetric flux and antisymmetric current
properties of the detailed flux and current solutions. These properties

in pseudo-region K+1 can be related to properties of region K as a

function of x in each region as

Dy, (x) = Dy (1-x) (3. 7a)

g0 = A (1-%) (3.70)
and

U y1(x) = Up(1-x) (3.8a)

Upy (0 = Up(1-x) (3. 8b)

Viea () = -V (1-x) (3. 8¢)

Vigs (0 = ~Vi(1-x) (3. 8d)

The addition of pseudo-region K+1 to the summation in Eq. 3.5 results
in the calculation of coefficients gy and bK+1 in Eq. 3.6. Detailed
definitions of the G X G zero current coefficient matrices bl’ Cy»
Apyqe and bK+1’ all of which vanish for the case of zero flux boundary

conditions, are also given in Appendix C.1. If symmetry is imposed
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on both sides of the problem, independent variations in Fk fork=1
to K+1 result in a matrix problem of K+1 equations and K+1 unknowns
of similar form as illustrated in Figure 2.6,

Other boundary conditions may be imposed on the approximation,
including albedo and reflector boundary conditions, which specify the
flux to current ratio at the boundaries. Such conditions will always
lead to a variation equation of the form of Eq. 3.6, where in general
the matrix coefficients ay, b2, bK’ and Ck as well as the boundary
coefficients bl’ Cl’ ag1e and bK+1 will have modified definitions.

A serious drawback of the approximation given by Egs. 3.2 is
that it does not allow the use of detailed flux solutions containing
explicit zero flux boundary conditions. For this reason the exact
solution, x//k(z) = ébk(z) for all k, is excluded from the class of admis-
sible trial function forms. However, such detailed solutions can be
allowed by modifying the trial function forms in the boundary regions.
If a detailed solution wl(z) is given in the first region with the zero
flux condition tpl(zl) = 0, for example, the trial functions of Eqgs. 3.2

could be modified for region k=1 as

U, (2) = v, 00 D), (3.9a)
Sk Sk >}<—]‘ .
U,(z) = w1<x)w1 (1) F, (3.9b)
Vl(z) = 771(><)L1/11(1)F‘2 (3.9¢)
1

b

Vi(z) = [

1 (1)F"2‘ (3.9d)

In this way, the imposed zero flux boundary condition is explicitly

given by wl(z) rather than in the form of the trial function. Similar
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trial functions can be given for an explicit zero flux boundary condition
in the last region, k=K.

The use of these special trial functions in the boundary regions
alters the definitions of the matrix coefficients b2 and bK as given in
Eq. 3.6. Detailed definitions of these coefficients when these special
trial functions are used are also included in Appendix C.

Regardless of the types of boundary conditions imposed, Eq. 3.6

results in an N X N matrix problem of the form

AF = + BF (3.10)

where A and IB are independent of A. The order N of the matrix
equations is dependent upon the chosen boundary conditions, and is

given for various choices in Table 3. 1.

Table 3.1. Matrix Order N of the Proposed Linear Basis
Function Approximations as a Function of the
Imposed Boundary Conditions.

1 — Explicit or Implicit Zero Flux
2 — Symmetry

Boundary Condition Type Matrix Order
on Left on Right N
1 1 G X (K-1)
1 2 G XK
2 1 G XK

2 2 G X (K+1)
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3.3 The Proposed Cubic Hermite Basis Function Approximation

The proposed modal-nodal approximation method utilizing the

cubic Hermite polynomials

pl(x) =1 - 3x% + 2x°

pz(x) = 3x2 - 2X3
(3.11)
p3(x) = -x + 2x2 - %3
p4(x) = x2 - %3
and their negative derivatives
_ 2
ql(x) = Bx - 6x
_ 2
qz(x) = -6x + 6x
(3.12)

q3(X) =1-4x + 3X2

q4(x) = —2x + 3x°

and defined as nonzero only within each mesh region k, is given by
the below regional trial function forms. Fk and Gk are again the
unknown group column approximate flux and current solutions at Z)
respectively, and the remaining symbols have been previously
defined. As in the cubic Hermite finite element method described
in section 2. 3.4 of Chapter 2, 6 is an optional normalization

parameter,
U (2) = v ([ gy (0)p, GOF, + N (Dpy(F,

+h, 0D (00, 1(0)p, ()G, +hy 0D7 (1w L (Dp, ()G, ]

(3.13a)



sk sk sk -1 sk sk -1 sk
U (z) = ¢, ) [¢y, (0)p (x) Fy +iy (D) py(x)Fy g

o1 1
+h, 6D, (o)wk (O)pg(X)Gk+hk91D (1>wk (1) p, ()G, ]

Vo (2) = 1,00 [9,1(0) py () B+ (1) () Fy

— - - -1, :
+h, 67 (0)4;1(0) o (x)Gy +hy O, (D) ¥ (D1, () Gy ]

+ID, () (x) [i e (0) q1<x>Fk+Hi U (1) q(F,
+6ID1 (0§ 1(0) 4, ()G, + 0D (1) v (1) 0, ()G, ]

Sk Sk >:<—1 ES ::<_1 sk
Vi (2) = n (x) ¥ (0)p (x)F +¥ (1) py(x)F)

1 1

+h, 6D (o)zpk (O)pg(X)G +h, 6D (1)(//k (1)p4(X)Gk+1]

W1 o1

-D (X)wk(x)[ kwk (O)ql(x)F +h wk (l)qz(X) k+1

| —1
+0D.1 (), (0) qg(x)Gy +0D (1) ¢y (1) q ()G, ;]
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(3.13b)

(3.

(3.

13c)

13d)

Again, for the moment, 1//k(0) and ([/k(l) and their adjoints are not al-

lowed to be zero in any region.

The forms of these trial functions impose both flux and current

continuity since:

Uplzy) = Uy 4 (zg 40y o) = Fy
Uplz) = U _y(zy gy ) = Fy
Vi) = Vie_q(zy g ¥hy ) = Gy
Vidz) = VE—1(Zk-1+hk—1) - -G,

(3.

(3.

(3.

14a)

14b)

. l4c)

14d)
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where it is assumed that at region mesh points the detailed current

solutions are zero:
nk(zk) = nk(zk+hk) =0 (3.15a)

ni';(zk) = n(z, +h) = 0 (3.15b)
for all regions k=1 to K,

Also, by comparison to Egs. 2.31, it is evident that this approxi-
mation reduces to the cubic Hermite finite element method when the
z[/k's are constant, and the nk's are correspondingly zero.

The insertion of the above trial function forms into variation
equation 2.12a results in a lengthy equation which can be simplified

to the following form:

6F>:1<T [b1,F +b2 G +cl Fo+c2 G, |
T
+6G'1 [b31F1+b41G1+031F2+c41G2]
K [ T
+ Dy iéFk [a1,F) _ a2, G, +b1,F +b2 G +cl F| , +c2, G, ]

T 3

sk f?
+ G [aBka_1+a4k ko1TP3 Fytb4 Gy+e3 Fy . +ed Gy oy ]}

o T
k1 [l P20 1 GptPlp ( Frey 1 #0201 Giey ]
T

+6Gy 1 [83k,  Frtadp  (Gptbdy  Fr g+

+ oF

bdp Gkl =0

(3.186)

where the detailed definitions of the twelve integral G X G matrix
coefficients {alk, cen ,c4k} of the form A - %B for all k are given

in section 2 of Appendix C,
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Boundary conditions for either zero flux or symmetry are easily
imposed by setting either Fk or Gk’ respectively, to zero with k=1
for the conditions on the left at z, or k=K +1 for conditions on the right

at zp The corresponding variations for k=1 and k=K +1 then

+1°
vanish. Allowing arbitrary variations in the remaining Fk and Gk in
Eq. 3.16 results in a system of 2K G X G matrix equations relating
2K G column vector unknowns, as illustrated in Figure 2. 7.

Explicit zero flux boundary conditions imposed by (//l(zl) =0 or
wK(ZK+1) = 0 can be incorporated into the approximation by modifying
the trial function definitions in the boundary regions. The modified
flux trial functions in the first region, for example, are
U, (x) =y, (x)] wil(1)F2+h1e]D'll(ow;l(0)p3(x)G1+h191D'11(1)¢11(1)p4(x)<}2]

sk sk >{<—1 sk - >:<—1 s - >:<_1 b3
U ) = v [ Y] (1)F2+h10]Dll(0)<//1 (O)pS(X)G1+h191D11(1)w1 (1)p,(x)G,]

(3.17)

where the current trial functions are again given by Fick's laws. Use
of modified trial function forms of this type in the boundary regions
results in 2K equations with different definitions of c313 322, b12,
b22, and b32 as well as blK, b2K, c2K, and a3K+1, which are also
included in Appendix C.

Other boundary condition restrictions may be imposed on this
approximation, but the matrix form of the resulting difference

equations will remain unchanged. Only the coefficients defined for

k=1,2,K, and K+1 will in general be altered.
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The matrix equations resulting from this approximation can always

be written as

AF = +BF (3.18)

&=

where A and B are (G X 2K) by (G X 2K) matrices, independent of A,
and F is the G X K column vector of unknowns containing both Fk and
Gk column vectors for each k, The matrix properties and solution
methods of the matrix equations derived in these proposed approxi-

mation methods are discussed in the next chapter.
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Chapter 4

NUMERICAL SOLUTION TECHNIQUES

The matrix properties of the difference equations resulting from
both the proposed approximations and the finite element methods in
one dimension, as well as the solution schemes used to solve these
equations, are summarized in the following section. Various calcu-
lational and programming techniques used in conjunction with these
approximation methods and their solution schemes are presented and

discussed in section 4. 2.

4.1 Solution Methods and Matrix Properties

The matrix equations which result from the approximations given

in this report are of the form

AF =

BF (4.1)

>l

and are solved using the fission source power iteration method without

7,44

fission source renormalization. The method of solution is illus-

trated schematically in Figure 4.1. Other definitions of the iteration

(i) 45

eigenvalue N\'7" can be found elsewhere,

Figure 4.1 illustrates that an outer iteration solution scheme?® is

used, and that the geometry and nuclear properties of the reactor are

not altered. Since the fission source is not normalized by the iteration

eigenvalue during the iterations, x(l) converges to the effective multi-

plication factor, keff’ of the problem. Had fission source renormal-

( (i)

ization been included, by S b IBE(l)/x(i—l) for example, then X\
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re———— ] = ] + 1 Outer Iteration
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Figure 4.1. Solution of A F = % IB F Using the Fission Source

Power Iteration Method Without Fission Source

Renormalization.
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would converge to unity. The keff of the problem would then be simply
the product of all of the iteration eigenvalues. 46,47, 48

The matrix inversions required within the iteration scheme were
performed directly. Although overrelaxation methods are usually
employed only in iterative matrix inversion schemes (or inner
i’cerations),éj‘9 an overrelaxation parameter w, 1 < w < 2, is available
in the outer iteration in order to hasten the convergence of the solution
vector,

The power method is very appealing to neutron diffusion flux cal-
culations because it converges to the largest or fundamental eigenvalue
|>\O| > |>\1| , 1# 0, and the corresponding eigenvector F of the given
matrix problem. The convergence rate is governed by the dominance
ratio, defined as irrqlbasc IXi/)\OI , in such a way that smaller ratios result
in faster convergence. Although the power method will always converge
when )\o is positive and unique, specific matrix properties of A and IB
are sufficient but not always necessary to insure convergence to a posi-
tive keff and everywhere positive neutron flux approximation. 50

In many problems the order of A may be quite large, and solution
methods which require the direct inversion of .A may not be practical.
For the purposes of this report, as in most multigroup calculational
schemes, neutron up-scattering will not be permitted. The inversion
of A is then performed by successive group-iteration techniques.

The equations given in Eq. 4.1 have been defined as ordered first
by spatial indexing followed by group indexing within each spatial index.

It is convenient to reorder these equations so that they are ordered

first by group indexing followed by spatial indexing within each group.
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After reordering, Eq. 4.1 can be written as

(IL+]1VI)_E‘=T_]_§_‘+%IBE (4.2a)

where

A=IL+M-T (4. 2Db)

and: IL, the stiffness matrix, results from leakage; IM, the mass
matrix, results from absorption; T is the group-to-group scattering
transfer matrix; and IB is the fission source production matrix.
Assuming K spatial unknowns in each of the G groups, IL and IM are
G X K block diagonal matrices composed of G KXK matrices ]Lg and

]1\/[g of the form

]L=Diag[]Ll,...,]L (4. 3a)

]1VI=Diag[]1VIl,...,]M (4. 3b)

Gl

and T and IB are in general full block matrices composed of G2 KXK
matrices ng, and Ing, , respectively. Since only downscattering is
permitted, T becomes lower block triangular; T , = 0 whenever

g’ 2 g. The matrix inversion, z(i+1)= A_1§(i), can then be solved
for the GK unknowns

(i+1) _

~ ~(i+1) ~(i+1)
F = Col[El - EFo (4.4)
by solving successively the following system of group equations:
[ Do for g =1 to G:
i
) G

l st) - Y (T_,+B &)
I -8 = g8 gg —8
| g
| i+1; g'< g
| where: k = (4.5)
| i; g'=zg
I

-8 g g ~g
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where the updating of the group fission source by the iteration index
k= 1i+1 for g' < g generally enables a faster rate of convergence of
the outer iteration than k=i,

The desirable convergence properties of a positive eigenvalue
and everywhere positive flux solution when using the above group
iteration method depend upon the properties of the KXK spatial
matrices for each group g: ]Lg; ]Mg; and ng' and Ing, , for
g’ = 1to G. Using the Perron-Frohenius theorem,50 it can be shown
that if ng, and Ing, are all nonnegative for each group g and ]Lg
and ll\/Ig are both Stieltjes or S-type matrices! for each group g, then
the power method will converge to a positive eigenvalue, xo > 0, and
a corresponding positive eigenvector, _P_‘O > 0. These matrix proper-
ties naturally depend upon the form of the spatial approximations
employed and generally differ for different approximation schemes.

The conventional finite difference approximation has become
popular because the spatial matrices which arise from its use exhibit
these desirable properties regardless of the size of the mesh regions
chosen. The spatial matrices resulting from the linear finite element
method, however, are known to exhibit these properties only if the

mesh size is restricted by

h, < max {NB £

4.6
kK s=1t0a g’k} (.6

. . . 2 _ .
where 'Qg,k is the diffusion length, ﬂg,k— Dg,k/zg,k’ for group g in

mesh region k. The spatial matrices resulting from the cubic Hermite

TA Stieltjes matrix is a real, irreducible, positive definite matrix
: J 5
with nonpositive off-diagonal elements. "’
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finite element method do not exhibit these ”desirable“ characteristics,

Since the eigenvector F contains current as well as flux unknowns,

convergence to an all-positive solution vector is not desirable.

The properties of the spatial matrices for each group g resulting

from the proposed approximation methods can be found by general-

izing the proposed trial function forms in each group as

K
_ -T +T )
Ug(z) = kz—l [Eg,k(x)gg,k+1—3g,k-]i‘g,k+l_ (4.
sk K _;'<T 3k +>':"[‘ Sk h
Ug(z) = kél [_Pg,k(x)gg’kJrgg’ F Kt (4.

where the Eg K are in general column vectors of length N given by:

Fop=Fy (N=1) (4.

for the linear basis function approximations, and

F . =Col[F

Fo (N = 2) (4.

g,k’Gg,k ]

for the cubic Hermite basis function approximations. Similar defi-

7a)

7b)

8a)

8b)

nitions hold for the Eg Kk The _Pz k(x) are column vectors of length N

whose elements are functions of z (or x) defined as nonzero only within

region k which provide the basis for the approximations. The defi-
nitions of the _I_’z k(x) for the proposed approximations are given as

follows:
N = 1; Linear Basis Functions:

P, 0 = (1=)u ) (0w | () (4.

oy ]
Eg,k(x) = X Wg’k(l)l//g,k(x) (4-

9a)

9b)
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N = 2; Cubic Hermite Basis Functions:
E;,,k(x)= Cc>1[p1(x)w;k(o)ng,k(x) . hy epg(x)D;k(O)w;k(omg’k(x)]
(4.10a)
E;’k(x) = Col[p2(x)lﬂ;k(1)¢g’k(x) ,hy 6p 4<X)D;k(1)¢;k(1)w g,k(x)]
(4.10b)

where t//g k(X) and Dg k(x) are the detailed flux solutions and diffusion

coefficients of group g, the polynomials pl(x) through p4(x) are defined

in Egs. 3.11, and 0 < x < 1 within each region k., Similar definitions
45k

hold for the Eg,k(x)'

Equations 4.7 can be written in matrix form as

U =P (x)F 4.11
g(Z) g(x)_g ( a)
Uz = P x)F 4.11b
g(Z) g(X)_g ( )
where:
Eg - Col(Fg,l, ... ’Fg,K+1) (4.12a)

and IPg(x) is the K by N(K+1) matrix defined by

-T +T 7
Eg,l(x) Pg,l(x) 0
P (x) = \\ (4.12b)
) -T +T
8 0 Pg,K(X) Pg,K(X)_

IP:;(X) is defined similarly. Insertion of these trial function forms into

variation equation 2. 12b for each group g results in
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T LT T \

30 P D P F P A P ,F , dz=0  (4.13)
-—ng g g g8 &g Z ge' g ~g

~

where ]Dg and Agg' are KXK diagonal matrices of the form

D =D (x)=Diag[D 1(x),...,D

o o ¢ k(x)] (4.14a)

g,

and

r ()] (4. 14Db)

Agg' = Agg'(X) = Diag[Agg"l(X), « v 0y

gg

The quantity ]Pg represents the derivative of IPg(z) with respect to z,

and the integration over K denotes integration over the entire range

K+1°

1
' = <E -5 T X vr ’) (4. ].4:C)
gg' .k tg "eg’ M g Tig /i) region k

are the group material constants in mesh region k, and are usually

dependent on x. Agg' can thus be conveniently expanded as

A ':Ag_ﬂs r ~ A ] (4.14d)

Allowing arbitrary variations in each element of Eg for each

group g in Eq. 4.13 results in the matrix equations
1
(. +M )F = ), (T[‘ ++1B, ¥ ,; =1toG (4.15)
g g -g ,>—;1 gg' "X gg’>—g' &

as described in Eqgs. 4.1 through 4.5, where:

'>'<T N
L =/ P DI dz (4. 16a)
g ‘k g8 g g
>}:T A
™M = [ P AP dz (4.16D)
g K £ g g
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e T Aigg Py o2 (4.16c)
= [ Ip’g _A g P d2 (4.16d)
K

These matrices are N(K+1) by N(K+1) block tridiagonal of similar form

th

whose NXN submatrices are integrals of NXN dyads. The k™" row of

the product A ,F , is, for example:
g8 —§8

1 T

[Agg'E

'

B f hk 1 gg’k l(X)Pg,k l(X)P ' k- l(x)dX! Fg' k-1

=)
L0 J

g

,T

(1
+ ifo hk—lAgg’,k 1(X)Pg,k 1 (x )Pg',k-l(x)dx
sk T

1
+ fO hkAgg',k(X)Eg,k<X)Eg',k(X) de Fg',k

{ 1 b T \

|
" fo by Aggr (B WE, ,k(x)dx>Fg, e (417

These matrix relationships allow presentation of the following matrix

properties.

Theorem 1: ]Lg and IMg are guaranteed to be positive definite when-
ever the detailed weighting functions (Z/:;)k(z) have a
similar shape to that of the detailed flux solutions wg,k(z)’
as given by:

v, (2)=C

g kwg k(z) (4.18)

g,

where Cg K is a positive constant for each energy group g and each

region k.
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>:<i
Proof: Under these conditions, P =C Pi ;
— =g,k g,k=g,k
hence,
P =C 1P (4.19a)
g g g
where
C = Diag(C_.,...,C ) (4.19b)
g €%g,1 g, K

First consider lMg. Given any arbitrary constant nonzero vector q,

T T T, A
M = P C /NP d 4,20
9 M, q fK( g C A P gdz (4.20)

and since (Eg and Ag are both positive block diagonal matrices with

diagonal submatrices, their product can be factored into

T 1
cT pAD - {(AA(D )2} (c n?)’ (4.21)
gg g
Therefore,
T A3 T Az
M q = C P c AMP qld 4.29
4 Ngd fK(gﬂg) gd [(gg) gg}z (4.222)
= [ RTRaz (4. 22D)
K

which is always greater than zero for arbitrary nonzero gq. Hence,
by definition, IMg is positive definite. A similar proof holds for IL
using Eq. 4.16a.

The following corollaries immediately result.

Corollary 1: If Rayleigh-Ritz Galerkin weighting, I_J>'< = U, is used in

the approximation, then ]Lg and ]Mg are positive definite,
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Corollary 2: ILg and ]Mg resulting from the finite element methods
using linear and cubic Hermite basis functions are both positive

definite.

Corollary 3: If ]Lg and ]Mg are positive definite, then so is the matrix

(ILg+]Mg). These three matrices are then also symmetric.

It is also interesting to note the properties of ILg and ]Mg for
cases of symmetry; that is, when the material properties and detailed
flux solutions are symmetric about the center of each coarse mesh
region k. Such symmetry occurs in regular repeating reactor geome-

tries, and is denoted by:

Dg’k(x) = Dg,k(l—x) (4.23a)
and

Ag,k(x) = Ag’k(l—x) (4.23b)
Hence,

Vg ¥) = g 1 (1) (4.23¢)
and

ng,k(x) = '”g,k(l'X) (4.23d)

and similarly for the weighting fluxes and currents. Under such con-
ditions, the _P; k(x) and Eé k(x) support functions can be found by
inspection of Eqgs. 4.9 and 4. 10 to obey the following symmetries:
For N=1:

Pl ) = PL (1) (4.24a)

- T
Py k)= "B (1-x) (4. 24b)
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For N=2;
¥ (1 0o
Eg,k(X) —{0 » jgg,k(l X) (4. 24c)
-J
P (x)=— |1 0Pt (1-x) (4.24d)
—g’k 0 _1 - :k

where the following symmetries of the polynomials defined in Eqgs. 3. 11

have been used:
pl(X) = p2(1-X)

pS(X) = —p4(1-x)

(4.25)
q,(x) = -q,(1-x)

q3(x) = q,(1-x)

Similar identities with identical signs hold for the weighting quantities
i*
P ).

2

Theorem 2: For cases of symmetry, as given above, the matrices

L, M ,T_ ,, andB_, are all symmetric regardless of the relation
g g gg gg

of wg}k(x) to wg,k(X)'

Proof: Referring to Eq. 4.17, ILg, for example, is symmetric only if

1 . +>:< . —T 1 . _;:: . +T
fo By D k(I Eg ()P, ) dx = fo By D k(KB P (x) dx
(4.26)

This can be shown for any N by changing variables in one of the
integrals from x to 1-x’ and using the symmetry properties of

Egs. 4.23 and 4.24. Similar proofs hold for the other matrices.
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It is unfortunate that the above symmetry conditions do not allow
direct proof that ]Lg and ]Mg have positive diagonal elements and are
also diagonally dominant (for at least one row) for arbitrary positive
and symmetric detailed flux solutions. Under such conditions, Eg and
IlVIg would then be positive definite, since they are block tridiagonal
with nonzero diagonal elements and hence irreducible. Instead, these
conditions can be used to obtain a set of algebraic equations which, for
completely arbitrary detailed flux solutions, must be satisfied in order
that ILg and II\/[g be positive definite.

The requirement that ILg and ]Mg be positive definite is useful
only in the inversion of (]Lg+]1VIg). Although the inversion can always
be performed using Gaussian elimination techniques, the property of
positive definiteness allows the use of Cholesky's method, discussed

in the next section, which is faster and requires less computer storage.

4.2 Calculational and Programming Techniques

Calculation of the one-dimensional subassembly detailed fluxes,
currents, and adjoint solutions, as well as detailed "exact'' or refer-
ence solutions, were performed using the program REF2G described
in section 1 of Appendix D. Assuming subassembly k to be divided
into N homogeneous intervals at nodes t. and of width hsi, the program
uses fine mesh linear finite element approximations to calculate the
detailed flux solutions for each group. Omitting group subscripts, the
detailed flux solution for each group in subassembly k is represented

by a set of N+1 points

wk(x)={wk’i:i=1,N+1} (4.27)
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where (//k(x) is linear between points. Detailed group current solutions

nk(x) are represented by a set of N points

M) = {m ;1 i=1, N} (4.28)

which are found from the converged flux solutions by Fick's law

M 5 = =1, N (4.29)

3

1 o
Es_ka,i[‘”k,i' NETRR

where Dk,i is the diffusion constant homogeneous in interval i.
nk(x) is of constant value, nk,i’ within each interval. The forms of
these solutions are illustrated in Figure 4. 2,

In order to approximate the symmetry boundary conditions imposed
on the detailed subassembly flux solutions, small intervals hs1 and hsN
are defined at the edges of each subassembly. The detailed current
solutions can then be made to have zero boundary values by setting
nk, 1 and nk,N to zero. However, since the currents in each interval
are defined as inversely proportional to the mesh size, the calculated
boundary currents using this scheme may not be small enough to be
negligible.

Explicit zero current boundary conditions can be imposed on the
detailed current solutions by transforming the above discontinuous

current nk(x) into a continuous current solution nk(x) represented by

a set of N+1 points

~

nk(x)——-{ﬁki;i=1toN+1} (4.30)

where Ek(x) is linear between points, as also illustrated in Figure 4. 2.
By seeking to minimize the mean square error between nk(x) and Ek(x)
within each interval i, variational techniques yield the following set of

N-1 equations for each group:
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/N
k,i

T i+14

AN = < hs
M 1 # N
g n

k,N

hsl ] l‘.hsi..l k /

t; tivg K -
| S N7
t k . [ e
Interval i

x=0 4———)- bl ¢ x =1

Zﬂ >z i Zk+1
— Subassefnbly k of width hk —————b'l

1
hy

X = (z—zk)

0= x<s<1; for each subassembly k; k = 1 to K,

= 1 -

0< y =< 1; for each interval i in subassembly k; i = 1 to N.

Figure 4.2, Subassembly Notations and Detailed Solutions
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1 ~ 1 ~ 1 ~
(6 hsi—l)”k,i—l * §(hsi-1+hsi>”k,i * <E;' hsi)”k,iﬂ
=(lhs )n +(lhs )n . i=21to N (4.31)
50851 )M i-1 TAghsy )y g :

These equations, given the nk,i from Eq. 4.29, are easily solved for
the Ek,i’ i =2 to N, where ﬁk, 1 and gk,N+1 are set to zero. Both
forms of the detailed currents, nk(x) and Sk(x), are allowed for use
in the proposed approximation methods.

The proposed methods using linear and cubic Hermite basis
functions have been programmed into computer codes LINEAR and
CUBIC which are described respectively in sections 2 and 3 of
Appendix D,

The matrix elements required for use in the approximation
methods are integrals of products of subassembly detailed solutions
and polynomial functions. These integrals are calculated, for each

index k, from the basic integral unit

1
BIU, = fo f, (x)gy (x)C, (x) x" h, dx (4.32)

where the functions fk(x) and gk(x) represent flux and/or current
solutions for same or different groups. These functions may be either

constant within each interval

fk(x):{fk,i:i=1to N} (4.33)
or of linear form within each interval

fk(x)z{(l—y)fk,i+yfk,i+1 :i=1to N} (4.34)

where y = Hls— (t-ti), as defined in Figure 4.2. C,(x) represents a
i
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group nuclear constant which is homogeneous in each interval

Ck(x)={Ck,i:i=1to N} (4.35)

and n is a positive integer exponent in the range 0 < n < 6. Since the
following remarks concern only subassembly k, the index k is dropped
for simplicity.

The basic integral unit can be broken into integrals over each

interval by transforming variables from x to y. The result

N 1
_ 1 n
BIU, = — ). hs, | £(y)g(y)Cylt;+hsy)" dy (4.36)

can be integrated analytically by expanding (ti+hsiy)n into a binomial
series. The results of these integrations for any n depend only on
the given forms of f(x) and g(x), and are summarized in Table 4.1.
The coarse mesh flux-weighting homogenization calculations were
performed using the above basic integral unit with n = 0. In these cal-
culations a linear form of f(x), representing the detailed subassembly
flux solutions from REF2G, and a constant value of g(x)=1 were used.
Once the elements of the matrices of the approximation methods
have been formed, considerable computer storage can be saved by
collapsing the sparse band-structured matrices into full matrix form
using row index transformations. In this way, a NXN tridiagonal
matrix I resulting from the use of linear basis functions can be stored

as the NX3 matrix IL." by

(IL’)ik = (]‘L)ij (4.37)

where k =3j+ 2 -1, and k values outside 1 < k < 3 are omitted.
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Table. 4.1. Calculation of the Basic Integral Unit in Subassembly k.

Constant f(x) and constant g(x) in each interval i:

N

n
1 n n-4 £ 1
Bl = 5 L YbsifigiC; L Pyt bsi ()
b =1 20

Linear f(x) and constant g(x) in each interval i:

4 A
N | n f. f. }
1 n,n-4, 4 i i+1
BIU, = — . ﬁ hsigiCi . bf t; hs [ ) }

jng

n 5 i ) 2
k i=1\

Linear f(x) and linear g(x) in each interval i:

p X [ o n.n-f. 4 2f:g;
BV =% Z Skhsici L byt hsy | EINEEnETs)
k i=1 £=0
s figi thi8 T840
(£+2) (£ +3) (£ +3)
where
n _ n!
b’e B | - |
2! (n-£)!

is the binomial series coefficient.
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Similarly, a NXN matrix I of half-band width equal to three, which
results from the use of cubic Hermite basis functions, can be stored

as the NX6 matrix IL.", as given above, where in this case:

1 for i odd
k=j-i+3+ (4.38)
0 for i even

and k values outside 1 < k < 6 are omitted.
In those cases where the mass and stiffness matrices are both
positive definite, Cholesky's method of matrix factorization,

T

L==6G (4.39)

where IL. is positive definite and G is lower triangular, can be used to
solve the matrix inversion for each group in the power method. The
matrix elements gij= ((]})ij are calculated from the elements ﬂij: (]L)ij

by the following algorithm: 51

— For each j=1 to N:

(4.40)
For each i=j+1 to N:

|
|
|
'
|
|
: 857 | 4y - k2=1 gi1Ejk |/ &

-
|

| icl
|

—_

Similar algorithms of a more complex form are used in the computer

codes in conjunction with the matrix collapsing schemes given above.
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Chapter 5

NUMERICAL RESULTS

9.1 Nuclear Constants and Subassembly Geometry

The effectiveness and accuracy of the proposed approximation
methods were examined using one-dimensional, one- and two-group
reactor configurations composed of representative PWR fuel sub-
assemblies. Four separate subassemblies with identical geometry
but different number constants are considered. Each subassembly
is represented as an 18-cm, homogeneous fuel region of low,
medium, or high enrichment, surrounding a 1-cm centrally located
absorption rod or water channel. Two-group regional nuclear
constants used to represent such PWR subassembly geometries are
given in Table 5.1, 52 where all fission neutrons are assumed to be
born in the fast group. These constants were collapsed into repre-
sentative one-group constants using the standard infinite medium

group reduction procedure for two groups:

(e~ (1_41&5 (L +ar,) (5.1)

where El and 22 are macroscopic cross sections for the fast and

thermal groups, respectively, and « is the infinite medium thermal
to fast flux ratio. o3 The resulting one-group regional constants for
the fuel and rod regions are given in Table 5.2, where the flux ratios
of the three fuel regions have been averaged in order to collapse the

absorption rod constants.



Table 5.1, Representative Two-Group, 18-cm, PWR
Subassembly Regional Nuclear Constants,

85

x;=1.05 x, = 0.0.
Region Material ET vEf D 221
Fuel A: Low w/o . 0259 .00485 1.396 .0179
. 0532 . 0636 . 388
Fuel B: Medium w/o . 0260 .00553 1.397 L0172
.0710 .102 . 389
Fuel C: High w/o . 0261 . 00659 1.399 .0168
. 0832 .129 . 387
Absorption Rod . 0452 0.0 1.0 0.0
.959 0.0 1.0
Water . 0383 . 1.63 . 0380
.0108 0.0 . 275
Fast group constants appear first for each region material,
followed by thermal group constants. Fission neutrons are
assumed to be born in the fast group only.
Table 5.2. Representative One-Group, 18-cm, PWR
Subassembly Regional Nuclear Constants.

Region Material ZT VI, D
Fuel A: Low w/o .0329 .0199 1.14
Fuel B: Medium w/o . 0348 . 0244 1.20
Fuel C: High w/o . 0357 . 0272 1.23
Absorption Rod . 235 0.0 1.0
Water .0136 0.0 .414
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Four subassembly configurations, labeled A through D, were used
in the one- and two-group test configurations, and are illustrated in
Figure 5.1. Subassemblies labeled A, B, and C contain homogeneous
fuel of low, medium, and high enrichment, respectively, surrounding
the 1-cm absorption rod while subassembly D contains low enriched

homogeneous fuel surrounding a 1-cm water channel.

5.2 Subassembly Detailed Solutions and Homogenized Nuclear Constants

The detailed flux and current solutions for each subassembly were
found using the computer code REF2G with symmetry boundary
conditions and a 68-mesh region per subassembly geometry as indi-
cated in Figure 5.2. The resulting one-group detailed flux solutions
for each subassembly are shown in Figure 5.3. The resulting two-
group detailed flux and adjoint flux solutions for each subassembly are
shown in Figures 5.4 and 5.5, respectively.

Homogeneous subassembly group constants for use in the finite
element approximations were found by flux weighting the group cross
sections in each subassembly by the corresponding subassembly
detailed group flux solutions. The resulting homogenized one-group
constants for each subassembly are given in Table 5.3, and the
resulting homogenized two-group constants are given in Table 5. 4.
The results of homogenizing the diffusion coefficient as the transport
cross section, 1/{1/D), as well as by direct homogenization, (D},
are included in the tables. The results of both schemes were found to
differ at most by only 2% . The directly homogenized diffusion coef-

ficients, (D), were used in the finite element approximations.,
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Subassembly Type A:

Rod
Fuel A g Fuel A
|
Subassembly Type B: Rod
Fuel B § Fuel B
l
Subassembly Type C: Rod
Fuel C § Fuel C
11
Subassembly Type D: Water
Fuel A Fuel A
0.0 8.5 9.5 18.0 cm

Figure 5.1. Subassembly Configuration Geometries
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M

Symmetric Partitioning:

1 (1/16 cm) + 1(15/16) + 4 (1) + 2(1/2) + 6 (1/4) + 4 (1/8) + 8 (1/16) + 8 (1/16)

Figure 5.2. Mesh Geometry in Half a Subassembly.
Detailed flux and current solution calculations use

this 68 intervals/subassembly geometry in each
subassembly type.

JCm
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Figure 5.3. Subassembly Detailed Flux Solutions

for the One-Group Case

Subassembly Type A —————— (lower curve)
Subassembly Type B - - - - -
Subassembly Type C - -e---
Subassembly Type D ————— (upper curve)
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Figure 5.4. Subassembly Detailed Flux Solutions

for the Two-Group Case

The fluxes are normalized by fast flux
values so that the thermal fluxes appear
in the lower portion of the figure.

Subassembly Type A (lower curves)

Subassembly Type B - - - - -
Subassembly Type C - -v-o

Subassembly Type D (upper curves)
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Table 5.3. Homogenized Subassembly One-Group
Nuclear Constants.

Subassembly (ET> (vEf> (D) 1/{1/D)
A . 04149392 .01905379 1.134047 1.133253
B . 04341140 .02335046 1.191397 1.189765
C . 04431869 .02602374 1.220054 1.217887
D .03184731 .01881458 1.100401 1.040479

Table 5.4. Homogenized Subassembly Two-Group
Nuclear Constants.
X1 =1.0; Xo = 0.0,

Sub-

assembly T (vep) (D) (Zyy) 1/(1/D)
A .02688787 .004601752 1,379526 .01698379 1.371911
.06812834 .06255182 . 3980863 .3919533

B .02698495 .005246314 1,379480 .01631765 1,37185
. 08647802 ,1002221 . 3996499 .3931874

C .02708207 .006251160 1,379433 .01593619 1.371787
.09893614 . 1266822 .3980142 .391310

D .02657213 . 004587110 1.412467 . 0189895 1.410790
.05034835 .05932253 . 3804001 . 3775656

Fast group constants appear first for each subassembly,
followed by thermal group constants.
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Before applying the proposed approximation methods to complex
reactor geometries, test runs were performed in order to evaluate
the differences between using either flux or adjoint flux weighting,
and using current solutions of either constant or linear form in each
subassembly interval, as described in section 4.2. The test problem
consisted of three consecutive Type A subassemblies with symmetry
boundary conditions imposed on each end so that the converged eigen-
value X\ (keff) should be identical to that of the detailed flux solution
of subassembly A, Entire subassemblies were chosen as the mesh
regions so that the proposed synthesis methods should converge to
flux values of unity, and current values of zero. The numerical
results of these tests for the one- and two-group cases are summa-
rized in Table 5.5. Although the choice of weighting function did not
influence the results for either approximation, use of current
solutions of the linear form enables better eigenvalue accuracy. In
addition, the results when using currents of linear form converged
to flux values of unity and current values of zero, as expected, while
results using the constant current form produced errors of about 0.5 %
in the converged flux and 0. 01 % in the converged current at interior
points. Although the difference in accuracy between the use of these
different current forms is small, the small flux and current errors
resulting from the use of the constant current form may lead to larger
errors in larger and more complex problems. For the above reasons,
the linear current form was used in the following case studies. Adjoint
weighting was also used. Although the use of adjoint weighting has not
been shown to guarantee the success of Cholesky's method in the
numerical solution scheme, no difficulties with its use were ever

encountered.
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Table 5.5. Test Results Using Three Consecutive Type A Subassemblies.

%A = [Ogup. A~ Cony. " *sub, a ) X 100%.
Synt}.lesis' Weigh’ging Form of Converged % N
Approximation Function Currents N
ONE GROUP: )\Sub. A~ 0.459194
Linear FLUX Constant .459363 -.036%
Linear FLUX Linear .459254 -.013%
Cubic FLUX Constant .459363 -.036%
Cubic FLUX Linear .459254 -.013%
TWO GROUPS: xsub. AT 0.751095
Linear FLUX Linear .751284 -.025%
Liinear ADJOINT Constant .7513818 -.038%
Linear ADJOINT Linear .751284 -.025%
Cubic FLUX Linear .751284 -.025%
Cubic ADJOINT Constant .7513818 -.038%

Cubic ADJOINT Linear .751284 -.025%
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5.3 Case Studies and Results

Four one-dimensional reactor configurations, each made up of
different combinations of types of subassemblies, are considered in
the case studies below. One-group calculations were performed only
for the first case, and two-group calculations were performed in all
cases. Entire 18-cm subassemblies were used as coarse mesh
regions in each case, while the effect of using half-subassembly
mesh regions was also included in Case 1. The geometry and sub-
assembly configurations of the case studies are shown in Figure 5.6.

Three separate approximation methods were used to calculate
converged detailed flux solutions for comparison in each case. They
are:

1. The proposed approximation methods using heterogeneous

nuclear constants and subassembly detailed flux solutions

for coarse mesh solutions.

2. The finite element methods using subassembly homogenized

nuclear constants for coarse mesh solutions.

3. The linear finite element method for fine mesh reference

solutions.

Calculations of both the proposed approximation and the coarse mesh
finite element method using linear basis functions were performed
using program LINEAR, while the corresponding cubic Hermite basis
function approximations were performed using program CUBIC. The
fine mesh reference solutions were calculated using program REF2G,
and the results of these approximations were compared and analyzed
by program ANALYZE, Descriptions of these programs are given in

Appendix D,
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Case 1:
SubassemblylSubassembly}Subassembly
Symmetr
y Y Type A Type B Type C Symmetry
0 18 36. 54. cm
Case 2:
g ¢ Subassembly|Subassembly|Subassembly
ymmetry Type D Type B Type C Symmetry
0 18 36. 54. cm
Symmetry——»‘
Case 3 :
Zero
Flux Wated ¢ | c |l c | a |l a]lal|np fr
0 18 36 54 M2 90. 108. 126. 144
153, cm
S _.’I
Case 4 : ymmetry
zero  fyaterl D | D | D | c | D |{D | A
Flux
]
|
0. 18. 36. 54, 72,  90. 108. 126. 144,
153. cm

Figure 5.6. Geometry of the Four Case Studies
Composed of Types of Subassemblies
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The results of each case study are divided into the two approxi-

mation method categories as defined below.

1. The linear basis function approximation
A. Linear FEM:
(The linear finite element method using homogenized
coarse mesh nuclear constants)
B. Linear Synth:
(The proposed approximation method using hetero-
geneous coarse mesh nuclear constants and detailed

coarse mesh solutions)

2. The cubic Hermite basis function approximations
A. Cubic FEM

B. Cubic Synth

The results of the approximations in each category are compared to

the reference solution by examining:

1. The converged eigenvalues \ (keff) and their percent

normalized eigenvalue error,

Tk = O\Ref - )\Conv)/)\Ref X 100%
2. Composite graphs of the converged detailed group flux
solutions Ug(z) normalized to equivalent power levels

3. The fractional normalized power levels P(k) calculated for

each 18-cm subassembly k by
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fSub 1 I/Efg(z)Ug(z)dz
’ g
P(k) = (5.2)
)
v, (z)U (z)dz
Allsubs, 2. fg 78
g=1
and their percent normalized errors
PP(k) = (P(k)g o5~ P(K) o)/ P& o X 100% (5.3)

5.3.1. Case 1: Three different subassemblies of Types A, B, and C

with symmetry boundary conditions.

The graphical results of the one-group approximation methods for
this case are shown in Figures 5.7 and 5.8, while the results of the
two-group approximation methods are presented in Figures 5.9-5,12,
Only the coarse mesh boundaries are labeled in the figures, which
indicates that entire 18-cm subassemblies were used as the coarse
mesh regions. Two-group results using only half-subassemblies as
the coarse mesh regions are shown in Figures 5.13-5.16. The
reference solutions were calculated using 150-mesh regions, as

defined by the symmetric partitioning
5(1 cm) + 4(.5 cm)+ 4(. 25 cm)+ 4(. 125 cm) + 8(. 0625 cm)

in each of the three subassemblies. The converged approximation
eigenvalues and fractional normalized subassembly power levels for
the one- and two-group calculations are summarized in Table 5.86.
The fractional powers, P(k), for each subassembly are listed in the
reference solution column, while the percent errors, %P(k) are listed

in the approximation columns.
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Table 5.6. Results of Case 1.,
Method Reforence  Linear Linear  Cubic Cubic
Results FEM Synth FEM Synth
ONE-GROUP RESULTS:
X .559045  .556943 .557154 .558647 .558761
%N -- . 376% .338% .072% .0519%
P(1) . 084 -12.19%  -11.99%  -3.07% -2.44%
P(2) 294 -4,299%  -3.93% -.241%  -.4349%
P(3) 622 +3.67%  +3.47%  +.528%  +.5347%
TWO-GROUP RESULTS:
\ 917267  .914489 .915221 .916717 .917059
L/ DN - .302% .223% .060% . 023%
P(1) . 134 -6.93% -5.63% -1.43%  -1,139%
P(2) .315 -1.63% -1.39% -.0729%  -.1209%
P(3) 549 +2.63%  +2.17%  +.391%  +.347%

Two-Group Results Using Half-Subassembly Mesh Regions

X .917267 .916356 .916427 .916669 ,917294
%o N -- .093% .092% . 065% . 003%

P(1) .134 -2.38% -2.69% -1.51% -.461%
P(2) .315 -.475% -.602% -.063% -.047%
P(3) . 949 +.851% -2.63% -3.22% +1.40%
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It is apparent from these results that the proposed approximation
methods, and in particular the method utilizing the cubic Hermite
basis functions, approximate to a high degree of accuracy the detailed
reference spatial flux. Comparison of the eigenvalue and fractional
power results in Table 5.6 indicates that comparable if not superior
measurements are obtained using the proposed methods in this case.

It is interesting to note the effects of employing the given sub-
assembly heterogeneous nuclear constants rather than subassembly
homogenized nuclear constants for use in the finite element method
calculations. Under such conditions, the finite element method
becomes identical to the proposed methods in which the heterogeneous
nuclear constants and constant or flat subassembly solutions are used.
Two-group calculations using the cubic Hermite approximation method
were performed for Case 1 and are presented in Figures 5,17 and 5. 18.
This scheme was found to give very poor detailed flux results,
converge to an eigenvalue 21% in error, and yield an average of 20%
error in the fractional normalized power levels in each subassembly.
This example clearly illustrates the necessity for the use of homoge-
nized constants in the finite element method, or equivalently, the
importance of the subassembly detailed solutions in the proposed

approximations.
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5.3.2. Case 2: Three different subassemblies of Types D, B, and C

with symmetric boundary conditions.

The results of the two-group approximations for Case 2 are pre-
sented in Figures 5.19 - 5,22, where entire subassemblies were taken
as the coarse mesh regions. The reference solutions were calculated
using the same reference mesh geometry as in Case 1. The converged
eigenvalues and fractional normalized power levels in each sub-
assembly are summarized in Table 5.7. These results better illus-
trate the superiority of the cubic Hermite basis function approximations
over the linear basis function approximations, and the superiority of

the proposed approximations over the finite element method in all

aspects.
Table 5.7. Two-Group Results of Case 2.
Method Reference Linear Linear Cubic Cubic
Results FEM Synth FEM Synth
A . 969986 .965260 .970236 .966816 ,969578
% X -= .487% -.026% .326% . 042%
P(1) .381 +11.26% +3.46%  +6.07%  +.643%
P(2) . 296 -11.59% -5.59% -3.08% -.157%

P(3) .322 -2.66% +1.03% -4.34% -.616%
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5.3.3. Case 3: Half-core reflected PWR composed of an 18-cm water
reflector, the seven subassemblies C,C,C,A,A,A,D,
and half of subassembly D. Zero flux boundary
conditions are imposed outside the reflector, and
symmetry is imposed in the center of the last D-type

subassembly.

The Case 3 results of the two-group approximations using full
18-cm coarse mesh regions in all but the last 9-cm region are pre-
sented in Figures 5.23-5.26, and summarized in Table 5.8. The
reference solutions were obtained using 198 mesh regions given by

the symmetric partitioning
2(2 cm) + 2(1 cm) + 4(.5 cm) + 2(. 25 cm) + 2(. 25 cm)

in each of the subassemblies, and 18 (1 cm) regions in the reflector.
The use of many subassemblies containing absorption rods through-
out the reactor, except in the center subassemblies where water channels
are present, results in central peaked fluxes with large gradients and,
by comparison, a relatively small thermal neutron peak in the reflector.
Both coarse mesh methods were found to overestimate the flux in
the subassemblies near the reflector, and underestimate the flux in
the central subassembly regions regardless of the type of basis function
approximations used. The larger inaccuracies of the linear basis
function methods can be in part attributed to the fact that these methods
cannot approximate the peaked thermal flux in the reflector, and result
in large flux values in the subassemblies nearest the reflector. The
cubic Hermite basis function approximations, however, are better able

to approximate both the thermal flux reflector peak and the complex
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Table 5.8. Results of Case 3.
Method Reference Linear Linear Cubic Cubic
Results FEM Synth FEM Synth
N . 941640 .931429 ,938561 .935873 .928020
% X -- 1.08% . 32% .61% 1.449
P(1) . 01699 -461. % -514.% -37.4% -85.1%
P(2) ,02513 -192.9, -179.% -32.8% -98.6%
P(3) .02890 ~149.9 -133.% -26. 0% -79.6%
P(4) .0224 -50. 2% -36.9% -13.5% -31,5%
P(5) . 04969 58.52% 8.24% -2, 78% -7.63%
P(6) . 1465 T7.47% 13, 7% -.4949% . 2599
P(7) .4362 26.4% 22,99 5.01% 8.40%
P(8) . 2740 18.6% 20.1% 1.999% 13.1%
neutron leakage across the core, and give better results. Table 5.8

indicates that the cubic Hermite basis function approximations better

approximate the detailed reference solutions, and that results

obtained using the cubic Hermite finite element method were for this

case better than those obtained using either of the proposed approxi-

mations. The ability of these methods to approximate large thermal

flux peaks in the reflector regions is considered in the next case.
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5.3.4. Case 4: Half-core reflected PWR composed of an 18-cm water
reflector, the seven subassemblies D,D,D,C,D,D,A,
and half of subassembly Type A. Zero flux boundary
conditions are imposed in the center of the last

Type A subassembly.

The Case 4 geometry produces a large but detailed thermal flux in
the half-core region and a large thermal peak in the reflector region, as
seen from the results in Figures 5.27-5.30. The reference solutions
were calculated using the reference mesh geometry as given in Case 3.
The results of the approximations are summarized in Table 5.9,

The results show that the linear basis function approximations
cannot approximate accurately the thermal flux reflector peak and
result in large flux and fractional power errors in the subassemblies
near the reflector. The cubic Hermite basis function approximations,
on the other hand, are better able to approximate this thermal peak
and result in much more accurate power levels, especially in the first
subassembly region.

The Case 4 resulis typify the approximation accuracy of both the
finite element method and the proposed approximation method. In
general, the cubic Hermite basis function approximations are superior
to the linear basis function approximations, and the proposed methods
give comparable or superior results as compared to those obtained
from the finite element method using the same class of basis functions.
In this case, the proposed method using cubic Hermite basis functions
was able to estimate the reference eigenvalue within 0. 04%, closely
approximate the detailed reference flux solution to within a few percent
at all spatial points, and result in fractional normalized power levels

in each subassembly with less than 5% error.
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Table 5.9. Results of Case 4.

Method Reference Linear Linear Cubic Cubic

Results FEM Synth FEM Synth
N .979108 .980618 .985849 .976896 .978689
T N -- -.15% -.69% .22% . 04%
P(1) .098 -23.4% -21.4% -13.3% 5.54%
P(2) . 160 -1.53% 2.39% -.893% -1.08%
P(3) .193 11.5% 7.11% 1.83% -3.35%
P(4) .211 -19.5% -10.6% -7.23% -1.60%
P(5) . 168 17.4% 10.3% 3.86% 3.179%
P(6) .118 10.6% 4,96% 5.97% -1.01%
P(7) . 039 1.45% 3.44% 1.65% 3.25%
P(8) .010 18.1% 11.8% 2.30% -2.72%
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Chapter 6
CONCLUSIONS AND RECOMMENDATIONS

6.1. Characteristics of the Proposed Approximation Methods

The use of detailed subassembly flux solutions or other a priori
flux shapes directly in the spatial shape or trial function form of flux
approximations in reactor physics has resulted in many coarse mesh
approximation schemes which are classified in the broad area of
overlapping multichannel synthesis. The proposed approximation
methods are similar to existing synthesis methods of this kind, but
are unique in that they reduce to conventional and well understocd
approximation methods in regions where little or no spatial flux
information is given, or in completely homogeneous regions. In
contrast, the overlapping synthesis methods proposed to date do not.
This characteristic is especially important in calculations involving
homogeneous regions, of which reflector regions are a prime
example,

The proposed approximations are very similar to coarse mesh
finite element method approximations in which detailed flux behavior
has been used to flux-weight the nuclear constants in each region.
The methods are conceptually different and become equivalent only
when all of the coarse mesh regions are homogeneous.

The matrix equations resulting from the use of the proposed
methods are identical in form to those resulting from the finite ele-

ment method utilizing similar basis functions. In addition, the matrix
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elements of the proposed methods are curiously different from those
of the finite element methods using detailed flux-weighted nuclear
constants. Although the spatial mass and stiffness matrices of the
proposed methods for each group have been proven to be positive defi-
nite only for the case of Galerkin flux weighting, the use of adjoint
weighting in all of the cases considered did not alter these properties.
In addition, the proposed methods were found always to converge to a
positive eigenvalue and to flux shapes which were everywhere positive,

The numerical results indicate that the proposed methods are
able to predict accurate criticality or keff measurements and regional
power levels as well as to approximate the reference detailed flux
shapes for each group with a high degree of accuracy. The results
indicate that in general, use of the proposed methods results in
superior criticality estimates over those obtained by the use of the
finite element method with flux-weighted constants; this behavior was
observed for each type of basis function approximation. Moreover,
each of the proposed methods is in general vastly superior to its finite
element method counterparts in approximating the actual detailed flux
behavior and regional as well as total power levels.

Detailed flux behavior could be reintroduced into the results of
the homogenized finite element methods by normalizing the detailed
subassembly solutions in each coarse mesh region to match the power
levels of the converged results in each region. The detailed solutions
resulting from such a procedure would be discontinuous at the region
boundaries and may, to some extent, exhibit the fine flux structure

present in the results of the proposed methods. However, the results
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are not expected to be as good as an approximation as those of the
proposed methods, since the current coupling or diffusion approxi-
mation is not made until after the coarse mesh homogenization pro-

cedure.

6.2 Applicability and Limitations

Because the matrix forms of the equations which result from the
use of the proposed methods are identical to those which result from
the use of the finite element methods, the proposed approximations
can be incorporated into existing finite element approximation
schemes. Although additional integrations must be performed in the
proposed methods, they can be reduced to sums of known products so
that little additional computation time is required.

As in any coarse mesh approximation method, inaccurate results
can occur when the coarse mesh region sizes chosen are too large.
For a given region size, the accuracy of the results for any approxi-
mation scheme is unknown. The accuracy of the finite element methods
is known to improve geometrically as the mesh size is decreased,
resulting in a uséful error criterion for the method. A disadvantage
of the proposed methods is that no such error criterion has been
developed. The inability to predict error estimates has always been
a major drawback of synthesis techniques. However, the use of such
methods, and use of the proposed methods, has been shown to be justi-

fied through proper physical insight and experience.
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6.3. Recommendations for Future Work

Obviously the next step is the application of these proposed
methods to two-dimensional diffusion problems. However, the one-
dimensional problem still contains areas which may deserve closer
attention. One such area is the examination of the matrix properties
of both the finite element method and the proposed approximation
methods which are necessary in order to guarantee convergence to
a positive eigenvalue and an everywhere positive flux solution. An-
other area is the development of error criteria for the proposed
methods. The close similarity between the proposed methods and
the finite element methods may allow an extension or generalization
of characteristics which hitherto have belonged only to the finite ele-
ment methods.

The usefulness of the proposed methods depends on their applica-
bility and accuracy in two- and three-dimensional diffusion problems,
Just as the finite element approximations can be derived in two- or
three-dimensions using variational modal-nodal techniques, so can
the proposed methods for multidimensional problems. The proposed
trial functions could be defined as continuous at mesh nodes, but may
in genera‘l be discontinuous along mesh line interfaces. In order that
the flui and current trial functions not be allowed to be discontinuous
at identical spatial points, the current trial functions would then have
to be defined as continuous across these interfaces. The use of the
proposed class of trial function forms in the two-dimensional problem
will raise the challenge of extending the spatial overlapping synthesis

methods of this type to multidimensional reactor problems.
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vng(r)

Eggr(r)

o(r), @ (r)
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Appendix A

TABLE OF SYMBOLS

Energy group index which runs from the highest

to the lowest energy group as g = 1 to G.

Scalar neutron flux in energy group g

(neutrons/cm2 - sec).

Vector neutron current in energy group g

(neutrons/cm2 . sec).

Diffusion coefficient for neutrons in energy

group g (cm).

Macroscopic total removal cross section in

energy group g (cm_l).

Macroscopic fission-production cross section in

energy group g (cm™1).

Macroscopic transfer cross section from energy

r _1
group g’ to energy group g (cm 7).
Fission spectrum yield in energy group g.

The eigenvalue or criticality of the diffusion

problem.

Scalar group flux column vector of length G and

its adjoint.

Vector group current column vector of length G

and its adjoint.



U(r), U (r)

V(r), Y*(r)

¥ (2), sl/:;(Z)

m (), m(2)

141

GXG group material removal, scattering, and

production matrix,
GXG diagonal group diffusion coefficient matrix.

Scalar group flux and weighting flux trial function
column vectors of length G,

Vector group current and weighting current

trial function column vectors of length G.

One-dimensional spatial index which runs from
the leftmost first region to the rightmost K-th
region, as k=1 to K,

The one-dimensional axis variable divided into
K regions such that each region k is bounded

by nodes Zy and Zyr1

A dimensionless variable defined in each region
k as x = (z- Zk)/(zk+1 -2y ), such that 0 < x < 1

< <
as Zk z Zk+1.

Approximate one-dimensional group flux solution

at node Zk‘

Approximate one-dimensional group current
solution at node Zy
Detailed one-dimensional subassembly flux and
weighting flux solutions in coarse mesh region k
whose form is linear within each homogeneous

subassembly interval.

Detailed one-dimensional subassembly current
and weighting current solutions in coarse mesh
region k whose form is constant within each

homogeneous subassembly interval,
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ﬁk(z), 5;:(2) Detailed one-dimensional subassembly current
and weighting current solutions in coarse mesh
region k whose form is linear within each

homogeneous subassembly interval.

L Discretized matrix form of the GXG group dif-

fusion, absorption, and scattering matrices.

B Discretized matrix form of the GXG group

fission-production matrix.

I

The unknown approximate group flux solution
vector which may contain group current

unknowns.

%o\ Normalized eigenvalue percent error:
%X = (\Reterence ~ “Method’ / MReference < 100%-
P(k) Fractional power produced in coarse mesh
region k when the total power produced has

been normalized to unity.

% P(k) Normalized fractional power percent error:

% P(k) = [P(k) - P(k)

Reference Method] / P(k)Reference

X 100%.
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Appendix B

DIFFERENCE EQUATION COEFFICIENTS RESULTING FROM
USE OF THE FINITE ELEMENT
APPROXIMATION METHODS

The GXG matrix coefficients resulting from the conventional
finite difference approximation, the linear finite element approxi-
mation, and the cubic Hermite finite element approximation in one-
dimensional multigroup diffusion theory are defined below in
sections B.1, B.2, and B. 3, respectively. The coefficients are

given in terms of assumed homogeneous regional nuclear constants

Il

through the use of the GXG group matrices ID, and Ak, where Ak

k
]1\/[k - I‘k - %IBk, which are defined in Chapter 2 and are constant
for each region k, where k = 1 to K,

More general definitions of these coefficients may be found from
the coefficients resulting from the use of the proposed approximations,

given in Appendix C, by requiring that wk(z) be constant and nk(z) be

zero in each region k.

B.1. Coefficients of the Conventional Finite Difference Fquations
(as defined by Eqs. 2.16)

Interior Coefficients; k = 2 to K:
e = -Dy /by

-1
bk 5 (Ak_ 1hk—1 +Akhk) + ]Dk-l/hk—l + ID. /h

k/k

¢y = ~Dy /hy



144

Symmetry Boundary Condition Coefficients:

1
by =35Ah +D,/hy
c; =-D,/h,
ag+1 = " Py/hg

1
bryq = shghg + Dy /hye

Coefficients of the Linear Finite Element Method Equations
(as defined by Eqgs. 2.30)

Interior Coefficients; k = 2 to K:

1 )

e =gl q ~ Pyo1/hyy
1

by =g lfy by AN ] +D /by + Dy /by
1 )

cx = g hyhy, ~ Dy /hy

Symmetry Boundary Condition Coefficients:

1

by =gfhy +D,/hy
ey =ghhy - Dy/ng
axcs; ~ g Bxhk - Pg/by
biesy = 3hghg *+ D /by



B.

3.

Coefficients of the Cubic Hermite Finite Element

Method Equations (as defined by Eq. 2.33)

Interior Coefficients; k=2 to K:

- _6
aly = w5 By by 3 - 5D 1/hyy

2 -1 1
by Ppg Tﬁ)e

- 13 6
bl =33 <Ak-1hk—1+ﬂkhk> *5 (]Dk-l/hk-l + ]Dk/hk)

2 -1 9 -1
k-17%-1Pk-1 By Py )9

9 6
cly = wg Dby - 5 Dy /hy

_ 241 1
2, = (720 Px 10)9

/13 -1 .2 1
a3y =730 Px-1"%-1L%-1 10)9

/1 -1 .3 11 N
a4k"< 120 Pk-1P%-1Pxk-1Pro1 3ohk—1]Dk-1)6

11 [o-1 L2 -1.2
b3y = 37 (Dk—lhk—lﬂk—l Dy hkﬂk)e

(1 (-1 .3 -1 1.3 -1
b4 “[ (Dk—lhk—lﬂk~lmk—1+mk hy iy Dy
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Zero Flux Boundary Condition Coefficients:

ot~ (o, B+ & ) o

ey = 4—12%1]311th1+%) 0

4y = (' 170 D} hiA DY} - E%hlmil) 0°
a3ic41 ~ (759 P hie D - 1—10) 0

N (‘ ﬁ D! hy Ay D! - % hK]DI_{l) 0

- 1 -1.3 -1 2 -1 2
b4 1 = (105 P Dby Py + 75 g D )o
Symmetry Boundary Condition Coefficients:

13 8
bly = 35 h) +5D, /b,

9 _6

cly = =ghhy - 5D, /hy
/13 2 -1 1

C21*(420*"*1hl]D1 10)9

alp “7ofklk ~ 5

K
_(_ 13 2 -1, 1
a2y 1 =~ 720 Bxhx Pk + 10)9
13 6
blgiy = 35Pkhg + 5 Px/hg
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Appendix C

DIFFERENCE EQUATION COEFFICIENTS RESULTING FROM
USE OF THE PROPOSED APPROXIMATION METHODS

The GXG matrix coefficients resulting from the proposed approxi-
mation methods using (1) linear basis functions, and (2) cubic Hermite
basis functions, in one-dimensional multigroup diffusion theory are
defined below in sections C.1 and C. 2, respectively.

The coefficients are given as integrands of functions of x where
the integration of every coefficient-integrand over a region

1
Coefficient = fO [ Coefficient-Integrand (x)] dx
is understood.

In order to simplify the forms of the coefficient-integrands, it is

convenient to define the following G XG matrices:

K, (x) = wiﬁT(xmk(x)hk ¥y (%)
>:<T -1

L, (x)=n (x) D, (x)hy 1, (x)
>:<T

P, (x) = ¢y (x) 0y (x)
w L

R (x) = n (x)¢ (x)

T

R, (x) = 51; b (x)D(x) ¢ ()

for each region k. In each approximation below, two sets of poly-

nomial functions pl(x) c. p2N(X) and ql(x) ... Gy(x) are given
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which represent the basis functions of the approximation and their
negative derivatives, where N = 1 for the linear basis function approxi-
mations and N = 2 for the cubic Hermite basis function approximations.
The GXG coefficient-integrands are then listed in terms of these
matrices and polynomials by the GXG collapsed matrices IEli;j(X)

defined as
JE;:J'(X) = Py ()P () (%) - py (x)p; (L () + 0 (x)p ()P ()

- pi(X)qj(X)Qk(X) +qi(x)qj(X)]Rk(X)

for given values of i and j for each region k, where k=1 to K. It

should be noted that IE;{’J(X) is not symmetric about i and j; i.e.:

i,j j,i ..
l1Dig (X)¢IEk (x), for i#j,

C.1. Coefficient-Integrands of the Proposed Approximation

Method Equations Using Linear Basis Functions
(as defined by Eq. 3.6)

These coefficients are given in terms of the polynomial functions

py(x) = (1-x)
Py(x) = x
q,(x) =1
qo(x) = -1

for use in the EL’J(X) below.
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Interior Coefficient-Integrands; k=2 to K:
-1
2 ) =y M ES 1) gt (0)

—1 -1
bex) = ¢y LEE 200t () + T mL T v o)

-1

e ) = v, (O E 2

@l

Symmetry Coefficient-Integrands:
—1
b 60 = ¢, O ED v 0)

cl(x) = ck(x); where k = 1

aK+1(X) = ak(x); where k= K+1

-1
by () = Yt (DES 2y l(1)

Implied Zero Flux Boundary Condition Coefficient-Integrands
(Corresponding with the modified trial functions of the type

in Egs. 3.9)

_1 _1
by(x) = ¥y (D [K; 6 - Ly Glw] 0+ T ) L)y 0)

-1 -1
B(x) = v (NEL 2 gt (1) +9 T (0) [ Ky - Ly Jugl(0)
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C.2. Coefficient-Integrands of the Proposed Approximation Method

Equations Using Cubic Hermite Basis Functions (as defined
in Eq. 3.186)

These coefficients are given in terms of the polynomials pl(x)
through p4(x) and ql(X) through q4(x), previously defined in Eqgs. 3.11

and 3.12, for use in the IEII{’J(X) below.

Interior Coefficient-Integrands; k = 2 to K:
-1
a1 () = gy L EE 1wt (0)

—1

a2, (x) = wk 1(1)]E (x)wl'{fl(o)ml;fl(o)e

—1 —1

b (x) =y L (EL T e+ u T EL Yo v o)

bt
-1
b2, (x) = gy (D EZ 2t (DL (16
-1
+u OB 3wy 0D o) 6

-1

e1,(x) = ¢y (O I )y 1)
-1

e2, () = v (O EL A=) u l D (1) 6
—1

a3, (x) = wk 1(1)]13 (l)lEk 1(><)¢/k 1(0)6

-1

a4, (0 =y L (DL B 3600 (D)L (06
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-1
b3, 60 = L (DL MEE 2yt ()6
-1
+yp (D OV ES Ty H0) 0
-1

v oL MER A et (Dt (1) 6

b4 (x)

-1
+yp (D0 ES 30 v M0y D) L(0) 62

—1
c3,(x) = wk (0)]D (O)IE ’ (x)t[/;{l(l)e
-1

a0 =y ODHOEY Ay D 1) 6

Zero Flux Boundary Condition Coefficient-Integrands:

-1
*T

b4, (x) = ¢ O D MO ES 2] N0 D] H0) 67
c3,(x) = ¢3,(x); where k=1
041(X) = c4k(x); where k=1
adp (%) = a3, (x); where k=K+1
ady (%) = ady, (x); where k= K+1

-1
by, 160 = s (MDD EE 0 vyt 0
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Symmetry Boundary Condition Coefficient-Integrands:

-1
b1,(x) = v (O E] 0w H0)

cll(x) = clk(x); where k =1
021(X) = c2k(x); where k=1
a1K+1(X) = alk(x); where k=K+1

a2 = a2k(x); where k=K+1

K+1X)

2,2

blp &) = vEADED %)y (1)

Implied Zero Flux Boundary Condition Coefficient-Integrands

(corresponding with the modified trial functions of the type in

Eq. 3.17):

CSl(X) = ch(x); where k=1
322(X) = a2k(x); where k=2
b12(x) = blk(x); where k=2

b22(x) = b2k(x); where k=2

b32(x) = b3k(x); where k=2

blK(X) = blk(x); where k=K
b2K(x) = b2k(x); where k=K
c2K(X) = cZk(x); where k=K
bSK(X) B bSk(x); where k=K
a3K+1(X) = aBk(X); where k=K + 1/

and where <

and where <

py(x) =0
Py(x) =1
q,(x) =0
qy(x) =0
py(x) =1
py(x) =0
q;(x) =0
q9(x) =0
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Appendix D
DESCRIPTION OF THE COMPUTER PROGRAMS

The computer programs REF2G, LINEAR, CUBIC, and ANALYZE
are described respectively in the following four sections. The pro-
grams are written in FORTRAN IV, allow double precision calcu-
lations, and were used with the I.B.M. 360/65 and 370/155 FORTRAN
G compilers at the M.I.T. Information Processing Center. Sample
storage requirements and execution times of the programs are summa-
rized in Table D, 1,

The power method employed in the first three programs allows a
maximum of 300 iterations to converge, and program execution con-
tinues after this limit. Initial group flux shapes are sinusoidal or flat,
depending upon the boundary conditions chosen.

The input and output data of each program are divided into data

blocks for ease of representation as described below.

D.1. Description of Program REF2G

REF2G finds the reference solutions of the one-dimensional, two-
group diffusion equations of each case study, or the detailed sub-
assembly solutions of each subassembly, using the linear finite
element approximation method. The program allows up to a total of
two hundred homogeneous fine mesh regions and employs combi-
nations of both zero flux and symmetry boundary conditions., Identical

material regions can be automatically repeated with no additional input.



Table D, 1. Sample Storage Requirements and Execution Times of the Programs
for Two-Group Results. Obtained using the M.I. T, I,B,M. 360/155,

Storage Requirements in Bytes (without overlays):

REF2G: 260 K
LINEAR: 200 K
CUBIC: 250 K

ANALYZE: 205K

C.P.U. Execution Times in Minutes:

REF2G: Detailed Subassembly Solutions (68 regions)®: .120
Case 1 Reference Solution (150 regions)b: .238
Case 4 Reference Solution (198 regions)b: .644
LINEAR: Case 1 Synthesis (Homogenized®) Method (3 regions): . 284 (.157)
Case 4 Synthesis (Homogenized®) Method (9 regions): . 296 (.209)
CUBIC: Case 1 Synthesis (Homogenized®) Method (3 regions): 1.227 (.183)
Case 4 Synthesis (Homogenized®) Method (9 regions): 1.464 (.328)
ANALYZE: Case 1 Linear (Cubic Hermite) Basis Functions: . 087 (.108)
Case 4 Linear (Cubic Hermite) Basis Functions: .122 (.139)

a. Including adjoint flux and current calculations.
b. Not including adjoint calculations,

c. Including . 126 minutes for calculation of the two-group homogenized constants.

Gl
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Options for plotting graphically the history of the converging spatial
flux as well as the converging eigenvalue are also available, In
addition, the program allows the calculation of the adjoint flux and
current solutions.,

The approximate current solutions are linear within each mesh
region and are calculated from the converged flux solutions using
Egs. 4.29 and 4.31. The converged flux and current solutions and
the converged adjoint solutions can be punched out for future use as

described below.

A. Reference Solution Input Block

Card Type 1: Format (20A4)

An Appropriate Problem Title

Card Type 2: Format (215, 3E10. 3, 5I5)

KR  Total number of homogeneous fine mesh regions.
KR < 200.

IBC Boundary Condition Option

1. Zero flux on both boundaries

2. Zero flux on the left, symmetry on the right
3. Symmetry on the left, zero flux on the right
4

Symmetry on both boundaries

EPS1 Iteration tolerance to be met by differences between
elements of successive iteration solution vectors:

ngl)- F(.l_l)l < €,; for all j
] ] 1
EPS2 Iteration tolerance to be met by the mean square

error between successive iteration solution vectors:

{E Fj(l) F(l }z
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EPS3  Iteration tolerance to be met by the difference
between successive iteration eigenvalues:
|)\(i)_ X(i_l)l < <
3
IPLOT Allows printed graphical display of the converging
flux solution:
0 No display
1 Plot only the resultant normalized flux

2  Plot a normalized history of the converging flux

JPLOT Allows printed graphical display of the history of the

converging eigenvalue when JPLOT = 1.
IPUNCH  Allows punched output when IPUNCH = 1,

ISEE  Allows printing of storage information:
0 No information printed
1 Input regional properties are printed
2 Input regional properties as well as the
Common/B5/ storage arrays and the
Common/B3/ power method matrices

are printed.

NOADJ Adjoint calculations are performed when NOADJ =0,
and bypassed if NOADJ = 1,

Card Type 3: Format (2512)

ITEF(k) The consecutive type-number of each region from
left to right as k = 1 to KR. Allows for repeating

identical regions with no additional input.

Card Type 3 is repeated KR/25 times (rounded off to the next highest
integer).

Card Type 4: Format (2F10. 5)

CHI(1), CHI(2) The fission yields Xq and Xo for the fast and thermal

groups, respectively.



157

An Input Region Data Block:

Repeated for each different material region; max [ITF(k)] times.

Card Type 5: Format (I15)

k  The consecutive mesh region number (counting from

from left to right) for identification purposes.

Card Types 6,7: Format (3F10.5, 4E10. 3, /, 30X, 3E10. 3)

The geometry and nuclear constants for region k:

z(1)  Beginning spatial coordinate of region k (cm)
z(2)  Ending spatial coordinate of region k (cm)
H  Width of region k (cm)
A(1) Fast-group macroscopic total cross section in
region k (cm 1)
F(1) Fast-group macroscopic production cross section,
. : -1
VL., in region k (cm 7)
D(1)  Fast-group diffusion coefficient in region k (cm)
S Fast-to-thermal macroscopic scattering cross
section in region k (cm—l)
A(2) Thermal-group macroscopic total cross section in
region k (cm™ 1)
F(2) Thermal-group macroscopic production cross
. . . -1
section, vL., in region k (cm ")

D(2)  Thermal-group diffusion coefficient in region k (cm)
End of an Input Region Data Block.
** Power Method Input Block: Optional

Card Type 8: Format (F10.5)

w Outer iteration overrelaxation parameter 1 € w< 2.
Default is w =1, 25,

Card Type 9: Format (D25, 14)
(0

,(0)

Initial eigenvalue guess., Default is =1.0.
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Card Type 10: Format (4E20.10)

((F(g,i),i=1to N), g=1to 2) Initial group flux solution guess without
zero flux boundary values. Default is
F=1,0.

End of Power Method Input Block.

B. Reference Solution Output Block

When IPUNCH = 1, REF2G punches out the number of fine
mesh regions, KR, under Format (I5) followed by the converged flux
solutions ¥(g, k) and corresponding current solutions ﬁ(g,k) for each
group g and spatial node k including boundary conditions. When ad-
joint calculations are included, the results are punched out under

Format (4D20. 10) as
((Wg, k), Mg, k), ¥ (g.K),7 (g,k), k=1to KR+1), g=1 to 2)

where the notation denotes case reference solutions as well as detailed
subassembly solutions. When the adjoint calculations have been by-

passed, the results are punched out under Format (2D20, 10) as
((Ug,k),n(g,k), k=1to KR+1), g=1 to 2)

A total of 2 KR + 3 cards are punched out.

D.2. Description of Program LINEAR

Program LINEAR forms and solves the difference equations
resulting from the proposed approximation method using the linear
basis functions. The program allows up to twenty-five coarse mesh
regions, each of which is allowed to be broken into not more than one

hundred homogeneous intervals. Combinations of both zero flux and
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symmetry boundary conditions as well as use of the modified trial
function forms in the boundary regions are allowed. Spatial flux and
eigenvalue iteration history plots are also available.

The program allows a choice of the type of weighting, Galerkin or
adjoint, to be used in the approximation. Also, either form of the
detailed subassembly current solutions nk(x) or ?]k(x) is allowed. In
addition, identical coarse mesh regions with identical detailed sub-
assembly solutions can be repeated implicitly.

LINEAR also calculates results of the linear finite element method
when suitable input is used. Such results can be obtained by using
homogenized coarse mesh region nuclear constants and defining the
detailed group flux solutions to be constant and the detailed currents
to be zero (or by setting ITC = 0). |

Punched results using detailed subassembly solutions constitute a

Synthesis Method Output Block, while punched output resulting from

the reduction to the finite element method with homogenized regional

constants constitutes a Homogenized Method Output Block,

A. Homogenized or Synthesis Method Input Block
Undefined input parameters are identical to those previously

defined in the REF2G input.

Card Type 1: Format (20A4)

An Appropriate Problem Title

Card Type 2: Format (215,3E10. 3, 615)

KR Total number of coarse mesh regions. KR < 25,
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IBC 1-4 As previously defined
5 Modified trial function (no tilting) in the first
region, symmetry on the right
6 Zero flux on the left, modified trial function
in the last region

7 Modified trial functions in both boundary regions

EPS1
EPS2
EPS3
IPLOT
JPLOT
IPUNCH
ISEE

ITW Type of approximation weighting desired:
0 Flux (Galerkin)
1  Adjoint

ITC Form of the detailed current solutions in all sub-
assemblies:
0 nk(x), ni;(x) as calculated by Fick's laws
1 ﬁk(x), ﬁi';(x) as given from REF2G output

Card Type 3: Format (2512)

ITF(k) The consecutive type-number of each coarse mesh
region from left to right as k=1 to KR. Allows for
repeating identical subassemblies with no additional

input.
Card Type 3 is repeated KR/25 times (rounded off to the next highest

integer).

Card Type 4: Format (2F10.5)

CHI(1), CHI(2)
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* An Input Subassembly Region Data Block:

Repeated for each different coarse mesh region; mlgx [ITF(k)]

times.

Card Type 5: Format (2I5)

k

Card Types 6, 7:

z(1)
z(i+1)
H(i)

A(1,1)

F(1,1i)

D(1,1)

S(1)

A(2,1)

F(2,1)

D(2,1)

The consecutive coarse mesh region number
(from left to right).

The number of homogeneous intervals in sub-
assembly k. N < 100,
Format (3F10.5, 4E10.3, /, 30X, 3E10.3)

The subassembly geometry and nuclear constants
within each interval corresponding to the detailed

subassembly solutions.

Repeated for each interval as i =1 to N:
Beginning spatial coordinate of interval i (cm)
Ending spatial coordinate of interval i (cm)
Width of interval i (cm)

Fast-group macroscopic total cross section in

interval i (cm 1)

Fast-group macroscopic production cross section,

VL., in interval i (cm_l)
Fast-group diffusion coefficient in interval i (cm)

Fast-to-thermal macroscopic scattering cross

. .. . -1
section in interval i (cm )

Thermal-group macroscopic total cross section

in interval i (cm_l)

Thermal-group macroscopic production cross

section, vEf, in interval i (cm_l)

Thermal-group diffusion coefficient in interval i (cm)
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Card Type 8: Format (4D20. 10)

The detailed subassembly solutions.
((W(g, %), (g, k), ¥ (g,K),7 (g,k), k=1to KR+1), g=1 to 2)

A subassembly's Reference Solution Output Block without
the first card.

* END of an Input Subassembly Region Data Block.
Expected Solution Input Block: Optional

Card Type 9: Format (D25. 14)

XREF Expected eigenvalue solution. Default is )\REFz 1.0.

Card Type 10: Format (4E20.10)

((F(i,g),i=1toN),g=1t02) Expected group flux solution without
zero flux boundary values. Default
is F=1.0.

#% END of the Expected Solution Input Block.

Power Method Input Block: Optional

As previously defined in the REF2G input.

<%  HKND of the Power Method Input Block,

B. Homogenized or Synthesis Method Output Block
When IPUNCH = 1, LINEAR punches out the total number of coarse
mesh regions, KR, under Format (I5) followed by the resultant flux
solutions including boundary conditions. The flux solutions are punched
out under Format (2E20.7) as
(F(1,k),F(2,k), k=1to KR+1)
These cards represent either a Homogenized or Synthesis Method Output

Block, depending upon the type and form of input data used.
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D.3 Description of Program CUBIC

Program CUBIC forms and solves the difference equations result-

ing from the proposed approximation method using the cubic Hermite

basis functions. The program is very similar in form to program

LINEAR and uses similar input.

A. Homogenized or Synthesis Method Input Block
The input to CUBIC is identical to that of LINEAR except for the

following:
1. The boundary condition options are restricted by 1 < IBC < 4,

2. The normalization constant 6 can be included on Card Type 4

after CHI(2) under Format (3F10.5). Defaultis 6 = 1.0.

3. Both the expected group solutions and the initial group solutions
of the Expected Solution and Power Method Input Blocks, respectively,
are of the form ((F(g,i), i=1 to N), g=1 to 2) without either zero flux
or zero current (or symmetry) boundary conditions. The solution
vector is made up of alternating flux and current values as described
in section 3.3 of Chapter 3. Default values are flux values of unity

and current values of zero,.

B. Homogenized or Synthesis Method Output Block

When IPUNCH = 1, CUBIC punches out the total number of coarse
mesh regions, KR, under Format (I5) followed by the resultant flux
and current solutions including boundary conditions. The solutions are

punched out under Format (4E20,7) as

(F(1,k),F(2,k),G(1,k),G(2,k), k=1 to KR+1)
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where F(g,k) represents the flux, and G(g,k) the current solution of
group g at node k.

As in the case of LINEAR, these KR+2 output cards represent
either a Synthesis or Homogenized Method Output Block, depending

upon the type and form of input data used.

D.4 Description of Program ANALYZE

ANALYZE compares the results of the reference solution,
homogenized finite element method, and the proposed synthesis method
for each case study where either linear or cubic Hermite basis functions
have been used in the latter methods. For each of these three methods,
the program first forms the complete detailed flux solution and then
normalizes the flux distributions for each method such that their total
power levels are unity., The fractional (normalized) power levels
produced in each coarse mesh region are then calculated, compared,
and listed. Finally, the detailed group fluxes of each method are
plotted graphically relative to one another using the Stromberg-Carlson

Computer Recorder, SC-4020, facility at M.I.T.54 The graphic results

for each group are normalized by the largest group-flux value such that

the equivalent total power levels are preserved.

A, ANALYZE Input

The input to ANALYZE is read from five device units: 1,2,3,11,
12,13, and 5. Input and output data of the reference and approximation
programs are read from the former six units while the standard input

unit, 5, is reserved for SC-4020 plotting information.
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The input is described by "Header Cards' and previously defined
Input and Output Blocks. Header cards consist of one or more cards

defined as follows:

Header Card 1: Format (41I5)

Method Indicates the type of basis function approximation:
1 Linear

2  Cubic Hermite
NK Total number of coarse mesh regions involved.

NR Total number of fine mesh regions involved. NR = NK

except for reference solution calculations.

NAP Number of additional points to be plotted within each
coarse mesh region. Used with the homogenized finite
element method calculations. NAP < 0 denotes that
the additional points are to be used in the first region
(reflector) only.

Header Card 2: For use in device unit 3 input when NR # NK,
Format (1615),

NRNK(k) The number of fine mesh regions which make up each
coarse mesh region k, as k = 1 to NK.
The program is dimensioned to accept up to 200 fine mesh regions
(or intervals) per coarse mesh region, up to 25 coarse mesh regions,
and up to a grand total of 1000 fine mesh regions in each case study.

The form of the ANALYZE input is given as follows:



Input Data for Unit 1:

Header Cards

[Homogenized Method Input Block:l

Input Data for Unit 2:

Header Cards

I:Synthesis Method Input Block:l

Input Data for Unit 3:

Header Cards

[Reference Solution Input Block]

Input Data for Unit 11:

[Homogenized Method Output Block]

Input Data for Unit 12:

[Synthesis Method Output Block]

Input Data for Unit 13:

[Reference Solution Output Block:l

Input Data for Unit 5:

No SC-4020 plots are generated if this data is omitted.

Card 1: TFormat (20A4)

An appropriate title written above each plotted graph.
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Card 2:

XINCH

YINCH

Card 3:

NCELL

WCELL

Card 4:

NLL

XL(i)

Card 5:

XL(i)
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Format (2F10.5)

Total width of the graph in inches including labels
(limited to 7.45").

Total height of the graph in inches including labels
(limited to 7.45"),

Format (I10, F10.5)

Total number of coarse mesh regions. NCELL < 25,
(NCELL < 0 indicates that the last region is of width
3 WCELL)

Width of each coarse mesh region in cm,

Optional. Format (I10, 7F10.5)

Number of vertical light lines to be added to the plotted
graphs. NLL < 100.

Spatial location (cm) of the light lines; i = 1 to 7.

Format (8F10.5)

As above when NLL > 7,
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Appendix E

SAMPLE INPUT AND OUTPUT DATA BLOCKS
FOR PROGRAMS REF2G, LINEAR, CUBIC, AND ANALYZE

(Included in only the first six copies of this report.)



SAMPLE REF25

Eels REF2G SAMPLE INPUT AND OUTPUT DATA BLOCKS

- . o — -

REFERENCE SOLUTION INPUT BLOCK:

———— T ————— .~ — T ———— —— A S —— o T ——— £~ T i, o o

CASE 1 STUDY:

150
1111
5555

6 6 6 661717
1010101010101010 9 9

DIFFERENT SUBASSEMBLIES. 159

1.E-8 1 1
4455555555
3222211111
9 91010101C610101010
88 777766666

IOE”S
333424
44 333
8 8899
99 88

11111111111212121213131313141414141515151515151515
15151515151515151414141413131313121212121111111111

1.0
1
0.0

0.0

10
0.0

14
0.0

18
0.0

51
0.0

56
0.0

1

0.0

1.0

0.125

0.0625

0.5

1.0 2.59 D-2 4.85 D-3
532 D-2 6.36 D-2
0.5 259 D-2 4.85 D-3
5.32 D-2 6.36 D-2
0.25 2.59 D-2 4.85 D-3
532 D-2 6.,36 D-2
0.125 2.59 D—Z 4985 0’3
5332 D=2 &.36 D-2
0.0625 4052 D‘Z 000 D 0
959 D-1 0.0 DO
100 2060 D“Z 5053 0-3
710 D-2 1.02 bD-1
0.5 2.60 D-2 5.53 D-3

FINE MESH
1 0

1.396
3.88

]

1.396
3.88

s O

1.396
3.88

?:3 ?(ﬁ ?lﬂ

e O

1.396
3.88

oo
)

1.0
1.0

oo
oo

1.397 D ©
3.89 D-1

1.397 D O
3.89 D-1

REFERENCE SOLUTION.

1

0.0

1.72

1.72

D-2

D-2

D-2
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60
0.0

2.60 D-2 5.53 D-3 1.397 D 0 1.72 0D-2

7.10 D-2 1.02 D-1 3.89 ©D-1

0.25

0.25

64
0.0

2.60 D-2 5.53 D-3 1.397 D 0 1.72 D-2

0.125

0.125

7.10 D-2 1.02 »D-1 3.89 D-1

1

68
0.0

0.2625

0. 0625

1

101

o~
|
(o}
w
O
L]
-
© -
|
oo
o
o M
Mm o
L 2 ]
- 0
0 -~
| 1
Qn
a0 ]
0N
» o
el
4_2
|
[N
ot O\
o m
L N
~ 0
o
.
pod
o
L )
o
o
L]
o

1

106

T
[an]
o
o)
L]
]
O -t
ad
o
P ™~
W<}
e 0
~— 00
o) o=
|
o0n
o
"N
L N
O e
o N
I |
Qo
Ll
0™
* @
a0
Ta
»
(o]
N
*
-
o
[
<

1

110
0.0

D=2

D~2 6.59 D-3 1.399 D 0 1.68

0.25 2.61
8.32 D-2 1.29 D-1 3.87 D-1

0.25

1

114
0.0

D=2

D-2 6.59 D-3 1.399 D 0 1.68

0.125 2.61
8.32 D-2 1.29 D-1 3.87 D-1

Jd.125

1

118
0.0

9.59 D-1 0.0

0.0625

0.0625
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0.0

15
0.0

19
0.0

27

TWO

oo W

Vi W

O VoW

GRJIJ

Vi \nm &,

P CELL
l.E-8
4 5
8 8
5 5

Cwo

0.05625

0.9375

1.0

0.5

0.25

0. 125

0.0625

0. 0525

SAMPLE REF2G SUBASSEMBLY SOLUTION INPUT BLOCK:

0.0625

0.9375

1.0

0.5

0.25

0.125

0.0625

0.0625

FUEL A + CRUCIFORM ROD.

E-8
177
T7

D-2
D-2

D-2
D-2

D-2
D-2

D-2
D-2
D-2

D-2
D-2

D-2
D-2

D-2
D-1

1
17
17

17
77

1
7
T

D=2

D-3

D-2

D-3
D-2

0-3

D-2

D-3
D-2

bD-3
D-2

D-3

D-2 .

1

THO GROUP CONSTANTS.,

0

0
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SAMPLE REF2G REFERENCE SOLUTION OUTPUT BLOCK (SAMPLE SUBASSEMBLY SOLUTION):

—— - —— - — - —

68
0.1000000) 01 0.0 DO
0.9999906)0 00 0.20623190-02
0.9976040D 00 0.6351434D-02

0.6840883D 20 0.0 DO
0.6840819D 00 ~-0.1410808D-02
0.6824493D 00 =0.4344942D-02

63 ADDITIONAL FAST GROUP DATA CARDS

0.9976040) 30 -0.6351434D-02 0.6824493D 00 0+4344942D0-02
0.9999906) 00 -0.2062319D-02 0.6840819D 00 0.1410808D-02
0.1000000D 01 DO 0.6840883D 0C 0.0 DO
0.30901450 J0 Do 0.1000000D 01 0.0 DO
0.30900720 00 0.4484312D-03 0.9999762D 00 -0.1451165D-02
0.3071103D 00 0.1418028D-02 0.9938377D0 00 ~0.4588871D~-02

63 ADDITIONAL THERMAL GROUP DATA CARDS

0.30711032 20 -0.1418028D-02
0.3090072) 00 ~0.4484312D-03
0.3090145D0 00 0.0 DO

0.9938377D0 00 0.4588871D-02
0.9999762D 00 0.1451165D-02
0.1000000D O1 0.0 DO
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E.2. LINEAR SAMPLE INPUT AND OUTPUT DATA BLOCKS

e o o . ——" r——— -

SAMPLE LINEAR JR CUBIC HOMOGENIZED METHOD INPUT BLOCK:

—— . — i —————— g .-

CASE 1 STUDY: THREE DIFFERENT SUBASSEMBLIES. HOMOGENIZED FINITE ELEMENT METHOD

3 4 l.E-5 l.E-5 1.E-8 1 1 1 0 1 1
123
1.0 0.0
1 1
0.0 18.0 18.0 «268878D-1.460175D-2.137952D0 1.169837D-1
«681283D-1.625518D-1.398086D C
1.0 2 0 J.0 DO 1.0 DO 0.0 DO
1.0 DO J.0 DO 1.0 Do 0.0 DO
1.0 20 0.0 DO 1.0 DO 2.0 DO
1.0 Do J.0 DO 1.0 DO 0.0 DO
2 1
0.0 18.9 18.0 +269849D-1.524631D-2.137948D 1.163176D-1
+864780D-1.100222D 0.399649D 0
1.0 D O 0.0 DO 1.0 DO 0.0 D O
1.0 DD Js+0 DO 1.0 DO 2.0 DO
1.0 DO 0.0 DO 1.0 DO 0.0 DO
1.0 DO 0.0 DO 1.0 DO 0.0 DO
3 1
0.0 18.0 18.0 «270820D-1.625116D0-2.137943D 1.159361D-1
.9893610-1.126682D 0.398014D 0
1.0 DO 0.0 DO 1.0 DO 0.0 DO
1.0 DO 9.0 DO 1.0 DO 0.0 DO
1.0 DO Je.0 DO 1.0 DO 0.0 DO
1.0 DO 0.0 DO 1.0 DO 0.0 DO
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SAMPLE LINEAR METHOD OUTPUT BLOCK:

3

0.2444087D 00
0.40608550 22
0.7838067) 00
0.1000000D0 01

- ——— . — -

0.6758041D-01
0.93398870-01
0.1339626D 00
0.1563839D 00
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E.3. CUBIC SAMPLE INPUT AND OUTPUT DATA BLOCKS

SAMPLE LINEAR JR CUBIC PROPOSED SYNTHESIS METHOD INPUT BLOCK:

———————— - - — -~ -

CASE 1 STUDY: THREE DIFFERENT SUBASSEMBLIES. SUBASSEMBLY SYNTHESIS.

3 4 l.E-5 1.E-5 1.6-8 1 1 1 0 1 1
123
1.0 U.0
1 68
0.0 0.06250 0.06250 0.259E-01 0.485E-02 0.140FE 01 0.179E-01
0.532E-01 0.636E-~01 0.388E 00
0.06250 1.03000 0.93750 0.259E-01 0.485€6-02 0.140E 01 0.179E-01
J+532E-01 0.636E-01 0.388E 00
64 ADDITIDNAL CARD PAIRS OF TYPE A SUBASSEMBLY INTERVAL MATERIAL INPUT
17.00000 17.93750 0.93750 0.259E-01 C.485E-02 0.140E 01 0.179E-0l
J.532E-01 0.636E-01 0.388E 0O
17.93750 18.00030 0.06250 J3.259E-01 0.485E-02 0.140E 01 0.179E-01
0.532E-01 C.636E-01 0.388t 00
0.1000000D 01 0.0 DO 0.6840883D 0C 0.0 DO
0.9999906) 2 0.2062319D-02 0.6840819D 00 -0.1410808D-02
0.9976040D 00 0.6351434D-02 0.6824493D 00 —-0.4344942D-02
63 ADDITIONAL FAST GROUP DATA CARDS
0.9976040D 00 -0.6351434D-02 0.6824493D 00 0.4344942D0-02
0.9999936) 00 -0.2062319D-02 0.6840819D0 00 0.14108080-02
0.1000000D 01 0.0 DO 0.6840883D 00 0.0 DO
0.3090145) 20 0.0 Do 0.1000000D 01 0.0 DO
0.3090072)0 00 0.4484312D-03 0.9999762D 00 -0.1451165D-02
0.3071103D 00 0.1418028D-02 0.9938377D 00 -0.4588871D-02

63 ADDITIONAL THERMAL GROUP DATA CARDS
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0.3071103) 00
1 030900720 00
0.30901450 00

2 68
0.0 0.06250
0.06250 1.00000

64 ADDITIONAL CARD PAIRS

17.00000 17.93750

17.93750 18.00000
0.1000000D0 01
0.9999912) 00
0.9977474D 00

63 ADDITIONAL FAST GROUP DATA CARDS

0.9977474) 00
0.9999912)0 20
0.10000000 01
0.2294488D 00
0.22944420 00
0.2282630) 00

-0.1418028D-02
-0.4484312D-03

0.0 DO
0.06250 0.260E-01
Je T10E-01
0.93750 0.260E-01
0.710E-01
JF TYPE B
0.9375) 0.260E-01
0. 710E-01
0.06250 0.260E~01
0.710E-01
0.0 DO

0.1938658D~-02
0.5978934D-02

-0.5978%34D-02
-0.19386%98D-02
DO

DO
0.2792649D-03
0.3868016D-03

0.0
0.0

0.9938377D
0.9999762D
0.10000000D

0.553E~02 0.140E
0.102E 00 0.389E
C.553E-02 0.140E
0.102E 00 0.389E

SUBASSEMBLY INTERVAL

0.553E-02 0.140E

0.102E 00 0.389E

0.553E-02 0.140E
0.102E 00 0.389E
0.6579158D
0.6579100D
0.6564338D

0.6564338D
0.6579100D
0.6579158D
0.1000000D
0.9999801D
0.9948319D

63 ADDITIONAL THERMAL GROJP DATA CARDS

0.2282630D 00

0.229%4442) 30

0.2294488) 00
3 68

0.0 0. 06250

-0.8868016D-03
=0.2792649D-03

0.0 DO

0.0625) J.261E-01

0.9948319D
0.9999801D
0.10000000D

0.659E-02 0.140E

00
00
01

01
00

0.4588871D-02
0.1451165D-02

0.0 DO

0.172E-01

01 0.172€E-01

00

MATERIAL

INPUT

01 0.172E-01

00
01
00
00
00
00

00
00
00
01
00
00

00
20
01

0.172E-01

0.0 Do
-0.,1275500D-02

~0.3933635D-02

0.3933635D-02
0.12755000-02
0 Do
0 DO
-0.1217112D-02
~-0.3864921D-02

0.
0.

0.3864921D-02
0.1217112D-02

0.0 DO

01 0.168E-01
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0.06250

64 ADDITIOJONAL CARD PAIRS

17.00000 17.93750

17.93750 18.00000
0.1000000D0 01
0.99999153 030
0.9978665) 00

63 ADDITIONAL FAST GROUP DATA CARDS

0.99786650
0.9999916D
0.1000000D
0.1937796)
0.1937762D
0.1928897)

00
20
01
00
00
00

1.00000

0. 832E-01

0.9375) J.261E-01
0.832E-01
OF TYPE C
0.93750 0.261E-01
J.832E-01
0.06250 0.261E-01
0.832E-01
0.0 DO

0.1837899D-02
0.5673004D-02

-0.5673004D-02
-0.1837899D-02
DO

DO
0.20818698D—-03
0.6627953D-03

0.0
0.0

0.129€ 00 0.387E 0O

0.659E-02 0.140FE 01 0.168E-01

0.129E 00 0.387E

00

SUBASSEMBLY INTERVAL MATERIAL INPUT

0.659E-02 0.140E
0.129E 00 0.387E
C.65%9E-02 0.140E
0.129E 00 0.387E
0.6615058D
0.6615002D
0.6600944D

0.6600944D
0.6615002D
0.6615058D
0.1000000D
0.9999824D
0.9954074D

63 ADDITIONAL THERMAL GROUP DATA CARDS

0.19288970 00
0.1937752D 00
0.19377960 00

0.0

—0.6627953D-03
~0.2081898D-03
DO

0.9954074D
0.9999824D
0.1000000D

01 0.168E-01

00
01
00
00
00
00

00
00
20
01
00
00

00
00
01

0.168

0.0

0.0
0.0

0.0

€E-01

DO
-0.1215781D-02
~0.3752725D-02

0.3752725D-02
0.1215781D-02
D92

DO
-0.1074364D-02
-0.3420356D-02

0.3420356D-02
0.1074364D-02
DO
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3

0.2503191D 00
0.40354800 020
0.7785649) 00
0.10000000 01

——————— - ——

0.0
-0.2202874D-01
-0.27310310-01

0.0

0.7648905D-01
0.10629320 00
0.1642353D 00
0.1946404D 00

0.0

0.5636188D-03
0.3579210D-03

0.0
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E.%« ANALYZE SAMPLE INPUT AND CUTPUT

SAHPLE ANALYZE INPUT (CASE 1 CUBIC METHCDS RESULTS):

———— e ———— — ]t~ o~ . —-—

//G.FTO1FO01 DD *
2 3 3 35
CASE 1 HOMOGENIZED LINEAR FINITE ELEMENT METHOD INPUT BLOCK

/%

//G.FT02F001 DD * |
2 3 3 0
CASE 1 LINEAR SYNTHESIS METHUOD INPUT BLOCK

VE

//G.FTO3F001 DD %
1 3 150 0
50 50 50
CASE 1 REFERENCE SJILJTION INPUT BLOCK

/%

//G.FT11FOO0L DD *
CASE 1 HOMOGENIZZD LINEAR FINITE ELEMENT METHOD OUTPUT BLOCK

-
.

/%

PAGE 179



//G.FT12F001 DD #
CASE 1 LINEAR SYNTHESIS METHOD QUTPUT BLOCK

/%

//G.FTL3F001 DD *
CASE 1 REFERENCE SJLUTION OUTPUT BLOCK

/%

//G.SYSIN DD *
TWO GROUP CASE 1 CUBIC RESULTS.

640 6.0 '

3 18.2

6 8.5 9.5 26.5 27.5 44.5 45.5
/%

PAGE 180



ANALYZE PRINTED OUTPUT: Case 1 with Linear Basis Functions.

RESULTS OF THE INTEGRATED POWER TN EACH NF THF 3 REGTINNS: 4747743
CALCULATED POWFR LEVFLS, AND NUMRER NF SUBREGIONS PER REGINN: AR T
REGTION: HOMOGENTZED RFESULTS: SYNTHFESIZED RESULTS: REFERENCE RESULTS®

1 1 0.1158776F 00 68 0, 10840565 00 50 0.1024175F 00

2 1 0.2585564E 00 68 0.2447225EF 00 50 0.2404295E 00

3 1 0.4313925F 00 68 0.4112111F 00 50 0.4187305F 00
TOTALS: 3 0.8058265E 00 204 0. 7645392E 00 150 0.7A15775gfog___

e e mr——
L4 “"

FRACTIONAL POWFR LEVELS:

bl

q
REGION: HAMOGENFNUS RFSULTS: SYNTHESIZED RESUL TS: REFERENCE Resugl§ﬁ_ww
r\(‘:‘
1 0.14379S7F 00 0.1420537F 00 0.1344807E OQ *%
2 0.3208586F 00 0.3200°14E 0O 0.2156993E 00
3 0.5353416FE 00 0,537854RF 00 0.5498100F 00 i
TNTALS : 0.9999969E 00 0.99299999F 00 0.9909990F 00
FRACTIONAL POWFR NORMALIZEND PERCENT FRRORS: 4 3
REGION: (REF=HOMO ) /RFF 2 (REF=SYNTH)/REF % (SYNTN=HOMO) /SYNTH, X
] | -046929624E 01 =~ - - =0,56312%78 0L _ M_u,ww;giizzglﬁggmgL‘*h
ol 2 Gl e m0el634251E. 0 o . o . —0,1391243F-0) . =D2396T25E 00
.H .; _‘?:‘ ‘ .x..'_ ’:. “‘1) :“ LI e i 0_ % v = RNy o A 7i [ ltl )LM‘E m e ____,..,_:..;.'_,'-:ij‘_! it ‘a - 46£ %i E': > ._“

e
Py
L]



ANALYZE PRINTED OUTPUT: Case 1 with Linear Basis Functions.

EXECUTING GENFRAL ANALYSIS AND FLUX PLATT ING PRDOGRAM:

TITLE OF PLOTTING RUN TS: | THREF DIFFERENT SURASSFMRLYS PROBLEM, |
REACTOR GEOMETRY PARANMETERS:

NCELL = 3

WCELL = 18.,00000

XMIN = 0.0

XMAX = 54,00000

YVIN = 0.0

YVAX = 1.00000

NLL = 6

(XL(T),T=1,NLL) =
B2,500C0 8.50000 26.,50000 27.50000 44,50000 45,50000

Z8T1
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Appendix F

SOURCE LISTINGS OF THE PROGRAMS

FORTRAN source listings of programs REF2G, LINEAR, CUBIC,
and ANALYZE are listed in only the first six copies of this report in
the following four sections.

A figure of a subroutine overlay structure precedes each listing

in order to indicate the construction of each program.
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F.1. SOURCE LISTING of Program REF2G




MAIN

Level 1 |
I
SYNTH POWER CURT OUTPUT POWER7 CURT7Y ouTPTT7
ERROR PLOT PLOT"7
REPEAT
BHSET
GIF0 Level 2
GIF1
GIF2
PRTOUT SOLV3D
NORMAL
NORM?2
PHIPLT
PRTPLT
PUNCH

Figure F.1. Structure of Program REF2G,

G8T1



o660

PRUOGRAM REF2G:

TWO GROUP DETAILED REFERENCE AND SUBASSEMBLY SOLUTION PROGRAM,

CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

TIMING EXECUTION

TIMING(IL)
SYNTH
TIiMING(IZ2)
PUMWER
TIMING(I3)
CURT
TIMING(I4)
OJTPUT

TIMINGLIS)

PUWERT
TIMING(I6)
CURTY

TIMING(LIT7) .

OUTPT 7
TIMINGLIB)

WRITE (6,30)

30 FURMAT (1H1,'TIMING PROGRAM EXECUTION:®,/)
J=I2-

11

WRITELG,701) J
J=13-12

WRITE (6,702)

J=14-13

WRITE (64703)

J=15-14%

WRITE (65704) .
J=16-
WRITE (6,705) .

15

J=17-16

WRITE (0,7006)

J=18-17
WRITE(64707) J

701 FORMAT (lH o' SYNTH HAS TAKEN',I6,"* /100 SECONDS.')

REF20001
REF20002
REF20003
REF202004%
REF20005
REF20006
REF20007
REF20008
REF20009
REF20010
REF20011
REF20012
REF20013
REF20014
REF20015
REF20016
REF20017
REF20018
REF20019
REF20020
REF20021
REF20022
REF20023
REF20024
REF20025
REF20026
REF20027
REF20028
REF20029
REF20030
REF20031
REF20032
REF20033
REF20034
REF20035
REF20036
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702
703
104
705
706
707

120

FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT

CALL TIMING

AL

{1H
{14
(LH
(14
(1H

J=120-11

WRITE(6,720) J

W W W W e w

bt @ & ® = = -

FORMAT (1HD,?

sToP
END

POWER HAS TAKEN',16,' /100 SECONDS.')
CURT HAS TAKEN',I6,"' /100 SECONDS.?')
JUTPUT HAS TAKEN',I5,' /100 SECONDS.')
POWERT HAS TAKEN®,169"'" 7100 SECONDS.')
CURT7 HAS TAKEN',164* /7100 SECONDS."')
JUTPUTT HAS TAKEN',15,* /100 SECONDS.')

20)

THIS RUN HAS TAKEN',16,* /100 SECONDS TO RUN.')

REF20037
REF20038
REF20039
REF20040
REF20041
REF20042
REF20043
REF20044
REF20045
REF200456
REF20047
REF20048
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OO

c
c

KM I XK p XK X X XK

SUBRUUTINE SYNTH
LINEAR FINITE ELEMENT METHOD:

% %k % % ¥ ¥ % % % & % ¥k k ¥k % ¥k k %k * % %k % % ¥ ¥k ¥k % *¥ ¥ *x Xk ¥ %k ¥ ¥ %k X

ADJUINT QUANTITIES OF VARIBLES ARE DENOTED BY 7 RATHER THAN *.
THUS: PHAI7 (RATHER THAN PHI*) IS THE ADJOINT OF PHI. ETC.
IMPLICIT REAL*8 (A-H,K-Z)
COMMUN /BL/ IBCIPLOTJPLUT 9 IPUNCH, ISEE,NOADJ
COMMUN 782/ KRy NN
COMMON /B3/ L1(201,3), L2(201,3), F1{201,3), F2(201,43), T{201,3)
COMMON /B57/ KAQ(2,200),KA1{2,200),KA2({2,200),KBO(2,200),

KB1(2,200)sKB2{2,200)9LA0(2,200) 4LA1(2,200),LA2(2,200},
SROU(292)0)9sSR1{25200)95R2(2,200),P(2,200),P1(2,200),
Ql2,200)+Q102,200)9R{2,200),P0(24+200),P0T7(2,200),PHL12,200),
PHT{2,230)4AL(2,200),BL(2,200),CL{2,200),AF(2,200),BF(2,200),
CF(l24,200),AT(200),BT7T1(230),CT1200),
BLO(2), cLot2), BFC(2), CFO(2), BT0{2),
crot2),
ALK(2), BLK{2), AFK(2), BFK{2), ATK(2),
BTK(2)

COMMON /B7/ HH{200),DD(2,200)

COMMON /CHIF/ CHI(2)

COMMON /BH/ X(2), H(1)

COMMON /ER/ EPS1,EPS2,EPS3

DIMENSION PHI(242) 4PHIT(2,2)5CUR(2,2),CURT(2,2),
Al291)sF(291)400291)95(251),D1(2,1),XU(2,2)

DIMENSION ITF{200), KTF(200)

REAL TITLE(20)

INTEGER KRyKgKS gKS14KRO oNN

INTEGER NUMITF, KTF,NOADJ

READ (5,200) TITLE

200 FORMAT (20A4)

WRITE (6,201) TITLE

201 FORMAT (1H1,20A4,/7)

READ IN THE NUMBER Of REGION TRIAL FUNCTIONS AND TYPE OF B.C.S.
AS WELL AS THE TOLERANCES AND THE OUTPUT TYPES DESIRED.
READ (551) KRyIBCoEPSL1,EPS2,EPS3,IPLOT,,JPLOT,IPUNCH,ISEE,NOADJ

SYNT0O001
SYNT0002
SYNT0003
SYNTQ004
SYNT0005
SYNT0006
SYNT0007
SYNT0008
SYNT0009
SYNT0010
SYNTOO11
SYNTO012
SYNTQ013
SYNTO0014
SYNTOO15
SYNTQO016
SYNTQ017
SYNT0018
SYNT Q0019
SYNTO0020
SYNTO0021
SYNT0022
SYNT0023
SYNT0024
SYNTO0025
SYNT0026
SYNT Q027
SYNTO0028
SYNT 0029
SYNT0039
SYNTO0031
SYNTO0032
SYNT0033
SYNT0034
SYNT 0035
SYNTO0036
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100

101

) §
X
X
X
X

X
X

FURMAT (215,3D10.3,4515)
READ IN THE TYPE-NUMBER OF EACH TF REGION:
READ (5,100) (ITF(I)sI=1,KR)

FORMAT (2512)

READ IN THE FISSION YIELD FOR EACH GROUP:
READ (5,101) CAItl)y CHI(2)

FORMAT (2F10.
KRO=KR-1
WRITE (6492)

5i

KRy IBC
2 FORMAT ('OVARIATIONAL SYNTHESIS PROGRAM #2G(200):',5X,USING *,1I3,

' SUBREACLTUR REGIONS, OR TRIAL FUNCTIONS.'»/,
YOBUUNBRY CONDITION NUMBER (IBC) IS 'yI1y%e'y//s

*OMATERIAL PROPERTIES AND TRIAL FUNCTIONS FOR EACH SUBREGION FO

LLOWz®,/,

'UMATERIAL PROPERTIES ARE HOMOGENEOUS IN THE INDICATED REGIONS.

'/

SOFLUX TRIAL FUNCTIONS ARE LINEAR IN EACH SEGMENT OF THE SUBREG

XIONS.* 7,
*OCURRENT TRIAL FUNCTIONS ARE FLAT IN EACH OF THE ¢,
YSUBREGIUNS.')

WRITE (6,20) EPS14EPS2,EPS53,IPLOTyJFPLCT,IPUNCH,ISEE,NCADJ

20 FORMAT (//,'O0TJLERANCES TO POWER ARE : EPS1 = ',1PD10.3,/,

= 94,1PD10.34/ 928Xy *EPS3 = ',1PD10.3,/,

X
X

X
X
X
X
X

22 FORMAT (/,*OFISSION YIELDS ARE:

X

28X, 'EPS2

YQ0UTPUT PARAMETERS TO POWER ARE:

34X, Y 4PLIT

34Xs ' I SEE

34X, *NJADJ
WRITE (6,22)

22X °CAI (2

IF ((KRelLEe2)AND.(IBCL.EQ.1))

IF {KR.GT.200
IF {(EPSi.LT.1
IF (EPSZ.LT.1
IF (EPS3.LT.1

IF ({IBCaLTel)eORHIBC.GTL%))

IPLOT = *,11,./,

= 'gIl:/f34X:'IPUNCH = '1111/3
= ',Ilr/n
= ", 11,%.%)

CHI(1),

CHI {2)
CHI(1) 3"F10-51/'

) ='4,F10.5)

CALL ERROR{1,KR)

)} CALL ERROR( 24KR)

«0E-16)
«0E-16)
«UE—-16)

CALL ERROR(6,+1)
CALL ERRORI(6,2)
CALL ERRORI(6,3)
CALL ERROR(7,1IBC)

SYNTO0037
SYNT 0038
SYNT0039
SYNT004)
SYNT0041
SYNT0042
SYNT0043
SYNT0044
SYNT0045
SYNT 0046
SYNTO0047
SYNTQO048
SYNT0049
SYNT00590
SYNTOJ051
SYNTO0052
SYNTO0053
SYNTQ054
SYNT0055
SYNT0056
SYNT0O057
SYNTO0058
SYNTQ059
SYNT0060
SYNTO0061
SYNT0062
SYNTOQ063
SYNTQ064
SYNTQ065
SYNT 0066
SYNTO067
SYNT0068
SYNT 0069
SYNTCOQ70
SYNT0071
SYNT0072
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21

25

110

3

DUMMY NURMAL VECTOR: XU = UNITY. (FOR THE INTEGRATION FUNCTIGCNS.)
DO 21 1G=1,2
DO 21 1I=142
XU{1Gys11)=1.0
SET FLUXES TO UNITY FOR SYNTH 26:
DO 25 15=1,y2
DO 25 11=1,2

PHILIG,1I1)=1.0
PHI7TLIG,I1)=1.0

COUNTER OF THE NUMBER OF TYPE-NUMBERS OF EACH TF REGION:
NUMITF=1

WRITE (649)

FORMAT ('1*)
BEGIN TJ READ IN THE TF REGION DATA AND FILL THE ARRAYS,
DEPENDING IN THE TYPE-NUMBER OF EACH TF REGION.

DO 50 1I=1,KR

IF (ITF{I1)<EJQ.NUMITF) GU TO 110

FILL THE ARRAYS FROM OLD TF REGICN TYPES:
J=ITFLL)
CALL REPEATI(IKTF{J))
60 TO 50

READ IN THE TF REGIUGN®'S DATA FOR NEW TF REGION TYPE-NUMBERS:
NUMITF=NUMITF+1
KTF{NUMITF-1)=1

READ THE SUBREGION NUMBER AND THE NUMBER OF REGIONS IN THE SUBREGION.
READ {5,1) K
KS=1
IF (KS.5T.1001
KS1=KS+1

CHECK FOR IMPROPER SEQUENCING OF
IF (I<NE<K) CALL ERROR{4y1)

READ IN THE GEOMETRY AND THE MATERIAL PROPERTIES OF THIS REGION:
READ (593) (X{J) o XUI+1)oHIJ D) 9Al19J) sF(1+J)4D(14+J)sS(1,J),

A(24J) 9sF(29d)9D(24J)9J=14+KS)

FORMAT (3F10.594E10e349/ 930X 3E10.3)

ARITING OJUT THE INPUT INFORMATION:

CALL ERRUOR{3,1)

INPUT DATA:

SYNTQO073
SYNTOO074
SYNTQ0175
SYNTO0076
SYNTOO077
SYNTO0078
SYNTO0O079
SYNTO0080
SYNTO0081
SYNTQ082
SYNTCO083
SYNT0084
SYNTQO085
SYNT Q086
SYNTQO087
SYNT0088
SYNTO0089
SYNT0090
SYNT 0091
SYNT0092
SYNT0093
SYNT0094
SYNT0095
SYNT0096
SYNT 0097
SYNT Q298
SYNTO0099
SYNTO0100
SYNTO101
SYNT0102
SYNTO0103
SYNTO104
SYNTO105
SYNTO106
SYNTO107
SYNTO108
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X

IF

(I5EE.EQ.0) GO TO 14

WRITE (65100 KeKRyKSy{JyX{J) o X(JI#1) 3HIU) yA(15J),F(1,J),D{1,J),

S‘I'J)'A‘ZQJ)'F{Z:J)'D‘ZtJ’QlegKS,

10 FORMAT (*O0INPUT MATERIAL PROPERTIES FOR SUBREGION NUMBER ',13,

DX I P I D XK} X

>
(72}

'y OF THE %,13,4% USED.'7/,

5Xy*THIS SUBREGION IS DIVIDED INTC *,13,' HOMOGENEOUS SEGMENTS
FOLLOAS:2%,//7,

5Xs *FAST GRUOUP CONSTANTS APPEAR FIRST:',//,

' REGIDON #*,5X, 'INTERNAL BOUNCARIES*,13X,*WIDTH',3X,

*ABSORBe CX (1/CM)®%,3X,*FISSION CX (1/CM)*,6X,*DIFFUSION (CM)?*,
4Xs *SCATT. CX {(1/CM),/,

OXs "It g LIXo* XUI) Py OX s ' XU I41) 11 Xy"HII)? 13X, A(IG,1)*,13X,
YFLIGs1)® 913X *'DUIGYI )y 14Xy2S{141) 2,7/,
(I633F15.494D20.845795iX93D20.8))

END OF THE IN-QOUT SECTIUN.

14 CONTINUE

13

HT=

DEFINING MISC. ARRAYS FUR THE INTEGRATION FUNCTIONS:
LEGNTH JF THE SUBREGION: HT
X{KS1)-X(1)

HH{K)=HT
DD(14K)=D(141)
DD{2+KI=D(2,1)

DO

INVERSE OF D ARRAYS:
13 J=1,K$

DIllyd)=1l./D(1,4J)
DI(24J)=1.7D102,5J)

FURMATIUN OF THE INTEGRATION FUNCTICNS:

CALL BHSET(KS)

bO 50

DO FOR ALL ENERGY GROUPS:
I156=1,2

KAQUIGsK)=LIFO(IGoPHIT,PHI ; AyKS)
KAL{IGsK)I=GIFL(IGsPHIT,PHI A4KS)
KA2UIGyK)I=GIF2(IG4PHIT4PHI sA4KS)
KBO{1GyKI=GIFO{IGsPHIT,PHI yF,KS)
KBL{IGyK)=GIFL{IG,PHIT7,PHIy F9KS)
KB2LIGyKIZSIF2{ IGsPHIT,PHI s FyKS)

SYNT0109
SYNTO0110
SYNTO111
SYNTO112
SYNTO113
SYNTO114
SYNTO115
SYNTO116
SYNTO117
SYNTO118
SYNTO119
SYNT0120
SYNTO0121
SYNT0122
SYNTO0123
SYNT0124
SYNTO125
SYNTO0126
SYNTO127
SYNTO0128
SYNT0129
SYNTO130
SYNTO131
SYNTO132
SYNTO0133
SYNTO134
SYNTOL135
SYNTO136
SYNTO137
SYNTO138
SYNT0139
SYNT0140
SYNTO141
SYNTO142
SYNTO0143
SYNTO144
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RUIGsKI=ZGIFO{IGyPHITyPHI s KS)/{HT*HT)
NUO SCATTERING IN THE LOWEST GROUP:

IF {IG.EQ.2) 6O TO 50

SROLIGyKI=GIFO( IG4PHITHPHI yS4KS)

SRICIGyKI=GIFLIIGPHITHPHI 5 SyKS)

SR2{IGeKI=GIF2{ IGyPHIT,PHI » SyKS)

50 CONTINUE
NUMITF=NUMITF-1
WRITE (6951) NUMITF

51 FORMAT (*L1THAERE ARE ONLY',13,' DIFFERENT TRIAL FUNCTICN REGIONS.')

WRITE (6452) (1,ITFLI),1I=1,KR)

52 FORMAT (/,'0OTABLE OF THE TRIAL FUNCTION REGION TYPESz',//,

X 3Xs'TF REGIUN'94X,*REGION TYPE—NUMBER?®,//,
X (17,12X,17))
DETERMINATIUON OF THE B.C. OPTICN PARAMETERS:
NN IS THE MM AND FF MATRIX BLOCK SIZE.
IF {IBC.EQe1l) NN=KR-1
IF (iIBC.EQJs.%4) NN=KR+1
FORMATION OF THE COEFFICIENT VECTORS:
THE INTERIOR COEFFS:
DO 60 1G=1,2
DO 60 K=2,KR
J=K-1
AL{IGoKI=KALLIG»J)—=KA2(156,J)-R{IGyJ)

BLIIG)KI=KA(IG 9J)#R{IG,JI+KAO(IGeK)—2.*KAL{IG+K)+KA2(IG,yK)

X +R{IGyK)
CLUIGsKI=KALLIGsK)-KA2{IGsK)-R(IGyK)
AF{IGyK)I=KBL{IG+J)-KB2(IGyJ)
BFUIGsK)=KB2L1G+J)+KBO( IGy K )-2. ¥ KBL{IG4K)+KB2{ IGyK)
CFUIGaKI=KBLUIG K)I=KB2(IGyK)
AT{K)=SR1{19J)=SR2(1yJ)
BT{K)=SR2(19JI+SRO(1,K)-2.%SR1(1,K)+SR2(1,4K)
CTIK)=SR1(1,KI=SR2{1,K)}

60 CONTINUE
THE (ERU FLUX COEFFS:

SYNTO145
SYNTO146
SYNTO0147
SYNT0148
SYNT0149
SYNT0150
SYNTO151
SYNT0152
SYNT0153
SYNTO154
SYNTO0155
SYNT0156
SYNTO157
SYNTO158
SYNT0159
SYNT0160
SYNTO161
SYNT0162
SYNT0163
SYNTO0164
SYNT0165
SYNT0166
SYNTO0167
SYNTO0168
SYNT0169
SYNTO170
SYNTO171
SYNTO0172
SYNT0173
SYNTO174
SYNTO0175
SYNTO176
SYNT0177
SYNTO178
SYNTO179
SYNTO180

PAGE 192



61

62

DO 61 16=1,2
BLOIG)I=KAD(IGy 1)—2.*KALIIG41)+KA2{ IGy 1)+R(IG, 1)
BFO(IGI=KBOUIGy1)-2.%KBL{IG91)+KB2{1G,1)
CLOUIG)I=KALIIG,1)-KA2{IG,y1)-R(IG,1)
CFOCIG)I=KBLIIG,1)-KB2(IG,1) -
BTO(L)=SRO{1,1)-2.*%SR1{1,1)+SR2{1,1)
CTO(1)=5RL(1,1)-SR2(1,1)

THE ZERU CURRENT COEFFS:
K=KR
DO 62 1G=1+2
ALKUIG)=KAL{IGsK)-KA2{IG,K)-RI{IG+K)
BLKUIGI=XA2{IGyKI+R(IG,K)
AFK{L1GI=KBLI1G,K)—KB2(IG,yK)
BFKI{IG)I=KB2(1IG,K)
ATK({1)=5R1(14K)=SR2{1,K)
BTK{1)=5R2{1,K)

LZERO MATRICES:
Ll(lrli=0.
L2{1l,1)=0.
F1{1,1)=0.
F2{1,1)=0.
T (1,1)=0.
L1{NNy3)=0.
L2{NNs3)=0.
FI‘NNQB’::O.
F2{NNy3)=0.
T {(NN,y3)=0.

FILL ALL THE MATRICES FOR POWER:
J=1

DETERMINE THE LEFT BUOUNDARY CONDITIONS:
IF (IBC.LT.3) GO TO 67
L1{Je2)=BLO(1)
L2{J,2)=BLO(2)
F1{J,2)=BFJ(1])
F2{J,2)=BF0(2)
T{J,2)=8T0(1)

SYNTO181
SYNTO182
SYNTO183
SYNTO0184
SYNTO185
SYNTO186
SYNTO0187
SYNT0188
SYNTO0189
SYNTO0199
SYNTO0191
SYNTO192
SYNTO193
SYNTO0194
SYNTO0195
SYNTO196
SYNT0197
SYNTO0198
SYNT0199
SYNT0200
SYNT0201
SYNT0202
SYNT0203
SYNT0204
SYNT0205
SYNT0206
SYNT 0207
SYNT0208
SYNT0209
SYNTO0210
SYNTO211
SYNT0212
SYNTO0213
SYNT0214
SYNTO0215
SYNTO0216
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67

69

70

L1(Js, 3)=CLOL1)
L2{Js 3)=CLO(2)
F1{J, 3)=LFO{1)
F2lde 3)=CFOL2)
T(Jdy 31=CT0(1)
J=Jd+1

FUR ALL THE INTERIOR EQUATIONS:
DO 70 K=2,KR
iF (Ja.Euw.l) ©GU TO 69
L1idy 1)=AL{1,K)
L2(Jdy 1)=AL{2,K)
FliJd, 1)=AF(1l,K)
F2ldy L)=AF12,K)
Tlds 1)=ATIK)
L1(J,2)=BL(1sK)
L2(Jd,2)=BL{2+K) .
FllJe2)=BF{1+K)
F2{J,2)=BF{2,K)
TlJd,2)=BT(K)
L1tJ,y, 3)=CLI1sK)
L2(J, 3)=CL(2,K)
Fl(Jdy 3)=CF(1l,K)
F2(Jdy 3)=CFi(2,4K)
T{Jdy, 3)=CTIK)
J=J+1
CONTINUE

DETERMINE THE RIGHT BUUNDARY CCNDITIONS:
IF ({IBC.EW.1).0R.({IBC.EQ.3)) GO TO 8C
L1(Jdy 1)=ALKI{1)
L2{(Js 1)=ALK{2)
Fl1{Jdy, 1)=AFK(1)
F2{Jd, 1)=AFK{2)
Tldy 1)=ATK(1)
L1{Js2)=BiK(l)
L2{Jd,s2)=BLK(2])
FllJds2)=BFK{1l)

SYNTO217
SYNTO218
SYNTO0219
SYNT0220
SYNT0221
SYNT0222
SYNT0223
SYNTO0224
SYNTO0225
SYNT0226
SYNT0227
SYNTO0228
SYNTO0229
SYNT0230
SYNT0231
SYNT0232
SYNTO0233
SYNT0234
SYNT0235
SYNTO0236
SYNT0237
SYNTO0238
SYNT0239
SYNTO0240
SYNTO0241
SYNTO0242
SYNT 0243
SYNTO0244
SYNT0245
SYNT0246
SYNT0247
SYNT0248
SYNT0249
SYNT0250
SYNTO0251
SYNT0252
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F2lJy2)=BFK(2} SYNT0253

T{J92)=BTK(1) SYNT0254
CONTINUE SYNT0255

PRINTS OUT THE SYNTH K ARRAYS, AND THE MATRICES GIVEN TO POWER SYNT0256

FOR ISEE = 2. ' SYNT 0257
IF (ISEE.EQ.2) CALL PRTOUT SYNT0258
RETURN SYNT0259
END SYNTO0260
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10
101
102
103
104
105
106
107
110

SUBROUTINE ERROR(I,J)

ANN
GO TO
WRITE
GO 10
WRITE
60 1O
ARITE
GO T0
WRITE
GO T0
WRITE
GO 10
WRITE
60 TO

OQUNCES INPUT ERRORS AND TERMINATES PROGRAM EXECUTION:
(1923394959697 :849),1
{6,101)

10

(62102) J

10

{65133) J

10

{69104} J

10

(6:105) J

10

(65106) J

10

CONT INUE

CONTIN
CONTIN
WRITE
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
FORMAT
CALL E
RETURN
END

UE

Ut

{69110)

{* 1MUST HAVE > 2 SUBREGICNS FOR ZERO FLUX B.C.S. INVALID.')
(*1NUMBER OF SUBREGIONS =%,13,' > 25. INVALID.®)
(*1SUBREGION NUMBER® 4I3,* HAS > 25 SECTIONS. INVALID.')
A*1INPUT ERROR IN REGIGCN SEQUENCING AT REGION'1I5,'.%)
(*1Z(1) = O« IN REGION I =%,13y". INVALID.')

{(*1THE TOLERANCE: EPS'»I1ls* IS < 1.0E-16. [INVALID.*)

(* 1BOUNDRY CONDITION CPTION =',124' < 1 OR > 4. INVALID.')
(1HO,*"PROBLEM TERMINATED.')

XIT

ERRO0001
ERRG0002
ERR0OD003
ERROO004
ERRO0OO5
ERRO0006
ERROQQO7
ERRO0008
ERR0O0009
ERRO0010
ERROQO11
ERROO0012
ERROOO013
ERROOO14
ERRO0015
ERROOO16
ERRO0O017
ERROQO18
ERRO0019
ERR0O0020
ERRO0021
ERRO0022
ERRO0023
ERRO0024
ERR0O0025
ERRO0026
ERRO0027
ERR0OQ0028
ERROQO29
ERROQ030
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X
X
X
X

SUBRUUTINE REPEAT(K,L)

SETS THE /B5/ ARRAYS (K) EQUAL TO PAST STORED ARRAYS (L):

IMPLICIT REAL*8 (A-2)

COMMON /857 KADO(2,5200),KAL(29200)4KA2(2,200) +KB0O(2,200),
KB1(2,200)4KB2(2,200),LA0(2,200),LA1(2,200),LA2(2,200),
SRO{Z9200) y5R1124200),5R2(25200),P(2,200),P1(2,200),
Q(2,2000,Q1025200)4R(25,200)4P0124200),P07(2,200),PH(2,200),
PH7(2,200)

COMMUN /B7/ AH{200),DD(2,200)

INTEGER KyL,yG

DO 10 6=1,2

KAO{GsK)=KAO(G, L)

KALI{G+KI=KAL(GyL)

KA2{GsK3=KA2{5,L)

KBO(GsK)=KBOILGyL)

KB1{G,K)=KB1(GyL)

KB2{bsK)=KB2{G, L)

LAQIG,K)=LA0(G,L)

LALIG,K)=LALLIG,y L)

LAZ(G:K}=LA2(G)L)

IF {(G.EQ.2). GO TO 5

SRO{GK)=SRI{G,L)

SR1{6G,K)I=SR1(5G,4L)

SR2{G4K)=SR2{ G,y L)

CONTINUE

PLIGsK)=P(GyL)

PLIGK)=PLliG,yL)

QIG,KI=QIG,L)

QLIG,K)=Q1(GyL)

RIGyKI=R{G, LI

PO(GsKI=PO(G,yL)

POTIG,K)=POT(G,sL)

PH{GsK)=PH(G,L)

PH7T(GsKI=PHT(G,L)

CONTINUE

HH(K)=dH{L)

REPECOOL
REPEDO0O2
REPEQOO3
REPEOOO4
REPEOOOS
REPEQOOS6
REPEDOO7
REPE00OOS
REPEOOO9
REPEOO10
REPEDOL11
REPEOO12
REPEOO13
REPEOO 14
REPEQOLS
REPEDO16
REPEOO17
REPEQO18
REPEOOL9
REPEQO020
REPEQO21
REPEDO22
REPEQO23
REPEODO24
REPEQO25
REPEDO26
REPEDQ27
REPEQO28
REPEOO29
REPEOO30
REPEQO31
REPEDOD32
REPE0033
REPEOO34
REPEOOQ35
REPEQO36
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DD{1,K)=DD(1,L) REPEDOO37

DD(29K)=DDL2yL) REPEOQO38
RETURN REPEQO39
END REPECO40
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SUBRUUTINE BHSETI(K)
FIRST OF 4 ANALYTICAL INTEGRATICN RCUTINES.
IMPLICIT REAL*8 (A-H,L-2)
COMMON /Br/ X12)9H{1)yH2(1)sH3(1)oH4(1),H5(1)
DO 1 1I=1,K
H2(1)=X{1+1)*%2-X{ T )%*2
H3(1)=X(1+1)%%3-X{])**3
He (1 )=X{1+1)%*%4—X(1)%*4
HS {1 )=X{I+#1)%%x5=-X{1)*%5
CONTINUE
RETURN
END

BHSEQQ01
BHSEQ002
BHSEQ003
BHSE0004
BHSEOO005
BHSEQQ06
BHSEOOO7
BHSEQO008
BHSEQ009
BHSEQO10
BHSEQO11l
BHSEQO12

PAGE 199



DOUBLE PRECISIUON FUNCTION GIFOUIGyY4ZyCyK)

IMPLICIT REAL%*¥8 {A-H,L-1)

COMMON /BH/ X(2)sH{1),H2{1)sH311),H4l1),H5(1)

DIMENSION Y{2,2)y Z{(242)s C(241)

SUM = 0.0

DO 1 1I=1,K

SUM=ClIGI )3 (Y(IGI)RZLIG, I )*H{TI)+H{I) *{(Z(IG,1)*
X (YUIGe I+1)-YLIGI))+YLIG I ) *(ZUIGI+1)-2{IG,1)))/2.
X +HIL )R IYLIG, I+1)-YUIG 1) )*{Z{IG41+1)—2{1G,1))/3.) + SUM
1 CONTINUE

GIFO = SUM

RETURN

END

GIF00001
GIF00002
GIF00003
GIF00004
GIF00005
GIF00006
GIF00007
GIF00008
GIF00009
GIF00010
GIF)D0011
GIF00012
GIF0O0013
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DOUBLE PRECISION FUNCTION GIF1{IG,YyZ,C4K)

IMPLICIT REAL*8 {A-H,L-2)

COMMON /7B8H/ X{2)sHI{1)yH2{1)yH3{1),H4L{1),H51(1)

DIMENSIUN Y(292)y Z(252)9 C(241)

SUM = 0.0

DO 1 1I=1,yK

SUM=CLIGI)*{{H2{I)/2=X{L)*H{TI))IXY(IG,I)*Z(1G,1)
LIS I)*UY (IGI+1)=Y{IG,I))+Y(IG,1I)%
(ZUIGyI+1)=LUIG 1)) ®{La/HUI))X(H3(I)/3~H2(I)X(X{I)+X(1))/2.
+XCIIRX ML) *HUID) ) #IY(IGo I #1)-Y(IG 1) )*{Z(IG,I+1)-2(1G,I))
¥(HO(L) /% =rA3 (1) X (2% X(T)+X(1))/3+H2UI )X (XA )EX{TI)+2.%X( 1)

‘ ¥X{LD)/2.-X{EL)EX{I)RX(I)*H{TI})/Z{H{T)*H{I))) + SUM

1 CONTINUE

GIFL = SUM/Z(XI{K+1)-X(1))

RETURN

END

b A I

GIF10001
GIF10002
GIF10003
GIF10004
GIF10005
GIF10006
GIF10007
GIF10008
GIF10009
GIF10010
GIF10011
GIF10012
GIF10013
GIF10014
GIF10015
GIF10016
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DOUBLE PRECISIuUN FUNCTION GIF2{1GeY9Z4CyK)
IMPLICIT REAL*8 {A-H,L-1)
COMMUN /BH/ X{2),H{1) yH42(1)+H3(1),H4(1),H5(1)
DIMENSION Y{2,2), 21242}, CL2,1)
SUM = 0.0
DO 1 1=1,K
SUMSCULIG I)*®{YL IG I)*ZL IGo I )*{H3{I) /3. X{1)=H2(I)+X{1)%X{1)%H{(1))
H{le /HUI)IR( ZUIGo I VRIY{ IGoI41 )Y {IG, 1) )+YLIG,I)*{Z(1IG,yI+1)
~Z016s 1)) )% HA(T)/4a=H3{T)*{2.%X{1)4X(1))/3.+H2{I)*(X{1)*X(1)
F2.RXLLIEX(I DY/ 2=XEL)RXTLIRX{T)*H( 1))+ {1/ (H{])}*%x2))
¥(YUIGeI+1)-YLUIGI) )X (Z{IGyI+1)-2{IGyI})%{HS5(])/5.
“HE{I ) *¥(X{1LI+ XTI} ) /2. +H3UT ) RUX(L)*RX{1)#4.* X (1) %X{T)}+X{I)%X(]I))
J3=H2LIDIR{XEL)*XLT )X P+X{1D%X(1)%X(]))
+X01L)XTLI e X{I)RX{I)*H{I))) + SUM
1 CONTINUE
GIF2 = SUM/LIXIK+L)—-X{1))%%2)
RETURN
END

I X XK X X X X

GIF20001
GIF20002
GIF20003
GIF20004
GIF20005
GIF20006
GIF20007
GIF20008
GIF20009
GIF20010
GIF20011
GIF20012
6IF20013
GIF20014
GIF20015
GIF20016
GIF20017
GIF20018
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SUBROUTINE PRTUUT
PRINTS OUT THE /B5/ ARRAYS AND THE MATRICES GIVEN TO POWER:
IMPLICIT REAL*¥8 (A-H,K-Z)
COMMUN /B2/ KRy N
COMMUN /7837 L1{(201,3), L2{20143)y F1{201,3)y F2{201,3), T{201,3)
COMMUN /B5/ KAO(2,200),KAL(2,200),KA2(2,200),KB0{2,200),
KB1(2,200),KB2(2,200),LA0(2,200) ,LA1{2,200),LA2(2,200),
SRU(Z:ZUQ)gSRIlZ:ZOO):SRZ(ZfZOO)sP!Z:ZOO):Pl(Z;ZQO)!
Ql2y200),Q112,200)4yR{2,200)4P0(2,200),P071(2,200),PHL{2,200),
PHT12,200)
INTEGER KRy Go N
KA AND KB ARRAYS:
WRITE (6,10)
10 FORMAT (1 G 94X s 1% ,12X,*KAO{G,1)*, 12X, *KAL(G,I)",12X,
X SKAZ2L{G 1) 312Xy "KBO(G 1) " 912X *KBLIG,1)*,12X,*'KB2{G,1)")
DO 11 6=1,2
WRITE (6,12}
11 WRITE (6915) (G IsKAO(G)1) s KALIG 1) yKA2{G,1)+KBOIG,I)4KBLIG,I),
X KB2{G,I),1=1,KR)
12 FORMAT (' )
15 FORMAT (215,46D20.7)
LA AND SR ARRAYS:
WRITE (6,200
. 20 FORMAT ('1 G? 94X ' 1" 912Xy "LAOIG I )y 12X *LALI(G,I)?y12X,
X YLAZ21391 ) 912Xe"SROMG eI ) " 912X *SRI{GI)*412X9*SR2(Gy1I))
6=1
WRITE (6412)
WRITE {06515) (G591 sLAO{GsI)sLALIGHT) sLA2(G21)sSRO(Gs1)ySR1IG,1),
X SR2(GyI}),1=1yKR)
6=2
WRITE (6412}
WRITE (69295) (GeIsLAOLGI1)LAL(GyI)LA2{G,I),I=1,KR)
25 FORMAT (215,3020.7)
Py Uy AND R ARRAYS:
WRITE (6,30)
30 FORMAT ('] G 94X 'I',14Xy'PUGoI)? 913 Xs'PLl(Go1)?,14X,2QI(5,1)7,

X
X
X
X

PRT00001
PRT00002
PRT0O0003
PRTO0004
PRT0O0005
PRTO0006
PRT0O0007
PRT0Q008
PRT0O0009
PRTO0010
PRT00011
PRTO0012
PRTO0O013
PRTO0014
PRTO0015
PRTDO016
PRTOO017
PRTOO0018
PRTO0019
PRT00020
PRTO00021
PRT00022
PRT00023
PRTO0024
PRTO00025
PRT00026
PRT0O0027
PRT00028
PRT00029
PRTO0030
PRT0O0031
PRT00032
PRTO0033
PRTO0034
PRT00035
PRTO0036
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X

31
35

40
X

41
45

50

55

60

70

80

90

13Xs'QLUGaI) " »14Xs"R(G,1)")
DO 31 G6=1,2
WRITE (6412)

WRITE (6935) (G591 4P(GyI)PLIGyI)sQIG,I)9QLl(GyI)R{G,1I)}yI=1,KR)

FORMAT (215,5020.7)
PU AND PH ARRAYS:
WRITE (6,40) .

FORMAT (°'1 G? 94Xy 1%y 13X PO(GI) "512Xy*POT(G 1) 313Xy *PHIG,I) ",

12Xs *PHTU(G,1))
DO 41 G=1,2
WRITE (6,512)

WRITE (6945) (GsI1ePO(GyI)yPOTIGyI)yPHIGyI)yPHT(GyI),yI=1,KR)

FORMAT (215,4D20.7)

PRINT OUT THE /B3/ MATRICES:
WRITE (6450)
FORMAT (®1MATRIX L1:%,/)
WRITE (6355) ({L1{I4J)3d=193),1=1,N)
FORMAT {3E12e39 TXe3E12.357Xy3E12.3)
WRITE (0,60)
FORMAT (*LMATRIX L2:2%,/)
WRITE (6955) ((L2(19J)sd=1s3)sI=1,N)
WRITE (6,70) .
FORMAT {'IMATRIX Fl:%,/)
WRITE {6455) ((Fl{IsJ)yJd=193)9s1=1,N)
WRITE (6,80)
FORMAT (' 1MATRIX F2:%,/)
WRITE (6955) ({F2{19J)sd=133),1=1,N)
WRITE (6,90) .
FORMAT (°*1MATRIX T:%,/)
WRITE {6+455) {1 T{l4Jddsd=133):1I=1,N)
RETURN
END

PRT00037
PRT00038
PRTO0039
PRTD0040
PRTO0041
PRTO0042
PRTD0043
PRTOQ044
PRTO0045
PRTOO0046
PRTO0047
PRT000438
PRTD0049
PRTO0059
PRT0O0051
PRT00052
PRTO0053
PRTO0054
PRTOQ055
PRTO0056
PRTO0057
PRTO0058
PRTOO059
PRT00060
PRTO0061
PRT00062
PRT00063
PRTO0064
PRTO0065
PRTO0066
PRTO0067
PRTO0068
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505

550

SUBROUTINE PUWER
SOLVES THE 2%N MULTIGROUP EQUATICNS: M*PHI = (1/LAMDA)*F*PHI
BY THE FISSION SOURCE PUWER METHOD
USING SIMULTANEOUS OVERRELAXATICN.
WHERE: M AND F ARE DUOUBLE PRECISION 2N BY 2N BLUCK MATRICES;
AND: PHI - IS THE 2N FLUX (FAST AND THERMAL) VECTCR.
Li*PHI1 = CHIL*(F1*PHI1 + F2%PHI2)
=T%*PHI1 + LZ2*PHI2 = CHIZ2*(F1*PHI1 + F2%PHI2)
METHUD FULLOWS WACHPRESS, PAGE 83. SOLUTION BY GROUP ITERATION.
IMPLICIT REAL*8 (A-H,L-1)
COMMUN /B1/7 IBC,IPLOT,JPLOT,IPUNCH,ISEE
COMMON /7B2/7 KRyN
COMMON /B37 L1(201,3), L2(201,3), F1(201,3), F2(201,3), T(201, 3)
COMMON /7B4/ PHlI(2,201), PSI{2,201), LAMDA, ICOUT
COMMON /B5/7 S51201), ERRORI(Z2,201), Z(201)
COMMUN /867 TEL(2, 5)’752(2(5)’TE3(53’IN(5)
COMMUN /B7/ HH(200)
COMMUN /CHIF/ CHI(2) .
COMMUN /7ER/7 EPS1+EPS2,EPS3
COMMON /17 ILl.14
COMMUN /FSTR/ PHISTR{2,20146)
COMMUN /ESTR/ LAMSTR(300}), EFSTR{2,300), EFMSTR(2,300), ERLAM(300)
COMMON /READS/ R5
DIMENSIUN PSI1(201), PS12(201), SQ(2), DPHI(2), ERRMAX(2)
INTEGER N
R5=1.
DEFAULT UPTIONS FOR POWER PARAMETERS:
LAMDA=1.0
HX=0.0
DO 505 1I=1,KR
HX=HX+HH(I) .
DG 555 16=1,2
IF {(IBC.NE.4) GO TO 551
DO 550 1I=1,N
PHI{IGy1I)=1.0

POW
POW
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POW
POW
POW
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POW
PONW
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POW
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POW
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0002
0003

0004

0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036



OO0

551

552
555

506
502
503

510
511

10

11

GO TO 555
X=341415926/HX
IF (IBCoNE.l) X=X/2.0
SUM1=0.0
DO 552 K=1,KR
SUM1=SUM1+4H(K)
PHI{IG,K)=DSIN{SUM1*X)
CONTINUE
READ IN: OVERRELAXATION PARAMETERS 3 ALPHA (QUTER ITERATION)
INITIAL GUESS AT EIGENVALUE; LAMDA
INITIAL NORMALIZED FLUX 5 PHI(1-N)
READ (5,505,END=510) ALPHA
READ {5,502,END=510) LAMDA
READ 15,503) (PHI(1l,1),0i=1,N)
READ (54503) (PHI(2,1),1I=1,N)
FORMAT (F10.5)
FORMAT {E25.14)
FORMAT {((4E20.10))
60 TO 511
R5=0.
CONT INUE
STORING FOR PRINTING THE MULTIGRCUP FLUX SHAPE.
DO 11 16=1,2
DG 10 I=1sN
PHISTRUIGy1+2)=PHILIGyI)
FILL RUNNING COORD IN PHISTR
KR1=KR+1
DO 11 I=1,KR1
PHISTR{IG,1+s1)=DFLOAT(I)
IK IS THE FLUX PLOTTING CCUNTER.
IK=1
STORES THE ITERATION NUMBER FOR FLUX HISTORY PLOTTING:
IN(1)=0
STORES TEMPORARY ERRORS FOR FLUX HI STOCRY PLOTTING:
TEL1(1s1)=0.
TeEl(2,1)=0.

POW
POW
POW
POW
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100

701

20

TE2{1,1)=0.
TE2(241)=0.
TE3(1)=0.0

EIGENVALUE OF THE PREVIOUS ITERATION:
LAMB4=LAMDA

THE MAXIMUM NUMBER OF ALLOWED ITERATIONS: ICMAX
ICMAX=300

PRINT OUT THE POWER METHOD PARAMETER INFORMATION:
WRITE (65700) ICMAX,ALPHA, LAMDA, (PHI(1,1),1I=14N)
WRITE (65701) (PHI(241),1I=1,N)
FORMAT (' 1EXECUTING MULTIGROUP FISSION SOURCE POWER ITERATION METH
XDD‘.'/II'

X 5Xs *MAXIMUM NUMBER UF ALLOWABLE ITERATIONS:',/,
X LUK *IiCMAX =%,144///,
X 5Xs*OUTER ITERATION RELAXATICN PARAMETER:',/,
X 10Xy YALPHA =',F7-3,//,
X 5Xe " INITIAL GUESS AT EIGENVALUE:',/,
X 10X; *LAMBDA =% ,E22.143//,
X S5Xy* INITIAL GUESS AT THE GROUP FLUX SHAPE CONNECTION POINTS:',
X /7:8Xe *FAST GROUP:2',/,
X LOXe *FIK) ' 'S =%44E25.149/+(18X34E25.14))
FORMAT {(*0%,7X, "THERMAL GROUPz',/,

>

10Xs *FIK)I*'S =',4E25.1449/+s(18X44E25.14))
BEGIN ITERATION LOOP.
ICOUT=0
ICOUT IS THE OQUTER ITERATION CGUNTER,
ICOUT=1COUT+1
IF (ICOUT.OT.ICMAX) GO TO 100
FORM THE ITERATION SOURCE VECTOR, S3 AND ITS L-2 NORM, SUMIl:
SUM1=0.
DO 15 1I=1,N
S{I1)=0.
10=1
I11=3
IF {(1<EQ.1) 10=2
IF {1.EQ.N) 1I1=2
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DO 14 J=10,11
K=l—-2+J
14 S{I)=SUL)+FLL1 9 J)*PHI( 1LyK)}+F2{19J)*PHI (2,K)
15 SUML=SUML+S{I)%%2
SUM1=DSQRT(SUM1) .
SUML=SUML*{CHI( 1)+CHI(2))
SULVE FUR THE NEW GROUP FLUX VECTORS: PSI:
FAST GRUUP; SOURCE VECTUOR:
DO 25 I[=1sN
25 Z{L =CHItLL)*S(1)
FAST FLUX:
CALL SOLV3UINsLL1+PSIlyZ)
THERMAL GROUP; SOURCE VECTOR:
DO 27 1I=1lsN
Z{1)=0.
10=1
I11=3
IF (1.EQel) 1I0=2
IF (1.EQeN) 11=2
DO 26 J=10,11
K=1-2+J
26 Z{I)=201)+T{1,0)%*PSI1(K)
27 Z{1)=4U{1)+CHIL2)*S5({1}
THERMAL FLUX:
CALL SOLV3D(NsL24P512,2)
FORM NEW SOURCE VECTOR FRCM THE NEW UNNORMALIZED FLUXES:
SUM2=0.
DG 29 1I=lsN
S{I)=0.
10=1
I11=3
IF (l.Ede1l) 10=2
IF (I1.EQeN)  11=2
DO 28 J=10,11
K=1-2+J
28 SUI)=SULI)+FLLILJ)%PSTIL(K)I+F2{14J)%PSI2{(K)

PSI:
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29 SUMZ2=SUMZ+S{I)*%*2
SUM2=DSQRT{SUM2)
SUM2=SUM2* {CHI{1)+CHI(2))
CALCULATION OF THE EIGENVALUE:
LAMDA=SUM2/ 5UM1
LAMSTR{ICOUT)=_AMDA
ERRL AM=DABS (LAMDA-LAMB4)
PUT PSI1 AND PSI2 INTU BIGGER PSI:
D0 30 1=1sN
PSI{1,1)=PSI1(1)
30 PSItZs1)=PSI2(1)

POINT BY POINT SIMULTANEOUS RELAXATION FLUX ITERATION:

X=ALPHA

DO NDT RELAX DURING THE FIRST THREE ITERATIONS:

CALCULATE THE NEW GROUP FLUX ITERATES AND GROUP ERRORS:

DO 40 16=142
SQliGiI=0.
DO 40 1=1sN
ERROR(IG L )=PSI{IGyI)/LAMDA-PHI{IG, 1)
SQUIG)=SQ(IG)+ERROR(IG,I )**2
PHILIGy 1)=PHIL1IGs1I) + X*ERROR(IG,I)
AND FOR PLOTTING PURPOSES:
PSICIG,I)=PHILIG,I)
40 CONTINUE
DO 34 16=1,2
34 SQUIG)=DSQRTISGLIG))
NORMALIZE PS1I:

NORMALIZES BOTH ARRAY GRGOUPS TO 1.0:

CALL NURM2{PSIsN)
DO 36 16=142

ERRMAX(IG) .= THE MAX ERROR BETWEEN THE GROUP ITERATION FLUXES:

ERRMAX{IG)=ERROR{IGy1)

DO 36 I=24N

IF (DABS(ZRROR(IGsI}).GT.ERRMAX(IG))
36 CONTINUE

ERRMAX(IG)=DABS{ERROR(IG,1))
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41

42

43

44

45

IF (IPLOT.NE.2) GO TO 45
THE FUOLLIJWING IS FOR NICELY PLOTTING THE GROUP FLUX HISTORY.
DO 41 16=1,2
DU 41 1I=1,sN
ERRORL1IG1)=PSILIG,1)
ERRUR NOW CONTAINS THE NEW NORMALIZED FLUX ITERATE PHI.
JK=1IK
If (IK.EQ.Q0) JK=5
U0 42 1I5=1,2
DO 42 1I=1sN
IF (UDABSUERROR(IGI)—=PHISTR{IG,1,JUK+1)).GE.0.01) GO TO 43
CONTINUE
FLJX HAS NOT CHANGED ENOUGH FCR PLOTTING.
G0 TO 45
SAVE THE NORMALIZED FLUX FOR PLOTTING:
IK=1K+1
INLIK)}=ICOUT
TE3{IK)=ERRLAM
DO 44 1IG=1,2
TELLIG,IK)I=ERRMAX{IG)
TE2(1641K)=S5Q(IG)
DO 44 I=1.N
PHISTREIG Iy IK+1)=ERROR{IG,I)
IF (IK.NEJ5) GO TO 45
PLOT THE LAST FIVE SAVED FLUXES:
CALL PHIPLT(5)
IK=0
CONTINUE
ERROR CRITERIA FOR ACCEPTANCE OF CONVERGENCE.
IFLAGL1=0
IFLAGZ2=0
IFLAG3=0
STORE THE ERRORS FGR CUMPARISON:
ERROR BETWEEN ITERATION EIGENVALUES:
ERLAM(ICUOUT)=ERRLAM
DO 46 16=1,2
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46

50

55

60

70

MAXIMUM ERROR BETWEEN ITERATION FLUXES:
EFSTRUIGy ICUUT)=ERRMAX(IG)

MEAN SQUARE ERROR BETWEEN ITERATION FLUXES:
EFMSTRIIG,1C0OUT)I=SQIIG)

CONTINUE
IF ((ERRMAX{1)«LT.EPS1).AND.(ERRMAX(2).LT.EPS1)) IFLAG1=1
IF ((SQ(1).LT.EPS2).AND.(3Q(2).LT.EPS2)) IFLAG2=1

IF (ERRLAM.LT.EPS3) [IFLAG3=1
IFLAG4=]FLAGL*IFLAG2*IFLAG3
If (IFLAG4.EQ.1) GO TO 50
OTHERWISE CONTINUE THE ITERATION.
LAMB4=LAMDA
GO TO 20
CONTINUE
CONVERGENCE ACCCMPLISHED.
NURMALIZE THE CONVERGED FLUX VECTOR:
CALL NURMAL (PHI 4N)
PLOT ANY LEFT OVER FLUX HISTORY PLOTS:
IF ((IPLIOT<EWQe2) «AND(IKeNEOQ)) CALL PHIPLT(IK)
BOUNDRY CONDITION INSERTICNS.
IER=0
IER ALLOWS Bo.Ce INSERTIUNS FOR YES AND NO CONVERGENCE:
IF (IBL.EQ.4) GO TO 90
IF (IBC.NE.3) GO TO 60
PHI(14KR+1)=0.
PHI{2,KR+1)=0.
60 T0 30
DO 70 1I=1,N
J=N+1-1
PHI(14J#1)=PHI(1,J)
PHI(2,Jd+1)=PHI(24J)
PHI{1,1)=0.
PHI‘Z'lj:OO
IF (IBC.NE.1) GO TO 90
PHI(1,KR+1)=0.
PHI{29KR+1)=0.
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0220
0221
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0223
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0225
0226
0227
0228
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c

C

90 IF (IER.EQ.1)

RETURN

NO CONVERGENCE ACCOMPLISHED:

100 CONTINUE

102

X

NORMALIZE THE UNCONVERGED FLUX:

GO0 TO 102

CALL NURMAL (PHI4N)

ICOUT=1C0UT~-1

WRITE (64101) ICOUT
101 FORMAT {1H1,'POWER METHOD DID NOT CCNVERGE FOR THIS CASE AFTER',
144" ITERATIONS.'9// 91X, *EXECUTICN TERMINATED *)

IER=1
G0 TUO 55
CONTINUE

FOR PRINTING OUT THE EIGENVALUE

IF (IPLUT.EQ.D)
IF (JPLOT.EQ.O)
RETURN

END

IPLOT=1
JPLOT=1

HISTORY AND THE FINAL FLUX SHAPE:
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20

30

SUBROUTINE CURT
SOLVES FOUR THE CURRENT FROM THE INPUT H(K)*S AND D{(K)'*'S
USING F(K)*S FROM POMWER:

CUR
CUR
CUR

CURRENT IS LINEAR (LEAST SQUARES — VARIATIONAL) AND PUT INTO ARRAY C. CUR

IMPLICIT REAL*8 (A-H,0-2)
COMMON /B2/ KR
COMMON /B4/ Fl2,201), C(2,201)
COMMON /857 TiZ201,3), S1(201), S2(201), C1l(201), C2(201)
COMMON /B7/ H(200)y D(2,200)
FROM THE MATRIX PROBLEM FOR LINEAR FIT OF STEP DATA:
M=KR
N=KR+1
T{l,1)=0.
T{Ns3)=0.
Tils2)=H{1l)/3.
Tll,y,3)=H{l) /6.
TNy 1)=H{(M)/b6.
TiNs2)=H(M)/3.
S1{1)=D(Llsi)*iF(1y1)-F(ly2))72.
S2{11=D{2,1)*%(F(2,1)-F(2,2)}/2.
SIIN)I=D(1L,M)*{F{1lyM)-F(1l,M*+1))/2.
S2(NI=D(2:M)*{F(2,M)-F(2,M+1)) /2.
DO 20 1=2,M
J=I-1
Ty 1i=H{J)I/O.
TlI42)=iHlJ)I+H{I))}/3.
T{I, 3)sHl1)/6.
SI{I)=(DlLd)*(F(Llyd)—FlLlyI))4D{1,I)X(F(1,1I)-F(1,1I4+1)))/2.
S2(L)={0(29J)*(Fl24J)=Fl2,1))4D(2, 1)%(F(2,1)-F(2,1+1)))/2.
CONTINUE
CALL SOLV3DI(N,T,Cl,S51)
CALL SULV3DIN,TC2,452)
DO 30 1I=1yN
Cll,I1)=C1l(1)
Cl2,1)=C2(1)
RETURN
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END ' CUR 0037
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SUBRUUTINE OUTPUT OuT 0001

PRINTS THE RESULTS OF THE METHOD. ouT 0002
IMPLICIT REAL*8 (A-H,L-2) ouT 0003
COMMON /817 IBCsIPLOTJPLUT,IPUNCH, ISEE,NCADY OUT 0004
COMMON /B2/ KRyN ouT 0005
COMMUN /B4/ PAl1(2,201), CUR(2,201), LAMDA, ICOUT OuT 0006
COMMON /ER/ EPS1,EPS2,EPS3 ouT 0007
COMMON /ESTR/ LAMSTR{300),EFSTR{2,300),EFMSTR(2,300)ERLAM(300) OuT 0008
INTEGER Ny NOADJ ouT 0009
KRO=KR-1 OuUT Q010
KR1=KR+1 ouT 0011
WRITE (6,1} ouT 0012

1 FORMAT ("1RESULTS OF THE MULTIGROUP METHOD:?') ouT 0013
WRITE (6510) ICOUT OuT 0014

10 FORMAT (//,* PROBLEM TERMINATED AFTER?,I5, OuT 0015
X * OUTER (POWER) ITERATIGNS TO:?') QuT 0016
WRITE (6,20} LAMDA ouT 0017

20 FORMAT (/410Xs*LAMDA = *,1PE21.14) ouT 0018

PRINT OUT EIGENVALUES. ouT 0019
CALL PLOT OuUT 0020
WRITE (6,30) ouT 0021

30 FORMAT (*1RESULTS AFTER PRUBLEM TERMINATION:',/, OuT 0022
X YONUMBER® 99X 9 *THERMAL FLUX®94X,* THERMAL CURRENT', 12X, ouUT 0023

X YFAST FLUX® s TXy*FAST CURRENT',/) OuT 0024
WRITE (6950) (KyPHI(24K) CUR{29K)oPHI(19K),CUR{1,K)K=1,KR1) guT 0025

50 FORMAT (17,1PE21.75s0PEL19.7,1PE21.7,0PE19.7) OUT 0026

PRINT OUT THE STORED ITERATICN ERRORS: ouT 0027
WRITE {(64110) EPS14.(EFSTR(241),1I=1,ICOUT) OuT 0028
WRITE (6,111) EPS1.{EFSTR(1,1),1=1,ICO0OUT) ouT 0029
WRITE (64112) EPS2,(EFMSTR{2,1),I=1,1IC0OUT) OuUT 0030
WRITE (65113) EPS3,{EFMSTR(1,1),1=1,ICCUT) ~ OUT 0031
WRITE (6,114) EPS3, (ERLAM{I),I=1,1ICC0UT) OuUT 0032

110 FORMAT (*1MAXIMUM ERRORS BETWEEN THE THERMAL FLUX ITERATIONS:®*, OuUT 0033
X 25X s *TOLERANCE USED = *,1PE12.4+//y {1P5E20.5)) OUT 0034
111 FORMAT ('1MAXIMUM ERRORS BETWEEN TEHE FAST FLUX ITERATIONS:?*, ouT 0035
X 25Xy *TOLERANCE USED = ' ,41PE12.4+//y (1P5E20.5)) OUT 0036
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112 FUORMAT (®*1MEAN SQUARE ERROR BETWEEN THE THERMAL FLUX ITERATIONS:?,

X 18Xy *TOLERANCE USED = ' 1PE12.44+//+» {(1P5E20.5))
113 FORMAT (*1MEAN SQUARE ERRUOR BETWEEN THE FAST FLUX ITERATIONS:*,
X 18Xy *TULERANCE USED = ' ,1PE12.44//y (1P5E20.5))
114 FORMAT {(®*1ERROR BETWEEN THE ITERATICN EIGENVALUES:?*,
X 28Xy *TULERANCE USED = *41PE12.44//y (1P5E20.5))
IF (NUADJ.EQ.0O) RETURN
OTHERWISE ADJOINT CALCULATIONS ARE NOT EXECUTED:
WRITE (64120)
120 FORMAT (*1ADJOINT CALCULATIONS HAVE BEEN BYPASSED.',//,
X ' PROGRAM TERMINATED.') .
IPUNCH = 1 PUNCHES OUT THE FAST FLUX FOR SYNTH 16 INPUTS:
IF {IPUNCH.EQ.1) WRITE (7, 124) KR
IF (IPUNCH.EQ.l) WRITE (7,125) (PHI(1,1)sCUR(1,1),I=14KR1)
IF (IPUNCH.EQ«l) WRITE (7,125) (PHI(241)sCUR(241),I=1,KR1)
124 FORMAT (15)
125 FORMAT (2D20.10)
CALL EXIT
RETURN

END

ouT 0037
OuUT 0038
ouT 0039
OUT 0040
OuUT 0041
ouT 0042
OUT 0043
OUT 0044
OUT 0045
OuUT 00456
OUT 0047
OuUT 0048
OUT 0049
ouT 00590
ouUT 0051
OUT 0052
auT 0053
OuUT 0054
OuT 0055
OuT 0056
OuUT 0057
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SUBRUUTINE PLOT

PLOTS UGUT THE EIGENVALUE HISTORY AS A TABLE AND A GRAPH,

AS WELL AS PLOTTING OUT THE FINAL MULTIGROUP FLUX

IMPLICIT REAL#*8 |

A-HyL-L)

COMMUN /BL1/7 1IBC,IPLOT,JPLOT »IPUNCH

COMMON /B2/ KR

COMMUN /B4/ PHI{2,201), P51(2,201)y LAMDA, ICOUT
COMMON /857 B(300,2)
COMMON /ESTR/ LAMSTR{300)
DIMENSIUN C{201,3)

IN URDER TO SAVE SCME SPACE:
EQUIVALENCE (B(1),C(1))

INTEGER ND
ND=201

WRITE (651) (LAMSTR(I),I=1,ICO0OUT)
1 FORMAT (*OTABLE OF EIGENVALUES DURING THE POWER ITERATION:?,
/7y (1P5E25.14))

IF (JPLUT.EW.0)
DO 10 I=1,1IC0UT
BlI,1)=1
BIIs2)=LAMSTRI(1)
CALL PRTPLT(148,I1
WRITE (64511)

FORMAT {*QPLOT OF THE EIGENVALUE HISTORY THROUGH THE ITERATIONS.')

IF {IPLJT.EQ.0)
KR1=KR+1
DO 30 1=1,KR1
ClIsl)=1
ClIy2)=PHI(1,1)
ClI,3)=PHI(2,1)

60 TO 20

COUT,2,1C0UT,0,3004+2,1)

RETURN

CALL PRTPLTU(23C9sKR1939KR1,09NDy3,2)

WRITE (6,31)

31 FORMAT (*OFINAL CONVERGED CONNECTING FLUX POINTS;

X

5X *FAST FLUX:
RETURN
END

«¥ 3/ 35Xy " THERMAL FLUX:

-I)

F(K’."/"I

SHAPES.
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505

DO 555

SUBROUTINE PUWERT
%% ADJOINT PRUBLEM X%k
SOLVES THE 2*iN MULTIGROUP ADJUINT ECUATIONS:
M¥PHI = (1/LAMDA)*F*PHI
BY THE FISSION SOURCE POWER METHOD
USING SIMULTANEOUS OVERRELAXATICN.
WHERE: M AND F ARE O0QUBLE PRECISION 2N BY 2N BLOCK MATRICES;
AND: PHI IS THE 2N ADJOINT (FAST AND THERMAL) VECTOR,
L1%PHIL1 — T#*PHI2 = CHIL*¥F1%PHI1 + CHI2%F1*PHI2
L2%PHI2 = CHIL*F2%PHI1 + CHI2%F2*PHI2
IMPLICIT REAL*8 (A—H,L-Z)
COMMON /B1/7 IBC,IPLOT,JPLUT,IPUNCH,ISEE
COMMON /B2/ KR,N
COMMUN /837 L1(201,3), L2{201,3), F1{201,3), F2(201,3), T(201,3)
COMMON /B47/7 PHI(2,201), PSI(2,201),4 LAMDA, ICOUT
COMMON /7B5/ S(201), ERROR(25201), 2(201)
COMMON /7Bo/ TEL(245)4,TE2(2,5)+,TE3(5),IN(5)
COMMON /B7/ HH(200)
COMMUON /CHIF/ CHI(2)
COMMUN /ER/ EPS1,EPS2,EPS3
COMMON 7T/ 11,14
COMMON /FSTR/ PHISTR{2,201,6)
COMMON /ESTR/ LAMSTR{(300), EFSTR(2,300), EFMSTR(2,300), ERLAM(300)
COMMON /READS5/ R5
DIMENSION PSI1(201), PSI2{(201), SQ(2), DPHI(2), ERRMAX(2)
INTEGER N
DEFAULT UPTIGNS FOR PUOWER PARAMETERS:
ALPHA=1.25
LAMDA=1.0
HX=0.0
DO 505 1=1,KR
HX=HX#+1dH(])
16=1,2
IF (IBC.NE«.%4)
DO 550 1I=1,N

G0 TO 551

550 PHILIG,11=1.0

POWT70001
POW70002
POWT70003
POWT70004
POWT73005
POWT0006
POWT70007
POWT70008
POW70009
POW70010
POWT0011
POWT0012
POW70013
POW70014
POWT0015
POWTO0015
POW70017
POW70018
POW70019
POWT70020
POW70021
POW70022
POW70023
POW70024
POWT0025
POW70026
POW70027
POWT70028
POwW70029
POW70030
POW70031
POWT0032
POWT0033
POW70034
POWT0035
POWT0036
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551

552
555

506
502
503
510

i0

11

GO TU 555

X=3.1415926/AdX

IF (IBC.NE.1)

SUM1=0.0

DO 552 K=1,KR

SUMLI=SUML+HH(K)

PHI{IGyK)=DSIN{ SUML*X)

CONTINUE

IF (R5.EQe0.)
READ IN:

X=X/2.0

GO0 TO 510
UVERRELAXATIUN PARAMETERS 3
INITIAL GUESS AT EIGENVALUE;
INITIAL NORMALIZED FLUX H
READ (5,5U06+END=510) ALPHA
READ (5,502,END=510) LAMDA
READ (54503) (PHI(1,1),1I=1,4N)
READ (5,503) (PH1(25,1),1I=1,4N)
FORMAT (FlJ.5)
FORMAT {E25.14) .
FORMAT 1{(4E20410))
CONTINUE
STORING FOUR PRINTING THE MULTIGRCUP FLUX SHAPE.
DO 11 16=1,2
DO 10 1=1,N
PHISTRIIG,1,2)=PHI(IG,I])
FILL RUNNING COORD IN PHISTR
KR1=KR+1
DO 11 I=1,KR1
PHISTR{IG,191)=DFLOAT(I)
IK IS THE FLUX PLOTTING COUNTER,
IK=1
STORES THE ITERATION NUMBER FOR FLUX HISTORY PLOTTING:
IN(1)=0
STURES TEMPORARY ERRORS FOR FLUX HISTORY PLOTTING:
TE1(1,1)=0.
TE1(241)=0.
TE2(1,1)=0.

ALPHA
LAMDA
PHI(1-N)

{CUTER ITERATION)

POWT70037
POWT70038
POW70039
POWT0040
POW70041
POW70042
POWT0043
POWT70044
POWTO0045
POWT70046
POWT 0047
POWT0048
POW70049
POWT70050
POWT0051
PONWT0052
POW70053
POW70054
POWT0055
POKWT70056
POWT70057
POWT70058
POWT0059
POWT70060
POWT0061
POW70062
POW70063
POW70064
POWT70065
POWT70066
POWTO006T
POW70068
POWT70069
POW70070
POW70071
POWT0072
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TE2(2,41)=0.
TE3(11=0.0

EIGENVALUE UF THE PREVIOUS ITERATION:
LAMB4=LAMDA

THE MAXIMUM NUMBER OF ALLOWED ITERATIONS: ICMAX
ICMAX=300

PRINT OUT THE POWER METHOC PARAMETER INFORMATION:
WRITE (64700) ICMAX, ALPHA,LAMDA,{PHI(14+1)eI=14N)
WRITE {6,701) (PHI(2,1),I=1,N)

700 FORMAT (' lEXECUTING MUTIGROUP ADJOINT FISSION SOURCE POWER ITERATI

X

bl B I B A I

ON METHOD"9/7/»
S5Xe* MAXI MUM NUMBER OF ALLOWABLE ITERATIONS:1',/,
LOXs YICMAX =%4,144,/7/»
5Xs *OUTER ITERATION RELAXATICN PARAMETER:',/,
LOXs YALPHA =" 4FT.34//,
5Xs "INITIAL GUESS AT ADJOINTY EIGENVALUE:?',/,
LOXs*LAMBDA ="3E22.14,//7,
S5Xs *INITIAL GUESS AT THE GRGCUP FLUX SHAPE CONNECTICN POINTS:®,
/778Xy, *FAST ADJOINT GRUUP:',/,
LOXs'"FIK)UYS =% ,4E25.1%49/+(18BXy4E25.14))

701 FORMAT (*0',7X, *THERMAL ADJOINT GROUP:',/,

20

>

LOX, *FLK)**S =%,4E25.14,/+118X,4E25.14))
BEGIN ITERATICN LOOP.
ICOUT=0
1COUT IS THE DUTER ITERATICON COUNTER.
ICOUT=1COoUT+1
IF (ICOUT.GT.ICMAX) GO Ty 100
FORM THE GROUP TOTAL SUOURCE Sy AND ITS L—-2 NORM SUM1:
AND THE THERMAL ADJOINT SOURCE VECTOR Z:
SUM1=0.
DO 15
Z{1)=0.
S({1i)=0.
10=1
I1=3
IF {(I1.EQ.1) 10=2

I=1sN
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IF (1.EQeN) 11=2
DO 14 J=1i0,11
K=1-2+J
ZUI)=Z(1)+F2(1, J)¥CHI{ 1)*PHI{1,K)+CHI(2)*PHI{2,K))
S{II=SU1)+F1{L,J)*(CHI(1)*PHI(1,K)+CHI(2)*PHI(2,K))
StLi=stii+Lli)
SUML=SUML+S(1)**2
SUM1=DSQRTISUML)
SULVE FOR THE NEW GROUP ADJOINT FLUX VECTORS; PSI:
THERMAL ADJUINT FLUX:
CALL SOLV3DIN,L24PSI2,2)
FAST ADJOINT GROUP3 SUOURCE VECTOR:
DO 27 I=14N
Sti)=0.
Z{1)=0.
10=1
11=3
IF (l1.EQ.1) 1I0=2
IF (L1<EWeN). I1=2
DO 26 J=10,11
K=l-2+J -
S(II=S(I)+CHICL)*F1(I4J)*PHI{L,K)+CHI(2)*F1{I,J)%PSI2(K)
L{I)=21l1)+T(14J)%PSI2(K)
Z{I)=4(1)+S(1)
FAST ADJOINT FLUX:S
CALL SULV3DINsL14PSI1,2)

FORM NEW GROUP TOTAL SUURCE S FRCM PSI*S, AND ITS L—-2 NORM SUM2:

SUM2=0.

DO 29 I=14N
S(I1)=0.

10=1

I1=3

IF (1.EQ.1) 10=2
IF (1.EWQeN) 11=2
DO 28 J=10,I11
K=l=2+J
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36

SUI)SSUI)HIFLILL 9J)#F2 1,0} )X {CHI{L)APSIL{K)I+CHI(2)%*PSI21{K))
SUMZ=SUM2+S{1)%%2
SUM2=DSQRT{SUM2)
CALCULATION OF THE EIGENVALUE:
LAMDA=SUMZ2/SUM1
LAMSTRUICUUT)I=LAMDA
ERRLAM=DABS {LAMDA-LAMB4)
PUT PSI1 AND PSI2 INTO BIGGER PSI:
DO 30 1I=1sN
PSI(L,1)=PSIilI)
PSI(2,1)=PS12(1)
PUINT BY POINT SIMULTANEOUS RELAXATION FLUX ITERATICN:
X=ALPHA
DO NOT RELAX DURING THE FIRST THREE ITERATIONS:
IF (ICOUT.LE.3) X=1.0
CALCULATE THE NEW GROUP FLUX ITERATES AND GROUP ERRORS:
DO 40 15=1,2
SQUIG)=0.
DO 40 1I=1,N
ERROR(16Gy1)=5PSI{IGI)/LAMOA-PHI(IG,T)
SQUIGI=SQIIG)+ERROR(IG,y I )**2
PHI{IGsI)=PHI(IG,I) + X*ERROR(IG,1)
AND FOR PLITTING PURPOSES:
PSI(IG,1)=PHILIG,I)
CONTINUE
DO 34 1G6G=1,2
SQUIG)=DSQRTISQ(1G))
NURMALILIZE PSI:
NORMALIZES BOTH ARRAY GROUPS TO 1.0:
CALL NORM2{PSI,N)
DO 36 1I6=1+2
ERRMAX(1G) = THE MAX ERROR BETWEEN THE GROUP ITERATION FLUXES:
ERRMAX{IG)=ERRUOR(IG,+1)
DO 36 1=2sN
IF (DABS(ERRUR(IGI)).GT.ERRMAX(IG)}) ERRMAX(IG)=DABS(ERROR({IG,1)])
CONTINUE
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IF (IPLUTeNE.2) GO TO 45
THE FOLLOWING IS FOR NICELY PLOTTING THE GROUP FLUX HISTORY.
DO 41 1G=1,2
DO 41 I=1,N
ERRUR(IG»1)=PSI(IG,I1)
ERRUR NUW CONTAINS THE NEW NORMALIZED FLUX ITERATE PHI.
JK=1K
IF (1K.EQe0) JK=5
DO 42 16=1,2
DO 42 1=14N
IF (DABS(ERROR(IGyI)=PHISTRUIG,IJK+1)).GE.0.01) GO TO 43
CONTINUE
FLUX HAS NOT CHANGED ENOUGH FCR PLOTTING.
GO TU 45
SAVE THE NORMALIZED FLUX FOR PLOTTING:
IK=1IK+1
INCLIK)=ICOUT
TE3(IK)=ERRLAM
DO 44 1G=1,2
TElllbs IK)=ERRMAX(IG)
TE2{I6+1K)=SQ(IG)
DO 44 I=14N
PHISTR{IG 15 IK+1)=ERROR{IG,1)
IF (IK.NE.5) GO TO 45
PLUT THE LAST FIVE SAVED FLUXES:
CALL PHIPLTLS)
IK=0
CONTINUE
ERROR CRITERIA FOR ACCEPTANCE OF CONVERGENCE.
IFLAGL1=0 ‘
IFLAG2=0
IFLAG3=0
STURE THE ERRORS FOR CUMPARISCN:
ERROR BETWEEN ITERATICN EIGENVALUES:
ERLAM(ICOUT )=ERRLAM
DO 46 16=142
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MAXIMUM ERROR BETWEEN ITERATION FLUXES:
EFSTRU1G,y ICOUT)=ERRMAX(IG) .
MEAN SJQUARE ERROR BETWEEN ITERATION FLUXES:

EFMSTR{IG,1COUT )=SQ(IG) )
CUNTINUE 5
IF ({ERRMAX{1)+LT.EPS1).AND < (ERRMAX{2).LT.EPS1)) IFLAGL1=1
IF {((SQ(1).LT.EPS2).AND.{5Q(2).LT.EPS2)) IFLAG2=1

IF (ERRLAM.LT.EPS3) IFLAG3=1
IFLAG4=IFLAGL*[FLAG2*IFLAG3
IF (IFLAG%.EQ.1) GO TO 59
OTHERWISE CONTINUE THE ITERATION.
LAMB4=LAMDA
G0 TO 20
CONTINUE
CUNVERGENCE ACCOMPLISHED.
NURMALIZE THE CONVERGED FLUX VECTOR:
CALL NURMAL {PHiI¢N)
PLOT ANY LEFT OVER FLUX HISTCRY FLOTS:
IF ({IPLOT.EQe2) +AND{IK.NELO)) CALL PHIPLT{IK)
BOUNDRY CUNDITICN INSERTICNS. '
1ER=0
IER ALLIWS B.Ce INSERTIUNS FOR YES AND NO CONVERGENCE:
IF (IBC.EW.4) GO TO 90
IF (IBC.NE.3) GO TO 60
PHI(lyKR+1)=U.
PHI(Z2,KR+1)=0.
GO TO 90
DO 70 1I=1,N
J=N+1-1
PHI(1,d%#1)=PHI( 1,yJ)
PHI(29J+1)=PHI(2yJ)
PHI{1,13=0.
PHI(2,1)=0.
IF (IBC.NE.1) GO TO 90
PHI{1:KR+1)=0.
PHIUZ2:KR+1)=0.
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C

C

90 IF (IER.EW.1) GO

102

X

RETURN

T0 102

NO CONVERGENCE ACCOMPLISHED:

100 CONTINUE
NORMALIZE THE UNCONVERGED FLUX:

CALL NORMAL (PHI 4N)

ICOUT=1IC0UT-1

WRITE (6,1J1) iCOUT

101 FORMAT (iHli,°*POWER METHUOD DID NOT CCNVERGE FOR THIS CASE AFTER?Y,

I4,"
IER=1
GO TO 55
CONTINUE

FOR PRINTING OUT THE EIGENVALUE HISTORY AND THE FINAL
IF (IPLJT.EQ.OQ)
IF (JPLUT.EQ.O)

RETURN
END

ITERATIONS.?9/741X, "EXECUTICN TERMINATED

IPLOT=1
JPLOT=1

")

FLUX SHAPE:
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SUBRUUTINE CURT7
SUOLVES FOR THE ADJOINT CURRENT FRCM THE INPUT H(K)*S AND D(K)*S
USING FIK)I'S FROM POWERT:
CURRENT IS LINEAR (LEAST SQUARES — VARIATIONAL) AND PUT INTO ARRAY C.
IMPLICIT REAL*8 (A-H,0-2)
COMMON /7B2/7 KR
COMMON /8477 Fi{2,201), C(2,201)
COMMON /7857 TL201,43), S51(201), S2(201), C1{201), C2(201)
COMMON 787/ Hi200), DI(2,200)
FRUOM THE MATRIX PROBLEM FCR LINEAR FIT OF STEP DATA:
M=KR :
N=KR+1
T( 1' 1}'.‘00
I(N!3‘=00
T(1l,2)=H{1)/3.
T{1,3)=H(1)/6.
TiINy, 1)=H(M)}/6.
TINy2)=H{M)/3.
S1{1)=Dils1)*(Fl1,1)-Fl1l,2))/2.
S2{1)=D(2,1)*¥{F(2,1)—-F(2,2))/2.
SIINI=DUL,MI®{F(Ll,M)-F(1l,M+1)) /2.
S2INI=D(2+MI%X(F{2,M)-F(2,M+1))/2.
DO 20 I=2+M
J=1-1
T(I, 1li)=HlJ)/6.
Tll,2)=(H{JI+HI{I)) /3.
T(I, 3)=H(I)/6.
SILI)=(0C1eJd)*{F(1lyJ)=F{ly1))+DU1 1) (F{1,1)-F(1,1+1)))/2.
S2(1)=(D(2,J)¥{F{(233)-F(2,1))4D(2,1)%(F{2,1)-Fl(2451I%1)))}/2.
CONTINUE
CALL SULV3DIN,TCl,51)
CALL SOLV3DIN,T+C2,52)
DO 30 I=1lyN
Cli,i)=-Clt1)
Cl2y1)=-C2(1)
RETURN
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SUBROUTINE OUTPTT
PRINTS THE RESULTS OF THE ADJOINT METHOD:
IMPLICIT REAL*8 (A-H,L-1)
COMNMON /Bl/ IBCSsIPLOTJPLOT 2IPUNCH
COMMON /7B2/7 KRN
COMMUN /B47/ P41(2,201), CUR(2,201), LAMDA, ICOUT
COMMON /ZER/ EPS1.EPS2,EPS3
COMMON /ESTR/ LAMSTR{300),EFSTR{2,300),EFMSTR{2,300),ERLAM{300)
INTEGER N
KRO=KR-1
KR1=KR+1
WRITE (6e1)
FORMAT (' IRESULTS OF THE MULTIGROUP ADJOINT METHOD:?')
WRITE (6,10) ICOUT
FORMAT (/77" PROBLEM TERMINATED AFTER',I5,
X ¢ QUTER (POWER) ITERATICNS T0:')
WRITE (6,20) LAMDA
FORMAT (/7,10Xs*ADJOINT LAMBDA = ',1PE21.14)
PRINT OUT EIGENVALUES.
CALL PLOT7
WRITE (6430)
FORMAT (*1RESULTS AFTER PROBLEM TERMINATIONz'",/,
X 5Xs *ADJOINTS:'4/,
X S ONUMBER® 99X o *THERMAL FLUX" 44X, * THERMAL CURRENT',12X,
X SFAST FLUXY, TX9*FAST CURRENT®,/)
WRITE (69450) (KeyPHI(2,K)2CUR{24K)PHI{1,K)},CUR(1,4K)K=1,KR1)
FORMAT (17,1PE21.750PE19.7,1PE21.740PE19.7)
PRINT JUT THE STORED ITERATICN ERRORS:
WRITE (65110) EPS1, (EFSTR{2+1),1I=1, ICOUT)
WRITE (65111) EPS1,{EFSTR{1,1),1I=1,ICOUT)
WRITE (65112) EPS2,(EFMSTR(2,1),1I=1,IC0UT)
WRITE (69113) EPS3,lEFMSTR{1,1),I=1,1ICCUT)
WRITE (65114) EPS3,(ERLAMII) »I=1,ICCUT)
FORMAT (* 1MAXIMUM ERRORS BETWEEN THE THERMAL FLUX ITERATIONS:?,
X 25Xs *TULERANCE USED = ', 1PE12.44+//s (1P5E20.5))
FORMAT (* IMAXIMUM ERRORS BETWEEN THE FAST FLUX ITERATIONS:?®,
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25Xy *TOLERANCE USED = * 3 1PE12+44//
FORMAT (* 1MEAN SQUARE ERROR BETWEEN THE THERMAL FLUX ITERATIONS:?,

18Xy *TULERANCE USED = *,1PE12.44//,
113 FORMAT (®*1MEAN SQUARE ERRUR BETWEEN THE FAST FLUX ITERATIONS:?,
18Xy *TOLERANCE USED = ?,1PEL12.447//,
114 FORMAT (*1ERROR BETWEEN THE ITERATICN EIGENVALUES:',
28Xy *TOLERANCE USED = ', 1PE12.49//,

CHECK FUR CALL TO PUNCH:

IF (IPUNCH.EQ.1)
RETURN
END

CALL PUNCH

{1P5E20.5))
(1P5E20.5))
(1P5E20.5))

(1P5E20.5))
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SUBROUTINE PLOT7
PLUTS OuTl THE EIGENVALUE HISTORY AS A TABLE AND A GRAPH,
AS WELL AS PLOTTING OUT THE FINAL MULTIGROUP FLUX SHAPES.
FOR THt ADJOINTS:
IMPLICIT REAL*8 {(A—-H,L-2)
COMMON /B1/ 1BC,IPLOT,JPLOT,I1PUNCH
COMMUN /B2/ KR
COMMON /B47/ PHI(2,201)y CUR{(2,201)s LAMDA, ICOUT
COMMON /857 B1300,2)
COMMUN /ESTR/ LAMSTRI{300)
DIMENSION C{201.+3)
IN URDER TO SAVE SCME SPACE:
EQUIVALENCE (B(1),C(1))
INTEGER ND
ND=201
WRITE (691) (LAMSTRII)»I=1,1IC0UT)
FORMAT (°QTABLE OF EIGENVALUES DURING THE POWER ITERATION:®,
//+(1P5E25.14))

IF (JPLUT.EQ.O)

DO 10 1I=1,I1C0UT

Bli,1ld=1

B{Is2)=LAMSTRI{I)

CALL PRTPLT(1L3B,ICOUT,2,ICUUT9093004+2,1)

WRITE (64,11)

FORMAT {'OPLUT OF THE EIGENVALUE HISTORY THROUGH THE ITERATIONS.')

IF (IPLJ3T.EQ.O0) RETURN

KR1=KR+1

DO 30 1I=1,KR1

Cli,l)=1

ClIs2)=PHI(1l,1}

Cll,3)=PHI{2,1)

CALL PRTPLT(Z29sC yKR143)KR1409NDy3,2)

WRITE (6,931)

FORMAT (®OFINAL CONVERGED CCNNECTING FLUX POINTS; F{K)e'y//>
5Xs*FAST FLUX: o¥ 3/ s5X s "THERMAL FLUX: -—7)

GO TO 20
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RETURN PLT70037
END PLT70038
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SUBRUUTINE SULV3D(NsAsX,Y)

SOLVES THE N DUUBLE PRECISICN MATRIX EQUATIONS: AXX = Y,
FOR X - GIVEN THE N BY N TRIDIAGCNAL MATRIX A

AND THE SOURCE VECTOR Y.

METHOD IS FORWARD ELIMINATICN FOLLOWED BY BACKWARD SUBSTITUTION.

CF — WACHPRESS, PAGE 23.
REAL*8 Ay X3 Yy Hy Py D
DIMENSIUN A(201,3), X{201), Y{201), H(201), P(201)
IF (A{l,2).EQ.0.0) GO TO 10
H{1l)=-Al1l+,3)/A(1,2)
P{1)=Y(1)/A(1,2)
DO 1 M=2,N
D=A{M,2)+A(M, 1)*H(M-1)
IF (D.EWQeDJ.0) GO TO 20
PIM)=(Y{(M)-A{M, 1)%P{M—-13)/D
IF {(M.EQ.N) GU TO 1
H(M)=-A{M, 3)/D
1 CONTINUE
X{N)=P{N)
DO 2 1=24N
M=N+1-]
2 X{M)=PiMI+tH({M)%X(M+1)
RETURN
IN CASE OF ANY IMPENDING ZERQ DIVISORS:
10 WRITE (bge11) .
11 FORMAT {(*QFIRST ELEMENT OF Ay, A(l,s1), IS ZERO.',/,
X S5Xe*BETTER FIX IT BOSS.!')
GO TO 30
20 WRITE {6,21) M
21 FORMAT (®*0ZERU DIVISOR ENCOUNTERED IN EQUATION M =%,13,',.%/,
X SXe*BETTER FIX IT B0OSS.!')
30 WRITE (6431)
31 FORMAT (*OEXECUTION TERMINATED.')
CALL EXIT
RETURN
END
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SUBROUTINE

NORMAL {PHIsN)

NORMALIZES THE GROUP FLUXES TO ONE. NOT BOTH GROUPS.
REAL*8 PHI(24201)y A
A=DABS(PHI(1,1))

DO 1 1IG=1,2

IF (DABS(PHI(IGsI)).GT.A)

PHICIGy I )=PHI{IG,I)/A

DG 1 I=1sN
CONTINUE

DO 2 1I6G=1,2
DO 2 1I=1,N
RETURN

END

A=DABS{PHI(IG,1))
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SUBRUUTINE NUORM2{PSI.N)
NORMALIZES BOTH ENERGY GROUPS OF PSI TO 1.0.

REAL*8 PSI(25201),
DO 1 1IG=1+2

A(2)

ALIG)=DABS{PSI(IGy1))

DO 1 1I=1sN
IFf (DABSIPSI(IGsI)).GT.ALIG))

CONTINUE

DO 2 1G=1,2
DO 2 I=1sN
PSI(IG,1)=PSILIG,I)/ALIG)

RETURN
END

A{IG)=DABSI(PSI(IG,I))
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SUBRUUTINE PHIPLTI(L)
PLOTS THE GROUP FLUX HISTORY, WITH UP TO 5 GROUP FLUXES
FAST ANU THERMAL GROUP FLUXES ARE PLOTTED SEPERATELY.
L IS Thdt NUMBER OF FLUXES TO BE PLOTTED.
L IS BETWEEN 1 AND 5.

IMPLICIT REAL*8 (A-H,0-2)

COMMON /B1/ 1BC

COMMUN /B2/7 KRN

COMMON /B57 5(201), A(201+6)y B(201,6)

COMMON /Bb/ TEL{(245)9TE2(245)4+TE3{5),IN(5)

COMMON /ER/ EPS1,EPS2,EPS3

COMMON /FSTR/ PHISTR(2,201,6)

DIMENSION SYMBOL(5)

INTEGER SYMBOL /%, 0y%=0,040 040 ,0%0y

ND=201

KR1=KR+1
SET UP B.C. CONDITIUNS

IF (IBC.EJ.4) GO TO 5

IF (IBC.EQ.3) 6O 7O 3

DO 2 16=1,2

DO 2 K=1,L

DO 1 1=1,N

J=N+1-1

PHISTR(IG s J+1sK+1)=PHISTR{IGyJyK+1)

PHISTR{IGy 19K+1)=0.

IF (IBC.EQ.2) 6O TO 5
DO 4 1IG=1l,2

DO 4 K=lsL
PHISTRUIG¢sKR1sK+1)=0.
CONTINUE

FLUXES IN PHISTR HAVE BEEN NORMALIZED IN POWER.
PUT THE FAST FLUX IN A, AND THE THERMAL FLUX IN B:
Lli=L+1
DO 10 K=1,L1
DO 10 1I=1,KR1
A{IsK)I=PHISTR{141,4K)

PER PLOT.

PHIPOOO1
PHIPQOOOZ2
PHIPOOCO3
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10 BUIKI=PHISTRLZ 31 ,4K)
PLOT THE L FAST FLUX SHAPES ON ONE GRAPH:
CALL PRTPLT(OsAsKR1yL1,KR1L, OyNDsb6,2)
WRITE (6,20).
20 FORMAT (/,*0FAST FLUX ITERATION HISTCRY PLOT.',/)
WRITE (6,30)
30 FORMAT (
X T OKEY:? 95X *SYMBOL*,5X, Y ITERATICN NUMBER:', 7TXy'ERROR CRITERIAY,
X 11Xy "ERRORY 3 13Xy *TOLERANCE"*)
DO 35 1I=1,L
35 WRITE (6,40) SYMBOL{(I)oIN(IDoTEL(1,1),EPS]1,TE2(1,1),EPS2,
X TE3(I),EPS3
40 FORMAT (/7 912X9A1,515X913,16X9*FLUX? 314X ,1PD15.595X31PD15.5,/,
X 4TXe"MEAN SUe FLUX' 45X31PD15.595X91PD15.5,7/»
X 47Xy "EIGENVALUEY 48X, 1PD15:595X41PD15.5)

PLOT THE L THERMAL FLUX SHAPES CN THE OTHER GRAPH:
CALL PRTPLTLO»B+KR14L19yKRL19O9ND96,2)
WRITE (6,50)
50 FORMAT (/' OTHERMAL FLUX ITERATICN PLOT.',/)
WRITE (6430)
DO 55 1I=1,L
55 WRITE (6540) SYMBOLUID)sINLI)oTEL(2,41),EPSL1,TE2(2,1),EPS2,
X TE3(I),EPS3
RETURN
END

PHIPOO37
PHIPOO38
PHIPOQO039
PHIPO0040
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PHIPOO42
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PHIPOO45
PHIPOO46
PHIP QD47
PHIPOO48
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PHIPOOS51
PHIP0O052
PHIPOOS53
PHIP 0054
PHIPOO55
PHIPOO56
PHIPOOS57
PHIPOOS58
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PHIPOOG61
PHIPOO062
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SUBRUOUTINE PRTPLTINO»BeNsMs NLyNSoKXsJX,yISP)

C#*%%¥xxMODIFIED VERSION FROM THAT OF SSP OR ANY OTHER SOURCE *¥*k*xx%

sz NaNaNalaleNeEelsNeEeNaNeNaNaekal el NaNaNaRaNaNaNe

CONVERTS DOUBLE PRECISIUN B ARRAY TO REAL%4,
PLUT SEVERAL CROSS-VARIABLES VERSUS A BASE VARIABLE
NO — CHART NUMBER {3 DIGITS MAXIMUM)
B - MATRIX OF DATA TO BE PLOTTED. FIRST COLUMN REPRESENTS
BASE VARIABLE AND SUCCESSIVE COLUMNS ARE THE CROSS-
VARIABLES (MAXIMUM IS 9).
N = NUMBER OF ROWS IN MATRIX B
M - NUMBER OF COLUMNS IN MATRIX B (EQUAL TO THE TOTAL
NUMBER OF VARIABLES). MAXIMUM IS 10.
NL - NUMBER OF LINES IN THE PLCT. IF O IS SPECIFIED, 50
LINES ARE USED. THE NUMBER COF LINES MUST BE EQUAL TO
OR GREATER THAN N
(USUALLY USE NL=N, AND ISP FOR SPACING.)
NS - CODE FOR SORTING THE BASE VARIABLE DATA IN ASCENDING
ORDER
O SORTING IS NOT NECESSARY {ALREADY IN ASCENDING
ORDER).
1 SORTING IS NECESSARY.
KX- DIMENSION OF B MATRIX FRCM CIMENSION STATEMENT.
IT MUST BE OF THE FORM B{KX,JX)
JX— DIMENSION OF B MATRIX FRCM DIMENSION STATEMENT.
IT MUST BE UF THE FORM BI(KX,JX)
ISP~ CODE FOR SPACING LINES WHILE PLOTTING:
1 SINGLE SPACE
2 DOUBLE SPACE
3 TRIPLE SPACE
.'OETC‘
REAL*8 B ‘
DIMENSIUN OUT(L01),YPR{11)y IANG(9),,A( 1500),B{KXeJX)
INTEGER IDUM/ZP LY/ 3 TANG/ Y o0 g 0=t 040, 00,0k, 1A R0 10,90/
INTEGER 0UT ‘
i=1
DO 39 J=1,M
DO 39 K=14N

PRTPQ001
PRTP0O00O2
PRTPOD03
PRTP0004
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PRTPOOO7
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39

- N -

8

10

11

12
14
15

16
18

20

AlL1)=B(KyJ)
I=I+1
CONTINUE
FORMAT{1HL,6UXe TH CHART ,1347/7)
FORMAT( 14 4Fll.4+5Xy101A1)
FORMAT (1H ) .
FORMAT(1H 516X, 101H+ + +
+ + + + +
FORMAT(1H 39X911F10.4)}
NLL=NL
IFINS) 16, 165 10
SORT BASE VARIABLE DATA IN ASCENDING ORDER
DO 15 I=1sN
DO 14 J=1I4N
IF(A(LI)-ALJ)) 14, 14, 11

L=I-N
LL=J—-N
DO 12 K=1,M
L=L+N
LL=LL+N
F=A(L)
A(L)=A(LL)
AlLL)=F
CONTINUE
CONTINUE

TEST NLL
IF{NLL) 20, 18, 20
NLL=50

PRINT TITLE
WRITE(651)ND

DEVELOP BLANK AND DIGITS FCR PRINTING
BLANK=0

FIND SCALE FOR BASE VARIABLE
XSCAL={A(NI=A{L )}/ (FLOAT(NLL-1))

FIND SCALE FOR CROSS—-VARIABLES
YMIN=1.0E75

+)

PRTPOO37
PRTP0OO38
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PRTPOO41
PRTP0O42
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PRTP0045
PRTPOO46
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40

50
55
57

56

60

61

YMAX==1.0E75

Ml=N+1

M2=M*N

DO 40 J=M1,M2

IF (A(J).GT-.YMAX) YMAX=A(J)
IF (A{J).LT.YMIN) YMIN=A(J)
CONTINUE

YSCAL={ YMAX-YMIN)/100.0

CHECK TJ SEE IF THE SPREAD IN Y IS TOO SMALL FOR PLOTTING:

IF (YSCAL.EQ.0.0) GO TO 100

OTHERWISEy A DIVIDE CHECK WILL OCCUR AFTER STATEMENT 56.
FIND BASE VARIABLE PRINT POSITICN

XB=Al1l) -
L=1
MY=M-1
[T=15P-1
DO 80 I=1,NLL
F=I-1
XPR=XB+F®XSCAL
IF(ALL)-XPR-XSCAL*0.5) 50450,70

FIND CROSS—-VARIABLES
DO 55 iXx=1,101
OUT(IX)=BLANK
CONTINUE
DO 60 J=1l.MY
LL=L+J*N
JP={(A{LL)-YMIN)/YSCAL)#+1.0
OUTJPI=IANGLJ)
CONTINUE

PRINT LINE AND CLEAR, OR SKIP
IF(L.EQ.N) GO TO 61
L=L+1
IF{ALL)-XPR-XSCAL*0.5) 57,517,461
CONT INUE
WRITE(642) XPR, {OUT(IZ)y1Z=1,101)
IF (iT.EQ.Q0) GO TO 65

PRTP0O073
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64
65
70
80

90

DO o4

Iv=1,IT

WRITE (6,3)
GO T0 80
WRITE(6,43)
CONT INUE

PRINT CRUSS—-VARIABLES NUMBERS

WRITE(6,7) .
YPR{1)=YMIN
DO 90 KN=1,9

YPRIKN+L)=YPR{KN)+YSCAL*19.0

YPR{11)=YMAX

WRITE(6,8){YPR{IP),IP=1,11)

RETURN

100 WRITE (64101)

101 FORMAT (*OUNO PLOT IS GENERATED BECAUSE THE SPREAD IN THE Y VARIBLE
X IS TOOU SMALL.'3/910Xs*{1.E« — EQUALS ZERO UNDER REAL*4.)%',//,
YEXECUTION CONTINUING."')

X

5Xs
RETURN
END

PRTPO109
PRTPO110
PRTPO111
PRTPO112
PRTPO113
PRTPO114
PRTPOL115
PRTPO116
PRTPO117
PRTPO118
PRTPO119
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PRTPO125
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SUBROUTINE PUNCH

PUNCHES THE FLUX AND CURRENT AND ADJOINTS OUT AFTER CONVERGENCE.

CALLED BY IPUNCH=1.
IMPLICIT REAL*8 (A-H,0-2)
COMMON /7B27 KR
COMMUN /B4/ F(2+201)y CL(2,201)
COMMUN /7B47/7 F7(2,201)y C712,201)
WRITE (7,51) KR
FORMAT (15)
N=KR+1
PUNCH OUT THE FAST FLUX:

WRITE (7510) (FU13J)sClisd) oFTU14J)sCT(14J)yJ=14N)

PUNCH OUT THE THERMAL FLUX:

WRITE (7,10) (FU29J)yCl24J) +FT(24J),CT{24J)9J=1,N)

FORMAT (4E20.7)
RETURN
END

PNCH0OO1
PNCH0002
PNCHO003
PNCHO004
PNCHOO0O05
PNCHQ006
PNCHO007
PNCHO008
PNCH0009
PNCHOO10
PNCHOO11
PNCHOO12
PNCHOO13
PNCHOO14
PNCHOO15
PNCHOO16
PNCHOO17
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F.2., SOURCE LISTING of Program LINEAR




MAIN

Level 1
SYNTH POWER OUTPUT
ERROR SOLV3D PLOT
REPEAT NORMAL PUNCH
BHSET PHIPLT
GIF
FACT
PRTOUT Level 2
NORM?2
PRTPLT

Figure F.2. Structure of Program LINEAR.
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30

701
704
706
707

720

PROGRAM LINEAR:
TWO GROUP PROPOSED METHUD USING LINEAR BASIS FUNCTIONS.
CALL TIMINGI(IL)
CALL SYNTH
CALL TIMING(I%4)
CALL POWER
CALL TIMING{(I6)
CALL TIMINGILIT?)
CALL OUTPUT
CALL TIMING{IS8)
TIMING EXECUTION
WRITE (6,530)
FORMAT (1H1,°TIMING PROGRAM EXECUTICN:',/)
J=I4-11
WRITE(6,701) J
J=16—-14
WRITE(6,704) J
J=I7-16 -
WRITE(6,706) J :
J=18-17
WRITE(6,707) J
FORMAT (1H s SYNTH HAS TAKEN',16,*' /100 SECONDS.?)
FORMAT (1H ,' POWER HAS TAKEN®',I64* /100 SECONDS.')
FORMAT (lH o' CURENT HAS TAKEN',IS5,' /100 SECONDS.')
FORMAT (1lH % OUTPUT HAS TAKEN',15,' /100 SECONDS.')
CALL TIMING(120)
J=120-11
WRITE(6,720) J
FORMAT (1HO,* THIS RUN HAS TAKEN',16,' /100 SECONDS TO RUN.')
sTOP
END

LINEODOOL
L INEODO2
LINEDOD3
LINECOO4
LINEOOCO5
LINEQOO6
LINEOOO7
LINEOOOS
LINEQOO9
L INEOO1O
LINEDOL1
LINEOO12
LINEOO13
LINEOO1l4
LINEOO15
LINEQGO1®6
LINEOO17
LINEOO18
LINEODLS
LINEOO20
LINEQO21
LINEOQO22
LINEOO23
LINEOO24
LINEQO25
LINEQOO26
LINEQO27
LINEOO28
LINEOO29
LINEQO3D
LINEOO31

PAGE 244



SUBRUUTINE SYNTH

(aNeNaNal

PROPUSED LINEAR SYNTHESIS METHOD:
*x %k Xk % ¥k ¥ ¥ ¥ ¥ ¥ %k %k ¥k ¥k ¥ %k ¥ %k %k *k %k %k k %k %k x & %k % % *k % ok % ¥ * * % *

ADJUINT QUANTITIES OF VARIBLES ARE DENOTED BY 7 RATHER THAN *,

THUS: PHIT7 (RATHER THAN PHI*) IS THE ADJOINT OF PHI. ETC.

IMPLICIT REAL*8 (A-H,K-1)

COMMON
COMMOUN
COMMON
X
COMMON

P I - P

COMMON
C OMMUN
COMMON
COMMON

/B1/ IBCIPLOT,JPLOT o IPUNCH, ISEE

/82/ KRy NN

/B3/ L1(26926)4L2{26426)yF1{26426)3F2(264,26),

F3‘26'26)1F4(26'26)1T(26126)

/857 KAO0(2,25),KAL(2925)9KA2(2,25)3KB0O(2525)9KB1(2,25),
KB2{2+25),LA012,25),LA1(2,25),LA2(2,25),SRO(1,25),
SR1(1925)y5R2(1,25),KC0{1,25),KC1(1,25),KC2{1,25),
KDO{1,25),KD1(1,25),KD2(1,25),
Pl2+25)4P112,25)5Q(2,425),
QL(2925)4R(2925)9P0(2425)4,P0T12425)4PH(2,25),
PHT(2325))AL{2+25)+BL(2425)+4CL{2425),AF(4,25),
BF(4+25)9CF{4525),AT(25),BT7T1{25),CT(25),

ALK{2), BLK{(2), AFK(4), BFK{4), ATK(2),
BTK{2),BLO(2)yCLOL2)+BFC{4),CFO(4),BT0(2),CTO0(2),
C0t2)y, CH{2)

/CHIF/ CHI(2)

/XAX1S5/ HXy HR(25)

/BH/ X{101), H{lol)

/ER/ EPS1,EPS2.EPS3

DIMENSION PHI(2,101)4PHIT(2,101),CUR(2,101),CURT(2,101),

X
X

A{2:100),F(2,100) 4D12,100),5(2,100),D1(2,100),
XU(2,100)

DIMENSIUN VI(2),V1(2),V2(2),V312)
DIMENSIUON 1TF(25), KTF(25) .

IN ORDER TO SAVE SPACE:

EQUIVALENCE (PHI(1),L1(1)), (PHI7(1),L1(301)),

> > X X

(CUR(1),L2(1)), (CURT(1), L2(301)),
(XUL1),F1(1)), (A{1),F1(301)),
(F(1),F2(1)), {D(1),F2{(301)),
(3(1),7T{1))» {(DI{1),T(301))

SYNTOO0O01
SYNT0002
SYNTJ003
SYNT0004
SYNT Q005
SYNTQ006
SYNT0007
SYNT0008
SYNTO0009
SYNTO0010
SYNTOO11
SYNTOO012
SYNTO013
SYNTOO14
SYNT0015
SYNTOO016
SYNTQ017
SYNTQO18
SYNTO019
SYNT0020
SYNTOQ021
SYNT0022
SYNT0023
SYNT0024
SYNT 0025
SYNTQ026
SYNT 0027
SYNT0O028 -
SYNT0029
SYNT0030
SYNT0031
SYNT0032
SYNT0033
SYNT 0034
SYNT0035
SYNTO0036
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REAL TITLE{Z2D)
INTEGER KRyKsKS sKS1,KRO, NNy NUMITF,KTF
READ (5,200) TITLE
200 FORMAT {20A4)
WRITE {6,201) TITLE
201 FORMAT ‘1H1'20A4Q//)
READ IN THE NUMBER OF REGICN TRIAL FUNCTIONS AND TYPE OF B.C.S.
AS WELL AS THE TOLERANCES AND THE OUTPUT TYPES DESIRED:
READ {591) KRyIBCoEPSL14EPS2 ¢EPS3,IPLCTJPLOT,IPUNCH,ISEE, ITW, ITC
1 FORMAT (215,3010.3,615)
IF (IBC.EQ.3) IBC=2
READ IN THE TYPE—NUMBER CF EACH TF REGION:
READ (545100) (ITF{I),I=1,:KR)
100 FORMAT (2512}
READ IN THE FISSICN YEILDS FOR EACH GROUP:
READ (5,101) CHIt1), CHI(2)
101 FORMAT (2F10.5)
KRO=KR~-1
WRITE (6452) KRy IBCy ISEE, ITHW, ITC
2 FORMAT (' OUNE DIMENSICNAL TWC GRCUP LINEAR SYNTHESIS PROGRAM:',//,

X 5Xs "NUMBER OF COARSE MESH REGIGONS: KR = ',12,/,

X 5Xs* BOUNDARY CCNDITION NUMBER: IBC = *9124/,

X 5X¢ " AMUUNT UF OUTPUT REQUESTED: ISEE = ',124//,

X 5Xe* TYPE OF WEIGHTING FUNCTICNS: ITW = *9124/

X 5Xs* TYPE OF CURRENT FUNCTICNS: ITC = 41247/,

X 5Xy "REGIONAL INPUT MATERIAL PRCPERTIES AND FLUX SHAPES FOLLOW®',
X /95X, IF ISEE > 03%,//,

X S5Xy*FLUX SHAPES ARE LINEAR IN EACH INDICATED SUBREGICN.')

IF {(ITC.EW.0) WRITE (6,106)
IF (ITC.EQ.1) WRITE (6,17)
16 FORMAT (5X,YCURRENTS ARE CUNSTANT IN EACH INDICATED SUBREGION.?)
17 FORMAT {5X, *CURRENTS ARE LINEAR IN EACH INDICATED SUBREGICN.')
IF (ITWeEW.0) WRITE (6,11l06)
IF (ITW.EQ.1) WRITE (6,117)
116 FORMAT (7 s5Xs*WEIGHTING FLUX = FLUX3"9 /45X, "WEIGHTING CURRENT = -
XCURRENT.* ) .

SYNTJ037
SYNTQ038
SYNTD039
SYNTC040
SYNT0041
SYNT0042
SYNTO0043
SYNT Q044
SYNT0045
SYNTQOO046
SYNTO0047
SYNT Q0048
SYNT 0049
SYNTQ05)
SYNTO0051
SYNT0052
SYNT0053
SYNTQ054
SYNTO0055
SYNTQ056
SYNTO0O057
SYNTQJ058
SYNT0059
SYNTO0060
SYNTO0061
SYNT0062
SYNT0063
SYNT0064
SYNT 0065
SYNTQ066
SYNTO0067
SYNT 0068
SYNTO069
SYNTCO70
SYNT 0071
SYNTO0072

PAGE 246



117 FORMAT (/35X *WEIGHTING FLUX = ADJOINT FLUX; "9/ 95X *WEIGHTING CURR

20 FORMAT (//,"0TULERANCES TU POWER ARE :

22 FORMAT (/,*O0FISSICN YIELDS ARE:

21

23

X

X
X
X

X

ENT = ADJOINT CURRENT.')
WRITE (6920) EPS1+EPS2,EPS3,IPLOT,,JPLOT,IPUNCH
H EPS1 = '11p010o3'/'
28Xy "EPS2 = '4,1PD10.3,4/:28Xy%EPS3 = ',1PD10.3,/,
YOOUTPUT PARAMETERS TO POWER ARE: IPLOT = ',11,/,
34x"JPLOT = 'ollq/yl‘)@X,'!PUNCH = '111)
WRITE (6,22) CHI(1), CHI(2)
CHI(1) =',F10.54/,
22Xy 'CHILZ) =',F10.5)
IF ({KR+LE+2)«AND{IBC.EQel))
IF (KR«GTa25) CALL ERROR{2yKR)
IF (EPS1.LT.1.0E-16) CALL ERROR(6,41)
IF (EPSZ24iTe1.0E-16) CALL ERROR(6,2)
IF (EPS3.LT«1.0E-16) CALL ERROR{6,3)
IF ({IBLeLT1)a0RL{IBCLGTL.7)) CALL ERROR(7,18BC)
DUMMY NURMAL VECTOR XU = UNITY. (FCR THE INTEGRATION FUNCTIONS)

CALL ERROR{1,KR)

DO 21 1IG=1,2
DO <21 11=1,100
XU{IGyI1)=1.0
ITCO=2
ITCl=2
IF (ITC.EQ.1) GO 7O 23
ITCO=0
ITCi=1
COUNTER OF THE NUMBER OF TYPE-NUMBERS OF EACH TF REGION:
NUMITF=1
HX=0.0

BEGIN TUO READ IN THE TF REGICN DATA AND FILL THE ARRAYS,
DEPENDING ON THE TYPE-NUMBER OF EACH TF REGION.

DO 50 I=1,KR

IF (ITFUI).EQ.NUMITF) GO TO 110
FILL THE ARRAYS FROM OLD TF REGICN TYPES:

J=ITFLI)

CALL REPEATI(IsKTF(J))

GO TO 50

SYNTO0073
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110

3

119

READ IN THE TF REGION'S CATA FOR NEW TF REGION TYPE-NUMBERS:
NUMITF=NUMITF+1
KTF(NUMITF-1)=1

READ THE SUBREGION NUMBER AND THE NUMBER OF REGIONS IN THE SUBREGION:

READ (5,41) K,y KS
IF {(K5.6T.100) CALL ERRIR{3,I1)
CHECK FUR IMPROPER SEQUENCING OF INPUT DATA:
IF (I1<NEeK) CALL ERROR{4,1)
READ IN THE GEOMETRY AND THE MATERIAL PROPERTIES-
READ (9593) (XU{Jd)sX{I+1) oHIJ I sAL19J) 9F(15J)4D{15J)sS(14J),
X Al24J) 4F12,J)9D1{24J)9J=1,KS)
FORMAT (3F10.594D10.34/,30X,+3D10.3)
READ IN THE REGIONAL GROUP TRIAL FUNCTIONS:
KS1=KS5+1
READ (55%) (PHI(19J)sCUR{L»J)sPHIT{1,J),CURT(1yJ)+J=1,KS1)
READ (534) (PHI(25J)4CURL2yJ)4PHIT(2,3)9CURT(2,J)9J=1,+KS1)
FORMAT (4D20.7)
IF (ITW.EQ.1) GO TO 120
FORM WEIGHTING FUNCTIONS FROM THE GIVEN FUNCTIONS:
DO 119 1I6G=1,2
DO 119 J=1,KS1
PHITUIGJ)=PHIL 1G,J)
CURTLIGyJ)=—CUR(IG,yJ)

120 IF (ITC.EQ.L) GO TO 5

6

7

5

10

FORM THE REGICN CONSTANT CURRENTS:

DO 7 16=1,2

DO 6 J=19KS

CUR(IGeJI==DIIGesJ)*{=PHILIG,J)+PHI{IG,J+1))/H{J)

CURTUIGsJ)=+DLIGyJ)*{—PHIT(IG,J)+PHIT(IG,J+1))/H(J)

CURELIGyKS11=0.0

CURT(I6G4KS1)=0.0
WRITING OUT THE INPUT INFCRMATICAN:

IF {ISEE.EQ.0) GO TO 14

WRITE {6910) KeKReKSs{JaX{J)oXTI+1)sH{J)9A(L19J)sFllsd)sDllyJ),

X SCLlpJd) sAL29J)9F(245J)3D129J)9J=1,KS)

FORMAT {('"1INPUT MATERIAL PROPERTIES FOR REGION NUMBER ',13,
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SYNTO118
SYNTO119
SYNTO120
SYNTO121
SYNTQ122
SYNTO123
SYNTO124
SYNTO125
SYNTO126
SYNTO127
SYNTO128
SYNTO0129
SYNTO130
SYNTO131
SYNTO0132
SYNTO0133
SYNT0134
SYNTO135
SYNTO136
SYNTO137
SYNTQ138
SYNTO139
SYNTC0140
SYNTOl41
SYNTO142
SYNTO143
SYNTO 144
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oo C

X Yy UOF THE '913,% USED."27/

X  5Xy*'THIS REGION IS DIVIDED INTO *,I13,' HOMOGENEOUS SUBREGIONS A
XS FOLLUONWS:'./7/,

X  5Xy"FAST GROUP CONSTANTS APPEAR FIRST:',//,

X " SUBREGION #',5X,"INTERNAL BOUNDARIES?®y10X,*WIDTH',3X,

X '  TUTAL CX (1/CM)*,3X,*FISSICN CX (1/CM)*',6X,*DIFFUSICN (CM)",
X  4Xy'SCATT.CX (1/CM)?,/,

X 5Xe' L% gLllXe? X{ID* 99X "' X{TI+1) 511X, " H(I)*y13X, AlIG,1)%,13X,

X "FUIGI )"y 13X *DIIGIN?514X,2S(1,1)%4//,

X (1693F15.494D20.89/451X,3020.8))

DO 15 1I6G=1,2
15 WRITE (69110 1G9sKsKRy{JyX{J)9PHI(IGyJ)CUR{IGsJ)yPHIT(IG,yJ),
X CURT{IGd) 3d=1,4KS1)
11 FORMAT {*1INPUT TRIAL FUNCTIONS FOR GRCUP',124' FOR REGION®',13,
X * QUT OF THE"»13," USED2?,7/7,
X ' INDEX® 95Xy *COORD 16X, *FLUX? 313X, "CURRENT* ,8Xy* WEIGHT FLUX?®,
X 5Xs* WEIGHT CURRENT?® ,//,{16,F10.594D020.7))
14 CONTINUE
END UF THE IN-OUT SECTION:
DEFINING MISC. ARRAYS FOR THE INTEGRATION FUNCTIONS:
LEGNTH OF THE SUBREGION: HT
HT=X{KS$1)-Xx{1)
HR{K)=HT
HX=HX+HR(K) -
INVERSE JF THE D ARRAYS:
DO i3 J=19KS
DI(1sd)=1./D(1,4)
13 DI1i{25Jd)=1./70(2,4J)
FORMATIUN OF THE INTEGRATICN FUNCTICNS:
CALL BHSETI(KS) .
DU FOR ALL ENERGY GROUPS:
DO 50 16=1,2
KAO‘IG’K)=GIF‘0’IG’pHI7'IG'A'PHI’KS'2)
KA2{ IGyK)=GIFL2yIGyPHIT1G9AyPHI 4KS,2)

SYNTO145
SYNTO146
SYNTO0147
SYNTQO148
SYNTO0149
SYNTO0150
SYNTO151
SYNTO152
SYNTQ0153
SYNTO154
SYNTQ155
SYNT0156
SYNTO157
SYNTO158
SYNTO159
SYNTO160
SYNTO161
SYNTO162
SYNTO163
SYNTO164
SYNTO165
SYNTO166
SYNTO167
SYNTO168
SYNTO0169
SYNTO0170
SYNTO171
SYNTO172
SYNTO173
SYNTO174

‘SYNTO175

SYNTO176
SYNTO177
SYNTO0178
SYNTO179
SYNTO180
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50

51

52

KBO{IGsKI=GIFLD 4 IGPHIT,IG,F4sPHI KS,2)
KBL{IGyK)=GIF(Ll,IG,PHIT,IG,F,PHI+KS,2)
KBZ‘IG'K’=GIF(21 lG’PHI?' IG' F,PHI,KSQZ’
LAO{IGyK)I=GIF(O ¢I1G4CURT,IG¢DICUR,KS,ITCO)
LALUIGyK)=SGIF{19IGeCURT,IGyDICURLKS,ITCO)
LA2({IGyK)=GIF{2+IGyCURTs 1G9 CIyCUR,KS,ITCO)
P{IG,K) =GlF(Q;IGsPHl?pIGgXU.CUR'KS,ITCI)/HT
PL{IGeK) =GIF{1lyIGePHITIG s XUsCURKSHITC1)/HT
QUIGIK)  =GIF(I9IGsPHIIGsXUyCURT4KS,ITCL)/HT
QlUIGsK) =GIF{1IGsPHIIGy XUsCURT9KSHITC1)/HT
RUIGyK) =GIF(0yIGyPHITIGy DyPHIKS,2)/HT*%2

STORE THE TERMINAL POINTS FCR LATER USE:
PO{IGsK)=PHI(IG 1)
POT{IGsKI=PHITLIG,1)
PH{IG,K)=PHILIG,KS1)
PHT(LIG,K)=PHIT{ 16,KS1)
IF (KeEWel) COUIG)=CURLIG,1)
IF (NUMITF-1<EQeITFIKR)AND<ITCLEQ.C) CH{IG)=CUR(IG+KS)
IF (NUMITF-1leEQeITF{KR)AND.ITC.EQ.1) CH{IG)=CUR(IG,KS1)

FOR THE UFF DIAGCNAL MATRIX ELEMENTS:
IF (IG.EQ.2) GO TO 50
SRO‘IG'K)=GiFt0'2'pﬂ[7'1'S,PH!OKS’Z)
SRI(CIGeKI=GIF{132¢PHIT,1,5,PHIKS,2)
SR2UIGyKI=GIF(2929PHITy19S9sPHI +KS,2)
KCOLIGosKI=GIF(09s19yPHIT2,F,PHI,KS,2)
KCI(IG;K)=GIF(1:1;PH!7,2,F.PHI;KS,Z)
KC2(IGsKI=GIF(2919PHIT92,F ¢ PHIZKS,2)
KDOH IG.K)=GIF(0,ZyPHXT.I,F,PH!.KS,Z)
KD1{IGyK)=GIF(192+PHIT91,FPHI,KS,2)
KD2{I69KI=GIF(292+PHIT,1,F 9 PHIKS,2)
CONTINUE
NUMITF=NUMITF-1
WRITE (6451) NUMITF
FORMAT (<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>