20.201 Lecture #20 11/7/05 Page 1

20.201 Mechanisms of Drug Action

Lecture #20: Omeprazole Case Study

November 7, 2005

Review of Lecture #19

- Covered the concepts of PBPK's
- Constructed a PBPK model based on cisplatin

Today

• Brief lecture on receptors and drug-receptor interactions

• Begin omeprazole case study

Drug-receptor interactions

- *Pharmacodynamics* Quantitative relationship between drug binding to a receptor and the pharmacological effect
- **Definition of a receptor** Cellular macromolecule that specifically (chemically) recognizes a ligand and carries out a function in response to ligand binding.

Limitations: Fat cells are not receptors for lipophilic drugs: no specific function follows

- Receptors provide means to "amplify" drug
 - ~ Example: 70 µg sufentanil causes respiratory arrest
 - ~ 1 billionth the mass of 70 kg adult

Types of receptors

- Trans membrane ion channels: conduct ions across membrane in response to ligand binding, voltage gradient or second messenger; e.g., H⁺/K⁺-ATP'ase
- Transmembrane linked to intracellular G protein; e.g., adrenergic receptors
- Transmembrane with enzymatic cytosolic domain; e.g., receptor tyrosine kinases
- Intracellular: cytoplasm or nucleus; e.g., DNA, estrogen receptor
- Drugs not acting through "receptors"
 - ethanol (?)
 - general anesthetics
 - antacids
 - osmotic diuretics

Types of receptors

- Trans membrane ion channels:
 - ~ conduct ions across membrane in response to ligand binding, voltage gradient or second messenger
 - ~ e.g., H⁺/K⁺-ATP'ase
- Transmembrane linked to intracellular G protein; e.g., adrenergic receptors
- •Transmembrane with enzymatic cytosolic domain; e.g., receptor tyrosine kinases
- Intracellular: cytoplasm or nucleus; e.g., DNA, estrogen receptor

Figure by MIT OCW.

Characteristics of a Receptor

Specificity

- Receptor interacts with one type of ligand or a structurally related family of ligands
- Competition between related ligands
- Example: glucose transporter binds D-glucose specifically

• Affinity

- Energetics of ligand receptor interactions
- Energetics of binding determine specificity

• Intrinsic activity

- A measure of the ability of a bound drug to activate the receptor
- Distinguishes agonist from antagonist

Saturability

- Finite number of binding sites on a receptor, along with specificity of interactions, implies that binding sites can become fully occupied with ligand molecules
- Additional ligand leads to non-specific binding

Substrate	K _m
L-Glucose	>3000
Galactose	30
Mannose	20
D-Glucose	1.5

20.201 Lecture #20 11/7/05 Page 6

Types of Chemical Bonds in Ligand-Receptor Interactions

- Affinity and Specificity based on chemical bonds
- Covalent binding of omeprazole occurs only after non-covalent, specific interaction with H⁺/K⁺-ATPase
- Ionic bonds ∧ initial attraction
- Cation- π interactions, hydrogen bonds \wedge improved binding, some specificity
- Van der Waals forces, hydrophobic interactions 🔺 most specificity

Figure by MIT OCW.

Quantitation of Ligand-Receptor Interactions

20.201 Lecture #20 11/7/05 Page 7

- Consider interaction of drug (X) with receptor (R) single binding site
- Equivalent to multiple non-interacting binding sites on a single receptor molecule

к <u>1</u> _	_[RX]	 Association constant; not acidity
$K_a - K_d$	[R][X]	 [R] = unoccupied receptor [X] = free (unbound) drug concentration

- $\Delta G_{f}^{\circ} = -RT \ln(K_{a})$ R = gas constant; T = temperature • - ΔG = tight binding
- Define "saturation fraction" = r
- average number of ligands bound per receptor molecule (Langmuir isotherm)

$$r = \frac{[X]_{bound}}{[R]_{total}} = \frac{[RX]}{[R]_{free} + [RX]}$$
$$K_a = \frac{[RX]}{[R]_{free} [X]_{free}} \Longrightarrow r = \frac{K_a[R]_{free} [X]_{free}}{[R]_{free} + (K_a[R]_{free} [X]_{free})} = \frac{K_a[X]_{free}}{1 + [X]_{free}}$$

•For receptor with "n" binding sites:

$$r = \frac{nK_a[X]_{free}}{1+[X]_{free}}$$

Quantitation of Ligand-Receptor Interactions

20.201 Lecture #20 11/7/05 Page 8

- Binding isotherm: increase ligand concentration and measure bound and free (at constant temp)
- Nonlinear regression to fit the data and determine K_a

Agonists and Antagonists

• Agonist

- Ligand that binds to receptor and stabilizes an "active state" of the receptor
- "Active state" is defined as the functionally activated form (e.g., open ion channel, activated tyrosine kinase)
- Endogenous ligands are generally agonists: neurotransmitters

Antagonist

- A ligand that binds to the receptor with affinity/specificity but does not have intrinsic activity
- Inhibits the action of an agonist but has not activity in the absence of agonist
- *Receptor antagonist*: binds to the active site or an allosteric site *reversibly* or *irreversibly*
- *Non-receptor antagonist:* binds to molecule downstream in activation pathway, or acts in a pathway that opposes the agonist pathway
 - ~ Chemical antagonist: protamine binds to and inhibits heparin, an anticoagulant
 - *Physiological antagonist*: β-adrenergic receptor agonists block the tachycardia caused by hyperthyroidism (though thyroid hormone acts by a different receptor)

Agonists

- Ligand that binds to receptor and stabilizes an "active state" of the receptor
- "Active state" represents conformational change caused by agonist binding
- Binding can occur at the active site or at another region of the receptor (exerts allosteric effects)
- The kinetics of drug binding and receptor activation are distinct

- **Potency** related to drug binding affinity (i.e., association constant)
- Efficacy related to the rate and extent of receptor activation AFTER drug binding

20.201 Lecture #20 11/7/05 Page 11

$D + R \stackrel{k_{on}}{\underset{k_{off}}{\overset{k_{\alpha}}{\Rightarrow}}} DR \stackrel{k_{\alpha}}{\underset{k_{\beta}}{\overset{m_{\beta}}{\Rightarrow}}} DR^{*}$ Potency Efficacy

Agonists

- Potency related to drug binding affinity (i.e., association constant)
- Efficacy related to the rate and extent of receptor activation AFTER drug binding
- *Partial agonist*: sub-maximal response when drug binds to receptor; judged relative to the most efficacious drug in class

Irreversible Antagonists

20.201 Lecture #20 11/7/05 Page 12

• Irreversible Antagonist = Noncompetitive Antagonist

- Drug binds to receptor at active or allosteric site with extremely high affinity or by covalent bonds
- Example: omeprazole
- Antagonist action terminates when receptor degraded

Gastric anatomy

Figure by MIT OCW.

Gastric anatomy and physiology

- 2 glandular elements in the stomach
 - ~ Gastric (oxyntic) gland
 - ~ Pyloric (antral) gland
- Gastric gland body and fundus
 - ~ Oxyntic (parietal) cells -HCI
 - Intrinsic factor (B12 absorption)
 - ~ Peptic (chief) cells pepsinogen
 - ~ ECL cells (enterochromafin-like): histamine
 - ~ Mucous secreting cells
- Pyloric gland antrum
 - ~ Shallower pit
 - ~ Gastrin (G) cells gastrin
 - ~ Peptic cells pepsinogen (minor)
 - ~ ECL cells (enterochromafin-like): histamine
 - ~ Mucous secreting cells

Figure by MIT OCW.

Gastric physiology

20.201 Lecture #20 11/7/05 Page 15

Images of Acetylcholine Pathways, Gastrin Pathways, Histamine Pathways removed due to copyright restrictions.

Acid Secretion Pathways

http://hopkins-gi.org/multimedia/database/intro 247 Parietal.swf

