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Abstract

Democracy depends on the proper administration of popular elections. Voters should receive
assurance that their intent was correctly captured and that all eligible votes were correctly
tallied. The election system as a whole should ensure that voter coercion is unlikely, even
when voters are willing to be influenced. These conflicting requirements present a significant
challenge: how can voters receive enough assurance to trust the election result, but not so
much that they can prove to a potential coercer how they voted?

This dissertation explores cryptographic techniques for implementing verifiable, secret-
ballot elections. We present the power of cryptographic voting, in particular its ability
to successfully achieve both verifiability and ballot secrecy, a combination that cannot be
achieved by other means. We review a large portion of the literature on cryptographic voting.
We propose three novel technical ideas:

1. asimple and inexpensive paper-base cryptographic voting system with some interesting
advantages over existing techniques,

2. a theoretical model of incoercibility for human voters with their inherent limited com-
putational ability, and a new ballot casting system that fits the new definition, and

3. anew theoretical construct for shuffling encrypted votes in full view of public observers.

Thesis Supervisor: Ronald L. Rivest
Title: Viterbi Professor of Electrical Engineering and Computer Science
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The geometric interpretation of the interplay between elements of One, Zero,
and Test. Given 1, an element of One, and a test element 7., there is exactly
one element of Zero, {._;, such that the corresponding difference vector dy..
is orthogonal to the test vector. . . . . . . . . .. ... L.

Public Mixing: a permutation 7 is encoded in matrix form as A”, then
element-wise encrypted as A™. Shuffling is accomplished by homomorphic
matrix multiplication, which is implemented in different ways depending on
the underlying cryptosystem. . . . . . . .. ... Lo

Paillier Shuffle: Two layers of encryption, an outer layer shown in orange, and
an inner layer shown in blue, are used to provide mixing. The inputs to be
shuffled are encrypted using the inner layer only. The 0’s of the permutation
matrix are encrypted using the outer layer only. The 1’s of the permutation
matrix are encrypted as double-layer encryptions of 0. The resulting cipher-
texts are also double-layer encryptions of the now-shuffled plaintexts. Not
diagrammed here is the fact that the inner-layer of the input ciphertexts is
reencrypted by the homomorphic matrix multiplication (intuitively, by the
inner-layer encryption of the double-encrypted zeros.) . . . . . . ... .. ..
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of 0. These double-reencryptions will serve as the diagonal in the identity
matrix, whose columns then get shuffled to generate an encrypted permutation
matrixX. . . . . . e e e e

Multiple officials shuffling the columns of the encrypted permutation matrix.
The encrypted matrix effectively captures all of the shuffle actions and is then
ready to “reapply” them by homomorphic matrix multiplication. . . . . . . .

Multiple officials sequentially perform double reencryption on a list of values.
Double Reencryption is represented in the top equation. The starting list
of values is composed of trivial encryptions of 0, which is the generator g.
Triangulation proofs like the ones in Figure 6-4 are performed for every such
double reencryption. The final list of values is then used as the diagonal to
form an encrypted identity matrix. . . . .. ... ..o
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6-7 The table gives the complexity of the operations in terms of 10* modular x-
bit exponentiations and in parenthesis the estimated running time in hours
assuming that x = 1024, k. = k, = 50, and that one exponentiation takes 12
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Chapter 1

Introduction

One of the most important tasks of a democratic government is the planning and execu-
tion of the election that designates its successor. Not surprisingly, it is also one of its most
challenging tasks, one whose requirements and constraints are remarkably strict. Thus, du-
bious results, failing technology, and ingenious methods of fraud have been noted throughout
election history. Lever machine counters have been rigged, ballot boxes have been lost or
magically found, and dead citizens have voted. Legitimate voters have been coerced in
various ingenious ways, including chain voting, spreading false election date and location in-
formation, and instilling false fears regarding the consequences of showing up to vote (arrests,
jury duty, ...).

In the United States, the 2000 Presidential Election caused much stir: Bush lost the
popular vote but won the Electoral College, including a win in Florida by a margin of 500
votes [67]. Numerous complaints were aired: the “butterfly ballot” in Broward County was
misleading, the punchcard system failed to record a number of votes, and more than 50,000
absentee ballots went missing [10]. This debacle served as a public wake-up call that elections
are far from perfect.

Equipment failures were well known to election officials long before Gore vs. Bush [9].
However, these failures had not previously been implicated in such a close-call election. The
fallout from the drawn-out results-certification process of 2000 caused many States to recon-
sider their voting equipment, often including hastened moves to newer, more computerized
solutions so as to be “not like Florida” [113]. These changes raised questions of their own,
notably among a number of computer scientists who feared that fully computerized vot-
ing would complicate or completely prevent the election verification process [11, 163]. The
controversy and debate are ongoing, with much discussion about what will happen in the
upcoming 2006 mid-term elections.

In this dissertation, we present recent advances in cryptographic voting systems, a type
of election system that provides mathematical proofs of the results—rather than of the
machines. We begin with a review of the functional requirements of voting, the specific
issues that make voting fairly complex, and an overview of the basic technical concepts
behind cryptographic voting. We note with interest that, to this day, there is no known way
to execute a truly secure and verifiable election without some elements of cryptography.
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1.1 A Brief History of Voting

We begin with a history of election practices and technology, focusing specifically on the
introduction of the secret ballot. Details can be found in the work of Jones [99] and in the
recent book by Saltman [148].

Early Voting. The first accounts of voting are from Ancient Greece, where male landown-
ers voted in “negative elections”: any politician receiving more than 6000 votes was exiled
for ten years. Votes were recorded on broken pieces of porcelain called ostraca [176]. In the
13th century, Medieval Venice introduced approval voting, where each candidate received a
thumbs-up or thumbs-down from each voter, with the winner designated as the candidate
with the highest overall approval rating.

In the United States, the first elections were viva-voce: voters were sworn in and simply
called out their preferences. Multiple clerks recorded the votes separately and in parallel to
prevent error. In the early 1800s, paper ballots were introduced, though these were generally
produced by the voters themselves or by political parties. It is this practice which led to
the “party ticket,” where a voter could easily pick up a pre-printed, all-Republican or all-
Democrat ballot, and cast it as is. To this day, voting systems in the US strive to recreate
the simplicity of “party ticket” voting.

The Secret Ballot. In 1858, Australia introduced a new ballot mechanism: ballots were
to be printed by the state, kept in a safe place until election day, and distributed, one at
a time, to each eligible voter, who then voted in an isolation booth. This method was first
imported to the United States in 1888, following significant concerns of voter fraud. It was
first used widely in the 1892 Presidential elections.

One of the most dramatic changes introduced by the Australian ballot was secrecy. No
longer could voters be influenced by external sources, at least not openly and systematically.
As we will see, it is also this change which radically altered the auditability of elections.

Mechanization of Election Equipment. The standardization of the ballot enabled new
equipment for ballot casting and counting. Lever machines were first introduced in 1892 in
New York and became widespread in medium-to-large voting communities in the mid 1900s.
To this day, they are still used in a number of communities, notably in New York.

A lever machine isolates the user inside a booth with a privacy curtain. Levers are
organized in a grid, where columns generally indicate the political party and rows indicate
the election race. The voter simply turns the levers of her choice. When satisfied, some final
action—pulling a larger lever or opening the privacy curtain—causes the ballot to be cast
and the levers to reset. Mechanical counters keep track of the total count for each candidate.
Consequently, only these aggregates, not individual ballots, are preserved.

In the 1960s, punch card systems were introduced in a few states. A clever design allows
a single small card to offer more than 200 possible voting “positions,” i.e. candidates. By
carefully aligning the questions on flip-cards so that the proper column of the punch card is
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exposed, a voter can simply punch the hole next to desired candidate and use a single punch
card for an entire election consisting of multiple races. Individual punch cards are then
cast and tabulated centrally using either electro-mechanical readers or a typical computer-
based punchcard reader. Though punch cards preserve individual ballots, the imprecision of
certain hole punches was known to be problematic long before the highly visible exposition
of this weakness during the 2000 elections. In addition, the clever question layout—used to
maximize the number of punch holes on the small punchcard—Iled directly to the “butterfly”
layout that received much criticism in the 2000 aftermath.

Computerization of Election Equipment. The 1960s also saw the introduction of
optical-scan machines for voting. Using a pencil or a pen, the voter marks up a paper
ballot in the appropriate locations, either by connecting two arrows when choosing a given
candidate or, in more modern systems, filling in the appropriate bubble—much like a stan-
dardized multiple-choice test. An optical scanner is then used to tally the ballots.

Two major types of optical-scan voting systems exist: central-count and precinct-based.
In a central-count optical-scan system, filled-in ballots are collected, unprocessed, at the
precinct, and later delivered to a central location where they are scanned and counted. In
a precinct-based system, voters feed their own ballot into a scanner, which immediately
validates the ballot, either rejecting it if improperly marked, or passing it straight into a
locked ballot box if it is correct.

It has been shown that precinct-based counting prevents a significant fraction of mistakes,
including ballot management (ballot for the wrong precinct) and human error (voting for
two candidates in the same race, i.e. overvoting) [36]. Optical scan machines are used quite
extensively in modern US elections, usually in precinct-based mode, with approximately 30%
market share in the 2000 and 2004 elections, and a predicted 40% share in 2006 [61].

DREs. In recent years, a new type of computerized voting equipment has appeared: the
Direct Recording by Electronics (DRE) machine. These machines are generally personal-
computer-type equipment running special-purpose voting software, often on a generic op-
erating system like Windows. Ideally, the machines are physically hardened, preventing
access to the typical personal-computer connectors, e.g. USB ports. DREs are particularly
interesting because they solve a number of complex operational problems:

e ballots can easily be offered in different languages,

e voters with vision impairment can magnify the screen or use a headset that provides
auditory feedback,

e ballot management is vastly simplified using memory cards instead of paper.
At the same time, these machines have come under significant criticism because they

lack a tamper-proof audit-trail. Voting activists and computer scientists are worried that
these machines could produce erroneous results, either because of bugs or malicious code,
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that would go undetected [169, 111]. In particular, the worry is that a voter’s choice would
be incorrectly recorded at casting time. Since the only feedback a voter obtains is from the
voting machine itself, a mistake at ballot casting time would be completely unrecoverable
and undetectable.

The VVPAT. To thwart this problem, some have supported the Voter-Verified Paper
Audit Trail, first proposed by Mercuri in 1992 [115]. In VVPAT-based voting machines,
once the voter has finished filling out her ballot using the computer interface, the machine
prints out an audit of the entire ballot on a scrolling receipt visible to the voter behind glass.
The voter then gets to confirm or cancel her vote. The audit trail effectively short-circuits
the machine’s possible mistakes. Ideally, in the case of a recount, the paper trail would be
used instead of the electronic record. VVPAT machines are only just beginning to appear in
the voting equipment market: November 2006 will likely mark the first time they are used
on a significant basis in the United States, with 5 states expected to implement it [98].

1.2 What Makes Voting so Hard?

To illustrate the complexities of voting, it is useful to consider a precise hypothetical scenario
with the following characters:

e Alice and Adrienne, two voters,
e Carl, a coercer who wishes to influence Alice,

e Blue and Red, two options between which voters are deciding in the election.

Alice wants to vote for Blue, while Adrienne wants to vote for Red. Carl wants to coerce
Alice so that she votes for Red instead, thereby swinging the election. It is worth noting
that Carl, the coercer, may be an election official. This setup is illustrated in Figure 1-1.

1.2.1 Verifiability vs. Secrecy

In elections, there is a functional conflict between verifiability and secrecy. On the one hand,
Alice wants to verify that the entire voting process happened correctly, in particular that
her individual vote was counted appropriately as Blue. However, if Alice obtains enough
information from the voting process that she can convince Carl of how she voted, then vote
selling becomes a threat: Carl can offer Alice money in exchange for her voting Red instead
of Blue.

Somehow, we want Alice to obtain enough information to personally verify that her vote
was indeed recorded as Blue, but not so much information that she could convince Carl.
More concretely, if Alice votes Blue and Adrienne votes Red, both should receive assurance
that their vote was cast according to their preference and counted accordingly. In addition,
both can tell Carl equally valid stories about how they allegedly voted Red. Alice is lying,
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Voting Process

Blue o« Red

Figure 1-1: Participants in an election process. Carl wants to coerce Alice into voting Red
instead of her natural choice, Blue. Carl may be an election official.

and Adrienne is telling the truth, but Carl cannot tell the difference. Thus, Carl has no
incentive to pay for votes, since he cannot tell if his money is going to “good” use. It is not
immediately clear that resolving this conflict is possible!

1.2.2 Threat Modeling: Planes, Banks, and Voting Machines

A common, recent criticism of voting system failures compares voting to existing complex
systems, like the operation of airplanes or transaction processing by banks [117]. At first
glance, the criticism seems warranted: if we can build large aluminum cylinders, load them
with hundreds of people, project tens of thousands of them every day at half the speed of
sound and at an altitude of 6 miles, land them at their intended destination, all with fewer
than one fatal crash a year, even in the face of malicious adversaries, then surely we can build
reliable voting systems! Similarly, if banks process millions of transactions a day, recording
every dollar in and out of each customer’s bank account, with receipts allowing customers to
audit their account on their own, then surely we can reliably record 100 million votes once
every 4 years and provide adequate auditing!

These analogies make three notable mistakes, the last and most important of which was
noted by renowned security expert Bruce Schneier in 2001 [156]. First, the incentive to throw
a federal election is grossly underestimated. Second, the adversarial model for airplanes and
ATMs are, somewhat surprisingly, less demanding than for a federal election. Third, the
failure detection and recovery process in the case of an airplane or bank failure is generally
well understood: thanks to full auditing, appropriate recovery actions can be taken. In the
case of elections, it isn’t clear that failures can always be detected, and, if they are, recovery
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is often expensive or even impossible.

Incentive. Influencing the outcome of a federal US election is worth quite a bit of money.
The presidential campaign budget for both parties in 2004 reached $1 billion [34], and there
is, of course, no certainty of winning. A more certain mechanism for influencing the election
outcome might be worth even more, especially considering the influence wielded by a US
president. Though the counter-incentive is significant—voting fraud is a felony—one cannot
ignore this significant incentive to commit fraud in the first place. Even with currently
established stiff penalties and when the gains are relatively small, there is strong empirical
evidence that voting fraud is a regular occurrence [9].

Adversaries. The threat model for safe aviation is well defined: it is assumed that pas-
sengers may be adversaries, which leads to the numerous security checks and the recent
implementation of the Transportation Safety Authority. By contrast, it is generally assumed
that there is significant time and resources available long before the flight to ensure that
pilots are not adversarial. By the time they board the plane, pilots are assumed to be hon-
est. The presence of a co-pilot indicates planning for random failures, though it is hardly
a defense against malicious attacks: significant damage can be inflicted by a rogue pilot,
as some historical cases have suggested [177]. Fortunately, few legitimate pilots are ever
motivated to commit such acts.

In the case of personal banking, the threat model to the individual customer is also well
defined: adversaries are most likely outsiders—identity thieves, ATM bandits, etc. Impor-
tantly, all data is available to honest participants: both bank officers and the customer can
view the transaction trail and account balance. It is also a feature of the system that the
customer can prove her bank balance to a third party, e.g. when applying for a mortgage. !

By contrast, in an election, any participant, including especially insiders, might want
to throw off the results. Voters might be corrupt. Election officials might be corrupt. No
assumptions of honesty can be made of any participant, and all participants are potentially
highly motivated to perform fraud, since the outcome is a single, extremely important result
for all participants.

Failure Detection and Recovery. In aviation, failures are difficult to miss: planes mal-
function or crash in tragically obvious ways. Extensive records of passenger and crew names,
on-board equipment, and flight data are kept, including the use of “black boxes” to recover
this data in the case of a crash. If a crash does occur, an extensive and expensive investiga-
tion usually ensues, and any technical problems immediately lead to change recommendations
from the National Transportation Safety Board [123].

In banking, the situation is quite similar. There is significant investment and emphasis on
detecting and resolving failures: customers are offered receipts of every transaction, which

I'Note that the threat model for the bank is quite different, as the bank must be far more worried about
insider attacks. That said, this is not the threat model against which we’re comparing here: we’re concerned
about the comparison often made between voting system audit trails and personal ATM receipts.
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they can reconcile against regular account statements. Duplicates of lost records can be
requested and obtained with ease. Video records of ATM transactions are kept. Electronic
records of online activity are maintained. If a banking customer or the bank itself finds a
discrepancy, a review of all audit trails almost always leads to discovery of the malfunction
and rectification of the problem with little overhead.

By contrast, detecting election failure using today’s voting protocols is quite difficult.
It is highly conceivable that successful fraud might go completely undetected, given that a
significant portion of the audit information is voluntarily destroyed to ensure ballot secrecy.
Years after the 2000 and 2004 elections, there isn’t even consensus on whether fraud occurred
(175, 101]. If an error is detected, it is unclear how one might go about resolving the issue:
the only solution may be to re-run the election, which could, in and of itself, vastly change
the election result.

Fixing the Analogies. If voting is compared to banking, then one should imagine a
banking system where the bank cannot know the customer’s balance, and even the customer
cannot prove her balance to her spouse, yet somehow she receives enough assurance that
her money is safe. If voting is compared to aviation, then one must imagine that pilots are
regularly trying to crash the plane, and that we must ensure that they are almost always
unsuccessful, even though, in this imaginary world, plane crashes are particularly difficult to
detect. These significant additional constraints lead to a clearer appreciation of the challenges
faced by voting system designers.

1.2.3 Auditing a Partially Secret Process

Voting is particularly difficult because it requires a public audit of a process which must
ensure a significant amount of secrecy. This secrecy cannot be guaranteed by trusting an
all-powerful third party: even the auditors cannot be made aware of how individual citizens
voted. In addition, this audit must be convincing to mutually distrusting observers.

Such apparently conflicting requirements often call for cryptography. However, before
we explore the solutions offered by cryptographic techniques, let us consider the security
properties of classic voting systems, those in use around the world today.

1.3 Classic Voting Systems

In the conflict between auditability and secrecy, election systems must often favor one or the
other in a compromise. All election systems used in the United States since the introduction
of the secret ballot in 1892 have favored secrecy over auditability. Typically, secrecy is
ensured by forced physical dissociation of identity and ballot, e.g. dropping an anonymized
ballot in a physical ballot box. On the other hand, election auditing generally depends on a
properly enforced chain of custody of election equipment and ballots.
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1.3.1 Chain-of-Custody Security

Current voting solutions use some type of voting machine to assist voters in preparing and
casting a ballot. The machines are built by private companies, according to various state-
specific standards. Independent testing agencies (ITAs) are called upon to evaluate and
certify the various voting equipment, though their lack of power and limited means has often
been criticized [51]. Election officials generally perform additional tests, usually in the weeks
prior to an election, and, sometimes, in parallel with the election [58], to provide assurance
that the machines are working as expected. On election day, voters cast their ballots via
these machines, and the resulting votes end up in some ballot box, either physical or digital.
Election officials then transport these ballot boxes to a counting facility, where they are
tallied. The aggregate results are finally posted for all to see. This approach presents three
major limitations:

1. Voters must verify by proxy: only election officials can ensure that various testing
procedures are adequate to begin with. Voters receive some indirect indication of test
results, such as the machine testing receipts posted on the wall at the start and end of
election day. However, voters cannot directly verify that the ballot boxes themselves
(digital or physical) are handled appropriately throughout election day.

2. Verification strongly depends on chain-of-custody: election officials must main-
tain a well-audited chain-of-custody to defend against malicious problems. For an
election to run correctly, every transition must be performed correctly, and the chain
of custody of machines and ballots must be strictly respected at all times. A single
failure can open the door to significant corruption of the election results.

3. Recovery is very difficult: the error detection mechanisms are few and coarse-grain,
able only to notice honest mistakes, rarely malicious attacks. If an error is detected,
some voting systems allow for ballots to be recounted. Such a recount can only address
failures in the tallying process, however: recovering from an integrity breach on ballot
boxes or voter intent capture requires that the election be re-run, as it is usually
impossible to tell the legitimate ballots from the fraudulent ones, or properly cast
votes from improperly cast votes.

In other words, in order to implement the secret ballot, current voting systems resort to a
trust-by-proxy, chain-of-custody-based verification mechanism, with a “point-of-no-return”
ballot hand-off, beyond which recovery is limited. This approach is both highly constraining
and prone to significant error. Whether paper, optical-scan, or touch-screen, classic election
methods significantly compromise verifiability in order to achieve ballot secrecy. This chain-
of-custody verification process is diagrammed in Figure 1-2.

1.3.2 The Erosion of the Secret Ballot

As a result, a number of new election proposals have tipped the scales in the other direction:
in order to address the lack of verifiability in current election systems, they propose to
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Figure 1-2: Chain-of-Custody Voting - every step must be verified. (1) The source code for
voting machines is read and checked. (2) The installation of the voting machine is verified to ensure
that the verified software is indeed installed. (3) The voting machines are sequestered and sealed
prior to the election, and must be secured against physical attacks (e.g. installation of malicious
hardware components). (4) Election officials ensure that only eligible voters cast a ballot. (5)
Ballot boxes are sealed and collected with care. (6) Tallying occurs in a secured area, ensuring that
no ballots are maliciously lost or injected.

compromise ballot secrecy. In some cases, this erosion of ballot secrecy occurs without
anyone noticing. There is, in some election communities, a surprising belief that election
integrity can be achieved even if the system is coercible.

Internet Voting (Switzerland). Switzerland holds multiple referenda per year. In or-
der to improve convenience and increase voter turnout, the Swiss have chosen to introduce
Internet-based voting using any home computer [35]. Unfortunately, internet voting is in-
herently coercible [50], as there is no guaranteed privacy during ballot casting.

Vote By Mail (Oregon and Beyond). Oregon has long offered voting by mail to its
residents, in part due to the large distances voters have to travel to reach a polling location.
Recently, a grassroots effort has emerged to promote the same vote-by-mail approach in other
states [172]. This group strives to make elections more convenient and bypass the complexity
and cost of in-person elections. Most recently, a task force in San Diego suggested a move to
permanent vote-by-mail for all [153]. Unfortunately, much like Internet voting, vote-by-mail
is inherently susceptible to coercion, with detection almost impossible.

Return to Public Voting? Among the voting activism groups, some individuals have
recently proposed explicitly doing away with the secret ballot altogether. They claim that
“auditability and secrecy are incompatible” [112], propose that auditability is more impor-
tant than secrecy, and conclude that we should simply give up ballot secrecy.
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Unfortunately, though the secret ballot may seem inconsequential, it is, historically, one of
the more important developments in democratic elections. A recent study of Chilean election
data shows that ballot secrecy, introduced for the first time in Chile’s 1958 elections, has “first
order implications” on the election results and subsequent policy decisions [97]. Coercion is
notoriously difficult to detect, and, though not currently rampant, may return in force if the
secret ballot is compromised. We have reached a critical juncture, where the public outcry
for verifiability must be addressed, for fear that the pendulum will swing too far in the other
direction, jeopardizing the secret ballot and thus the ability to honestly gauge voter intent.

1.3.3 The Voter-Verified Paper Audit Trail

As previously described, one proposed solution for verifiability is the Voter-Verified Paper
Audit Trail, abbreviated VVPAT. Though there are some concerns regarding the practicality
of VVPAT machines [166], there is no question that a properly operating VVPAT machine
would significantly simplify the verification chain. VVPAT effectively short-circuits the vot-
ing equipment: voters get the ease-of-use associated with computer voting, while the paper
trail provides a direct mechanism for verification of the voting machine’s output.

However, it is worth noting that even VVPAT does not change the nature of the verifica-
tion process: a chain of custody, albeit a shorter one, must still be maintained and audited,
so that the following questions can be answered:

e Do the accepted paper trails get properly deposited in the ballot box? Do the rejected
paper trails get properly discarded?

e Are the ballot boxes of paper trails appropriately safeguarded during election day?
e Are the ballot boxes of paper trails appropriately collected and safeguarded after the
polls close? What are the safeguards against the introduction of extraneous ballot

boxes?

e Are the paper trails properly tallied? Using what process?

In other words, the VVPAT short-circuits the custody chain prior to ballot casting. The
verification process for everything that follows the ballot hand-off, however, remains a chain
of custody that must be properly enforced at all times.

1.4 Cryptographic Voting Schemes
We now consider cryptographic voting systems at a high level. We pay specific attention to

the end-to-end nature of the verification provided by such systems, and how, consequently,
any observer can verify the proper operation of a cryptographic election completely.
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Figure 1-3: End-to-End Voting - only two checkpoints are required. (1) The receipt obtained
from a voter’s interaction with the voting machine is compared against the bulletin board and
checked by the voter for correctness. (2) Any observer checks that only eligible voters cast ballots
and that all tallying actions displayed on the bulletin board are valid.

1.4.1 End-to-End Verifiability

When dealing with complex systems, software engineering has long relied on the “end-to-
end” principle [152], where, in order to keep the system simple, the “smarts” of the system
are kept at higher levels of abstraction, rather than buried deep in the stack. For example,
when routing packets on the Internet, very few assumptions are made about the underlying
transport mechanism. Instead, checksums are performed by sender and recipient to ensure
end-to-end integrity in the face of random mistakes, and digital signatures are applied to
thwart malicious modifications of the data. No details of traffic routing need to be verified
in either case; instead, a certain property is preserved from start to finish, regardless of what
happens in between.

Though not all systems are amenable to such a design, voting systems are. Rather than
completely auditing a voting machine’s code and ensuring that the voting machine is truly
running the code in question, end-to-end voting verification checks the voting machine’s
output only. Rather than maintain a strict chain-of-custody record of all ballot boxes, end-
to-end voting checks tally correctness using mathematical proofs. Thus, the physical chain
of custody is replaced by a mathematical proof of end-to-end behavior. Instead of verifying
the voting equipment, end-to-end voting verifies the voting results [147].

As an immediate consequence, one need not be privileged to verify the election. In a
chain-of-custody setting, one has to keep a close eye on the process to be certain of correct
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execution ; only election officials can do this directly. In an end-to-end verifiable setting,
anyone can check the inputs and outputs against the mathematical proofs. The details of
the internal processes become irrelevant, and verifiability becomes universal, as diagrammed
in Figure 1-3.

Cryptography makes end-to-end voting verification possible. At a high level, crypto-
graphic voting systems effectively bring back the voting systems of yore, when all eligible
citizens voted publicly, with tallying also carried out in public for all to see and audit.
Cryptographic schemes augment this approach with:

1. encryption to provide ballot secrecy, and

2. zero-knowledge proofs to provide public auditing of the tallying process.

1.4.2 A Bulletin Board of Votes

Cryptographic voting protocols revolve around a central, digital bulletin board. As its name
implies, the bulletin board is public and visible to all, via, for example, phone and web
interfaces. All messages posted to the bulletin board are authenticated, and it is assumed
that any data written to the bulletin board cannot be erased or tampered with. In practice,
implementing such a bulletin board is one of the more challenging engineering aspects of
cryptographic voting, as one must worry about availability issues beyond data corruption,
such as denial-of-service attacks for both data publication and access. There are, however,
known solutions to this problem [110].

On this bulletin board, the names or identification numbers of voters are posted in
plaintext, so that anyone can tell who has voted and reconcile this information against the
public registry of eligible voters. Along with each voter’s name, the voter’s ballot is posted in
encrypted form, so that no observer can tell what the voters chose. Two processes surround
the bulletin board. The ballot casting process lets Alice prepare her encrypted vote and cast
it to the bulletin board. The tallying process involves election officials performing various
operations to aggregate the encrypted votes and produce a decrypted tally, with proofs of
correctness of this process also posted to the bulletin board for all observers to see.

Effectively, the bulletin board is the verifiable transfer point from identified to de-
identified ballots. Votes first appear on the bulletin board encrypted and attached to the
voter’s identity. After multiple transformations by election officials, the votes end up on
the bulletin board, decrypted and now unlinked from the original voter identity. Whereas
classic voting schemes perform a complete and blind hand-off—i.e. the ballot is dropped into
a box —, cryptographic voting performs a controlled hand-off, where individual voters can
trace their vote’s entry into the system, and any observer can verify the processing of these
encrypted votes into an aggregate, decrypted tally. This process is illustrated in Figure 1-4.
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Figure 1-4: Cryptographic Voting at a High Level - voters cast an encrypted ballot on a
bulletin board, where voter names can be checked by anyone against a public voter registration
database. Then, election officials proceed to anonymize the votes and jointly decrypt them, pro-
viding proofs along the way that any observer can verify. The results are then posted for all to
see.
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1.4.3 A Secret Voter Receipt

Before Alice’s encrypted ballot appears on the bulletin board, she must prepare it using
some process that gives her personal assurance that her ballot has been correctly encrypted.
Recall that, in providing Alice with this assurance, the system cannot enable her to transfer
this same assurance to Carl, as this would enable Carl to influence her decision. For this
purpose, all current cryptographic voting schemes require that voters physically appear at
a private, controlled polling location: it is the only known way to establish a truly private
interaction that prevents voter coercion.

In many proposed cryptographic schemes, Alice interacts privately with a computerized
voting machine. She makes her selection much as she would using a classic voting machine,
answering each question in turn, verifying her selections on screen, and eventually confirming
her vote. The machine then produces an encryption of Alice’s ballot, and begins a verification
interaction with Alice.

This interaction is a type of zero-knowledge proof, where the machine proves to Alice that
her encrypted vote indeed corresponds to her intended choice, without revealing exactly the
details of this correspondence. In one particularly interesting scheme, Neff’s MarkPledge
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[29], Alice obtains a printed receipt that includes her encrypted vote and some confirmation
codes. By comparing the codes on the receipt with those on the screen of the machine, Alice
can be certain that the machine properly encoded her vote. In addition, since Alice can
easily claim, at a later point, that a different confirmation code appeared on the screen, she
cannot be coerced. This scheme is diagrammed in Figure 1-5 and explored and extended in
Chapter 5.

Using this encrypted receipt, Alice can verify that her encrypted ballot appears correctly
on the bulletin board. Given that the ballot is encrypted, she can even give a copy of her
receipt to helper political organizations — e.g. the ACLU, the NRA, the various political
parties—so that they may verify, on her behalf, the presence of her encrypted vote on the
bulletin board.

Paper-Based Cryptographic Voting. In 2004, Chaum [40] was the first to propose a
cryptographic scheme that uses paper ballots. The ballot in question is specially formed:
after filling out the ballot, Alice physically splits it into two pre-determined halves, destroys
one, and casts the other while taking a copy of this same half home with her as a receipt.
This separation effectively encrypts Alice’s choice: only election officials with the proper
secret keys can recover Alice’s choice during the tallying process.

In most of these paper-based schemes, the paper ballot must be verified prior to voting
to ensure that the two halves are consistent with one another. Without this verification,
a fraudulently created ballot could corrupt the proper recording of the voter’s intent. In
Chaum’s latest version, Punchscan [66], a second, post-election verification can also verify
the correctness of Alice’s ballot. The details of the Chaum scheme are reviewed in Chapter
4, which also describes Scratch & Vote, our proposed evolution of Chaum’s scheme, with
methods to simplify the ballot face and pre-voting verification stage.

1.4.4 Tallying the Ballots

Once all encrypted votes are posted on the bulletin board, it is time to tally them. Note
that no single election official can decrypt these individual votes: the secret key required
for decryption is shared among a number of election officials, who must collaborate for any
decryption operation. This is extremely important, as any decryption at this point would
violate the ballot secrecy of the voters in question. The decryption process must be well
controlled to protect privacy.

Two major techniques exist for just this purpose. The first uses a special form of
encryption—called homomorphic encryption—that enables the aggregation of votes under
the covers of encryption, so that only the aggregate tally needs decryption. The second
uses a digital version of “shaking the ballot box,” where individual votes are shuffled and
scrambled multiple times by multiple parties, dissociated from the voter identity along the
way, and only then decrypted.
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Figure 1-5: A secret receipt in the Neff voter verification scheme - The screen displays
a code, which should match the voter’s selected option on the receipt. In addition, the ticket
number should match the voter’s random challenge. Once the voter leaves the booth with
only the receipt, it is impossible for her to provably claim that she saw 34c7 on the screen,
and not dhjq.
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Randomized Threshold Public-Key Encryption. Before we present either tallying
method, it is important to note that all cryptographic voting systems use a special kind
of encryption called randomized threshold public-key encryption. The public-key property
ensures that anyone can encrypt using a public key. The threshold-decryption property
ensures that only a quorum of the trustees (more than the “threshold”), each with his own
share of the secret key, can decrypt.

In addition, using randomized encryption, a single plaintext, e.g. Blue, can be encrypted
in many possible ways, depending on the choice of a randomization value selected at encryp-
tion time. Without this property, since most elections offer only a handful of choices, e.g.
Blue or Red, an attacker could simply try to deterministically encrypt all possible choices
to discover, by simple ciphertext comparison, how everyone voted. With the randomization
value, an attacker would have to try all possible random factors. Selecting a cryptosystem
with a large enough set of randomization values ensures that this is never possible.

Tallying under the Covers of Encryption. Using a special form of randomized public-
key encryption called homomorphic public-key encryption, it is possible to combine two
encryptions into a third encryption of a value related to the original two, i.e. the sum. For
example, using only the public key, it is possible to take an encryption of  and an encryption
of y and obtain an encryption of x + y, all without ever learning x or y or x + y.

In a homomorphic voting scheme, as first proposed by Benaloh [43, 19], votes are en-
crypted as either 0 for Blue or 1 for Red. Then, all resulting encrypted votes are homomor-
phically added, one at a time, to yield a single encryption of the number of votes for Red.
The trustees can then decrypt this single encrypted value to discover this tally for Red. The
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difference between the total number of votes and the Red tally is then the Blue tally. The
approach can be extended to more than two options by encoding multiple “counters” within
a single ciphertext, a technique we review in chapter 2. In addition, a zero-knowledge proof
is typically required for each submitted vote, in order to ensure that each vote is truly the
encryption of 0 or 1, and not, for example, 1000. Otherwise, a malicious voter could easily
throw off the count by a large amount with a single ballot.

Homomorphic voting is particularly interesting because the entire homomorphic opera-
tion is publicly verifiable by any observer, who can simply re-compute it on his own using
only the public key. The trustees need only decrypt a single encrypted tally for each elec-
tion race. Unfortunately, homomorphic voting does not support write-in votes well: the
encrypted homomorphic counters must be assigned to candidates before the election begins.

Shaking the Virtual Ballot Box. A different form of tallying is achievable using a
miznet, as first described by Chaum [39]. Mixnets typically use a rerandomizable encryp-
tion scheme, which allows anyone to take an encryption of a message and produce a new
encryption of the same message with altered randomness. This is particularly interesting
because, if one were simply to take a set of encryptions and reorder them, it would be trivial
to compare the shuffled encryptions to the pre-shuffling encryptions. As randomized en-
cryptions are effectively unique, the rerandomization property is necessary to perform true,
indistinguishable shuffling.

In a mixnet, a sequence of mix servers, each one usually operated by a different politi-
cal party, takes all encrypted votes on the bulletin board, shuffles and rerandomizes them
according to an order and a set of randomization values kept secret, and posts the result-
ing set of ciphertexts back to the bulletin board. The next mix server then performs a
similar operation, and so on until the last mix server. Then, all trustees cooperate to de-
crypt the individual resulting encryptions, which have, by now, been dissociated from their
corresponding voter identity.

It is reasonable to trust that at least one of the mix servers will “shake the ballot box
well enough” so that privacy is ensured. However, it is not reasonable to trust that no
single mix server will replace an encrypted vote in the mix with a vote of its own. In other
words, we trust the mix servers with the privacy of the vote, but we do not trust them
with its correctness. Thus, each mix server must provide a zero-knowledge proof that it
performed correct mixing, never removing, introducing, or changing the underlying votes.
These types of proof are rather complicated, but a number of efficient schemes are known
and implemented.

Mixnet-based voting is more difficult to operate than homomorphic-based voting, because
the re-encryption and shuffle processes must be executed on a trusted computing base,
keeping the details of the shuffle secret from all others. However, mixnets present two
important advantages: the complete set of ballots is preserved for election auditing, and free-
form ballots, including write-ins, are supported. As a result, mixnet-based voting schemes
offer the most promise in real-world, democratic election implementation, even if they are
operationally more complex.
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1.4.5 The Promise of Cryptographic Voting

With cryptographic voting promising significantly improved auditability, one might question
why real elections have shunned these techniques to date. In fact, it is only recently that
cryptographic voting schemes have become reasonably usable by average voters. Much nec-
essary research remains to ensure that the extra voter verification processes can be made to
work in a realistic setting. Most importantly, a significant education effort will be required,
because the power of a cryptographically verified election is far from intuitive.

1.5 Contributions of this Work

This dissertation contributes to the teaching, practice, and theory of cryptographic voting.
Each contribution attempts to make cryptographic voting more useful and realistic.

1.5.1 Mixnet Literature Review

One critical component of a large number of cryptographic voting schemes is the anonymous
channel, usually implemented by a robust, universally verifiable mixnet. The literature in
this field spans 25 years without a single literature review. This dissertation (Chapter 3)
presents just such a review of advances in mixnet research over the years, starting with
Chaum’s first mixnet in 1981 through the most recent mixnet work of early 2006.

1.5.2 Scratch & Vote

We propose Scratch & Vote, a paper-based cryptographic voting protocol. Inspired by the
ballots of Chaum and Ryan [40, 41], S&V presents three significant practical advantages:

1. ballots and the ballot casting process use simple technology easily deployable today,
2. tallying is homomorphic, requiring only a single threshold decryption per race, and

3. ballots are self-certifying, which makes auditing and ballot casting assurance more
practical.

Scratch & Vote uses 2D barcode to encode the encrypted votes and a scratch surface
that hides the randomization values used to encrypt these ciphertexts. Thus, a ballot can be
audited by simply removing the scratch surface, without contacting any central authority.
Only ballots that have not been scratched off can actually be used in the vote casting: each
voter takes two ballots, audits one and votes with the other. With a 50% chance of catching
an error with each voter, any moderate attempt at fraud will be caught with just a handful
of voter verifications.
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1.5.3 Ballot Casting Assurance &
Assisted-Human Interactive Proofs

We have seen that cryptography provides universal verifiability of the tabulation process. In
addition, cryptography gives Alice two important capabilities: she can verify directly that
her vote has been correctly cast, and she can realistically complain if she discovers an error.
One contribution of this dissertation is the exact definition of these properties, and the
coining of the term ballot casting assurance to describe them. In particular, ballot casting
assurance supplants the unfortunately-abused term “cast as intended,” which has been used
with differing meaning by various voting research communities.

We then present Assisted-Human Interactive Proofs (AHIP), a definitional framework
for interactive proofs where the verifier is significantly computationally limited—i.e. human.
In the context of voting, this framework is particularly useful in describing how a voting
machine proves to Alice that her vote was correctly encrypted. In particular, AHIP is the
first definitional framework that captures the notion of a secret voter receipt and the security
properties required of such a receipt.

We provide two implementations of an AHIP proof that a ciphertext encodes a specific
option 7 out of m possible choices. The first protocol, a tweaked version of Neft’s MarkPledge,
provides ciphertexts whose length depends not only in the security parameter, but also in
the desired soundness. The second protocol provides ciphertexts linear only in the security
parameter, as long as soundness is within the range of the security parameter (it almost
always is). Both schemes are particularly interesting because they are proven secure in this
framework and demand very little from voters: they need only be able to compare very short
strings—e.g. 4 characters.

1.5.4 Public Mixing

This dissertation also introduces Public Mizing, a new type of ballot-preserving anonymous
channel. Typical mixnets await their inputs, then mix in private, then prove their mix.
Public mixes prove their mix, then await their inputs, then mix through entirely public
computation. In other words, all private operations and proofs in a public mix can be
performed before the inputs are available. One should notice that this concept is by no means
intuitively obvious. Public mixing creates, in a sense, the ability to obfuscate the program
that performs the mixing. It is reasonable to think of public mixing as a combination of
the advantages of homomorphic voting and mixnet voting: all election-day operations are
public, yet all ballots are fully preserved.

We provide constructions of public mixing algorithms using the BGN [23] and Paillier
[133] cryptosystems. The former case is simpler to explain but relies on a recently introduced
cryptosystem with younger assumptions. The latter case is a significantly more complicated
construction that relies on a much better understood set of assumptions and a cryptosystem
that is well established in the literature.

Also covered in this work is the efficient distributed generation of a public mixer, because
public mixing isn’t composable. In the voting setting, it is crucial that no single party know
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the anonymization permutation. Thus, this efficient distributed generation ensures that
multiple authorities collaborate to jointly create a permutation, which no small subset of the
authorities can recover on its own.

1.5.5 Collaboration and Authorship

The mixnet review itself is the work of the author, though, of course, the individual schemes
reviewed are the works of their respective authors. Scratch & Vote is joint work between
the author and Ronald L. Rivest. Assisted-Human Interactive Proofs and Ballot Casting
Assurance are joint work between the author and C. Andrew Neff. Public Mixing is joint
work between the author and Douglas Wikstrom.

1.6 Organization

Chapter 2 reviews a number of cryptographic concepts important to voting protocols, in-
cluding public-key cryptography, homomorphic cryptosystems, and threshold cryptosystems.
Chapter 3 reviews the mixnet literature. Chapter 5 defines the concept of ballot casting as-
surance, and the Assisted-Human Interactive Proof model and implementations. Chapter 6
describes public mixing.
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Chapter 2

Preliminaries

Protocols for democratic elections rely on numerous cryptographic building blocks. In this
chapter, we review the concepts and notation of these building blocks. We begin with a review
of public-key cryptography, its security definitions, and the principal algorithms that we use
in practical protocols. We review homomorphic cryptosystems, the interesting properties
they yield, and the security consequences of these properties. Then, we consider threshold
cryptosystems, where the process of key generation and decryption can be distributed among
trustees, a task of great importance to voting systems. We also review zero-knowledge proofs,
another critical component of universally verifiable voting, and we briefly review program
obfuscation, which is of particular importance to the contributions of this dissertation. We
also cover universal composability, a framework for proving protocols secure that has become
quite useful in the recent voting literature.

The last section of this chapter reviews prior work in universally verifiable cryptographic
voting, including mixnet-based systems and homomorphic aggregation. It defines notation
that cuts across the various schemes. It is this notation which we will use in the rest of this
work.

2.1 Basics

We denote by k the main security parameter and say that a function €(-) is negligible if for
every constant ¢ there exists a constant g such that e(k) < k=€ for k > k9. We denote by PT,
PPT, and PT*, the set of uniform polynomial time, probabilistic uniform polynomial time,
and non-uniform polynomial time Turing machines respectively. We use the notation ~Lto
denote either a uniform random sampling from a set or distribution, or the assignment from
a randomized process, i.e. a PPT algorithm, with uniform choice of randomization values.

2.2 Public-Key Encryption

Public-key encryption was first suggested by Diffie and Helman [56] in 1976, and first im-
plemented by Rivest, Shamir, and Adleman [145] in 1977. At its core, it is a simple, though
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somewhat counter-intuitive, idea: anyone can encrypt a message destined for Alice, but only
Alice can decrypt it. More precisely, Alice can generate a keypair composed of a public
key pk and a secret key sk. She then distributes pk widely, but keeps sk to herself. Using
pk, Bob can encrypt a plaintext m into a ciphertext c¢. The ciphertext ¢ is then effectively
“destined” for Alice, since only Alice possesses sk, with which she can decrypt ¢ back into
m.

More formally, we can define a public-key cryptosystem as follows.

Definition 2-1 (Public-Key Cryptosystem) A public-key cryptosystem PKCS is a set of
three PPT algorithms G, &, D, such that, given security parameter k, the following operations
are defined:

e Keypair Generation: matching public and secret keys can be generated by anyone
using the public algorithm G.

(pk, sk) L G(1")

e Encryption: a plaintext m in the message space My, can be encrypted using the
public key pk and the encryption algorithm E. This process is usually randomized,
using randomization value r € Ry

c=Ep(m;r)
We denote C, the space of ciphertexts c.

e Decryption: a ciphertext ¢ in the ciphertext space C,, can be decrypted using the
secret key sk and the decryption algorithm D. This process is always deterministic: a
gwen ciphertext always decrypts to the same plaintext under a given secret key.

m = Dg(c)
Given such a cryptosystem, one can consider different security definitions.

2.2.1 IND-CPA Security

Intuitively, a cryptosystem is said to be semantically secure if, given a ciphertext ¢, an
adversary cannot determine any property of the underlying plaintext m. In other words, an
adversary cannot extract any semantic information of plaintext m from an encryption of m.
Semantic security was first defined in 1982 by Goldwasser and Micali [80], who also showed
that semantic security is equivalent to ciphertext indistinguishability with chosen plaintexts
[81]. This latter definition, known as GM Security or IND-CPA , is a more natural one, so
we state it here.
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In this definition, given a public key pk, the adversary chooses two plaintexts mg and
my and is then presented with ¢, a ciphertext of one of these plaintexts, chosen at random.
If the adversary cannot guess which of the two plaintexts was chosen for encryption with
noticeably better than 50% chance (i.e. picking one at random), then the scheme is said to
be secure against chosen plaintext attack.

Definition 2-2 (IND-CPA Security) A public-key cryptosystem PKCS = (G, £, D) is said
to be IND-CPA-secure if there exists a negligible function v(-) such that, for all Adv € PT*:

Pr|(pk, sk) L G(17); (mg, my, state) «— Adv(choose, pk) ;
b {0,1};c Ep(my); V' — Adv(guess, ¢, state)

, 1
b=10 ] <§+I/(I{)

We know of a number of efficient schemes that are IND-CPA-secure.

RSA with OAEP Padding. In so-called “raw RSA” [145], two safe primes p and ¢ are
selected, pk = (n,e) where n = pg and e /| ¢(n), and sk = d where ed = 1 mod ¢(n).
Encryption is then performed as ¢ = m® mod n, and decryption as m = ¢? mod n. Clearly,
since the encryption operation is deterministic given m and pk, raw RSA is not IND-CPA-
secure: an adversary can just encrypt mg and m; and compare them against the challenge
ciphertext.

RSA can be made IND-CPA-secure using message padding such as OAEP [16]. Instead
of encrypting the raw message m, RSA-OAEP encrypts m||OAEP(m), where OAEP(m)
includes randomness.

El Gamal. El Gamal [71] is the prime example of an IND-CPA-secure cryptosystem. Con-
sider g the generator of a g-order subgroup of Z;, where p is prime and ¢ is a large prime
factor of p — 1. Key generation involves selecting a random x € Z7, at which point sk =
and pk = y = ¢” mod p. Encryption is then given as

r r R *
c=(a,8)=(9"\m-y"), r——717Z,.

Decryption is performed as

Paillier. Paillier [133] is another good example of an IND-CPA-secure cryptosystem. Con-
sider n = pq as in the RSA setting. Consider A = lem(p — 1,q — 1). Consider the function
L(xz) = (x—1)/n. Consider a generator g of Z*, specially formed such that g = 1 mod n. The
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public key is then simply n, while the private key is A. Encryption of m € Z,, is performed
as ¢ = g™r™ mod n? for a random r € Z*. Decryption is performed as

_ L(c* mod n?)
~ L(g* mod n?)

We provide here a brief explanation of the Paillier cryptosystem, given that it is partic-
ularly interesting and useful for our work in this dissertation. Recall that:

mod n

e o(n) = (p—1)(q—1) is Euler’s totient function.

e \=lem(p—1,q— 1) is the output of Carmichael’s function on n.
e The order of Z?, is np(n).

e For any a € Z,:

—a*=1modn

— a™ = 1 mod n?

Thus, consider the decryption function defined above, in particular the denominator. Recall
that ¢ = 1 mod n, which we can also write g = na + 1 for some integer «.

((1 + na)* mod n?) — 1
n
(na)) mod n?
n
= o) mod n?

L(g"* mod n?) =

Note that the exponentiation above reduces to the multiplication because all other monomials
in the expansion are multiples of n?. One can then easily see that, because r"™ will cancel
out by exponentiation to A:

L(c* mod n?) = ma) mod n?

and thus that the decryption works as specified.

2.2.2 IND-CCA Security

Indistinguishability with respect to adversarially-chosen plaintexts is not enough for all ap-
plications. Intuitively, one should also consider the possibility that the adversary can obtain
the decryption of a few chosen ciphertexts before receiving the challenge ciphertext. This no-
tion of security is called IND-CCA-security, informally known as “security against lunchtime
attacks.” The model is that the adversary might have access to a decryption box while the
owner is “out to lunch” (possibly metaphorically.) Later, the adversary will try to use the
information gained over lunch to decrypt other ciphertexts.
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Definition 2-3 (IND-CCA Security) A public-key cryptosystem PKCS = (G, &, D) is said
to be IND-CCA-secure if there exists a negligible function v(-) such that, for all Adv € PT*,
giwen a decryption oracle ODec(-):

Pr[(pk, sk) L G(1%); (mg, my, state) «— AdvOPe+() (choose, pk)
b {0,1};c 2 &, (my): B — Adv(guess, c, state)

1
b=1V <§—|—1/(/£)

As it turns out, the notion of IND-CCA security is not as interesting as its more powerful
variant, IND-CCA2 security.

2.2.3 IND-CCA2 Security

The IND-CCA2 security definition gives the lunchtime attacker even more power: after the
challenge ciphertext has been issued, the attacker gets further access to the decryption oracle
ODec(-), which the attacker can query for anything, except of course the challenge ciphertext
itself. Informally, this implies that an attacker is unable to extract any information about
a ciphertext, even if he’s able to request the decryption of any other ciphertext, even ones
derived from the challenge ciphertext.

Definition 2-4 (IND-CCA2 Security) A public-key cryptosystem PKCS = (G,E,D) is
said to be IND-CCA2-secure if there exists a negligible function v(-) such that, for all Adv €
PT*, given a decryption oracle ODec(-):

Pr[(pk, sk) £ G(1%); (mg,my) «— AdeDeCS’“(')(choose, pk)
b (0,1} ¢ <2 Epp(mp); b — AdvOP=<0)(guess, c)

1
b=t | <5tk

where ODecyy, .(+) s a decryption oracle which answers all queries by decrypting the requested
ciphertext, except for the challenge ciphertext ¢ where it answers with NULL.

IND-CCA2 security is considered the “gold standard” of public-key cryptosystems (though,
in some cases, the alternate standard of plaintext-awareness [89] is also considered.) Effec-
tively, the only known way to obtain a fresh ciphertext for a given message is to encrypt the
plaintext yourself.
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2.2.4 IND-RCCA Security

As it turns out, IND-CCA2 security may be overkill for a number of applications. In partic-
ular, given a ciphertext ¢, it might be acceptable to let anyone create a new ciphertext ¢
such that Dy (c) = Dg(¢'). Notably, someone without the secret sk would still be unable to
generate a ciphertext whose plaintext is related to that of ¢ in some way other than equality.

Thus, there is a middle ground between IND-CPA and IND-CCA security: IND-RCCA
security [142], which specifically allows an adversary to generate a “fresh” ciphertext ¢’ from
an existing ciphertext ¢, such that Dy (c) = Dg(¢’). More formally:

Definition 2-5 (IND-RCCA Security) A public-key cryptosystem PKCS = (G,E,D) is
said to be IND-RCCA-secure if there exists a negligible function v(-) such that, for all Adv €
PT*, given a decryption oracle ODec(+):

Pr|(pk, sk) L G(1%); (mg, my) — AdvOP=+0)(choose, pk)
b {0,1};¢ L Epr(mp); b — AdvOPsmo.m () (guess, ¢)

, 1
b=10 ] <§+y(/<;)

where ODeCgy, mo.m, @5 a decryption oracle which answers all queries by decrypting the re-
quested ciphertext, except for ciphertexts which decrypt to either mg or my.

2.3 Homomorphic Public-Key Encryption

Homomorphic public-key cryptosystems exhibit a particularly interesting algebraic property:
when two ciphertexts are combined in a specific, publicly-computable fashion, the resulting
ciphertext encodes the combination of the underlying plaintexts under a specific group op-
eration, usually multiplication or addition.

Definition 2-6 (Homomorphic Cryptosystem) A public-key cryptosystem PKCS = (G, £, D)
is said to be homomorphic for binary relations (®, ®) if:

o V(pk, sk) L G(1%), given message domain My, (M, ®) forms a group.
o Y(pk, sk) £ G(1%), given ciphertext range Cpp, (Cpr, ®) forms a group.

o V(pk, sk) L G(1%),¥(c1, ¢2) € Chycs pis

Dsk(cl & Cg) = Dsk(cl) (&) Dsk(62>.
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2.3.1 Re-encryption

An immediate consequence of a cryptosystem’s homomorphic property is its ability to per-
form reencryption: given a ciphertext ¢, anyone can create a different ciphertext ¢’ that en-
codes the same plaintext as c¢. Recall that PKCS is homomorphic for (&, ®) if (M, @) forms
a group, which means there exists an identity plaintext mg such that, Vm € M,;, m®&my = m.
Thus, given a homomorphic cryptosystem PKCS, we can define the reencryption algorithm
as follows:

REk(c;1) = ¢ ® Epp(mo; 1)
If Dyi(c) = m, then Dy (REk(c)) = m, too.

2.3.2 Security of Homomorphic Cryptosystems

The malleability of ciphertexts in homomorphic cryptosystems limits the security of such
schemes. In particular, the ability to reencrypt immediately indicates that the system is not
IND-CCA2-secure, and can be at best IND-RCCA-secure. Even more significant, the ability
to create a ciphertext of a related but different plaintext breaks even IND-RCCA security.
Specifically, an adversary can take the challenge ciphertext ¢, create ¢ = ¢® &, () for some
m known to the adversary, query ODec with ¢’ to obtain m/, and compute m = m’ @ m .

It is not well understood whether homomorphic schemes can be IND-CCA-secure: can
ODec help an adversary succeed if it can only be used prior to the challenge ciphertext?
Thus, we know that homomorphic cryptosystems can be IND-CPA-secure, but we do not
know whether they can be IND-CCA-secure.

2.3.3 Homomorphic Schemes in Practice

A number of practical schemes are homomorphic.

RSA. In raw RSA, encryption is performed as ¢ = m® mod n. Thus, clearly, ¢y X ¢; =
(mg X m1)® mod n. Raw RSA is thus homomorphic on operations (x, x). That said, raw
RSA isn’t even IND-CPA-secure, which means it isn’t very useful in many applications. RSA-
OAEP, on the other hand, is quite useful, but loses the homomorphic property due to the
non-malleable OAEP padding.

El Gamal. In El Gamal, encryption is performed as ¢ = (¢",m - y"). Thus, if we define ®
as the element-wise product of ciphertext pairs, then El Gamal is homomorphic for (x,®):

ri+r2 ri+r2 )

(g™ m1-y™) @ (9", ma - y?) = (g™, (mima) -y

El Gamal is particularly interesting: it exhibits a homomorphism and is IND-CPA-secure.
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Exponential El Gamal. If El Gamal is homomorphic for multiplication with a plaintext
in the base, then one is immediately tempted to adapt El Gamal to use a plaintext in the
exponent in order to exhibit a homomorphic addition. In fact, this can be done, but at a
large cost: decryption requires performing a discrete log, which inherently limits the plaintext
domain M to polynomial size. Exponential El Gamal is defined as :

e Key Generation: same as El Gamal, select a prime p such that another large prime
q divides (p—1). Select g, a generator of a g-order subgroup of Z;. My, = Z,. sk =z,
where x is randomly selected in Z. pk =y = g” mod p.

e Encryption: similar to El Gamal, except the plaintext is now in the exponent.

Ep(m;r) = (o, B) = (¢", g™y") mod p.

e Decryption: similar to El Gamal, except a discrete logarithm is now required in
addition to the usual computation.

D §) =log, | 2] mod

¢ Homomorphic Addition: exactly the same as El Gamal’s homomorphic multiplica-
tion, using a ciphertext operation which performs element-wise multiplication on the
ciphertext pairs:

(g g™ y™) @ (9", 9™ y"™)
<gr1+r2 m1+m2y7"1+7“2)

g k(ml + mo;,T1 + 7’2)

gpk(ml;ﬁ) ®5pk(m2;7”2)

In practice, the decryption limits the message domain, e.g. a few trillion possible messages
at the most. Decryption is usually performed by various discrete-logarithm algorithms, for
example the baby-step giant-step algorithm [160], which requires O(y/m) time.

Paillier. In Paillier, encryption is performed as ¢ = ¢g™r"™ mod n?. Clearly, this scheme is
homomorphic for (4, x) over the plaintext space Z,:

Epe(m1;m1) X Egi(maira) = (g™r}) % (g"r})

(g
= g™ (ryry)"
Epis(ma + ma;r172).
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Note that Paillier decryption is efficient, which means the plaintext domain can be super-
polynomial while retaining the additive homomorphism.

Generalized Paillier. Damgard et al. [48] generalize the Paillier scheme, so that a public
key with modulus n can encrypt plaintexts in Z,s into ciphertexts in Z,s+1. Computations
modulo n? are replaced by computations modulo n**!. For this generalized version, we write

EP(m) = ¢g™r™ mod n*t

and we use M,,s and C,,s to denote the corresponding message space Z,s and ciphertext space
Z’ ... Damgard et al. prove that the security of the generalized scheme follows from the
security of the original scheme. The properties of this extended Paillier cryptosystem can
be seen as parallel to those of the typical Paillier cryptosystem:

e the order of the group Z, .+ is ¢p(n)n’.

e the order of (n+1) is n® in Z,,-+1), thus we will use g = n+1 as the base for encryption:
its exponent is perfectly sized for plaintexts in Z,,s.

e If we denote s = r(™") effectively the randomization value, then: s?™ = 1 mod n(+)

and s* = 1 mod n®**Y. Thus, when computing ¢* during decryption, the randomiza-
tion value cancels out, and we get:

A

A = gm/\ mod n(s+1)

Generalized Paillier provides two interesting high-level properties:

1. longer plaintexts with better efficiency: using the same public key, n, plaintexts longer
than |n| can be encrypted, while the ciphertext overhead remains |n|.

2. layered encryption: plaintexts can be encrypted multiple times under the same public
key, each time adding an overhead of |n| bits. This is interesting in that the group
orders maintains all homomorphic properties intact at every layer. Note that this
property has not been noticed before, and is described for the first time in Chapter 6.

2.4 Threshold Public-Key Cryptosystems

In many applications, including notably voting, it is desirable to allow decryption only when
a quorum of “trustees” agree. In other words, the secret key sk isn’t available to a single
party. Instead, [ trustees share sk: trustee i has share sk. If at least k of the [ trustees
participate, then decryption is enabled. If fewer than k trustees participate, then the security
properties of the cryptosystem are fully preserved.
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There are two conceivable approaches to generating the shares {sk(i)}. The simpler
approach is for a “dealer” to generate (pk, sk) normally, split sk into shares, then distribute
these shares to the appropriate trustees. A more secure approach is to have the trustees
generate the keypair together, with no single party ever learning the complete sk in the
process.

2.4.1 Secret Sharing

Critical to the implementation of threshold cryptography is the concept of secret sharing,
first introduced by Shamir in 1979 [159]. In this scheme, a secret s in a finite field is shared
as s, s@ .. s where any k-sized subset of these n shares reveals s (k < 1), but any
subset of size smaller than k reveals nothing about s. Shamir’s implementation produces a
polynomial P(x) of degree k — 1 over the finite field in question, such that P(0) = s, and
each share s() is a point (z,y) such that y = P(z) (and x # 0, of course). Using Lagrange
coefficients for polynomial interpolation, k£ points are sufficient to recover the polynomial P,
and thus s = P(0). Fewer than k points, however, will hide s information-theoretically.

Recall that this interpolation process defines Lagrange interpolation polynomials for each
point. Given {(x;), (vi)}icpi the k points we wish to interpolate, we denote A;(x) the
interpolation polynomial that corresponds to point i:

(z — ;)
Ai(x) = —
J=Llj#i
The interpolated polynomial is then:
k

Since we seek only P(0), the secret, we can skip the computation of the actual polynomial
coefficients, and go straight to:

SZP(O):Z%< H (m%x]x))
i=1 =1 " J

Note that each share is the pair (z,y). Thus, it is permissible for all x; to be public,
with the corresponding y; remaining secret. This allows anyone to compute the Lagrange
coefficients, ready to be combined with the actual y; values at the appropriate time.

2.4.2 Secure Multi-Party Computation

In 1986, Yao [182] showed that any multi-party computation can be performed using a
garbled representation of the circuit that implements the computation. Yao’s technique in-
volves a gate-by-gate, bit-by-bit decomposition of the computation. Thus, though incredibly
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powerful as a generic method, it it is quite inefficient in practice.

Clearly, threshold cryptosystems can be implemented using a simple Shamir secret shar-
ing scheme and two garbled circuits: one that generates, splits, and distributes the keypair
(pk, sk) to all trustees, and one that combines the shares to perform actual decryption. In
practice, however, it is best to find a cryptosystem that explicitly supports some efficient
mechanism for threshold operations.

2.4.3 Efficient Threshold Schemes

El Gamal. The algebraic structure of the El Gamal cryptosystem makes it particularly
usefu