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Abstract

We present new results in the areas of cryptography and voting systems.

1. Pattern matching encryption: We present new, general definitions for queryable
encryption schemes – encryption schemes that allow evaluation of private queries
on encrypted data without performing full decryption. We construct an efficient
queryable encryption scheme supporting pattern matching queries, based on
suffix trees. Storage and communication complexity are comparable to those
for (unencrypted) suffix trees. The construction is based only on symmetric-key
primitives, so it is practical.

2. Strategic equivalence of range voting and approval voting: We study strategic
voting in the context of range voting in a formal model. We show that under
general conditions, as the number of voters becomes large, strategic range voting
becomes equivalent to approval voting. We propose beta distributions as a new
and interesting way to model voter’s subjective information about other votes.

3. Statistical robustness of voting rules: We introduce a new notion called “sta-
tistical robustness” for voting rules: a voting rule is statistically robust if, for
any profile of votes, the most likely winner of a sample of the profile is the
winner of the complete profile. We show that plurality is the only interesting
voting rule that is statistically robust; approval voting (perhaps surprisingly)
and other common voting rules are not statistically robust.

Thesis Supervisor: Ronald L. Rivest
Title: Viterbi Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

This thesis presents new results in two areas: cryptography and voting systems. In the

area of cryptography, we construct an efficient pattern matching encryption scheme.

In the area of voting systems, we study strategic voting in the context of range and

approval voting. We also propose a new property for voting systems, called statistical

robustness. We describe each of these three contributions in turn.

1.1 Pattern Matching Encryption

In traditional notions of encryption, a message is encrypted with a key to produce a

ciphertext, and then only the owner of the corresponding secret key can decrypt the

ciphertext. The decryption process is “all-or-nothing”, in the sense that the secret

key owner can decrypt the message, and anyone without the secret key can learn

nothing about the message. However, modern applications of encryption often call

for more expressive notions of encryption, where data can be encrypted in such a way

that allows certain kinds of querying on the data, without decrypting the data.

In the first part of the thesis, we construct a pattern matching encryption scheme

– an encryption scheme that supports pattern matching (substring search) queries.

To motivate this work, we consider a scenario where a client has a large amount of

sensitive genomic data. The client would like to outsource storage of the sensitive

data, in encrypted form, to the cloud. Later, the client would like to make use of the
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data, for example by making queries to check whether certain cancer markers appear

anywhere as substrings of the genomic data, without having to download and decrypt

all of the data. The client would like that the server not learn too much information

about the genomic data or about the search strings. In addition, the encryption and

queries should be efficient. In our work, we specifically consider pattern matching

queries – that is, given a pattern string p and a data string s, return all occurrences

of p as a (contiguous) substring of s.

Related work. Searchable symmetric encryption (SSE) [19] encrypts data in a way

that allows keyword searching, where the keywords are known ahead of time, and data

is tagged with its keywords when it is encrypted. In our setting, the space of strings

that can be searched for is all possible strings of length up to the length of the data; if

a string were to be tagged with all of its substrings when it is encrypted, ciphertexts

would grow quadratically (rather than linearly) with the size of the input.

Predicate encryption (also known as functional encryption [8]) allows the secret

key owner to generate “tokens” for various predicates, so that a token for a predicate

f can be evaluated on a ciphertext that is an encryption of m to determine whether

f(m) is satisfied. State-of-the-art predicate encryption schemes (e.g., [36, 50]) support

inner-product queries; that is, f specifies a vector v, and f(m) = 1 if 〈m, v〉 = 0.

Applying an inner product predicate encryption scheme naively to construct a pattern

matching encryption scheme, where the patterns can be of any length, would result

in ciphertexts and query time that are O(nn), where n is the length of the string s,

which is clearly impractical.

Fully homomorphic encryption (FHE), beginning with the breakthrough work of

Gentry [30] and further developed in subsequent work, e.g., [11, 10, 31], allows one to

evaluate any arbitrary circuit on encrypted data without being able to decrypt. FHE

would solve the pattern matching encryption problem, but existing constructions are

far from efficient enough to be practical.

The closest related work is that of structured encryption [15], which allows specific

types of queries on encrypted data structures, by “translating” a data structure that
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allows efficient querying into an encrypted setting, in a way that the efficiency is

comparable to that of the unencrypted setting. In constructing our pattern matching

encryption scheme, we take a very similar approach.

Contribution. We formalize a paradigm called “queryable encryption”, which gen-

eralizes previous definitions in the area. Queryable encryption describes encryption

that allows private, efficient querying of the data. The definition is general and does

not restrict the particular query functionality supported. Furthermore, it allows for

some information “leakage” that the server may learn from the ciphertext and from

the query protocol. The definition also allows the query protocol to be interactive.

Leakage and interactivity can be helpful in achieving an efficient scheme. We define

security using a simulation-based definition, which states precisely what the leakage

consists of, and guarantees that nothing other than the specified leakage is learned

by the server (adversary). (The idea of allowing leakage in this manner was seen

previously in work on structured encryption [15] and to some extent in work on

searchable encryption [19].) We give definitions of correctness and security against

both honest-but-curious and malicious adversaries.

We construct a pattern matching encryption scheme that satisfies correctness and

security against malicious adversaries. Encryption time is O(λn) and query time is

O(λm + k), where λ is the security parameter, n is the length of the string that is

encrypted, m is the length of the pattern string, and k is the number of occurrences

of the pattern as a substring of the original string. The query protocol takes three

rounds of communication between the client and the server. The pattern matching

encryption scheme provides efficiency comparable to that of unencrypted pattern

matching using suffix trees, a data structure that supports pattern matching with

pre-processing time O(n) and search time O(m+ k).

Our construction is based on suffix trees. We use standard symmetric-key prim-

itives (symmetric-key encryption schemes, pseudorandom functions, and hash func-

tions), as well as the following tools: (1) authenticated encryption [38, 6, 5], which

guarantees that an adversary given encryptions of messages of its choice cannot gen-
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erate new ciphertexts that it hasn’t seen, (2) which-key-concealing encryption [1, 25],

which guarantees that an adversary cannot tell whether two messages are encrypted

under the same key or different keys, and (3)Rabin-Karp rolling hash [35], a hash that

can be computed efficiently on a sliding window of input, reusing computation from

the previous window. Since all the operations are based on symmetric-key primitives,

the resulting construction is fairly practical.

1.2 Strategic Range and Approval Voting

In the next part of the thesis, we turn our attention to voting systems. A voting

system, or voting rule, specifies what types of ballots or votes can be cast, and

how to aggregate those ballots to determine an election outcome. We consider

strategic behavior in the context of voting systems. Specifically, we consider two

voting systems, range voting [53] and approval voting [13]. In range voting, each

voter gives each alternative a score in some pre-specified range. In approval voting,

each voter “approves” or “disapproves” of each candidate. Effectively, approval voting

is a special case of range voting, where there are only two allowable scores. We are

interested in how rational, strategic voters vote when using range voting and approval

voting. Our main question is, when using range voting, when would a rational voter

want to vote “approval-style” (i.e., giving each candidate either the minimum or the

maximum allowed score)? Put another way, when is strategic range voting equivalent

to approval voting?

Previous results by Smith and others (see Smith [52, 51] for a summary) showed

that strategic range voting is equivalent to approval voting when the number of voters

is large and under an assumption about the behavior of “near-tie” probabilities. How-

ever, they do not give a characterization of formal, general conditions under which

this assumption may hold.

Contribution. We study strategic range voting in a very general model of voter’s

information about the other votes. We propose that a voter has independent prob-
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ability density functions fi for each alternative i, specifying the distribution of the

average score given to that alternative. Given the fi’s, we give a method for a voter

to determine an optimal (utility-maximizing) vote. We show that, as long as the fi’s

are defined on the entire range of allowable scores, then as the number of voters grows

large, a rational range voter will want to vote approval-style.

Next, we propose a concrete class of distributions that might reasonably be used

to model a voter’s information – beta distributions. A beta distribution models a

posterior probability distribution on the average score for an alternative after seeing

a given number of approvals and disapprovals from pre-election polls, given a uniform

prior. We observe that an optimal strategy when using beta distributions to model

voter information is not always sincere – that is, it might be in the voter’s best interest

to approve of alternative Ai and disapprove of alternative Aj even though she prefers

Aj to Ai.

1.3 Statistical Robustness of Voting Rules

In the next part of the thesis, we introduce a property called statistical robustness for

voting rules.

Statistical robustness asks the following question – if a random sample is drawn

from the voter population in a given election, will the most likely election outcome

from that sample be the same as the winner for the entire population? If so, we say

that the voting system is statistically robust.

One way to think of statistical robustness is as a measure of “weather-proofness”

– if the weather is bad, and some (randomly chosen) voters don’t make it to the polls,

is the election outcome likely to be affected? From this perspective, it is clear that

statistical robustness is a desirable property for a voting system to satisfy.

Statistical robustness is relevant in the context of post-election auditing, which

attempts to check that the election outcome is correct, i.e., a full hand recount would

give the same outcome as the announced outcome. Some existing audit methods,

known as ballot-polling auditing [43], work well for voting rules like plurality, where
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each ballot observed that is a vote for the reported winner can be used to increase

the confidence that the reported winner is correct. However, it is not clear how such

methods could be made to work for voting rules that are not statistically robust.

Contribution. We propose statistical robustness as an interesting and desirable

property for a voting system. We give definitions for “full” statistical robustness,

as well as parameterized definitions for various levels of statistical robustness, with

respect to three different random sampling methods: binomial sampling, and sampling

with and without replacement.

We show that plurality (and its complement, veto) and random ballot satisfy

statistical robustness, while approval, range (score) voting, single-transferable vote

(STV), plurality with runoff, Copeland, and maximin are not statistically robust

with respect to one or more of the sampling methods. Furthermore, we show that

any positional scoring rule whose score vector contains at least three distinct values

is not statistically robust, with respect to sampling with or without replacement. It

was somewhat surprising to find that approval voting is not robust, and that plurality

is essentially the only interesting voting rule that is statistically robust.

1.4 Organization

This thesis is organized as follows. Chapter 2 describes the work on pattern matching

encryption, which is joint work with Melissa Chase, with helpful input from Ron

Rivest. Chapter 3 describes strategic range voting and approval voting, which is joint

work with Josh Benaloh and Ron Rivest. Chapter 4 describes statistical robustness

of voting rules, which is joint work with Ron Rivest.
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Chapter 2

Pattern Matching Encryption

2.1 Introduction

In traditional symmetric-key encryption schemes, a user encrypts a message so that

only the owner of the corresponding secret key can decrypt it. Decryption is “all-or-

nothing”; that is, with the key one can decrypt the message completely, and without

the key one learns nothing about the message. However, many settings, such as cloud

storage, call for encryption schemes that support the evaluation of certain classes

of queries on the data, without decrypting the data. A client may wish to store

encrypted data on a cloud server, and then be able to issue queries on the data to the

server in order to make use of the data without retrieving and decrypting the original

ciphertext.

For example, suppose a medical research lab wants to store its subjects’ genomic

data using a cloud storage service. Due to the sensitive nature of genomic data,

the data stored on the cloud must be encrypted. At the same time, the researchers

need to be able to use and query the data efficiently, for example, by making short

substring queries on the genomic data. Using a traditional encryption scheme, any

global query on the data would require retrieving and decrypting the entire original

data, negating many of the advantages of cloud storage. The owner of the data would

like that the process of performing these queries not reveal much information to the

server about the genomic data or the search strings.

21



Queryable encryption. In this chapter, we formalize a type of encryption that

we call queryable encryption. A queryable encryption scheme allows for evaluation

of some query functionality F that takes as input a message M and a query q and

outputs an answer. A client encrypts a message M under a secret key and stores

the ciphertext on a server. Then, using the secret key, the client can issue a query

q by executing an interactive protocol with the server. At the end of this protocol,

the client learns the value of F(M, q). For example, for pattern matching queries, a

query q is a pattern string, the message M is a string, and F(M, q) returns the set

of indices of all occurrences of q as a substring of M .

For security, we will think of the server as an adversary trying to learn information

about the message and the queries. Ideally, we would like that an adversary that is

given a ciphertext and that engages in query protocols for several queries learns

nothing about the message or the queries. However, in order to achieve an efficient

scheme, we will allow some limited information about the message and the queries to

be revealed (“leaked”) to the server through the ciphertext and the query protocol.

We define notions of security that specify explicitly what information is leaked, and

guarantee that an adversary learns nothing more than the specified leakage. The idea

that it may be acceptable for a queryable encryption to leak some information to gain

efficiency was seen previously in the case of structured encryption [15], and to some

extent in the case of searchable encryption [19].

We define correctness and security within two adversarial models: honest-but-

curious and malicious. In the honest-but-curious model, the adversary executes the

protocol honestly but tries to learn information about the message and the queries

along the way. In the malicious model, the adversary tries to learn information,

possibly by not following the protocol honestly.

Pattern matching encryption. Next, we focus on constructing a pattern match-

ing encryption scheme, that is, a queryable encryption scheme that support pattern

matching queries – given a string s and a pattern string p, return all occurrences of

p as a substring of s. In the genomic data application, for example, researchers may
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wish to query the database to determine whether a particular cancer marker sequence

appears in any of the data.

For efficiency, our goal is for space and computation complexity to be comparable

to that of evaluating pattern matching queries in the unencrypted setting. This

means that general techniques such as fully homomorphic encryption [30, 11, 10, 31]

and functional encryption [8, 36, 50] will not be practical. By focusing on the specific

functionality of pattern matching queries, we are able to achieve a scheme with much

better efficiency.

To construct a pattern matching encryption scheme, we use suffix trees, a data

structure used to efficiently perform pattern matching on unencrypted data. We

combine basic symmetric-key primitives to develop a method that allows traversal

of select edges in a suffix tree in order to efficiently perform pattern matching on

encrypted data, without revealing significant information about the string or the

queries.

2.1.1 Related Work

Searchable encryption and structured encryption. We draw on related work

on symmetric searchable encryption (SSE) [19] and its generalization to structured

encryption [15].

These works take the approach of considering a specific type of query and identify-

ing a data structure that allows efficient evaluation of those queries in an unencrypted

setting. The construction then “translates” the data structure into an encrypted set-

ting, so that the user can encrypt the data structure and send the server a “token” to

evaluate a query on the encrypted structure. The translation is done in such a way

that the efficiency is comparable to that of the unencrypted setting.

Since the server is processing the query, the server will be able to determine the

memory access pattern of the queries, that is, which parts of memory have been

accessed, and when the same memory block is accessed again.1 The approach to

1Note that this is true even if we use fully homomorphic encryption (e.g., [30, 11, 10, 31]) or
functional encryption [8, 36, 50].
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security in SSE and structured encryption is to acknowledge that some information

will be leaked because of the memory access pattern, but to clearly specify the leakage,

and to guarantee that is the only information that the server can learn.

While the structured encryption and SSE approach is a natural one, there has

been relatively little work in this area, and the kinds of data structures and queries

supported are rather limited. In particular, existing results focus on encrypting index

data structures to support lookup queries. In our work, we extend the approach to

encrypting suffix trees to support pattern matching queries.

Predicate encryption and fully homomorphic encryption. Predicate encryp-

tion (a special case of functional encryption [8]) allows the secret key owner to generate

“tokens” for various predicates, so that a token for a predicate f can be evaluated

on a ciphertext that is an encryption of m to determine whether f(m) is satisfied.

State-of-the-art predicate encryption schemes (e.g., [36, 50]) support inner-product

queries; that is, f specifies a vector v, and f(m) = 1 if 〈m, v〉 = 0. Applying an

inner product predicate encryption scheme naively to construct a pattern matching

encryption scheme, where the patterns can be of any length, would result in cipher-

texts and query time that are O(nn), where n is the length of the string s, which is

clearly impractical.

Fully homomorphic encryption (FHE), beginning with the breakthrough work of

Gentry [30] and further developed in subsequent work, e.g., [11, 10, 31], allows one to

evaluate any arbitrary circuit on encrypted data without being able to decrypt. FHE

would solve the pattern matching encryption problem, but existing constructions are

far from being efficient enough to be practical.

Oblivious RAMs. The problem of leaking the memory access pattern is addressed

in the work on Oblivious RAMs [46], which shows how to implement any query in

a way that ensures that the memory access pattern is independent of the query.

There has been significant process in making oblivious RAMs efficient; however, even

the most efficient constructions to date (see, e.g., Stefanov et al. [54]) increase the
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amortized costs of processing a query by a factor of at least log n, where n is the size

of the stored data. In our setting, where we assume that the large size of the dataset

may be one of the primary motivations for outsourcing storage, a log n overhead may

be unacceptable.

Secure two-party computation of pattern matching. There have been several

works on secure two-party or multiparty computation (e.g., [20, 45]) and specifically

on secure pattern matching and other text processing in the two-party setting (see [44,

34, 29, 37, 27, 56]). This is an interesting line of work; however, our setting is rather

different. In our setting, the client has outsourced storage of its encrypted data to a

server, and then the client would like to query its data with a pattern string. The

server does not have the data string in the clear; it is encrypted. Thus, even without

considering the extra rounds of communication, we cannot directly apply secure two-

party pattern matching protocols.

Memory delegation and integrity checking. We consider both honest-but-

curious and malicious adversaries. In the case of malicious adversaries, we are con-

cerned with detecting when the adversary misbehaves, i.e., deviates from the protocol.

One way the adversary may misbehave is by returning something other than what

was originally stored on the server. Along these lines, there is related work on mem-

ory delegation (e.g., [16]) and memory checking (e.g., [22]), verifiable computation

(e.g., [7, 28]), integrity checking (e.g., [55]), and encrypted computation on untrusted

programs (e.g., [26]); the theme of these works is retrieving and computing on data

stored on an untrusted server. For our purposes, since we focus on the specific func-

tionality of pattern matching encryption in order to achieve an efficient scheme using

simple primitives, we do not need general purpose integrity checking techniques, which

can be expensive or rely on more complex assumptions.
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2.1.2 Our Results

We present a general definition of queryable encryption schemes. We give definitions

of correctness and simulation-based definitions of security with leakage, against chosen

query attacks by both honest-but-curious and malicious adversaries.

We then define pattern matching encryption as a special case of queryable encryp-

tion, and we construct a pattern matching encryption scheme and prove its correctness

and security against malicious adversaries. The pattern matching encryption scheme

is based on suffix trees. The encryption time and ciphertext size are O(λn), querying

for a pattern takes time and communication complexity O(λm + k), where n is the

length of the encrypted string, m is the length of the pattern, and k is the number of

occurrences of the pattern as a substring of the encrypted string. The query protocol

takes a constant number of rounds of communication. All operations are based only

on symmetric-key primitives, so the resulting construction is practical.

2.2 Notation and Cryptographic Primitives

We begin with some notation and definitions of cryptographic primitives that we will

use throughout the chapter.

2.2.1 Basic Notation

We write x
R← X to denote an element x being sampled uniformly at random from a

finite set X, and x← A to denote the output x of an algorithm A. We write x||y to

refer to the concatenation of strings x and y, and |x| to refer to the length of a string

x. If x = x1 . . . xn is a string of n characters, and a and b are integers, 1 ≤ a, b ≤ n,

then x[a..b] denotes the substring xaxa+1 . . . xb. We sometimes use ε to denote the

empty string. In other places ε will be used to denote a quantity that is negligible in

the security parameter; the intended meaning of ε will be clear from context.

If T is a tuple of values with variable names (a, b, . . .), then T.a, T.b, . . . refer to the

values in the tuple. If n is a positive integer, we use [n] to denote the set {1, . . . , n}.
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If S is a set, P(S) is the corresponding power set, i.e., the set of all subsets of S.

We use λ to refer to the security parameter, and we assume all algorithms im-

plicitly take λ as input. A function ν : N → N is negligible in λ if for every positive

polynomial p(·) there exists an integer λp > 0 such that for all λ > λp, ν(λ) < 1/p(λ).

We let negl(λ) denote an unspecified negligible function in λ.

Following standard GMR notation [33], if p(·, ·, . . .) is a predicate, the notation

Pr[a← A; b← B; . . . : p(a, b, . . .)] denotes the probability that p(a, b, . . .) is true after

a← A, b← B, . . . are executed in order. We write AO to represent that algorithm A

can make oracle queries to algorithm O. We will assume that adversaries are stateful

algorithms; that is, an adversary A maintains state across multiple invocations by

implicitly taking its previous state as input and outputting its updated state.

If f is a function with domain D, and S ⊆ D, then f [S] denotes the image of S

under f . If F : K ×D → R is a family of functions from D to R, where K, D, and

R are finite sets, we write FK for the function defined by FK(x) = F (K, x).

2.2.2 Pseudorandom Functions and Permutations

A pseudorandom function family (PRF) is a family F of functions such that no proba-

bilistic polynomial-time (PPT) adversary can distinguish a function chosen randomly

from F from a uniformly random function, except with negligible advantage.

Definition 2.2.1 (Pseudorandom Function Family). Let D and R be finite sets, and

let F : {0, 1}λ×D → R be a family of functions. Let R denote the set of all possible

functions Z : D → R. F is a pseudorandom function family (PRF) if for all PPT

adversaries A,

|Pr[K
R← {0, 1}λ : AFK (1λ) = 1]− Pr[Z

R← R : AZ(1λ) = 1]| ≤ negl(λ) .

Similarly, a pseudorandom permutation family (PRP) is a family of functions

such that no PPT adversary can distinguish a function randomly chosen from F and

a uniformly random permutation, except with negligible advantage.
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Definition 2.2.2 (Pseudorandom Permutation Family). Let D be a finite set, and

let F : {0, 1}λ × D → D be a family of functions. Let P denote the set of all

possible permutations (one-to-one, onto functions) P : D → D. F is a pseudorandom

permutation family (PRP) if for all PPT adversaries A,

|Pr[K
R← {0, 1}λ : AFK (1λ) = 1]− Pr[P

R← P : AP (1λ) = 1]| ≤ negl(λ) .

2.2.3 ε-Almost-Universal Hash Functions

An ε-almost-universal hash function is a family H of hash functions such that, for any

pair of distinct messages, the probability of a hash collision when the hash function

is chosen randomly from H is at most ε.

Definition 2.2.3 (ε-Almost-Universal Hash Function). Let U and B be finite sets,

and let H : {0, 1}λ × U → B be a family of hash functions. H is ε-almost-universal

if for any x, x′ ∈ U , x 6= x′,

Pr[t
R← {0, 1}λ : Ht(x) = Ht(x

′)] ≤ ε .

Let us look at an example of a known ε-almost-universal hash construction, which

we shall use later.

Example 2.2.4. [Polynomial hash] We view a message x as a sequence (x1, . . . , xn)

of `-bit strings. For any k in the finite field GF(2`), the hash function Hk(x) is defined

as the evaluation of the polynomial px over GF(2`) defined by coefficients x1, . . . , xn,

at the point k. That is, Hk(x) = px(k) = Σn
i=1xik

i−1, where all operations are in

GF(2`).

The hash function family defined above is ε-almost-universal, for ε = (n − 1)/2`.

To see this, suppose Hk(x) = Hk(x
′) for some x 6= x′. Then px(k) = px′(k). This

means px−x′(k) = Σn
i=1(xi − x′i)ki−1 = 0, where at least one of (xi−x′i) is not 0. Since

px−x′(·) is a non-zero polynomial of degree at most n− 1, it can have at most n− 1

roots. The probability that a k chosen randomly from GF(2`) will be one of the at

most n− 1 roots is at most (n− 1)/2`.
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2.2.4 PRF Composed with Almost Universal Hashing

When computing a PRF on a long input, it can be more efficient to first hash the

input down to a short string, and then apply the PRF to the hash output. If the hash

function is ε-almost-universal for some negligible ε, then the resulting construction is

still a PRF. This observation is due to Levin [42] and is known sometimes as Levin’s

trick.

The following theorem says that a PRF composed with an ε-almost-universal hash

function, where ε is negligible, gives another PRF. A proof of this theorem has been

given previously in [21]; we include a version of that proof here, for completeness.

Theorem 2.2.5. Let p be some polynomial. Let F : {0, 1}λ × B → R be a PRF,

and let H : {0, 1}p(λ) × U → B be an ε-almost-universal hash function for some

ε = negl(λ). Then F (H) : {0, 1}λ+p(λ) × U → R, defined by FK,t(x) = FK(Ht(x)), is

a PRF.

Proof. Let A be an adversary attacking the PRF property of F (H). We wish to

show that A’s advantage in distinguishing FK(Ht(·)) for random K, t from Z(·),

where Z is a uniformly random function from U to R, is negl(λ). To do so, we first

argue that A’s advantage in distinguishing FK(Ht(·)) from Y (Ht(·)), where Y is a

uniformly random function from B to R, is negl(λ). We then argue thatA’s advantage

in distinguishing Y (Ht(·)) from Z(·) is negl(λ). Therefore, A’s total advantage in

distinguishing FK(Ht(·)) from Z(·) is negl(λ).

By the PRF property of F , we immediately have that A’s advantage in distin-

guishing FK(Ht(·)) for a random K from Y (Ht(·)) is at most negl(λ).

Next, to see that A cannot distinguish Y (Ht(·)) for a random t from Z(·), let

x1, . . . , xq be the queries A makes to its oracle. (Without loss of generality, assume

x1, . . . , xq are distinct.) If all of the hashes Ht(x1), . . . , Ht(xq) are distinct, then

Y (Ht(·)) and Z(·) will both output q uniformly random, independent values, so A

will not be able to distinguish the two functions.

Therefore, A’s advantage in distinguishing Y (Ht(·)) from Z(·) is at most the

probability of a collision among Ht(x1), . . . , Ht(xq). Let X denote the event that a
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collision occurs among Ht(x1), . . . , Ht(xq). Since Y is a uniformly random function,

each output of Y (Ht(·)) is a uniformly random, independent value (independent of the

input and of t), until and unless X occurs. Once X occurs, the subsequent outputs

of Y (Ht(·)) do not affect the probability of X. Therefore, to analyze the probability

of X, we can think of x1, . . . , xq as being chosen before and independently of t.

There are at most q2 pairs i < j, and by the ε-almost universality of H, for each

pair there is at most an ε probability of a collision. Thus, the probability of X is at

most q2ε, which is negl(p(λ)) = negl(λ).

All together, A’s distinguishing advantage is at most negl(λ).

2.2.5 Symmetric-Key Encryption

Definition 2.2.6 (Symmetric-Key Encryption). A symmetric (or symmetric-key)

encryption scheme consists of the following PPT algorithms.

Gen(1λ): The key generation algorithm takes a security parameter λ and generates

a secret key K.

Enc(K,m): The encryption algorithm takes a secret key K and a message m and

returns a ciphertext c. Note that Enc will be randomized, but we omit the

randomness as an explicit input.

Dec(K, c): The decryption algorithm is a deterministic algorithm that takes a secret

key K and a ciphertext c and returns a message m or a special symbol ⊥.

Correctness. For correctness, we require that for all λ and for all m, letting K ←

Gen(1λ), we have Dec(K,Enc(K,m)) = m.

CPA Security. We require indistinguishability under chosen-plaintext

attacks (IND-CPA), or CPA security, which is defined using the following game.

First, the challenger runs Gen(1λ) to generate a secret key K, which is kept hidden

from the adversary. Next, the adversary is allowed to make any number of queries to
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an encryption oracle Enc(K, ·). The adversary then outputs two equal-length chal-

lenge messages m0 and m1 and receives a challenge ciphertext equal to Enc(K,mb)

for a random choice of b ∈ {0, 1}. The adversary can make more queries to the en-

cryption oracle. Finally, it outputs a guess b′ of the bit b. The adversary wins the

game if b′ = b.

The adversary’s advantage is the difference between the probability that it wins the

game and 1/2 (from guessing randomly). CPA security says that no PPT adversary

can win the above game with more than negligible advantage.

Definition 2.2.7 (CPA security). A symmetric encryption scheme (Gen,Enc,Dec)

is CPA-secure if for all PPT adversaries A,

|Pr[K ← Gen(1λ); (m0,m1)← AEnc(K,·)(1λ); b
R← {0, 1}; c← Enc(K,mb);

b′ ← AEnc(K,·)(c) : b′ = b]− 1/2| ≤ negl(λ) ,

where the two messages (m0,m1) output by A must be of equal length.

Which-Key Concealing. We will also require symmetric encryption schemes to

satisfy a property called which-key concealing. The which-key concealing property

was introduced by Abadi and Rogaway [1] and (under the name “key hiding”) by

Fischlin [25].

The which-key-concealing requirement says, roughly, that an adversary cannot

tell whether ciphertexts are encrypted under the same key or different keys. More

formally, which-key concealing is defined via a game, in which the adversary tries to

distinguish between the following two experiments. In one experiment, Gen(1λ) is run

twice, to generate two keys K and K ′. The adversary is given a “left” oracle Enc(K, ·)

and a “right” oracle Enc(K ′, ·), to both of which it is allowed to make any number

of queries. The adversary then outputs a bit. The other experiment is the same,

except that only one key K is generated, and both of the left and right oracles output

Enc(K, ·). The adversary’s advantage is the difference between the probability that it

outputs 1 in the two experiments. Which-key concealing says that no PPT adversary

31



can win the above game with more than negligible advantage. Note that in order for

an encryption scheme to be which-key-concealing, clearly it must be randomized.

Definition 2.2.8 (Which-Key Concealing). A symmetric encryption

scheme (Gen,Enc,Dec) is which-key-concealing if for all PPT adversaries A,

|Pr[K ← Gen(1λ);K ′ ← Gen(1λ);AEnc(K,·),Enc(K′,·)(1λ) = 1]−

Pr[K ← Gen(1λ);AEnc(K,·),Enc(K,·)(1λ) = 1]| ≤ negl(λ) .

Let us now see an example of a symmetric encryption scheme that is CPA-secure

and which-key-concealing.

Example 2.2.9 (Exor). Let p be a polynomial, and let F : {0, 1}λ × {0, 1}λ →

{0, 1}p(λ) be a PRF. The encryption scheme Exor for message space M = {0, 1}p(λ) is

defined as follows.

Gen(1λ): Let K
R← {0, 1}λ be the secret key.

Enc(K,m): Let r
R← {0, 1}λ, and output c = (r, FK(r)⊕m).

Dec(K, c): Let c = (r, x). Output m = x⊕ FK(r).

Bellare et al. [4] proved that the above scheme is CPA-secure:

Theorem 2.2.10. [4] If F is a PRF, then Exor is CPA-secure.

We will prove that Exor is which-key-concealing.

Theorem 2.2.11. If F is a PRF, then Exor is which-key-concealing.

Proof. Let A be an adversary playing the which-key-concealing game.

We first replace Exor in the which-key-concealing game with a modified scheme

E ′xor. E ′xor is the same as Exor, except that FK is replaced with a uniformly random

function R : {0, 1}λ → {0, 1}p(λ). By the PRF property of F , replacing Exor with E ′xor
can change A’s advantage in the which-key-concealing game by at most a negligible

quantity.
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So, suppose A is playing the which-key-concealing game for E ′xor. Suppose A

makes a total of q queries, m1, . . . ,mq, to its encryption oracles, where each mi is a

query to either the left or the right oracle. Let (ri, xi) denote the answer to the ith

query, and let yi = xi ⊕mi.

If there are any i and j such that ri = rj and mi is a query to the left oracle while

mj is a query to the right oracle, then A will be able to distinguish whether the two

oracles use the same key based on whether yi = yj. However, if all of r1, . . . , rq are

distinct, then for any key the encryption algorithm will choose each yi as a uniformly

random, independent value, so A will gain no information about which experiment it

is in and can do no better than a random guess.

Thus, A’s advantage in winning the which-key-concealing game for E ′xor is at most

the probability that any of r1, . . . , rq are equal, which is upper bounded by q2/2λ.

Combining this with the negligible difference inA’s advantage against E ′xor and against

Exor, we have that A’s advantage in winning the which-key-concealing game for Exor
is negligible.

Ciphertext integrity and authenticated encryption. We will also sometimes

require a symmetric encryption scheme to have a property called ciphertext integrity.

The notions of ciphertext integrity and authenticated encryption (defined below) were

introduced by [6, 38, 5]. Ciphertext integrity says, roughly, that an adversary given

encryptions of messages of its choice cannot construct any new ciphertexts that de-

crypt successfully (i.e., decrypt to a value other than ⊥).

Formally, ciphertext integrity is defined using the following game. First, the chal-

lenger runs Gen(1λ) to generate a secret key K, which is kept hidden from the

adversary. The adversary then adaptively makes a polynomial number of queries,

m1, . . . ,mq. To each query mi the challenger responds by sending ci ← Enc(K,mi) to

the adversary. Finally, the adversary outputs a value c. The adversary wins the game

if c is not among the previously received ciphertexts {c1, . . . , cq} and Dec(K, c) 6= ⊥.

We define the advantage of an adversary A in attacking the ciphertext integrity

of a symmetric encryption scheme as the probability that A wins the above game.

33



Definition 2.2.12 (Ciphertext integrity). A symmetric encryption scheme (Gen,Enc,Dec)

has ciphertext integrity if for all PPT adversaries A, A’s advantage in the above game

is at most negl(λ).

Definition 2.2.13 (Authenticated encryption). A symmetric encryption scheme is

an authenticated encryption scheme if it has CPA security and ciphertext integrity.

Let us now see an example of an authenticated encryption scheme. One way to

construct an authenticated encryption scheme is “encrypt-then-MAC” [5]. (A MAC

is a message authentication code, the details of which we do not give here; instead, we

will just use the fact that a PRF defines a secure MAC.) Using encrypt-then-MAC,

one first encrypts a message m with a CPA-secure scheme to get a ciphertext c′, and

then computes a MAC of c′ to get a tag t. The ciphertext is then c = (c′, t). The

decryption algorithm verifies that t is a valid tag for c′ and then decrypts c′ using

the CPA-secure scheme. In the following example, we apply encrypt-then-MAC to

Exor to obtain an authenticated encryption scheme Exor-auth (which, like Exor, is also

which-key-concealing).

Example 2.2.14 (Exor-auth). Let p be a polynomial, and let F : {0, 1}λ × {0, 1}λ →

{0, 1}p(λ) and G : {0, 1}λ × {0, 1}λ+p(λ) → {0, 1}λ be PRFs. The encryption scheme

Exor-auth for message space M = {0, 1}p(λ) is defined as follows.

Gen(1λ): Choose K1, K2
R← {0, 1}λ and let K = (K1, K2) be the secret key.

Enc(K,m): Let r
R← {0, 1}λ, and output c = (r, x = FK1(r)⊕m, t = GK2(r||x)).

Dec(K, c): Let c = (r, x, t). If t 6= GK2(r||x), output ⊥. Otherwise, output m =

x⊕ FK1(r).

Theorem 2.2.15. Exor-auth is an authenticated encryption scheme.

Proof. The theorem follows directly from the following facts: (1) G is a PRF and

therefore defines a MAC, (2) Exor is CPA-secure, and (3) applying encrypt-then-MAC

to a CPA-secure scheme gives an authenticated encryption scheme [5].
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Exor-auth also retains the which-key-concealing property of Exor.

Theorem 2.2.16. Exor-auth is which-key-concealing.

Proof. The proof is very similar to the which-key-concealing proof for Exor. We first

replace Exor-auth with a modified scheme E ′xor-auth in which F and G are replaced

with random functions R1 and R2, respectively. By the PRF property of F and G,

this changes A’s advantage in winning the which-key-concealing game by at most a

negligible quantity. Now, suppose A makes q encryption queries, m1, . . . ,mq. Let

(ri, xi, ti) denote the response to the ith query, and let yi = xi⊕mi. If all of r1, . . . , rq

are distinct and all of r1||x1, . . . , rq||xq are distinct, then for any key the encryption

algorithm will choose all of the yi and ti as uniformly random, independent values,

so A will gain no information about which experiment it is in. But if all of the ri are

distinct, then so are all of the ri||xi. Therefore, A’s advantage against E ′xor-auth is at

most the probability that any of the ri are equal, which is upper bounded by q2/2λ.

All together, A’s advantage against Exor-auth is negligible.

2.3 Queryable Encryption

We now present the main definitions for our construction.

Definition 2.3.1. A queryable encryption scheme for a message space M, a query

space Q, an answer space A, and query functionality F :M×Q→ A, consists of the

following probabilistic polynomial-time (PPT) algorithms.

K ← Gen(1λ): The key generation algorithm takes a security parameter 1λ and

generates a secret key K.

CT ← Enc(K,M): The encryption algorithm takes a secret key K and a message

M ∈M, and outputs a ciphertext CT .

A ← IssueQuery(K, q) ↔ AnswerQuery(CT ): The interactive algorithms

IssueQuery and AnswerQuery compose a query protocol between a client and a

server. The client takes as input the secret key K and a query q, and the server
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takes as input a ciphertext CT . At the end of the query protocol, the client

outputs an answer A ∈ A; the server has no output. A is a private output that

is not seen by the server.

Correctness. For correctness we require the following property. For all λ ∈ N,

q ∈ Q, M ∈M, let K ← Gen(1λ), CT ← Enc(K,M), and A← IssueQuery(K, q)↔

AnswerQuery(CT ). Then Pr[A = F(M, q)] = 1− negl(λ).

This correctness property ensures correct output if all algorithms are executed

honestly. (This is the usual way in which correctness is defined for similar types

of schemes, such as searchable encryption, structured encryption, and functional en-

cryption.) However, it does not say anything about the client’s output if the server

does not honestly execute AnswerQuery, for example.

Correctness against malicious adversaries. We also consider a stronger prop-

erty, correctness against malicious adversaries, which says that the client’s output

will be correct if all algorithms are executed honestly, but the client will output ⊥ if

the server does not execute AnswerQuery honestly. Thus, the server may misbehave,

but it cannot cause the client to unknowingly produce incorrect output.

More formally, correctness against malicious adversaries requires the following.

For all PPT algorithms A, for all λ ∈ N, q ∈ Q, M ∈ M, let K ← Gen(1λ),

CT ← Enc(K,M), and A ← IssueQuery(K, q) ↔ A(CT ). If A honestly executes

AnswerQuery, then Pr[A = F(M, q)] = 1− negl(λ). If A’s differs from AnswerQuery

in its input-output behavior, then Pr[A = ⊥] = 1− negl(λ).

Discussion. Note that, although the above is called a queryable “encryption scheme”,

it does not include an explicit decryption algorithm, as the client might not ever in-

tend to retrieve the entire original message. However, we could easily augment the

functionality F with a query that returns the entire message.

Note also that typically we expect M to be quite large, while the representation

of q and F (M, q) are small, so we would like the query protocol to be efficient relative

to the size of q and F (M, q). Without such efficiency goals, designing a queryable
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encryption scheme would be trivial. AnswerQuery could return the entire ciphertext,

and IssueQuery would then decrypt the ciphertext to get M and compute F(M, q)

directly.

Our queryable encryption definition generalizes previous definitions of searchable

encryption [19] and structured encryption [15], in the following ways.

Queryable encryption allows any general functionality F . In contrast, the defi-

nition of searchable encryption is tied to the specific functionality of returning doc-

uments containing a requested keyword. Structured encryption is a generalization

of searchable encryption, but the functionalities are restricted to return pointers to

elements of an encrypted data structure. Since we allow general functionalities, our

definition is similar to those of functional encryption. The main difference between

queryable encryption and functional encryption is in the security requirements, which

we will describe in the next section.

Also, queryable encryption allows the query protocol to be interactive. In search-

able encryption, structured encryption, and functional encryption, the query protocol

consists of two algorithms TK ← Token(K, q) and A← Query(TK,CT ). The client

constructs a query token and sends it to the server, and the server uses the token and

the ciphertext to compute the answer to the query, which it sends back to the client.

We can think of these schemes has having a one-round interactive query protocol.

Our definition allows for arbitrary interactive protocols, which may allow for better

efficiency or privacy.

Because we allow the query protocol to be interactive, we do not need the server

to actually learn the answer to the query. After the server’s final message, the client

may do some additional computation using its secret key to compute the answer.

Since the server does not see the final answer, we are able to achieve stronger privacy

guarantees.
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2.4 Honest-but-Curious (L1,L2)-CQA2 Security

We first consider security in an honest-but-curious adversarial model. In this model,

we assume that the server is honest (it executes the algorithms honestly), but curious

(it can use any information it sees in the honest execution to learn what it can about

the message and queries).

Ideally, we would like to be able to guarantee that ciphertexts and query protocols

reveal nothing about the message or the queries. However, such a strict requirement

will often make it very difficult to achieve an efficient scheme.

Therefore, we relax the security requirement somewhat so that some information

may be revealed (leaked) to the server. The security definition will be parameterized

by two “leakage” functions L1,L2. L1(M) denotes the information about the message

that is leaked by the ciphertext. For any j, L2(M, q1, . . . , qj) denotes the information

about the message and all queries made so far that is leaked by the jth query.

We would like to ensure that the information specified by L1 and L2 is the only

information that is leaked to the adversary, even if the adversary can choose the

message that is encrypted and then adaptively choose the queries for which it executes

a query protocol with the client. To capture this, our security definition considers a

real experiment and an ideal experiment, and requires that the view of any adaptive

adversary in the real experiment be simulatable given only the information specified

by L1 and L2.

Following [15], we call the definition (L1,L2)-CQA2 security, where the name

“CQA2” comes from “chosen query attack” and is somewhat analogous to CCA2

(chosen ciphertext attack) for symmetric encryption schemes, where an adversary

can make decryption queries for chosen ciphertexts after receiving the challenge ci-

phertext.

Definition 2.4.1 (Honest-but-Curious (L1,L2)-CQA2 Security). Let E = (Gen,Enc,Query)

be a queryable encryption scheme for a message spaceM, a query space Q, an answer

space A, and query functionality F :M×Q→ A. Let L1 and L2 be two functions.

Consider the following experiments involving an adversary A and a simulator S:
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RealE,A(λ): The challenger begins by running Gen(1λ) to generate a secret key K.

The adversary A outputs a message M . The challenger runs Enc(K,M) to

generate a ciphertext CT , and sends CT toA. The adversary adaptively chooses

a polynomial number of queries, q1, . . . , qt. For each query qi, the challenger

sends the adversary the view vi of an honest server in the interactive protocol

IssueQuery(K, qi) ↔ AnswerQuery(CT ). Finally, A outputs a bit b, and b is

output by the experiment.

IdealE,A,S(λ): First, A outputs a message M . The simulator S is given L1(M)

(not M itself), and outputs a value CT . The adversary adaptively chooses

a polynomial number of queries, q1, . . . , qt. For each query qi, the simulator

is given L2(M, q1, . . . , qi) (not qi itself), and it outputs a simulated view vi.

Finally, A outputs a bit b, and b is output by the experiment.

We say that E is (L1,L2)-CQA2 secure against honest-but-curious adversaries if,

for all PPT adversaries A, there exists a simulator S such that

|Pr[RealE,A(λ) = 1]− Pr[IdealE,A,S(λ) = 1]| ≤ negl(λ) .

Discussion. The above definition is based heavily on the definition for structured

encryption [15] and generalizes it to interactive query protocols. It is also loosely

related to simulation-based definitions for functional encryption [8], with one impor-

tant difference: In our definition, we only consider a single ciphertext; security is not

guaranteed to hold if multiple ciphertexts are encrypted under the same key. Note

that security for only one ciphertext only makes sense in the symmetric-key setting,

since in the public-key setting one can encrypt any number of messages with the

public key. In our application, it will be reasonable to expect that each instantiation

of the scheme will be used to encrypt only one message.

Although in some applications, it may be interesting and sufficient to model the

server as an honest-but-curious adversary, often we will be interested in a stronger

adversarial model. That is, we would like to ensure privacy against even a malicious
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adversary – one that does not execute its algorithms honestly. In the next section,

we present a definition of security against malicious adversaries.

2.5 Malicious (L1,L2)-CQA2 Security

The definition of (L1,L2)-CQA2 security against malicious adversaries is similar to

the one for honest-but-curious adversaries, except for the following two differences.

First, for each query qi, in the malicious game, the adversary interacts with ei-

ther an honest challenger running IssueQuery(K, qi) in the real game, or the sim-

ulator given L2(M, q1, . . . , qi) in the ideal game. (In the honest-but-curious game,

the adversary just received the view of an honest server in the interactive protocol

IssueQuery(K, qi)↔ AnswerQuery(CT ).)

Second, at the end of the protocol for qi, the adversary outputs the description

of a function gi of its choice. In the real game, the adversary receives gi(A1, . . . , Ai),

where Aj is the private answer output by the client for query qj. In the ideal game,

the adversary receives gi(A
′
1, . . . , A

′
i), where A′j = ⊥ if the client output ⊥ in the

query protocol for qj; otherwise, A′j = F (M, qj).

This last step of the game is necessary in the malicious game because the adversary

may learn extra information based on the client’s responses to the incorrectly formed

messages from the adversary. The client’s private output, although it is not sent

to the server in the actual query protocol, can be thought of as a response to the

last message sent by the adversary. We want to capture the notion that, even if the

adversary were able to learn some function gi of the client’s private outputs A1, . . . , Ai,

it would not learn more than gi(F (M, q1), . . . , F (M, qi)). However, for any Aj = ⊥,

in the evaluation of gi, F (M, qj) is replaced by ⊥.

Definition 2.5.1 (Malicious (L1,L2)-CQA2 security). Let E = (Gen,Enc,Query) be

a queryable encryption scheme for a message space M, a query space Q, an answer

space A, and query functionality F :M×Q→ A. Let L1 and L2 be two functions.

Consider the following experiments involving an adversary A and a simulator S.
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Real’E,A(λ): The challenger begins by running Gen(1λ) to generate a secret key K.

The adversary A outputs a message M . The challenger runs Enc(K,M) to

generate a ciphertext CT , and sends CT to A. The adversary adaptively makes

a polynomial number of queries q1, . . . , qt. For each query qi, first A interacts

with the challenger, which runs IssueQuery(K, qi). Let Ai be the challenger’s

private output from the protocol for qi. Then A outputs a description of a

function gi, and it receives hi ← gi(A1, . . . , Ai). Finally, A outputs a bit b.

Ideal’E,A,S(λ): First, A outputs a message M . The simulator S is given L1(M)

(not M itself), and outputs a value CT . The adversary adaptively makes a

polynomial number of queries q1, . . . , qt. For each query qi, first the simulator is

given L2(M, q1, . . . , qi) (not qi itself), and A interacts with the simulator. Then

A outputs a description of a function gi, and it receives hi ← gi(A
′
1, . . . , A

′
i),

where A′i = ⊥ if the simulator output ⊥ in the query protocol for qi; otherwise,

A′i = F(M, qi). Finally, A outputs a bit b.

We say that E is (L1,L2)-CQA2 secure against malicious adversaries if, for all PPT

adversaries A, there exists a simulator S such that

|Pr[Real’E,A(λ) = 1]− Pr[Ideal’E,A,S(λ) = 1]| ≤ negl(λ) .

2.6 Pattern Matching Encryption

Definition 2.6.1 (Pattern matching encryption). A pattern matching encryption

scheme for an alphabet Σ is a queryable encryption scheme for:

• message space M = Σ∗,

• query space Q = Σ∗,

• answer space A = P(N), and

• query functionality F where F(s, p) is the set of indices of all the occurrences of

p as a substring of s. That is, F(s, p) = {i|s[i..i+m− 1] = p}, where m = |p|.
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2.7 Suffix Trees

Our goal is to construct a pattern matching scheme – a queryable encryption scheme

that supports the functionality F , where F(s, p) returns the indices of all occurrences

of p as a substring of s.

We first look to pattern matching algorithms for unencrypted data. There are

several known pattern matching algorithms [39, 9, 35, 2], varying in their preprocess-

ing efficiency and query efficiency. Most of these algorithms have preprocessing time

O(m) and query time O(n), where n is the length of the string s and m is the length

of the pattern p. Pattern matching using suffix trees, however, has preprocessing time

O(n) and query time O(m). This is ideal for our applications, where the client stores

one string s encrypted on the server, and performs queries for many pattern strings

p. Therefore, we will focus on pattern matching using suffix trees as the basis for our

scheme.

A suffix tree for a string s of length n is defined as a tree such that the paths

from the root to the leaves are in one-to-one correspondence with the n suffixes of s,

edges spell non-empty strings, each internal node has at least two children, and any

two edges edges coming out of a node start with different characters. For a suffix tree

for a string s to exist, s must be prefix-free; if it is not, we can first append a special

symbol $ to make s prefix-free. Figure 2-1 shows a suffix tree for an example string,

“cocoon”.

Pattern matching using suffix trees uses the following important observation: a

pattern p is a substring of s if and only if it is a prefix of some suffix of s. Thus, to

search s for a pattern p, search for a path from the root of which p is a prefix.

For a string of length n, a suffix tree can be constructed in O(n) time [57, 24].

It can be easily shown that a suffix tree has at most 2n nodes. However, if for each

node we were to store the entire string spelled on the edge to that node, the total

storage would be O(n2) in the worst case. (To see this, consider the suffix tree for the

string s1 . . . sn, where each si is unique. The suffix tree would contain a distinct edge

for each of the n suffixes s1 . . . sn, s2 . . . sn, . . . sn; these suffixes have a total length
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Figure 2-1: A suffix tree for the string s =“cocoon”. We will use the node labels
u1, . . . , u9 later to explain how the pattern matching encryption scheme works.

O(n2).) To represent a suffix tree in O(n) space, for each node u other than the root,

one stores the start and end indices into s of the first occurrence of the substring on

the edge to u. In addition, one stores the string s. Using this representation, a suffix

tree takes O(n) storage and can be used to search for any pattern p of length m in

O(m) time, and to return the indices of all occurrences of p in O(m+ k) time, where

k is the number of occurrences.

We note a few observations about suffix trees that will be useful in our construc-

tion. For any node u, let ρ(u) be the string spelled out on the path from the root to

u. The string ρ(u) uniquely identifies a node u in a suffix tree, i.e., no two distinct

nodes u and u′ have ρ(u) = ρ(u′). Let us also define ρ̂(u) to be the string spelled out

on the path from the root to the parent of u, followed by the first character on the

edge to u. Since no two edges coming out of a node start with the same character,

ρ̂(u) also uniquely identifies u. Furthermore, the set of indices in s of occurrences of

ρ(u) is exactly the same as the set indices of occurrences of ρ̂(u).

For any given string s, a suffix tree is generally not unique (the children of each

node may be ordered in any way). For the remainder of the chapter, we will assume

that when a suffix tree is constructed, the children of every node are “ordered” lex-

icographically according to some canonical order of the alphabet. Thus, for a given
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string s, we talk about the unique suffix tree for s, and we can also talk about the ith

child of a node (in a well-defined way), for example. In the example in Figure 2-1, the

suffix tree for “cocoon” is constructed with respect to the alphabet ordering (c, o, n).

In Figure 2-1, u5 and u6 are the first and second children, respectively, of u2.

2.8 Notation

Before we describe our pattern matching encryption scheme, we introduce some help-

ful notation. Some of the notation will be relative to a string s and its suffix tree

Trees, even though they are not explicit parameters.

• u: a node in Trees

• ε: the empty string

• par(u): the parent node of u. If u is the root, par(u) is undefined.

• child(u, i): the ith child node of u. If u has fewer than i children, child(u, i) is

undefined.

• deg(u): the out-degree (number of children) of u

• ρ(u): the string spelled on the path from the root to u. ρ(u) = ε if u is the root.

• ρ̂(u): For any non-root node u, ρ̂(u) = ρ(par(u))‖u1, where u1 is the first

character on the edge from par(u) to u. If u is the root, ρ̂(u) = ε.

• leaf i: the ith leaf node in Trees, where the leaves are numbered 1 to n, from

left to right

• lenu: the length of the string ρ̂(u)

• indu: the index in s of the first occurrence of ρ(u) (equivalently, of ρ̂(u)) as a

substring. That is, indu is the smallest i such that ρ̂(u) = s[i..i + lenu − 1]. If

ρ(u) = ε, indu is defined to be 0.
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• lposu: the position (between 1 and n) of the leftmost descendant of u. That is,

leaf lposu
is the leftmost leaf in the subtree rooted at u.

• numu: the number of occurrences in s of ρ(u) (equivalently, of ρ̂(u)) as a sub-

string. If ρ(u) = ε, numu is defined to be 0. Note that for non-root nodes u,

numu is equal to the number of leaves in the subtree rooted at u.

To illustrate the notation above, let us look at the suffix tree in Figure 2-1 for

the string “cocoon”. In this tree, we have u2 = par(u3), u3 = child(u2, 1), deg(u2) =

2, ρ(u3) = “cocoon”, ρ̂(u3) = “coc”, leaf 5 = u8, indu2 = 1, lposu2 = 1, numu2 = 2.

2.9 Intuition

Before presenting the details of our construction we provide some intuition.

Our construction will make use of a dictionary, which is a data structure that

stores key-value pairs (k, V ), such that for any key k the corresponding value V can

be retrieved efficiently (in constant time).

We will use a symmetric encryption scheme ESKE, a PRF F , and a PRP P . The

key generation algorithm will generate three keys KD,KC,KL for ESKE, and four keys

K1, K2, K3, K4. (We will explain how the keys are used as we develop the intuition

for the construction.)

First attempt. We first focus on constructing a queryable encryption scheme for

a simpler functionality F ′, where F ′(s, p) computes whether p occurs as a substring

in s, and, if so, the index of the first occurrence in s of p. We will also only consider

correctness and security against an honest-but-curious server for now.

As a first attempt, let ESKE be a CPA-secure symmetric encryption scheme, and

encrypt a string s = s1 . . . sn in the following way. First, construct the suffix tree

Trees for s. Then construct a dictionary D, where for each node u in Trees, there

is an entry with search key FK1(ρ(u)) and value ESKE.Enc(KD, indu), and let the

ciphertext consist of the dictionary D. Then, in the query protocol for a query p, the
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node key value
u1 FK1(ε) ESKE.Enc(KD, 0)
u2 FK1(“co”) ESKE.Enc(KD, 1)
u3 FK1(“cocoon”) ESKE.Enc(KD, 1)
u4 FK1(“coon”) ESKE.Enc(KD, 3)
u5 FK1(“o”) ESKE.Enc(KD, 2)
u6 FK1(“ocoon”) ESKE.Enc(KD, 2)
u7 FK1(“oon”) ESKE.Enc(KD, 4)
u8 FK1(“on”) ESKE.Enc(KD, 5)
u9 FK1(“n”) ESKE.Enc(KD, 6)

Figure 2-2: The dictionary composing the ciphertext for the string “cocoon” in the
“first attempt” scheme. Note that the node identifiers u1, . . . , u9 are not a part of the
dictionary; they are provided for the purpose of cross-referencing with the suffix tree
in Figure 2-1.

client sends FK1(p). The server then checks whether D contains an entry with search

key FK1(p). If so, it returns D(FK1(p)), which the client decrypts using KD to get the

index of the first occurrence in s of p.

For example, for our example string “cocoon”, the ciphertext in this first attempt

would consist of the dictionary shown in Figure 2-2.

The obvious problem with this approach is that it only works for patterns that

are substrings of s that end exactly at a node; it does not work for finding substrings

of s that end partway down an edge.

Returning a possible match. To address this problem, we observe that we can

uniquely identify each node u by ρ̂(u) instead of ρ(u). Furthermore, if u is the last

node (farthest from the root) for which any prefix of p equals ρ̂(u), then either p is

not a substring of s, or p ends partway down the path to u and the indices in s of the

occurrences of ρ̂(u) are the same as the indices in s of the occurrences of p.

In the dictionary D, we will now use ρ̂(u) instead of ρ(u) as the search key for

a node u. We will say that a prefix p[1..i] is a matching prefix if p[1..i] = ρ̂(u) for

some u, i.e., there is a dictionary entry corresponding to p[1..i]; otherwise, p[1..i] is a

non-matching prefix.

The ciphertext will also include an array C of character-wise encryptions of s,
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with C[i] = ESKE.Enc(KC, si). In the query protocol, the client will send T1, . . . , Tm,

where Ti = FK1(p[1..i]). The server finds the entry D(Tj), where p[1..j] is the longest

matching prefix of p. The server will return the encrypted index ESKE.Enc(KD, ind)

stored in D(Tj). The client will then decrypt it to get ind , and request the server to

send C[ind ], . . . , C[ind +m− 1]. The client can decrypt the result to check whether

the decrypted string is equal to the pattern p and thus, whether p is a substring of s.

Returning all occurrences. We would like to return the indices of all occurrences

of p in s, not just the first occurrence or a constant number of occurrences. However,

in order to keep the ciphertext size O(n), we need the storage for each node to

remain a constant size. In a naive approach, in each dictionary entry we would store

encryptions of indices of all of the occurrences of the corresponding string. However,

this would take O(n2) storage in the worst case.

We will use the observation that the occurrences of the prefix associated with a

node are exactly the occurrences of the strings associated with the leaves in the subtree

rooted at that node. Each leaf corresponds to exactly one suffix. So, we construct a

leaf array L of size n, with the leaves numbered 1 to n from left to right. Each element

L[i] stores an encryption of the index in s of the string on the path to the ith leaf.

That is, L[i] = ESKE.Enc(KL, ind leaf i). In the encrypted tuple in the dictionary entry

for a node u we also store lposu, the leaf position of the leftmost leaf in the subtree

rooted at u, and numu, the number of occurrences of ρ̂(u). That is, the value in

the dictionary entry for a node u is now ESKE.Enc(KD, (indu, lposu, numu)) instead of

ESKE.Enc(KD, indu). The server will return ESKE.Enc(KD, (indu, lposu, numu)) for the

last node u matched by a prefix of p. The client then decrypts to get indu, lposu, numu,

asks for C[ind], . . . , C[ind + m − 1], decrypts to determine whether p is a substring

of s, and if so, asks for L[lposu], . . . , L[lposu + num − 1] to retrieve all occurrences of

p in s.

Hiding common non-matching prefixes among queries. The scheme outlined

so far works; it supports the desired pattern matching query functionality, against an
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honest-but-curious adversary. However, it leaks a lot of unnecessary information, so

we will add a number of improvements to reduce the information that is leaked.

For any two queries p and p′ whose first j prefixes are the same, the values

T1, . . . , Tj in the query protocol will be the same. Therefore, the server will learn

that p[1..j] = p[1..j′], even though p[1..j] may not be contained in s at all. Memory

accesses will reveal to the server when two queries share a prefix p[1..j] that is a

matching prefix (i.e., contained in the dictionary), but we would like to hide when

queries share non-matching prefixes.

In order to hide when queries share non-matching prefixes, we change each Ti to

be an ESKE encryption of f
(i)
1 = FK1(p[1..i]) under the key f

(i)
2 = FK2(p[1..i]). The

dictionary entry for a node u will contain values f2,i for its children nodes, where

f2,i = FK2(ρ̂(child(u, i)). Note that f2,i is the key used to encrypt Tj for any pattern

p whose prefix p[1..j] is equal to ρ̂(child(u, i)). In the query protocol, the server starts

at the root node, and after reaching any node, the server tries using each of the f2,i

for that node to decrypt each of the next Tj’s, until it either succeeds and reaches the

next node or it reaches the end of the pattern.

Hiding node degrees, lexicographic order of children, number of nodes in

suffix tree. Since the maximum degree of any node is the size d of the alphabet,

we will hide the actual degree of each node by creating dummy random f2,i values

so that there are d in total. In order to hide the lexicographic order of the children

and hide which of the f2,i are dummy values, we store the f2,i in a random permuted

order in the dictionary entry.

Similarly, since a suffix tree for a string of length n contains at most 2n nodes,

we will hide the exact number N of nodes in the suffix tree by constructing 2n −N

dummy entries in D. For each dummy entry, the search key is a random value f1, and

the value is (f2,1, . . . , f2,d,W ), where f2,1, . . . , f2,d are random and W is an encryption

of 0.
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Hiding string indices and leaf positions. In order to hide the actual values of

the string indices ind , . . . , ind +m−1 and the leaf positions lpos , . . . , lpos + num−1,

we make use of a pseudorandom permutation family P of permutations [n] → [n].

Instead of sending (ind , . . . , ind +m− 1), the client applies the permutation PK3 to

ind , . . . , ind +m− 1 and outputs the resulting values in a randomly permuted order

as (x1, . . . , xm). Similarly, instead of sending (lpos , . . . , lpos + num − 1), the client

applies the permutation PK4 to lpos , . . . , lpos + num − 1 and outputs the resulting

values in a randomly permuted order as (y1, . . . , ynum). Note that while the server

does not learn the actual indices or leaf positions, it still learns when two queries ask

for the same or overlapping indices or leaf positions.

Handling malicious adversaries. The scheme described so far satisfies correct-

ness against an honest-but-curious adversary, but not a malicious adversary, since the

client does not perform any checks to ensure that the server is sending correct mes-

sages. The scheme also would not satisfy security against a malicious adversary for

reasonable leakage functions, since an adversary could potentially gain information

by sending malformed or incorrect ciphertexts during the query protocol.

To handle a malicious adversary, we will require ESKE to be an authenticated

encryption scheme. Thus, an adversary will not be able to obtain the decryption of

any ciphertext that is not part of the dictionary D or the arrays C or L. Also, we will

add auxiliary information to the messages encrypted, to allow the client to check that

any ciphertext returned by the adversary is the one expected by the honest algorithm.

The client will be able to detect whether the server returned a ciphertext that is in

D but not the correct one, for example.

Specifically, we will encrypt (si, i) instead of just si, so that the client can check

that it is receiving the correct piece of the ciphertext. Similarly, we will encrypt

(ind leaf i , i) instead of just ind leaf i . For the dictionary entries, in addition to indu,numu,

and lposu, we will include lenu, f1(u), f2,1(u), . . . , f2,d(u) in the tuple that is encrypted.

The client can then check whether the W sent by the adversary corresponds to the

longest matching prefix of p, by verifying that FK1(p[1..len]) = f1, and that none of
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the f2,1, . . . , f2,d successfully decrypts any of the Tj for j > len.

2.10 Pattern Matching Scheme

Let F : {0, 1}λ × {0, 1}∗ → {0, 1}λ be a PRF, and let P : {0, 1}λ × [n] → [n]

be a PRP. Let ESKE = (Gen,Enc,Dec) be an authenticated, which-key-concealing

symmetric encryption scheme. Our pattern matching encryption scheme EPM for an

alphabet Σ with |Σ| = d is as follows.

Gen(1λ): Choose random strings KD,KC,KL, K1, K2, K3, K4
R← {0, 1}λ.2 The secret

key is

K = (KD,KC,KL, K1, K2, K3, K4).

Enc(K, s): Let s = s1 . . . sn ∈ Σn. Construct the suffix tree Trees for s.

1. Construct a dictionary D as follows.

For any node u, define f1(u) := FK1(ρ̂(u)) and f2(u) := FK2(ρ̂(u)).

For each node u in Trees (including the root and leaves), proceed as

follows:

• Choose a random permutation πu : [d]→ [d].

• For i = 1, . . . , d, let f2,i(u) = f2(child(u, πu(i)) if 1 ≤ πu(i) ≤ deg(u);

otherwise let f2,i(u)
R← {0, 1}λ.

• Let Xu = (indu, lposu, numu, lenu, f1(u), f2,1(u), . . . , f2,d(u)), and let

Wu = ESKE.Enc(KD, Xu).

• Store Vu = (f2,1(u), . . . , f2,d(u),Wu) with search key κu = f1(u) in D.

Let N denote the number of nodes in Trees. Construct 2n − N dummy

entries in D as follows. For each dummy entry, choose random strings

2We will assume for simplicity that ESKE.Gen simply chooses a random key k
R← {0, 1}λ, so

throughout the construction we will use random values as ESKE keys. To allow for general ESKE.Gen
algorithms, instead of using a random value r directly as a key, we could use a key generated by
ESKE.Gen with r providing ESKE.Gen’s random coins.
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f1, f2,1, . . . , f2,d
R← {0, 1}λ, and store (f2,1, . . . , f2,d, ESKE.Enc(KD, 0)) with

search key f1 in D.

2. Construct an array C as follows.

For i = 1, . . . , n, compute ci = ESKE.Enc(KC, (si, i)) and set C[PK3(i)] = ci.

3. Construct an array L as follows.

For i = 1, . . . , n, compute `i = ESKE.Enc(KL, (ind leaf i , i)) and set L[PK4(i)] =

`i.

Output the ciphertext CT = (D,C, L).

IssueQuery(K, p)↔ AnswerQuery(CT ): The interactive query protocol, between

a client with K and p and a server with CT , runs as follows.

Let p = p1 . . . pm ∈ Σm, and let CT = (D,C, L).

1. The client computes, for i = 1, . . . ,m,

f
(i)
1 = FK1(p1 . . . pi), f

(i)
2 = FK2(p1 . . . pi) ,

and sets Ti = ESKE.Enc(f
(i)
2 , f

(i)
1 ).

The client sends the server (T1, . . . , Tm).

2. The server proceeds as follows, maintaining variables f1, f2,1, . . . , f2,d,W .

Initialize (f2,1, . . . , f2,d,W ) to equal D(FK1(ε)), where ε denotes the empty

string.

For i = 1, . . . ,m :

For j = 1, . . . , d:

Let f1 ← ESKE.Dec(f2,j, Ti). If f1 6= ⊥, update (f2,1, . . . , f2,d,W ) to

equal D(f1), and break (proceed to the next value of i). Otherwise, do

nothing.

At the end, the server sends W to the client.
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3. The client runs X ← ESKE.Dec(KD,W ). If X = ⊥, output ⊥ and end

the protocol. Otherwise, parse X as (ind , lpos , num, len, f1, f2,1, . . . , f2,d).

Check whether FK1(p[1..len]) = f1. If not, output ⊥ and end the pro-

tocol. Otherwise, check whether ESKE.Dec(f2,i, Tj) = ⊥ for any j ∈

{len + 1, . . . ,m} and i ∈ {1, . . . , d}. If so, output ⊥ and end the pro-

tocol. If ind = 0, output ∅. Otherwise, choose a random permutation

π1 : [m]→ [m]. For i = 1, . . . ,m, let xπ1(i) = PK3(ind + i− 1). The client

sends (x1, . . . , xm) to the server.

4. The server sets Ci = C[xi] for i = 1, . . . ,m and sends (C1, . . . , Cm) to the

client.

5. For i = 1, . . . ,m, the client runs Y ← ESKE.Dec(KC, Cπ1(i)). If Y = ⊥,

output ⊥ and end the protocol. Otherwise, let the result be (p′i, j). If

j 6= ind + i − 1, output ⊥. Otherwise, if p′1 . . . p
′
m 6= p, then the client

outputs ∅ as its answer and ends the protocol. Otherwise, the client chooses

a random permutation π2 : [num] → [num]. For i = 1, . . . , num, let

yπ2(i) = PK4(lpos + i− 1). The client sends (y1, . . . , ynum) to the server.

6. The server sets Li = L[yi] for i = 1, . . . , num, and sends (L1, . . . , Lnum) to

the client.

7. For i = 1, . . . , num, the client runs ESKE.Dec(KL, Lπ2(i)). If the result

is ⊥, the client outputs ⊥ as its answer. Otherwise, let the result be

(ai, j). If j 6= lpos + i − 1, output ⊥. Otherwise, output the answer

A = {a1, . . . , anum}.

2.11 Efficiency

In analyzing the efficiency of our construction, we will assume data is stored in com-

puter words that hold log n bits; therefore, we will treat values of size O(log n) as

constant size.

We assume encryption and decryption using ESKE take O(λ) time. Also we assume
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the dictionary is implemented in such a way that dictionary lookups take constant

time (using hash tables, for example).

Efficient batch implementation of PRFs. Assuming the evaluation of a PRF

takes time linear in the length of its input, in a naive implementation of our scheme,

computing the PRFs f1(u) and f2(u) for all nodes u would take O(n2). This is because

even though there are only at most 2n nodes, the sum of the lengths of the strings

ρ̂(u) associated with the nodes u can be O(n2). Similarly, computing the PRFs used

for T1, . . . , Tm would take O(m2) time.

It turns out that we can take advantage of the way the strings we are applying

the PRFs to are related, to speed up the batch implementation of the PRFs for all

of the nodes of the tree. We will use two tools: the polynomial hash (defined in

Example 2.2.4) and suffix links (described below).

To compute the PRF of a string x, we will first hash x to λ bits using the polyno-

mial hash, and then apply the PRF (which takes time O(λ) on the hashed input). In

order to efficiently compute the hashes of all of the strings ρ̂(u), we use a trick that is

used in the Rabin-Karp rolling hash (see Cormen et al. [18],e.g.). (A rolling hash is a

hash function that can be computed efficiently on a sliding window of input; the hash

of each window reuses computation from the previous window.) The Rabin-Karp

hash is the polynomial hash, with each character of the string viewed as a coefficient

of the polynomial applied to the random key of the hash. The key observation is that

the polynomial hash H allows for constant-time computation of Hk(x1 . . . xn) from

Hk(x2 . . . xn), and also of Hk(x1 . . . xn) from Hk(x1 . . . xn−1). To see this, notice that

Hk(x1 . . . , xn) = x1 + k ·Hk(x2 . . . xn), and Hk(x1 . . . xn) = Hk(x1 . . . xn−1) + xnk
n−1.

Using this trick, for any string x of length `, we can compute the hashes Hk(x[1..i])

for all i = 1, . . . ,m in total time O(λm). Thus, the T1, . . . , Tm can be computed in

time O(λm).

In order to compute the hashes of ρ̂(u) for all nodes u in time O(n), we need

one more trick. Many efficient suffix tree construction algorithms include suffix links :

Each non-leaf node u with associated string ρ(u) = a||B, where a is a single character,
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has a pointer called a suffix link pointing to the node u′ whose associated string ρ(u′)

is B.

It turns out that connecting the nodes in a suffix tree using the suffix links forms

another tree, in which the parent of a node u is the node u′ to which u’s suffix link

points. To see this, notice that each internal node has an outgoing suffix link, and

each node’s suffix link points to a node with a shorter associated string of one fewer

character, so there can be no cycles.

Since ρ̂(u) = ρ(par(u))||u1, we can first compute the hashes of ρ(u) for all non-leaf

nodes u, and then compute ρ̂(u) for all nodes u in constant time from ρ(par(u)). To

compute ρ(u) for all nodes u, we traverse the tree formed by the suffix links, starting

at the root, and compute the hash of ρ(u) for each u using ρ(u′), where u′ is u’s

parent in the suffix link tree. Each of these computations takes constant time, since

ρ(u) is the same as ρ(u′) but with one character appended to the front. Therefore,

computing the hashes of ρ(u) for all non-leaf nodes u (and thus, computing the hashes

of ρ̂(u) for all nodes u) takes total time O(n).

Encryption efficiency. Using the efficient batch implementation of PRFs sug-

gested above, the PRFs f1(u) and f2(u) can be computed for all nodes u in the tree

in total time O(λn). Therefore, the dictionary D of 2n entries can be computed in

total time O(λn). The arrays C and L each have n elements and can be computed

in time O(λn). Therefore, encryption takes time O(λn) and the ciphertext is of size

O(λn).

Query protocol efficiency. In the query protocol, the client first computes T1, . . . , Tm.

Using the efficient batch PRF implementation suggested above, computing the f
(i)
1

and f
(i)
2 for i = 1, . . . ,m takes total timeO(m), and computing each ESKE.Enc(f

(i)
2 , f

(i)
1 )

takes O(λ) time, so the total time to compute T1, . . . , Tm is O(λm).

To find W , the server performs at most md decryptions and dictionary lookups,

which takes total time O(λm). The client then computes x1, . . . , xm and the server

retrieves C[x1], . . . , C[xm], in time O(m). If the answer is not ∅, the client then
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computes y1, . . . , ynum and the server retrieves L[y1], . . . , L[ynum ] in time O(num), in

time O(num). Thus, both the client and the server take computation time O(λm +

num) in the query protocol. (Since we are computing an upper bound on the query

computation time, we can ignore the possibility that the server cheats and the client

aborts the protocol by outputting ⊥.) The query protocol takes three rounds of

communication, and the total size of the messages exchanged is O(λm+ num).

2.12 Correctness Against Malicious Adversaries

We will show that EPM is correct against malicious adversaries.

Theorem 2.12.1. If ESKE is an authenticated encryption scheme, then EPM is correct

against malicious adversaries.

Proof. It is fairly straightforward to see that if the adversary executes AnswerQuery

honestly, then the client’s output will be correct.

We will argue that for each of the places where A could output an incorrect value,

the client will detect A’s cheating and output ⊥, with all but negligible probability.

Lemma 2.12.2. If ESKE is an authenticated encryption scheme, then if an adversary

A outputs an incorrect W in the query protocol, the client’s response to W will be ⊥,

with all but negligible probability.

Proof. In the protocol for a query p, the client runs ESKE.Dec(KD,W ) to get either

⊥ or a tuple X, which it parses as (ind , lpos , num, len, f1, f2,1, . . . , f2,d). The client

outputs ⊥ if any of the following events occur:

• (Event W.1) ESKE.Dec(KD,W ) = ⊥, or

• (Event W.2) W decrypts successfully, but f1 6= FK1(p[1..len]), or

• (Event W.3) W decrypts successfully and f1 = FK1(p[1..len]), but

ESKE.Dec(f2,i, Tj) 6= ⊥ for some i ∈ {1, . . . , d}, j > len.
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On the other hand, if the adversary cheats, then W is not the ciphertext in the

dictionary entry D(FK1(p[1..i])), where p[1..i] is the longest matching prefix of p,

which means one of the following events:

• (Event W.1′) W is not a ciphertext in D,

• (Event W.2′) W is a ciphertext in D but not for any prefix of p. That is,

W = D(κ) where κ is not equal to FK1(p[1..i]) for any i.

• (Event W.3′) W is a ciphertext in D for a prefix of p, but there is a longer

matching prefix of p. That is, W = D(FK1(p[1..i])) for some i, but there exists

a j > i such that there is an entry D(FK1(p[1..j])).

We want to show that if the adversary cheats, then the client will output ⊥.

If event W.1′ occurs, then we will show below that W.1 occurs with all but negli-

gible probability, by the ciphertext integrity of ESKE.

If event W.2′ occurs, then event W.2 occurs with all but negligible probability

upper bounded by 1/2λ, the probability that FK1(p[1..len]) = f1 when f1 is an inde-

pendent, random value.

If event W.3′ occurs, then clearly W.3 also occurs.

It remains to show that event W.1′ implies event W.1 with all but negligible

probability.

Suppose an adversary A causes event W.1′ but not event W.1. Then the W output

by A is not among the ciphertexts in the dictionary, but ESKE.Dec(KD,W ) 6= ⊥.

Then we can use A to construct an algorithm B that breaks ciphertext integrity of

ESKE. Algorithm B executes EPM honestly, except that in the encryption algorithm,

instead of generating each Wu as ESKE.Enc(KD, Xu), it queries its encryption oracle

on Xu and uses the resulting ciphertext as cj. Then, when A outputs W , B outputs

W in the ciphertext integrity game. Note that A’s view is the same as when it is

interacting with the real scheme EPM. If W is not among the ciphertexts in D, but

ESKE.Dec(KD,W ) 6= ⊥, then B wins the ciphertext integrity game. Therefore, if A

has probability ε of causing event W.1′ but not event W.1, B wins the ciphertext

integrity game with the same probability ε.

56



Lemma 2.12.3. If ESKE is an authenticated encryption scheme, then if an adver-

sary A outputs incorrect C1, . . . , Cm in the query protocol, the client’s response to

C1, . . . , Cm will be ⊥, with all but negligible probability.

Proof. In the query protocol, for each i, the client outputs ⊥ if either of the following

events occur:

• (Event C.1) ESKE.Dec(KC, Ci) = ⊥, or

• (Event C.2) ESKE.Dec(KC, Ci) = (p′i, j) where j is not the correct index.

On the other hand, if the adversary cheats and outputs incorrect C1, . . . , Cm, then

for some i, Ci 6= C[xi], which means either of the following events:

• (Event C.1′) Ci is not among C[1], . . . , C[n], or

• (Event C.2′) Ci = C[k] where k 6= xi.

We want to show that if the adversary cheats, then the client will output ⊥.

For any i, if event C.1′ occurs, then we will show below that event C.1 occurs with

all but negligible probability, by the ciphertext integrity of ESKE.

If event C.2′ occurs, then event C.2 occurs, since if Ci = C[k] for some k 6= xi, Ci

will decrypt to (sj, j) for an incorrect index j.

It remains to show that for any i event C.1′ implies event C.1, with all but neg-

ligible probability. Suppose an adversary A causes event C.1′ but not event C.1.

Then Ci is not among C[1], . . . , C[n], but ESKE.Dec(KC, Ci) 6= ⊥. Then we can use

A to construct an algorithm B that breaks ciphertext integrity of ESKE. B executes

EPM honestly, except that in the encryption algorithm, instead of generating each

cj as ESKE.Enc(KC, (sj, j)), it queries its encryption oracle on (sj, j) and uses the

resulting ciphertext as cj. Then, when A outputs C1, . . . , Cm, B chooses a random

i′
R← {1, . . . ,m} and outputs Ci′ in the ciphertext integrity game. Note that A’s view

is the same as when it is interacting with the real scheme EPM. If Ci is not among

C[1], . . . , C[n], but ESKE.Dec(KC, Ci) 6= ⊥, then B wins the ciphertext integrity game

if i′ = i. Therefore, if A has probability ε of causing event C.1′ but not event C.1 for

any i, B wins the ciphertext integrity game with probability at least ε/m.

57



Lemma 2.12.4. If ESKE is an authenticated encryption scheme, then if an adver-

sary A outputs incorrect L1, . . . , Lnum in the query protocol, the client’s response to

L1, . . . , Lnum will be ⊥, with all but negligible probability.

The proof is omitted, since it almost identical to the proof of Lemma 2.12.3.

We have shown that if an adversary A cheats when producing any of its outputs

to the client, the client will output ⊥ with all but negligible probability. Therefore,

EPM is correct against malicious adversaries.

2.13 Security

We now prove that our pattern matching encryption scheme satisfies malicious-

(L1,L2)-CQA2 security for certain leakage functions L1 and L2.

2.13.1 Leakage

Before we describe the leakage of our scheme, we define some relevant notions.

We say that a query p visits a node u in the suffix tree Trees for s if ρ̂(u) is a

prefix of p. For any j let pj denote the jth query, and let mj = |pj|. Let nj denote the

number of nodes visited by the query for pj in s, let uj,i denote the ith such node, and

let lenj,i = |ρ̂(uj,i)|. Let numj denote the number of occurrences of pj as a substring

of s. Let ind j denote the index ind in the ciphertext W returned by AnswerQuery

for pj. Note that ind j is the index in s of the longest matching prefix of pj, which is

also the index in s of the longest prefix of pj that is a substring of s. Let lposj denote

the leaf index lpos in the ciphertext W returned by AnswerQuery for pj. If pj is a

substring of s, lposj is equal to the position (between 1 and n, from left to right) of

the leftmost leaf ` for which pj is a prefix of ρ̂(`).

The query prefix pattern for a query pj tells which of the previous

queries p1, . . . , pj−1 visited each of the nodes visited by pj.

Definition 2.13.1 (Query prefix pattern). The query prefix pattern QP(s, p1, . . . , pj)

is a sequence of length nj, where the ith element is a list listi of indices j′ < j such
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that the j′th query also visited uj,i.

The index intersection pattern for a query pj essentially tells when any of the in-

dices ind j, . . . , ind j + mj − 1 are equal to or overlap with any of the

indices ind i, . . . , ind i +mi − 1 for any previous queries pi.

Definition 2.13.2 (Index intersection pattern). The index intersection pattern

IP(s, p1, . . . , pj) is a sequence of length j, where the ith element is equal to

r1[{ind i, . . . , ind i +mi − 1}] for a fixed random permutation r1 : [n]→ [n].

The leaf intersection pattern for a query pj essentially tells when any of the leaf

positions lposj, . . . , lposj + numj − 1 are equal to or overlap with any of the leaf

positions lpos i, . . . , lpos i + num i − 1 for any previous queries pi.

Definition 2.13.3 (Leaf intersection pattern). The leaf intersection pattern

LP(s, p1, . . . , pj) is a sequence of length j, where the ith element is equal to

r2[{lpos i, . . . , lpos i + numi − 1}] for a fixed random permutation r2 : [n]→ [n].

The leakage of the scheme EPM is as follows. L1(s) is just n = |s|. L2(s, p1, . . . , pj)

consists of

(mj = |pj|, {lenj,i}
nj

i=1, QP(s, p1, . . . , pj), IP(s, p1, . . . , pj), LP(s, p1, . . . , pj)) .

For example, consider the string s “cocoon” (whose suffix tree is shown in Figure 2-

1) and a sequence of three queries, p1 = “co”, p2 = “coco”, and p3 = “cocoa”. Then

the leakage L1(s) is n = 6.

The query for “co” visits node u2, the retrieved indices into s are 1, 2, and the re-

trieved leaf positions are 1, 2. The query for “coco” visits nodes u2 and u3, the indices

retrieved are 1, 2, 3, 4, and the leaf positions retrieved are 1. The query for “cocoa”

visits nodes u2 and u3, the indices retrieved are 1, 2, 3, 4, 5, and no leaf positions are

retrieved (because there is not a match).

Thus, the leakage L2(s, p1, p2, p3) consists of:

• the lengths 2, 4, 5 of the patterns,
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• the query prefix pattern, which says that p1, p2, p3 visited the same first node,

and then p2 and p3 visited the same second node,

• the index intersection pattern, which says that two of the indices returned for p2

are the same as the two indices returned for p1, and four of the indices returned

for p3 are the same as the four indices returned for p2, and

• the leaf intersection pattern, which says that the leaf returned for p2 is one of

the two leaves returned for p1.

2.13.2 Malicious (L1,L2)-CQA2 Security

Theorem 2.13.4. Let L1 and L2 be defined as in Section 2.13.1. If F is a PRF, P

is a PRP, and ESKE is a CPA-secure, key-private symmetric-key encryption scheme,

then the pattern matching encryption scheme EPM satisfies malicious (L1,L2)-CQA2

security.

Proof. We define a simulator S that works as follows. S first chooses random keys

KD,KC,KL
R← {0, 1}λ.

Ciphertext. Given L1(s) = n, S constructs a simulated ciphertext as follows.

1. Construct a dictionary D as follows. For i = 1, . . . , 2n, choose fresh random val-

ues κi, f2,1, . . . , f2,d,
R← {0, 1}λ, and store Vi = (f2,1, . . . , f2,d,W = ESKE.Enc(KD, 0))

with search key κi in D.

2. Choose an arbitrary element σ0 ∈ Σ. Construct an array C, where C[i] =

ESKE.Enc(KC, (σ0, 0)) for i = 1, . . . , n.

3. Construct an array L, where L[i] = ESKE.Enc(KL, 0) for i = 1, . . . , n.

Output CT = (D,C, L).
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Tables. In order to simulate the query protocol, S will need to do some bookkeep-

ing.

S will maintain two tables T1 and T2, both initially empty. T1 contains all currently

defined tuples (i, j, κ) such that the entry in D with search key κ represents the jth

node visited by the ith query. We write T1(i, j) = κ if (i, j, κ) is an entry in T1.

T2 contains all currently defined tuples (κ, f2, f lag, f lag1, . . . , f lagd), where for

the node u represented by the entry D(κ), κ = f1(u), f2 = f2(u), flag indicates

whether u has been visited by any query, and flagi indicates whether child(u, πu(i))

has been visited. The value of each flag is either “visited” or “unvisited”. We write

T2(κ) = (f2, f lag, f lag1, . . . , f lagd) if (κ, f2, f lag, f lag1, . . . , f lagd) is an entry in T2.

Choose an arbitrary entry (κ∗, V ∗) in D to represent the root node of Trees. In

T2(κ), set all flags to “unvisited” and set f2 = 0. (The f2 for the root node will never

be used, so it is fine to set it to 0.) Define T1(i, 0) = κ∗ for any i.

Query protocols. For the jth token query pj, S is given L2(s, p1, . . . , pj), which

consists ofmj = |pj|, {lenj,i}
nj

i=1, QP(s, p1, . . . , pj), IP(s, p1, . . . , pj), and LP(s, p1, . . . , pj).

For t = 1, . . . , nj, if listt = QP(pj, s)[t] is non-empty (i.e., the node uj,t was visited

by a previous query), let j′ be one of the indices in listt. Let κ = T1(j′, t) and let

(f2, f lag, f lag1, . . . , f lagd) = T2(κ). Tlenj,t
= ESKE.Enc(f2, κ). Set T1(j, t) = κ.

If instead listt is empty, choose a random unused entry (κ, V ) in D to represent the

node uj,t, and set T1(j, t) = κ. Let κ′ = T1(j, t−1) and let (f2, f lag, f lag1, . . . , f lagd) =

T2(κ′). Choose a random i ∈ {1, . . . , d} such that flagi is “unvisited”, and set flagi

to “visited”. Let f2,i be D(κ′).f2,i. Set Tlent = ESKE.Enc(f2,i, κ), set T2(κ).f2 = f2,i,

set T2(κ).f lag to “visited”, and set T2(κ).f lagi to “unvisited” for i = 1, . . . , d.

For any i 6= lent for any t = 1, . . . , nj, choose a random f2
R← {0, 1}λ, and let

Ti = ESKE.Enc(f2, 0).

Send (T1, . . . , Tm) to the adversary.

Upon receiving a W from the adversary, check whether W = D(T1(j, nj)).W . If

not, output ⊥. Otherwise, let (x1, . . . , xm) be a random ordering of the elements of

the set IP(pj, s)[j], and send (x1, . . . , xm) to the adversary.
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Upon receiving C1, . . . , Cm from the adversary, check whether Ci = C[xi] for each

i. If not, output ⊥. Otherwise, let (y1, . . . , ynum) be a random ordering of the elements

of LP(pj, s)[j], and send (y1, . . . , ynum) to the adversary.

Upon receiving L1, . . . , Lnum from the adversary, check whether Li = L[yi] for

each i. If not, output ⊥.

This concludes the description of the simulator S.

Sequence of games. We now show that the real and ideal experiments are indis-

tinguishable by any PPT adversary A except with negligible probability. To do this,

we consider a sequence of games G0, . . . , G16 that gradually transform the real exper-

iment into the ideal experiment. We will show that each game is indistinguishable

from the previous one, except with negligible probability.

Game G0. This game corresponds to an execution of the real experiment, namely,

• The challenger begins by running Gen(1λ) to generate a key K.

• The adversary A outputs a string s and receives CT ← Enc(K, s) from

the challenger.

• A adaptively chooses patterns p1, . . . , pq. For each pi, A first interacts

with the challenger, who is running IssueQuery(K, pi) honestly. Then A

outputs a description of a function gi, and receives gi(A1, . . . , Ai) from the

challenger, where Ai is the challenger’s private output from the interactive

protocol for pi.

Game G1. This game is the same as G0, except that in G1 the challenger is replaced

by a simulator that does not generate keys K1, K2 and replaces FK1 and FK2

with random functions. Specifically, the simulator maintains tables R1, R2,

initially empty. Whenever the challenger in G0 computes FKi
(x) for some x,

the simulator uses Ri(x) if it is defined; otherwise, it chooses a random value

from {0, 1}λ, stores it as Ri(x), and uses that value.

A hybrid argument shows that G1 is indistinguishable from G0 by the PRF

property of F .
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Lemma 2.13.5. If F is a PRF, then G0 and G1 are indistinguishable, except

with negligible probability.

Proof. We consider a hybrid game H1. H1 is the same as G0 except that it uses

R1 in place of FK1 .

Suppose an adversary A can distinguish G0 from H1. Then we can construct an

algorithm B that attacks the PRF property of F with the same advantage. B

acts as A’s challenger in G0, except that whenever there is a call to FK1(x), B

queries its oracle on x. When A outputs a guess bit, B outputs the same guess

bit. If B’s oracle is a function from F , A’s view will be the same as in game

G0, while if it is a random function, A’s view will be the same as in game H1.

Thus, B answers its challenge correctly whenever A does, and breaks the PRF

property of F with the same advantage that A distinguishes games G0 and H1.

A similar argument shows that games H1 and G1 are indistinguishable by the

PRF property of F . Thus, we conclude that G0 and G1 are indistinguishable.

Game G2. This game is the same as G1, except that in G2 the simulator does not

generate keys K3, K4 and replaces PK3 and PK4 with random permutations.

Specifically, the simulator maintains tables R3 and R4, initially empty. When-

ever the simulator in G1 computes PKi
(x) for some x, the simulator in G2 uses

Ri(x), if it is defined; otherwise, it chooses a random value in [n] that has not

yet been defined as Ri(y) for any y, and uses that value.

A hybrid argument similar to the one used for G0 and G1 shows that G1 and

G2 are indistinguishable by the PRP property of P .

Lemma 2.13.6. If P is a PRP, then G2 and G1 are indistinguishable, except

with negligible probability.

Proof. We consider a hybrid game H1. Game H1 is the same as G1 except that

it uses R3 in place of PK3 .
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Suppose A can distinguish G0 from H1. Then we can construct an algorithm

B that attacks the PRF property of F with the same advantage. B acts as A’s

challenger in G1, except that whenever there is a call to PK3(x), B queries its

oracle on x. When A outputs a guess bit, B outputs the same guess bit. If B’s

oracle is a function from P , A’s view will be the same as in game G1, while if

it is a random permutation, A’s view will be the same as in game H1. Thus, B

answers its challenge correctly whenever A does, and breaks the PRP property

of P with the same advantage that A distinguishes games G1 and H1.

A similar argument shows that games H1 and G2 are indistinguishable by the

PRP property of P . Thus, we conclude that G1 and G2 are indistinguishable.

Game G3. This is the same as G2, except that we modify the simulator as follows.

For any query, when the simulator receives C1, . . . , Cm from the adversary in

response to indices x1, . . . , xm, the simulator’s decision whether to output ⊥ is

not based on the decryptions of C1, . . . , Cm. Instead, it outputs ⊥ if Ci 6= C[xi]

for any i. Otherwise, the simulator proceeds as in G2.

We argue that games G3 and G2 are indistinguishable by the ciphertext integrity

of ESKE.

Lemma 2.13.7. If ESKE has ciphertext integrity, then G2 and G3 are indistin-

guishable, except with negligible probability.

Proof. We analyze the cases in which G2 and G3 each output ⊥ in response to

C1, . . . , Cm.

For each i, G2 outputs ⊥ if either of the following events occur:

• (Event C.1) ESKE.Dec(KC, Ci) = ⊥, or

• (Event C.2) ESKE.Dec(KC, Ci) = (p′i, j) where j is not the correct index.

For each i, G3 outputs ⊥ if Ci 6= C[xi], which happens if either of the following

events occur:
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• (Event C.1′) Ci is not among C[1], . . . , C[n], or

• (Event C.2′) Ci = C[k] where k 6= xi.

If G3 outputs ⊥ for some i then G2 outputs ⊥ except with negligible probability,

as we already showed by ciphertext integrity of ESKE in Lemma 2.12.3 in the

proof of correctness of EPM against malicious adversaries.

If G2 outputs ⊥, if event C.1 occurred, then C.1′ also occurred, since Ci will

decrypt successfully if it is one of C[1], . . . , C[n]. If event C.2 occurred, then

either C.1′ or C.2′ occurred, since Ci will decrypt to the correct value if Ci =

C[xi]. Therefore, if G2 outputs ⊥ for some i, so does G3.

Thus, G2 and G3 are indistinguishable except with negligible probability.

Game G4. This game is the same as G3, except for the following differences. The

simulator does not decrypt the C1, . . . , Cm from the adversary. For any query p,

instead of deciding whether to output ∅ based on the decryptions of C1, . . . , Cm,

the simulator outputs ∅ if p is not a substring of s. Otherwise, the simulator

proceeds as in G3.

As we showed in Lemmas 2.12.2 and 2.12.3, if the adversary does not send

the correct W , the client will respond with ⊥, and if the adversary does not

send the correct C1, . . . , Cm, the client will also respond with ⊥. Therefore,

if the simulator has not yet output ⊥ when it is deciding whether to output

∅, then C1, . . . , Cm are necessarily the correct ciphertexts, and the decryptions

p′1, . . . , p
′
m computed in G3 match p if and only if p is a substring of s. Therefore,

G3 and G4 are indistinguishable.

Game G5 . This game is the same as G4, except that in G5, for i = 1, . . . , n, instead

of setting ci = ESKE.Enc(KC, (si, i)), the simulator sets ci = ESKE.Enc(KC, (σ0, 0)),

where σ0 is an arbitrary element of Σ.

Note that in both G4 and G5, KC is hidden and the ci’s are never decrypted.

A hybrid argument shows that games G4 and G5 are indistinguishable by CPA

security of ESKE.

65



Lemma 2.13.8. If ESKE is a CPA-secure encryption scheme, then G4 and G5

are indistinguishable, except with negligible probability.

Proof. We show this via a series of n + 1 hybrid games H0, . . . , Hn. Let σ0

be an arbitrary element of Σ. In Hi, during the encryption phase, for i′ ≤ i,

the simulator computes ci′ as ESKE.Enc(KC, (σ0, 0)). For i′ > i, it computes ci′

as ESKE.Enc(KC, (si′ , i
′)). The rest of the game proceeds as in G4. Note that

H0 = G4 and Hn = G5.

If there is an adversaryA that can distinguish Hi−1 from Hi for any i ∈ {1 . . . n},

then we can construct an algorithm B that attacks the CPA security of ESKE

with the same advantage.

B acts as the simulator in Hi−1, with the following exceptions. During the

encryption phase, for i′ < i, B generates ci′ by querying the encryption oracle

on (σ0, 0), and for i′ > i, B generates ci′ by querying the encryption oracle

on (si′ , i
′). B outputs (si, i), (σ0, 0) as its challenge, and uses the challenge

ciphertext as ci.

Now, if B’s challenger returns an encryption of (si, i), then A’s view will be

the same as in Hi−1, while if the challenger returns an encryption of (σ0, 0),

then A’s view will be the same as in Hi. Thus, B answers its challenge correctly

whenever A does, and breaks the CPA security of ESKE with the same advantage

that A distinguishes games Hi−1 and Hi.

Since there are a polynomial number of games H0, . . . , Hn, we conclude that

H0 = G4 and Hn = G5 are indistinguishable.

Game G6. This game is the same as G5, except that we eliminate the use of the ran-

dom permutation R3, in the following way. For i = 1, . . . , n, the simulator set

C[i] = ci instead of C[R3(i)] = ci, where ci = ESKE.Enc(KC, (σ0, 0)). Further-

more, for any query pj, the simulator is given an additional input IP(s, p1, . . . , pj)

(as defined in Section 2.13.1). To generate (x1, . . . , xm) in the query protocol,

the simulator outputs a random ordering of the elements in IP(s, p1, . . . , pj)[j].
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Since each ci is an encryption under KC of (σ0, 0), it does not matter whether

the ci’s are permuted in C; if we permute the ci’s or not, the result is indistin-

guishable. After we eliminate the use of R3 in generating C, R3 is only used by

the simulator to compute (x1, . . . , xm). Thus, we can replace the computation

of (x1, . . . , xm) for each query pj with a random ordering of the elements of

IP(s, p1, . . . , pj)[j], and the result will be indistinguishable.

Game G7. This is the same as G6, except that we modify the simulator as follows.

For any query, when the simulator receives L1, . . . , Lnum from the adversary in

response to indices y1, . . . , ynum , the simulator’s decision whether to output ⊥

is not based on the decryptions of the L1, . . . , Lnum ; instead, it outputs ⊥ if

Li 6= L[yi] for any i; otherwise, it proceeds to compute the answer A as in G6.

A hybrid argument shows that games G6 and G7 are indistinguishable by the

ciphertext integrity of ESKE.

Lemma 2.13.9. If ESKE has ciphertext integrity, then G6 and G7 are indistin-

guishable, except with negligible probability.

The proof is omitted since it is nearly identical to the proof for G2 and G3.

Game G8. This game is the same as G7, except for the following differences. The

simulator does not decrypt the L1, . . . , Lnum from the adversary. For any query

pj, instead of computing the answer Aj using the decryptions of L1, . . . , Lnum ,

if Aj has not already been set to ⊥ or ∅, the simulator sets Aj = F(s, pj).

As we showed in Lemmas 2.12.2, 2.12.3, and 2.12.4, if any of the W , C1, . . . , Cm

or L1, . . . , Lnum from the adversary are incorrect, the client will respond to

the incorrect message with ⊥. Therefore, if the simulator has not yet output

⊥ when it is computing Aj, then the adversary has executed AnswerQuery

honestly, and Aj = F(s, pj) (by correctness of EPM). Therefore, G7 and G8 are

indistinguishable.

Game G9. This game is the same as G8, except that in G9, for each i = 1, . . . , n, the

simulator generates each `i as ESKE.Enc(KL, 0) instead of ESKE.Enc(KL, (ind leaf i , i)).
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A hybrid argument shows that G8 and G9 are indistinguishable by the CPA

security of ESKE.

Lemma 2.13.10. If ESKE is a CPA-secure encryption scheme, then G8 and G9

are indistinguishable, except with negligible probability.

The proof is omitted since it is nearly identical to the proof for G4 and G5.

Game G10. This game is the same as G9, except that we eliminate the use of the

random permutation R4, in the following way. For i = 1, . . . , n, the simulator

set L[i] = `i instead of L[R4(i)] = `i, where `i = ESKE.Enc(KL, 0). Furthermore,

for any query pj, the simulator is given an additional input LP(s, p1, . . . , pj) (as

defined in Section 2.13.1). To generate (y1, . . . , ynum) in the query protocol, the

simulator outputs a random ordering of the elements in LP(s, p1, . . . , pj)[j].

The argument for game G10 is analogous to the one for game G6. Since each `i is

an encryption under KL of 0, it does not matter whether the `i’s are permuted

in L; if we permute the `i’s or not, the result is indistinguishable. After we

eliminate the use of R4 in generating L, R4 is only used by the simulator to

compute (y1, . . . , ynum). Thus, we can replace the computation of (y1, . . . , ynum)

for each query pj with a random ordering of the elements of LP(s, p1, . . . , pj)[j],

and the result will be indistinguishable.

Game G11. This is the same as G10, except that we modify the simulator as follows.

For any query, when the simulator receives a W from the adversary in response

to T1, . . . , Tm, the simulator’s decision whether to output ⊥ will not based on

the decryption of W . Instead, it will output ⊥ if W is not the ciphertext in the

dictionary entry D(R1(p[1..i])), where p[1..i] is the longest matching prefix of

p. Otherwise, the simulator proceeds as in G10.

We argue that games G10 and G11 are indistinguishable by the ciphertext in-

tegrity of ESKE.

Lemma 2.13.11. If ESKE has ciphertext integrity, then G10 and G11 are indis-

tinguishable, except with negligible probability.
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Proof. We analyze the cases in which G10 and G11 each output ⊥ in response

to a W .

G10 runs ESKE.Dec(KD,W ) to get either ⊥ or a tuple X, which it parses as

(ind , lpos , num, len, f1, f2,1, . . . , f2,d). G10 outputs ⊥ if any of the following

events occur:

• (Event L.1) ESKE.Dec(KD,W ) = ⊥, or

• (Event L.2) W decrypts successfully, but f1 6= R1(p[1..len]), or

• (Event L.3) W decrypts successfully and f1 = R1(p[1..len]), but

ESKE.Dec(f2,i, Tj) 6= ⊥ for some i ∈ {1, . . . , d}, j > len.

G11 outputs ⊥ if W is not the ciphertext in the dictionary entry D(R1(p[1..i])),

where p[1..i] is the longest matching prefix of p, which is the case if any of the

following events occur:

• (Event L.1′) W is not a ciphertext in D,

• (Event L.2′) W is a ciphertext in D but not for any prefix of p. That is,

W = D(κ) where κ is not equal to R1(p[1..i]) for any i.

• (Event L.3′) W is a ciphertext in D for a prefix of p, but there is a longer

matching prefix of p. That is, W = D(R1(p[1..i])) for some i, but there

exists a j > i such that there is an entry D(R1(p[1..j])).

If G11 outputs ⊥ in response to W for any query, then G10 also outputs ⊥

except with negligible probability, as we already showed by ciphertext integrity

of ESKE in Lemma 2.12.2 in the proof of correctness of EPM against malicious

adversaries.

If G10 outputs ⊥, then G11 also outputs ⊥, since if W is the ciphertext in

D(R1(p[1..i])), then W will decrypt successfully, with f1 = R1(p[1..len]), and

ESKE.Dec(f2,k, Tj) = ⊥ for all k ∈ {1, . . . , d}, j > i.

Thus, G10 and G11 are indistinguishable except with negligible probability.
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Game G12. This is the same as G11, except that the simulator in G12 does not

decrypt the W from the adversary in the query protocol.

Since the simulator in G11 no longer uses any values from the decryption of W ,

G12 is indistinguishable from G11.

Game G13. This is the same as G12, except that in G13, for each node u the simulator

generates Wu as ESKE.Enc(KD, 0) instead of ESKE.Enc(KD, Xu).

A hybrid argument shows that G12 and G13 are indistinguishable by the CPA

security of ESKE.

Lemma 2.13.12. If ESKE is a CPA-secure encryption scheme, then G12 and

G13 are indistinguishable, except with negligible probability.

The proof is omitted since it is nearly identical to the proof for G4 and G5.

Game G14. This is the same as game G13, except that in the query protocol, for

any non-matching prefix p[1..i], the simulator replaces Ti with an encryption

under a fresh random key. That is, for any query p, for any prefix p[1..i],

i = 1, . . . ,m, if p[1..i] is a non-matching prefix, the simulator chooses a fresh

random value r and sets Ti ← ESKE.Enc(r, R1(p[1..i])); otherwise, it sets Ti ←

ESKE.Enc(R2(p[1..i]), R1(p[1..i])) as in game G13.

For any k and i, let pk denote the kth query, and let Tk,i denote the Ti produced

by the simulator for the kth query. The only way an adversary A may be able

to tell apart G13 and G14 is if two queries share a non-matching prefix; that is,

there exist i, j, j′ such that j 6= j′ and pj[1..i] = pj′ [1..i]. In this case, G14 will

use different encryption keys to generate Ti,j and Ti,j′ , while G13 will use the

same key. Note that the decryption keys for Ti,j and Ti,j′ will never be revealed

to A in either game. Thus, a hybrid argument shows that G13 and G14 are

indistinguishable by the which-key-concealing property of ESKE.

Lemma 2.13.13. If ESKE is a which-key-concealing encryption scheme, then

games G13 and G14 are indistinguishable, except with negligible probability.
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Proof. Suppose there exists an adversary A that can distinguish G13 and G14.

Let qmax be an upper bound on the number of queries A chooses, and let mmax

be an upper bound on the length of A’s queries, where qmax and mmax are

polynomial in λ.

Consider the following sequence of qmax(mmax + 1) hybrid games. For each

i ∈ {0, . . . ,mmax}, j ∈ {1, . . . , qmax}, game Hi,j is the same as G13, with the

following exceptions.

• For j′ < j, for each i′, if pj′ [1..i
′] is non-matching, choose a fresh random

value r and set Tj′,i′ ← ESKE.Enc(r, R1(pj′ [1..i])), as in game G14.

• For the jth query pj, for i′ ≤ i, if pj[1..i
′] is non-matching, again choose a

fresh random value r and set Tj,i′ ← ESKE.Enc(r, R1(pj[1..i
′])), as in game

G14.

Note that H0,1 = G13 and Hmmax,qmax = G14.

Now, we argue that if there is an adversary A that can distinguish Hi−1,j from

Hi,j for any i ∈ {1, . . . ,mmax}, j ∈ {1, . . . , qmax}, then we can construct an

algorithm B that attacks the which-key-concealing property of ESKE with the

same advantage.

B will act as the simulator in Hi−1,j, with the following exception. If pj[1..i] is

non-matching, B first queries its left encryption oracle on R1(pj[1..i]) and sets

Tj,i to the resulting ciphertext. B then remembers pj[1..i], and for any later

queries pj′ that share the prefix pj[1..i], B queries its right oracle on R1(pj[1..i])

and uses the resulting ciphertext as Tj′,i. Otherwise, B proceeds as in Hi−1,j.

Now, if both of B’s encryption oracles are for the same key, then Tj,i and the

Tj′,i for all future queries p′j that share the prefix pj[1..i] will be encrypted under

the same random key, and A’s view will be the same as in Hi−1,j. On the other

hand, if the two encryption oracles are for different keys, then Tj,i will have

been generated using a different random key from that used to generate Tj′,i

for all future queries pj′ that share the prefix pj[1..i], and A’s view will be the
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same as in Hi,j.

Note that if pj[1..i] is a matching prefix, so B does not output a challenge, then

Hi−1,j and Hi,j are identical, so A’s view is the same as in both Hi−1,j and Hi,j.

Thus, Hi−1,j and Hi,j are indistinguishable by the key hiding property of ESKE.

We can show by a very similar reduction that games Hmmax,j and H1,j+1 are

indistinguishable. Since there are a polynomial number of hybrid games, we

conclude then that games H0,1 = G13 and Hmmax,qmax = G14 are indistinguish-

able.

Game G15. This is the same as game G14, except that in the query protocol for any

pattern p, for any non-matching prefix p[1..i], the simulator replaces Ti with an

encryption of 0. That is, for any query p, for any prefix p[1..i], i = 1, . . . ,m, if

p[1..i] is non-matching, the simulator chooses a fresh random value r and sets

Ti ← ESKE.Enc(r, 0); otherwise, it sets Ti ← ESKE.Enc(r, R1(p[1..i])) as in game

G14.

The only way an adversary A may be able to tell apart G14 and G15 is if a

prefix pj[1..i] is non-matching. In this case, in G14, Tj,i will be an encryption of

0, while in G15, Tj,i will be an encryption of R1(pj[1..i]). The decryption key for

Tj,i will never be revealed to A in either game. Thus, a hybrid argument shows

that games G14 and G15 are indistinguishable by the CPA security of ESKE.

Lemma 2.13.14. If ESKE is a CPA-secure encryption scheme, then games G14

and G15 are indistinguishable, except with negligible probability.

Proof. Suppose there exists an adversary A that can distinguish G14 and G15.

Let qmax be an upper bound on the number of queries that A chooses, and let

mmax be an upper bound on the length of A’s queries, where qmax and mmax

are polynomial in λ.

We consider a sequence of qmax(mmax + 1) hybrid games. For each

i ∈ {0, . . . ,mmax}, j ∈ {1, . . . , qmax}, game Hi,j is the same as G14, with the

following exceptions.
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• For j′ < j, for each i′, if pj′ [1..i
′] is non-matching, choose a fresh random

value r and set Tj′,i′ ← ESKE.Enc(r, 0), as in game G15.

• For the jth query pj, for i′ ≤ i, if pj[1..i
′] is non-matching, again choose a

fresh random value r and set Tj,i ← ESKE.Enc(r, 0) as in game G15.

Note that H0,1 = G14 and Hmmax,qmax = G15.

Now, we argue that if there is an adversary A that can distinguish Hi−1,j from

Hi,j for any i ∈ {1, . . . ,mmax}, j ∈ {1, . . . , qmax}, then we can construct an

algorithm B that attacks the CPA security of ESKE with the same advantage.

B acts as the simulator in Hi−1,j, with the following exception. If pj[1..i] is non-

matching, it chooses a fresh random value r and outputs r, 0 as its challenge in

the CPA-security game, and sets Ti,j to be the resulting ciphertext. Otherwise,

B proceeds as in Hi−1,j. Note that in both Hi−1,j and Hi,j, the random key r is

used to encrypt only one ciphertext.

Now, if the CPA-security challenger gave B an encryption of r, then A’s view

will be the same as in Hi−1,j. On the other hand if the CPA-security challenger

returned an encryption of 0, then A’s view will be the same as in Hi,j.

Note that if pj[1..i] is a matching prefix, so B does not produce a challenge,

then Hi−1,j and Hi,j are identical, so A’s view is the same as in both Hi−1,j and

Hi,j. Thus, Hi−1,j and Hi,j are indistinguishable by the CPA security of ESKE.

We can show by a very similar reduction that games Hmmax,j and H1,j+1 are

indistinguishable. Since there are a polynomial number of hybrid games, we

conclude then that games H0,1 = G14 and Hmmax,qmax = G15 are indistinguish-

able.

Game G16. This is the final game, which corresponds to an execution of the ideal

experiment. In G16, the simulator is replaced with the simulator S defined

above.

The differences between G15 and G16 are as follows. In G16, the simulator no

longer uses the string s when creating the dictionary D, and for each query p, it
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no longer uses p when creating T1, . . . , Tm. When constructing D, whenever the

simulator in G15 generates a value by applying a random function to a string,

S generates a fresh random value without using the string. Note that all of the

ρ̂(u) strings used in D are unique, so S does not need to ensure consistency

between any of the random values. Then, for any query pj, for each matching

prefix pj[1..i], S constructs Ti to be consistent with D and with prefix queries

using the query prefix pattern QP(s, p1, . . . , pj). While the simulator in G15

associates entries in D to strings when it first constructs D, S associates entries

in D to strings as it answers each new query. However, both simulators produce

identical views.

2.14 Conclusion

We presented a definition of queryable encryption schemes and defined security against

both honest-but-curious and malicious adversaries making chosen query attacks. Our

security definitions are parameterized by leakage functions that specify the informa-

tion that is revealed about the message and the queries by the ciphertext and the

query protocols.

We constructed an efficient pattern matching scheme – a queryable encryption

scheme that supports finding all occurrences of a pattern p in an encrypted string s.

Our approach is based on suffix trees. Our construction uses only basic symmetric-key

primitives (pseudorandom functions and permutations and an authenticated, which-

key-concealing encryption scheme). The ciphertext size and encryption time are

O(λn) and query time and message size are O(λm + k), where λ is the security

parameter, n is the length of the string, m is the length of the pattern, and k is the

number of occurrences of the pattern. Querying requires only 3 rounds of communi-

cation.

While we have given a formal characterization of the leakage of our pattern match-

ing scheme, it is an open problem to analyze the practical cost of the leakage. Given
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the leakage from several “typical” queries, what can a server infer about the mes-

sage and the queries? For some applications, the efficiency may be worth the leakage

tradeoff, especially in applications where current practice does not use encryption at

all.
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Chapter 3

Strategic Range Voting and

Approval Voting

3.1 Introduction

In this chapter, we study two voting systems: range voting and approval voting.

In range voting, studied in detail by Smith [53], the voter gives each alternative

a score in some fixed range (e.g., between 0 and 1). In approval voting, studied

in detail by Brams and Fishburn [13], the voter “approves” or “disapproves” each

alternative. That is, the voter gives each alternative a score of either 0 or 1. Range

voting allows several (or infinitely many) possible scores, while approval voting allows

only two scores; thus, approval voting can be thought of as a special case of range

voting. Range voting provides added expressiveness over approval voting. Thus, it is

natural to ask when and whether this added expressiveness is beneficial to a rational

(strategic) voter. That is, when would a strategic range voter, with some model

of information about the other votes, want to give some alternatives intermediate

scores, and when would she want to give each alternative either the maximum or the

minimum score (voting “approval-style”)? This question was studied previously by

Warren Smith and others (see Smith’s summary [51]). In this chapter, we study this

question more formally and generally.

We first review related results on strategic voting in some simple models of voter
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information. We then show, for a more general model of information, that in the limit

as the number of voters grows large, a rational range voter, maximizing her expected

utility, will want to vote approval-style. Thus, in some sense, in most cases the added

expressiveness of range voting is not beneficial to a rational voter, and in fact a voter

using the intermediate scores in the range is not voting in her best interest.

Next, we propose a more concrete class of functions, beta distributions, as a

reasonable and interesting model for voter information. A beta distribution can

be used to model a posterior probability distribution on the average score for each

alternative after seeing a given number of approvals and disapprovals from pre-election

polls, given a uniform prior.

The rest of this chapter is organized as follows. In Section 3.2 we review notation

and definitions. In Section 3.3 we describe some related known results about strate-

gic range and approval voting. In Section 3.4 we present our general model for voter

information; in Section 3.5 we describe optimal range voting in this model, showing

that it can be achieved by approval-style voting. Section 3.6 describes beta distribu-

tions as a way to model information about other votes. Sections 3.7 gives conclusions

and open problems.

3.2 Preliminaries

Ballots, profiles, and alternatives. We consider an election which uses a profile

P = (B1, . . . , Bn) containing n ballots (a.k.a. votes) to determine a winner from a set

A = {A1, . . . , Am} of m alternatives.

Range voting and approval voting. For both range voting and approval voting,

a ballot Bi is a vector of m numbers (called “scores”):

Bi = (Bi,1, Bi,2, . . . , Bi,m) .

Each component Bi,j is the level of support the ballot Bi expresses for alternative Aj;

larger numbers indicate greater support.
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In range voting, each score Bi,j is a number in the range from some bmin up to some

bmax. The scores may be allowed to be any real number in the interval [bmin, bmax], or

they may be restricted to integers in that range, depending on the version of range

voting that is used. We will let the scores be any real number in [bmin, bmax]. Without

loss of generality, we let bmin = 0 and bmax = 1.

In approval voting, each score Bi,j is either 0 or 1. A ballot Bi indicates approval

of those alternatives Aj for which Bi,j = 1 and disapproval of those alternatives Aj

for which Bi,j = 0. Approval voting can be thought of as a special case of range

voting with only two allowed scores.

For both range and approval voting, a winning alternative is one with maximum

total score, summed over the votes cast. That is, for j = 1, . . . ,m, let Xj = Σn
i=1Bi,j.

Then the winner is one of the alternatives Aj for which Xj = max{X1, . . . , Xm}. We

assume ties are broken uniformly at random (although other tie-breaking rules could

be used).

Clearly, a voter can ignore the additional expressive freedom allowed by range

voting, and give each alternative a score of either 0 or 1, effectively reducing the

range voting ballot to just an approval voting ballot, i.e., voting “approval-style”.

(For range voting, we will sometimes use “approve” to mean “give the maximum

score (1) to” and “disapprove” to mean “give the minimum score (0) to”.)

Our main question here is: in a range voting election, when would a voter want

to vote approval-style?

Other n− 1 voters. We will consider a single voter Alice who is determining how

best to vote. For notational purposes, we will assume Alice is the last of the n

voters and casts ballot Bn. Let X ′j = Σn−1
i=1 Bi,j denote the sum of the scores given to

alternative Aj by the other n− 1 voters.

The actual order in which the voters cast their ballots is unimportant. We just

need that the other votes do not depend on Alice’s vote. Although we say Alice is

the last voter, Alice does not see the previous votes, and instead she has only some

partial information or beliefs (the modeling of which we will discuss later) about the
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other votes.

Utilities. We make use of utility functions, as developed in the utility theory of

von Neumann and Morgenstern [58]. We assume that Alice has a utility ui for the

outcome that Ai is the winner, for each i. Let u = (u1, u2, . . . , um). Alice prefers

alternative Aj to alternative Ak if uj > uk. In game-theoretic terms, uij is the payoff

to voter i if alternative Aj wins.

We assume that Alice’s utilities are a function of only the selected winner; no

utility is derived from other factors such as the actual number of votes any alternative

receives, the act of voting “sincerely”, etc.

We assume that Alice is rational, meaning that she votes in a way that maximizes

her expected utility (over Alice’s uncertainty about the other votes and any random-

ness used to break ties) of the alternative selected as the winner of the election. We

call a ballot optimal for Alice if it maximizes her expected utility of the winner of the

election.

We only consider the utilities of a single voter, Alice, so we do not have any issues

that may arise with interpersonal comparison of utility.

Three or more alternatives. We assume there are three or more alternatives

(m > 3). Otherwise, the optimal voting strategy is trivial, regardless of what infor-

mation is known about the other votes. If there is only one alternative, all ballots

are optimal. If there are only two alternatives A1 and A2, if u1 = u2 (i.e., Alice is

indifferent between A1 and A2), then all ballots are optimal. Otherwise (if there are

only two alternatives A1 and A2 and u1 6= u2), without loss of generality suppose

u1 > u2. Then, a ballot that gives the maximum score 1 to A1 and the minimum

score 0 to A2 is optimal.

Sincerity. In addition to the question of whether a rational range voter’s best

strategy can be achieved by approval-style voting, we are also interested in whether

the best strategy is sincere. We say that a range voting ballot b = (b1, . . . , bm) is

sincere if, for any two alternatives Ai and Aj, if ui ≥ uj, then bi ≥ bj.
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Brams and Fishburn [13] first noted that for approval voting, when there are only

m = 3 alternatives, a voter’s optimal strategy can always be achieved by a sincere

ballot, since it can only help the voter to approve her most preferred candidate and

disapprove her least preferred candidate. The same argument applies to range voting

– an optimal strategy can always include a score of 1 for the most preferred candidate

and a score of 0 for the least preferred candidate.

3.3 Strategic Range Voting: Known Results

Complete information. First, we observe that if Alice has complete information

and knows the totals X ′i from the other voters exactly, then it is simple to determine

an optimal strategy for Alice – essentially, give the maximum score 1 to her most

preferred alternative that can be made to win, and give the minimum score 0 to every

other alternative.

That is, if the winner is already determined by the other votes, i.e., the difference

between the highest and second highest totals among X ′1, . . . , X
′
m is greater than 1,

then Alice’s vote cannot change the outcome, and all possible ballots are optimal.

Otherwise, for each j = 1, . . . ,m, let bj be the ballot that gives a score of 1 to

alternative Aj and 0 to every other alternative. Alice computes her expected utility

for the election winner if she casts ballot bj, for each j, and casts the one (or any of the

ones) that maximizes her expected utility. (The only reason this is an expected utility

is because there may be a tie for winner that will be broken randomly; otherwise,

Alice’s utility is known, since we are in a “complete information” scenario.)

If there are no alternatives Aj that have a score X ′j that is exactly 1 less than the

maximum of X ′1, . . . , X
′
m, then the strategy given above is just to give a score of 1 to

her most preferred alternative among the ones whose score from the other voters is

within 1 of the leader.

The approval-style strategy given above may be one among an infinite number of

optimal strategies, since the range of allowable scores is continuous.

Example 3.3.1. As an example, suppose there are 4 alternatives A1, . . . , A4, 10
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voters, and the scores from the first 9 voters are X ′1 = 4.0, X ′2 = 6.2, X ′3 = 5.7, and

X ′4 = 5.1. Let Alice’s utilities be u1 = 30, u2 = 15, u3 = 18, and u4 = 25.

Then an optimal strategy for Alice is to assign a score of 1 to A3 and 0 to every

other alternative, since A2 and A3 are the only alternatives that can win, and Alice

prefers A2 to A3.

Modifying the above example slightly, we get an example involving ties.

Example 3.3.2. Suppose Alice’s utilities are again u1 = 30, u2 = 15, u3 = 18, and

u4 = 25, but the scores from the other voters are X ′1 = 4.0, X ′2 = 6.2, X ′3 = 5.7, and

X ′4 = 5.2.

Then it is now optimal for Alice to assign a score of 1 to A4 and 0 to every other

alternative, since doing so creates a tie for the winner between A2 and A4, so Alice

achieves an expected utility of (u2 + u4)/2 = (15 + 25)/2 = 20. Giving the max score

to A3 instead would make A3 the outright winner and Alice would achieve a utility

of 18.

Zero information. At the opposite extreme of full information, we can consider

the case where Alice has “zero” information about the other votes. More precisely,

Alice assumes that every other voter gives every alternative a score that is uniformly

random in [0, 1]. (Note that this is only one among many possible ways to define

“zero” information; we don’t claim that this is the only reasonable way to model a

voter having no information.)

Warren Smith [52] gives an analysis of strategic range voting in the zero-information

scenario. Smith assumes that the number of voters n is large and that the probabil-

ity of a pairwise “near tie” for winner between any two candidates Ai and Aj being

broken in favor of Ai by Alice’s ballot Bn is proportional to max(Bn,i −Bn,j, 0).

In more detail, a “near tie” is defined as follows:

Definition 3.3.3. We say there is a near tie between Ai and Aj if, based on the total

scores from the other voters, either Ai or Aj can be the winner with the addition of

Alice’s vote (depending on how she votes), and no other candidate can win.
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So, Ai and Aj are in a near tie for winner if |X ′i−X ′j| ≤ 1 and X ′k+1 < min(X ′i, X
′
j)

for all k 6= i, j. The probability that the winner if Alice were to abstain (or cast a

ballot of all zeros) is Aj and the winner with the addition of Alice’s ballot is Ai

is assumed to be proportional to the score difference Bn,i − Bn,j (if Bn,i > Bn,j; 0

otherwise). Roughly, this property can be interpreted as saying that, when the totals

X ′i and X ′j are within 1 of each other, the distribution of the difference X ′i − X ′j is

uniform.

The “proportionality property” described above is assumed to be a consequence

of the number of voters being large. However, why the proportionality assumption

should follow from the number of voters being large is not discussed, although it

may seem true intuitively. In our general model in Section 3.4, we will prove this

consequence formally.

The final assumption of Smith is that the probabilities of ties for winner between

three or more candidates are small enough that they can be ignored.

In the zero information model, since the scores for each alternative are completely

random, every pair of distinct alternatives Ai and Aj is equally like to be in a pair-

wise near tie for winner. Smith [52] proves that when all pairwise ties are equally

likely, under the assumptions given above, a range voter’s optimal strategy is to vote

approval-style using a method known as mean-based thresholding : give the maximum

score 1 to every alternative Ai for which ui is at least the average of the utilities for all

the alternatives, and give the minimum score 0 to every other alternative. Brams and

Fishburn [13] originally proved optimality of mean-based thresholding in an analogous

model for approval voting. Note that mean-based thresholding is a sincere strategy;

if a voter approves of Ai then she will also approve of any alternative Aj for which

uj > ui.

To illustrate mean-based thresholding for range voting, let us look at an example.

Example 3.3.4. Suppose Alice’s utilities are again u1 = 30, u2 = 15, u3 = 18, and

u4 = 25. Then the average utility is (30+15+18+25)/4 = 22, so Alice’s mean-based

thresholding strategy is to give a score of 1 to A1 and A4 and give a score of 0 to A2

and A3.
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Below we give an adaptation of Smith’s proof [52] of the optimality of mean-based

thresholding.

Theorem 3.3.5. Suppose all pairwise near ties are equally likely, ties between three

or more alternatives can be ignored, and the probability of Alice’s ballot Bn breaking a

pairwise near tie (as defined in Definition 3.3.3) between any two alternatives Ai and

Aj in favor of Ai is proportional to max(Bn,i−Bn,j, 0). Then mean-based thresholding

is an optimal range voting strategy for Alice.

Proof. For any i and j, let pij denote the probability of a near tie for winner between

Ai and Aj.

For any given alternative Ai, suppose we fix the scores on Alice’s ballot for all the

other alternatives Aj, j 6= i. Then, for Ai, suppose Alice starts with a score of 0 and

then considers increasing her score for Ai by some amount q. The resulting change

∆ in Alice’s expected utility is proportional to

Σj 6=ipij · q · (ui − uj),

since Alice gains ui and loses uj if the increase in Ai’s score causes Ai to win when

Aj was the winner otherwise.

The near-tie probability pij is the same for all pairs i, j, so ∆ is proportional to

qΣj 6=i(ui − uj). Thus, if Σj 6=i(ui − uj) ≥ 0, we want to set q = 1 (i.e., give Ai a score

of 1), and otherwise we want q = 0 (i.e., give Ai a score of 0.

Simplifying, we get:

Σj 6=i(ui − uj) ≥ 0

(n− 1)ui > Σj 6=iuj

nui > Σjuj

ui > (Σjuj)/n .

Thus, Alice should approve of all alternatives with utility at least equal to her

average utility for the alternatives, and disapprove of all other alternatives.
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Smith [52] also studies several other voting strategies in the zero-information

model empirically, using computer simulations, for various numbers of voters.

Laslier’s Leader Rule Before presenting our model, we describe related work of

Laslier [40] on strategic approval voting. Laslier analyzes how a rational voter should

vote when the number of other voters is large, in the following model. It is assumed

that Alice knows exactly how many of the other voters (theoretically) approve each

alternative (from pre-election polls, for example), but the actual number of votes each

alternative gets in the election will be perturbed somewhat by a “trembling ballot”

model. In the trembling ballot model, for each voter and for each alternative, there

is a small, fixed probability ε > 0 that the voter’s vote for that alternative will not

be recorded (equivalently, that the vote will be recorded as a 0 (disapproval) for that

alternative). These “recording mistakes” happen independently for each combination

of voter and alternative, regardless of how the voter votes for other alternatives.

Furthermore, it is assumed that Alice believes that ties between three or more

candidates can be ignored. Note that this is a behavioral assumption, not a math-

ematical conclusion from the model; in fact, as Laslier mentions, it is not the case

that three-way ties become negligible in the trembling ballot model as the number of

voters grows large. However, it is reasonable for voters to believe that three-way ties

can be ignored and to vote accordingly.

In the trembling ballot model, Laslier proves that a voter’s optimal strategy is

given by what is known as the “leader rule”: Let A1 be the alternative with the

highest announced score (from pre-election polls), and let A2 be the alternative with

the second highest announced score. Then the leader rule says to approve of every

alternative Aj that the voter prefers to A1 (uj > u1), and approve of A1 if the voter

prefers it to A2 (u1 > u2).

The leader rule is simple to understand, and it is also a sincere strategy. However,

the trembling ballot model is somewhat restrictive, as the voter is assumed to have

exact information about the other votes; the only uncertainty in the election comes

from the recording mistakes that occur with small probability. Furthermore, the
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voter ignores three-way ties, even though mathematically they cannot necessarily be

ignored.

3.4 Our Model

We now present a general way to model a voter’s information about the other votes.

We will prove formally that under general conditions, a range voter should vote

approval-style, as the number of voters grows large.

3.4.1 Notation

We first define some notation that will be useful for our analysis. For any ballot Bi =

(Bi,1, . . . , Bi,m), let Bi,j = Bi,j/n for each j be “normalized scores”, and let Bi =

(Bi,1, . . . , Bi,m) be the corresponding “normalized ballot”.

Let Xj = Xj/n = Σn
i=1Bi,j be the average of the scores given to alternative Aj,

or the sum of the normalized scores given to alternative Aj. Note that for approval

voting, Xj is the fraction of voters that approve Aj.

In our analysis we will work with the normalized ballots Bi instead of the original

ballots Bi. Clearly, determining the winner using the normalized ballots Bi and the

average scores Xj is equivalent to using the original ballots Bi and total scores Xj.

A winning alternative Aj is one for which Xj = max{X1, . . . , Xm}.

Let X ′j = Σn−1
i=1 Bi,j denote the sum of the normalized scores given to alternative

Aj by the other n − 1 voters. (Note that X ′j is not the same as the average of the

scores given to Aj by the other n − 1 voters, since the scores are divided by n, not

n− 1.)

3.4.2 Modeling Information about Other Votes

We model Alice’s information about the other votes in a general way. Alice assumes

that the sums of the normalized scores from the other n− 1 voters, X ′1, . . . , X
′
m, are

independent, and that each X ′i is distributed according to a given probability density
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function (PDF) fi and cumulative probability distribution function (CDF) Fi.

For i = 1, . . . ,m, let fi(x) be the PDF for X ′i, and let Fi(x) be the CDF for X ′i:

Fi(x) = Pr{X ′i ≤ x} (3.1)

fi(x) =
dFi(x)

dx
(3.2)

Fi(x) =

∫ x

0

fi(y) dy (3.3)

We assume that fi and Fi are well-defined over the entire interval [0, 1]. We do not

make any other restrictions on fi or Fi. Thus, our model is quite general.

Note that Alice’s information about the other votes may not necessarily be accu-

rate; this is fine for our purposes. Alice’s information reflects her expectations about

how the other voters will vote, and these are the expectations that Alice will use to

determine an optimal ballot to cast. We are interested in how to determine such an

optimal ballot, and when optimal range voting can or cannot be achieved through an

approval-style ballot.

3.4.3 Maximum of Random Variables

Let X ′∗ denote the maximum of the X ′i’s, and let X ′∗−i denote the maximum of all of

the X ′j’s other than X ′i.

Let F∗(x) denote the CDF for X ′∗ and let f∗(x) denote the corresponding PDF.

Similarly, let F∗−i denote the CDF for X ′∗−i and let f∗−i(x) denote the corresponding

the PDF. Also, let F∗−i,j denote the CDF for X ′∗−i,j, where X ′∗−i,j is the maximum of

all the X ′k’s other than X ′i and X ′j.

Then

F∗(x) =
m∏
i=1

Fi(x) (3.4)

since X ′∗ ≤ x if and only if each X ′i ≤ x, using independence.
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As a consequence we get that

f∗(x) =
dF∗(x)

dx
(3.5)

=
∑
i

fi(x)
∏
j 6=i

Fj(x) (3.6)

=
∑
i

fi(x)F∗−i(x) . (3.7)

Similarly for F∗−i(x):

F∗−i(x) =
∏
j 6=i

Fj(x) (3.8)

f∗−i(x) =
dF∗−i(x)

dx
(3.9)

=
∑
j 6=i

fj(x)
∏
k 6=i,j

Fk(x) (3.10)

=
∑
j 6=i

fj(x)F∗−i,j(x) . (3.11)

The probability that X ′i is the maximum of the m variables X ′1, . . . , X
′
m is

∫ 1

0

fi(x)F∗−i(x) dx (3.12)

Roughly speaking, we sum the probability for each x that X ′i = x and that all other

X ′j are not larger than x.

3.5 Utility of a given ballot

Let b = (b1, b2, . . . , bm) denote a given range voting ballot, where each bi is in the

continuous interval [0, 1]. Let b = (b1, b2, . . . , bm) be the corresponding normalized

ballot, where each bi = bi/n and is in [0, 1/n].

What is the expected utility for Alice of casting a given ballot b?

The probability that Ai wins, if Alice casts ballot b, is
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∫ 1

0

fi(x)

(∏
j 6=i

Fj(x+ bi − bj)

)
dx (3.13)

Here fi(x) is the probability density of Ai receiving a total of x from the normalized

votes of the other voters, and Fj(x+ bi− bj) is the probability that X ′j + bj ≤ X ′i + bi.

Then Alice’s overall expected utility of casting ballot b is the sum, over each

alternative, of the utility for that alternative times the probability of that alternative

winning,

U(b) =
m∑
k=1

uk

∫ 1

0

fk(x)

(∏
j 6=k

Fj(x+ bk − bj)

)
dx (3.14)

For any given point (normalized ballot) b0, if U is differentiable at b0, then by

the definition of differentiability, we have

U(b) = U(b0) +∇U(b0) · (b− b0) +R(b), (3.15)

where R(b) is a remainder term such that limb→b0

|R(b)|
||b−b0||

= 0, and∇U is the gradient

of the function U .

Letting b0 = 0, we get

U(b) = U(0) +∇U(0) · b + o(1/n) . (3.16)

That is,

U(b) = U(0) +
∑
i

cibi + o(1/n) (3.17)

where

ci =
∂U

∂bi

∣∣
b=0

. (3.18)

Since the fi’s are assumed to be well-defined everywhere on the interval [0, 1], U

is differentiable everywhere on [0, 1/n]m (where differentiability at the endpoints is

one-sided). In particular, U is (one-sided) differentiable at 0.
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The partial derivative ∂U
∂bi

is equal to the following:

∂U

∂bi
= ui

∫ 1

0

fi(x)

[∑
6̀=i

f`(x+ bi − b`)
∏

j 6=i,j 6=`

Fj(x+ bi − bj)

]
dx

+
∑
k 6=i

uk

∫ 1

0

fk(x)(−fi(x+ bk − bi))
∏

j 6=i,j 6=k

Fj(x+ bk − bj) dx
(3.19)

Evaluating ∂U
∂bi

at b = 0, we get

ci = ui

∫ 1

0

fi(x)

[∑
`6=i

f`(x)
∏
j 6=i,`

Fj(x)

]
dx

+
∑
k 6=i

uk

∫ 1

0

fk(x)(−fi(x))
∏
j 6=i,k

Fj(x) dx

=
∑
k 6=i

(ui − uk)
∫ 1

0

fi(x)fk(x)
∏

j 6=i,j 6=k

Fj(x) dx

Thus, ci = ∂U
∂bi

∣∣
b=0

=
∑

k 6=i(ui − uk)τik, where

τik =

∫ 1

0

fi(x)fk(x)
∏

j 6=i,j 6=k

Fj(x) dx

is related to the approximate probability that Ai and Ak are in a near tie for winner.

More precisely, τikbi is the approximate probability that adding a normalized score

of bi (instead of 0) to Ai’s total causes Ai to be the winner when otherwise Ak would

be the winner.

Since the remainder term R(b) is o(1/n), as the number of voters grows large

(n → ∞), the remainder term is dominated, and the utility U(b) of a normalized

ballot b is well-approximated by

U(0) +
∑
i

cibi.

Then, when the number of voters is large, the best range voting ballot for Alice
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will be (b1, . . . , bm), where

bi =

 1 if ci > 0

0 otherwise.
(3.20)

Remarks. It is important to note that as we vary the number of voters, the prob-

ability density functions fi (and the corresponding cumulative distribution functions

Fi) stay fixed. That is, we fix the fi summarizing Alice’s beliefs about how the aver-

age scores from the other voters for each alternative are distributed; then, in the limit

as the number of voters gets large, the linear approximation is a good approximation,

and Alice’s best range voting ballot is an approval-style ballot as given above.

Also, while we showed that an optimal strategy can be achieved by an approval-

style ballot, we cannot conclude anything about whether such a ballot is sincere or

not in general. In fact, as we will see in Section 3.6, for some choices of fi’s and ui’s,

the optimal ballot computed as above is not sincere.

Deriving previous assumptions from our model. We showed above that τikbi

is the approximate probability that adding a normalized score of bi to Ai makes Ai

the winner when otherwise Ak would be the winner. Thus, we have formally derived

under general conditions the assumption used by Smith [52] that the probability of

an individual voter’s ballot breaking a pairwise tie for winner is proportional to the

difference in her scores for the two alternatives.

The assumption that Smith used that ties among three or more candidates can

be ignored can also be derived from our general model. In the expression for the

utility of a ballot, terms involving three-way ties are captured by second order partial

derivatives. Applying the definition of differentiability as in Equation 3.15 we see

that higher order partial derivative terms can be ignored (as the number of voters

approaches ∞) because they add up to o(1/n).

The fact that three-way tie probabilities are not negligible in Laslier’s model does

not contradict the previous observations. In the trembling ballot model, the prob-

ability density functions fi are not fixed as n varies, so we cannot apply the same

analysis.
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Deriving mean-based thresholding from our model. It is straightforward to

see that when all pairwise ties are assumed to be equally probable, then τik is the

same for all pairs i, k, so in the limit as n → ∞, an individual voter’s best strategy

is to give a score of 1 to those alternatives Ai for which Σk 6=i(ui − uk) > 0. This is

exactly the same condition as mean-based thresholding.

3.6 Beta Distributions

In this section, we propose beta distributions as a somewhat natural and realistic

model for a voter’s subjective information about the other votes. Beta distributions

are a common choice for a Bayesian prior distribution [23]. To the best of our knowl-

edge, beta distributions have not been considered in the context of range and approval

voting.

The beta distribution is a continuous probability distribution over [0, 1], parame-

terized by two “shape” parameters, α and β.

If X is drawn from the beta distribution with parameters α and β (denoted

Beta(α, β)), then its density function is

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)
(3.21)

where

B(α, β) =
Γ(α)Γ(β)

Γ(α + β)
(3.22)

and

Γ(n) = (n− 1)! (3.23)

for integer values of n.

The cumulative distribution function F (x;α, β) is given by

F (x;α, β) =
B(x;α, β)

B(α, β)
(3.24)
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Figure 3-1: Beta probability density function (PDF) for several values of α and β.

where

B(x;α, β) =

∫ x

0

tα−1(1− t)β−1 dt. (3.25)

The beta distribution Beta(α, β) represents the Bayesian posterior distribution of

a probability p after observing α−1 successes and β−1 failures in α+β−2 Bernoulli

trials with unknown probability p, with a uniform prior (see, e.g., Evans et al. [23],

Chapter 5). The distribution Beta(1,1) is the uniform distribution.

We propose using a beta distribution to represent the distribution of the average

score (between 0 and 1) given to an alternative by the other votes, or in an approval

voting setting, the fraction of voters approving of an alternative.

In an approval voting setting, we could imagine that pre-election polls announce

the number of voters approving of each candidate out of some random sample of

voters. Thus, if in a sample of 20 voters there were 5 voters approving of alternative

A1, we could model f1 and F1 using the beta distribution with α = 6 and β = 16.

The integrals can be evaluated explicitly, e.g. using Sage, for fixed values of m, α,

and β.

93



Figure 3-1 shows beta PDFs for some sample values of α and β.

Example 3.6.1. For example, suppose we are using approval voting. Let m = 4 and

suppose a pre-election poll was conducted on a sample of 5 voters. In this sample,

2 voters approved A1, 1 voter approved A2, 4 voters approved A3, and 5 voters

approved A4. Then we would model Alice’s information about the how the other

voters will vote as follows: f1(x) = f(x; 3, 4), f2(x) = f(x; 2, 5), f3(x) = f(x; 5, 2),

and f4(x) = f(x; 6, 1). Suppose Alice’s utilities are u1 = 0, u2 = 5, u3 = 7, and

u4 = 10. Then, computing the ci’s from Section 3.5 using Sage, we get c1 = −1.47,

c2 = −0.101, c3 = −4.33, and c4 = 5.90. Therefore, in the limit as the number of

voters grows large, Alice’s best strategy is to approve of only A4.

When modeling a voter’s information using beta distributions, the optimal strat-

egy is not always sincere, as shown in the following example.

Example 3.6.2. Suppose m = 6, and Alice’s information about the other voters is

modeled by f1(x) = f(x; 15, 10), f2(x) = f(x; 13, 8), f3(x) = f(x; 13, 19), f4(x) =

f(x; 3, 4), f5(x) = f(x; 6, 2), f6(x) = f(x; 15, 16). Suppose Alice’s utilities are u =

(0, 5, 9, 10, 16, 22). Then we get c1 = −15.4, c2 = −9.72, c3 = 0.0206, c4 = −0.0347,

c5 = 22.1, c6 = 3.13, indicating that the optimal strategy in the limit as n→∞ is to

approve alternatives A3, A5, A6 and disapprove alternatives A1, A2, A4. This is not a

sincere strategy for Alice, since it approves of A3 and disapproves of A4, when Alice

prefers A4 to A3 (her utilities are u3 = 9 and u4 = 10).

By examining the tie densities τik, we can roughly interpret the situation as follows:

a pairwise tie between A3 and A4 is much more likely than any other pairwise tie,

and in that pairwise tie Alice would like A4 to win; therefore, she should disapprove

A3 and approve A4.

3.7 Conclusions and Open Questions

In this chapter, we studied strategic voting in the context of range voting, and asked

when a voter’s best strategy can be achieved by an approval vote. We reviewed known
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results on strategic range voting and approval voting in different models. We then

proposed a general way of modeling a range voter’s information about other votes –

using an independent probability distribution for the average score each alternative

receives from other voters. In this model, we showed that in the limit as the number

of voters grows large, a voter’s optimal strategy (computable by evaluating integrals

using, e.g., Sage) can be achieved by an approval-style vote. This result may be

interpreted to mean that, in some sense, when the number of voters is large, the

added expressiveness of range voting over approval voting is not usually useful; in

fact, using the added expressiveness of range voting would lower a voter’s expected

utility for the election outcome.

More concretely, we proposed beta distributions as a plausible way to model a

voter’s information, especially in an approval voting setting when there is pre-election

poll data from which a voter may form her opinions about how others will actually

vote. Even without pre-election approval polls, a voter may be able to provide an

α and a β representing her subjective prior information for each alternative. We

observed that with beta distributions, the optimal range or approval vote even in the

limit of a large number of voters is not always sincere. An interesting open question

is to formulate a set of clean conditions under which the optimal range or approval

vote is or is not sincere.
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Chapter 4

Statistical Robustness of Voting

Rules

4.1 Introduction

It is well known that polling a sample of voters before an election may yield useful

information about the likely outcome of the election, if the sample is large enough

and the voters respond honestly.

It is less well known that the effectiveness of a sample in predicting an election

outcome also depends on the voting rule (social choice function) used.

In this chapter, we introduce a notion of “statistical robustness” for voting rules.

We say a voting rule is statistically robust if for any profile (a set of ballots) the winner

of any random sample of that profile is most likely to be the same as the (most likely)

winner for the complete profile. While the sample result may be “noisy” due to sample

variations, if the voting rule is statistically robust the most common winner(s) for a

sample will be the same as the winner(s) of the complete profile.

To coin some amusing terminology, we might say that a statistically robust vot-

ing rule is “weather-resistant”—you expect to get the same election outcome if the

election day weather is sunny (when all voters show up at the polls) as you get on a

rainy day (when only some fraction of the voters show up). We assume here that the

chance of a voter showing up on a rainy day is independent of her preferences.
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We consider the property of being statistically robust a desirable one for a voting

rule, and thus consider lack of such statistical robustness somewhat of a defect in

voting rules. In general, we consider a voting rule to be somewhat defective if applying

the voting rule to a sample of the ballots may give misleading guidance regarding the

likely winner for the entire profile.

If a voting rule is not statistically robust, then if for any reason some ballots are

lost and not counted in an election, the election outcome may very likely change, even

if the lost ballots are random and not maliciously chosen.

Another reason statistical robustness may be desirable is for post-election au-

diting. “Ballot-polling auditing” [43] attempts to confirm the result of an election

by examining randomly sampled ballots (similar to an exit poll, except the audit is

polling ballots, not voters), until there is strong statistical evidence that the reported

outcome is correct. Ballot-polling auditing methods are currently designed for plu-

rality voting, where each ballot that is a vote for the reported winner increases the

confidence that the reported outcome is correct. However, for a voting rule that is

not statistically robust, the result of a sample is not necessarily a good indication of

the result of the entire election. It is unclear how ballot-polling auditing would work

for voting rules that are not statistically robust.

We note that Bayesian auditing [49], a recently proposed audit method, does not

restrict the voting rule to be one that is statistically robust. In a Bayesian audit,

ballots are randomly selected and examined until the computed probability that the

reported winner is the actual winner of the entire profile exceeds some threshold. The

winning probabilities are computed by using a posterior distribution given the sample

and a prior to generate likely ways of “completing” the sample to a full profile, and

using the voting rule to determine the winner of each completion. Thus, there is no

assumption that the winner of a sample is a good prediction of the winner of the

entire profile.

Similarly, in an AI system that combines the recommendations of expert sub-

systems according to some aggregation rule, it may be of interest to know whether

aggregating the recommendations of a sample of the experts is most likely to yield the
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same result as aggregating the recommendations of all experts. In some situations,

some experts may have transient faults or be otherwise temporarily unavailable (in a

manner independent of their recommendations) so that only a sample of recommen-

dations is available for aggregation.

Related work. Since our definition is new, there is little or no directly related

previous work. The closest work may be that of Walsh and Xia [59], who study

various “lot-based” voting rules with respect to their computational resistance to

strategic voting. In their terminology, a voting rule of the form “Lottery-Then-X”

(a.k.a. “LotThenX”) first takes a random sample of the ballots, and then applies

voting rule X (where X may be plurality, Borda, etc.) to the sample. Their work

is not concerned, as ours is, with the fidelity of the sample winner to the winner for

the complete profile. Amar [3] proposes actual use of the “random ballot” method.

Procaccia et al. [48] study a related but different notion of “robustness” that models

the effect of voter errors; that is, robustness describes the resistance of a voting rule to

some number of changes or “faults” in the votes. Another line of related work studies

voting rules as maximum likelihood estimators [60, 17, 47], where it is assumed that

there is a “true” ranking of the alternatives and the votes are noisy estimates of this

ranking; then, the goal of a voting rule is to produce a ranking that is most likely to

be the true ranking, based on a sample drawn from some noise model.

Our results. We define the notion of statistical robustness, with respect to three

sampling methods: sampling without replacement, sampling with replacement, and

binomial sampling. We then determine whether several voting rules are statistically

robust. We show that plurality, veto, and random ballot are statistically robust, with

respect to all three sampling methods. We show that other common voting rules –

approval voting, single transferable vote (STV), Borda, Copeland, and Maximin – are

not statistically robust, with respect to one or more of the above sampling methods.

Furthermore, we show that any positional scoring rule whose score vector contains at

least three distinct values (i.e., any positional scoring rule that is not equivalent to
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“approve t” for some t) is not statistically robust, with respect to sampling with or

without replacement.

The rest of this chapter is organized as follows. Section 4.2 introduces notation

and the voting rules we consider. We define the notion of statistical robustness

for a voting rule in Section 4.3, determine whether several familiar voting rules are

statistically robust in Section 4.4, and close with some discussion and open questions

in Section 4.5.

4.2 Preliminaries

Ballots, Profiles, Alternatives. Assume a profile P = (B1, B2, . . . , Bn) contain-

ing n ballots will be used to determine a single winner from a

set A = {A1, A2, . . . , Am} of m alternatives. There are various possibilities for the

form of a ballot; the form of a ballot must be compatible with the voting rule used.

We may view a profile as either a sequence or a multiset; it may contain repeated

items (identical ballots).

Voting rules. Assume that a voting rule (social choice function) f maps profiles

to a single outcome (one of the alternatives): for any profile P , f(P ) produces the

winner for the profile P .

We allow f to be randomized, in order for ties to be handled reasonably. Our

definition could alternatively have allowed f to output the set of tied winners; we

prefer allowing randomization, so that f always outputs a single alternative. In our

analysis, however, we do consider the set ML(f(P )) of most likely winners for a given

profile.

Thus, we say that A is a “most likely winner” of P if no other alternative is more

likely to be f(P ). There may be several most likely winners of a profile P . For most

profiles and most voting rules, however, we expect f to act deterministically, so there

is a single most likely winner.

Often the social choice function f will be neutral—symmetric with respect to
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the alternatives—so that changing the names of the alternatives won’t change the

outcome distribution of f on any profile. While there is nothing in our definition that

requires that f be neutral, we shall restrict attention in this chapter to neutral social

choice functions. Thus, in particular, we will suppose that a tie-breaking rule used

by any f in this chapter will not depend on the names of the alternatives; it will pick

one of the tied alternatives uniformly at random.

We do assume that social-choice function f is anonymous—symmetric with re-

spect to voters: reordering the ballots of a profile leaves the outcome unchanged.

We will consider the following voting rules. (For more details on voting rules, see

Brams and Fishburn [14], for example.)

The following voting rules are preferential voting rules; that is, each ballot Bi gives

a linear order Ai1 � Ai2 � . . . � Aim, indicating that alternative Ai1 is preferred to

Ai2, which is preferred to Ai3, and so on. (In the rest of the chapter, we will omit the

� symbols and just write Ai1Ai2 . . . Aim, for example.)

For a preferential voting rule, a “pairwise election” between two alternatives Ai

and Aj compares the number ni,j of ballots that rank Ai above Aj to the number

nj,i of ballots that rank Aj to Ai. Then the difference ni,j − nj,i is Ai’s score in the

pairwise election, and similarly, nj,i − ni,j is Aj’s score in the pairwise election. If

ni,j − nj,i > 0, then Ai wins the pairwise election.

• A positional scoring rule is defined by a vector ~α = 〈α1, . . . , αm〉; we assume

αi ≥ αj for i ≤ j. We will also assume αi ≥ 0 for i = 1, . . . ,m, although this is

not necessary.

Alternative Ai gets αj points for every ballot that ranks alternative Ai in the

jth position. The winner is the alternative that receives the most points.

Some examples of positional scoring rules are:

Plurality : ~α = 〈1, 0, . . . , 0〉

Veto: ~α = 〈1, . . . , 1, 0〉

Borda: ~α = 〈m− 1,m− 2, . . . , 0〉
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• Single-transferable vote (STV) (also known as instant-runoff voting (IRV)): The

election proceeds in m rounds. In each round, each ballot is counted as a vote

for its highest-ranked alternative that has not yet been eliminated, and the

alternative with the fewest votes is eliminated. The winner of the election is

the last alternative remaining.

• Plurality with runoff : The winner is the winner of the pairwise election between

the two alternatives that receive the most first-choice votes.

• Copeland : The winner is an alternative that maximizes the number of alterna-

tives it beats in pairwise elections.

• Maximin: The winner is an alternative whose lowest score in any pairwise

election against another alternative is the greatest among all the alternatives.

We also consider the following voting rules that are not preferential:

• Score voting (also known as range voting): Each allowable ballot type is asso-

ciated with a vector that specifies a score for each alternative. The winner is

the alternative that maximizes its total score.

• Approval [12, 41]: Each ballot gives a score of 1 or 0 to each alternative. The

winner is an alternative whose total score is maximized.

• Random ballot [32] (also known as random dictator): A single ballot is selected

uniformly at random from the profile, and the alternative named on the selected

ballot is the winner of the election. Note that random ballot may also be thought

of as a preferential voting rule, in which a random ballot is selected, and the

alternative ranked first on that selected ballot is the winner of the election.

4.3 Sampling and Statistical Robustness

Sampling. The profile P is the universe from which the sample will be drawn.
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We define a sampling process to be a randomized function G that takes as input

a profile P of size n and an integer parameter k (1 ≤ k ≤ n) and produces as output

a sample S of P of expected size k, where S is a subset (or sub-multiset) of P .

We consider three kinds of sampling:

• Sampling without replacement. Here GWOR(P, k) produces a set S of size exactly

k chosen uniformly without replacement from P .

• Sampling with replacement. Here GWR(P, k) produces a multiset S of size ex-

actly k chosen uniformly with replacement from P .

• Binomial sampling. Here GBIN(P, k) produces a sample S of expected size k

by including each ballot in P in the sample S independently with probability

p = k/n.

We write f(G(P, k)) to denote the output of the voting rule f on the sample

output by G(P, k); note that f may be randomized, to break ties, for example.

Statistically Robust Voting Rules. We now give our main definitions.

Definition 4.3.1. IfX is a discrete random variable (or more generally, some function

whose range is a finite set), we let ML(X) denote the set of values that X takes with

maximum probability. That is,

ML(X) = {x | Pr(X = x) is maximum}

denotes the set of “most likely” possibilities for the value of X.

For any (possibly randomized) voting rule f and profile P , we will call f(P )

a random variable, even though it is not real-valued (it outputs an alternative Ai).

Then, ML(f(P )) contains the “most likely winner(s)” for voting rule f and profile P ;

typically this will contain just a single alternative. Similarly, ML(f(G(P, k))) con-

tains the most likely winner(s) of a sample of expected size k. Note that ML(f(P ))

involves randomization only within f (if any, presumably to break ties), whereas

ML(f(G(P, k))) also involves the randomization of sampling by G.
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Definition 4.3.2. We say that a social choice function f is statistically robust for

sampling rule G if for any profile P of size n and for any sample size k ∈ {1, 2, ..., n},

ML(f(G(P, k))) = ML(f(P )) .

That is, an alternative is a most likely winner for a sample of size k if and only if it

is a most likely winner for the entire profile P .

We will also sometimes parameterize the definition by the sample size k and talk

about “k-statistical robustness”.

Definition 4.3.3. We say that a social choice function f is k-statistically robust for

sampling rule G if for any profile P of size n > k,

ML(f(G(P, k))) = ML(f(P )) .

When we talk about statistical robustness without reference to a specific sample

size, we mean statistical robustness for all sample sizes.

Note that these definitions work smoothly with ties: if the original profile P was

tied (i.e., there is more than one most likely winner of P ), then the definition requires

that all most likely winners of P have maximum probability of being a winner in a

sample (and that no other alternatives will have such maximum probability).

Having a statistically robust voting rule is something like having an “unbiased

estimator” in classical statistics. However, we are not interested in estimating some

linear combination of the individual elements (as with classical statistics), but rather

in knowing which alternative is most likely (i.e., which is the winner), a computation

that may be a highly nonlinear function of the ballots.

A simple plurality example. Suppose we have a plurality election with 10 votes:

6 for A1, 3 for A2, and 1 for A3. We try all three sampling methods, all possible

values of k, and see how often each alternative is a winner in 1000 trials; Figure 4-1

reports the results, illustrating the statistical robustness of plurality voting, a fact we
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GWOR

k A1 A2 A3

1 594 303 103
2 625 258 117
3 727 217 56
4 794 206 0
5 838 162 0
6 868 132 0
7 920 80 0
8 1000 0 0
9 1000 0 0

10 1000 0 0

GWR

k A1 A2 A3

1 597 299 104
2 569 325 106
3 676 260 64
4 718 256 26
5 749 219 32
6 764 212 24
7 804 181 15
8 818 171 11
9 842 146 12

10 847 150 3

GBIN

k A1 A2 A3

1 507 315 178
2 619 277 104
3 698 235 67
4 763 212 25
5 822 161 17
6 879 117 4
7 930 70 0
8 973 27 0
9 993 7 0

10 1000 0 0

Figure 4-1: Plurality voting with three sampling schemes on a profile P with ten votes:
6 forA1, 3 forA2, and 1 forA3. 1000 trials were run for each sample size, with expected
sample sizes running from k = 1 to k = 10. The entry indicates how many trials
each alternative won, with ties broken by uniform random selection. (The perhaps
surprisingly large value for A3 of 178 for GBIN results from the likelihood of an empty
sample when k = 1; such ties are broken randomly.) Note that ML(G(P, k)) = A1

for all three sampling methods G and all sample sizes k.

prove in Section 4.4.4.

We will show that plurality is statistically robust under all three sampling meth-

ods.

We will use the fact that statistical robustness for sampling without replacement

implies statistical robustness for binomial sampling.

Theorem 4.3.4. If a voting rule f is statistically robust for sampling without re-

placement, then f is statistically robust under binomial sampling.

Proof. The probability that an alternative Ai wins in a sample produced by binomial

sampling is the sum over all possible sample sizes k of the probability that the sample

size is k times the probability that Ai wins in a uniform random sample of size k.

When binomial sampling returns an empty sample, then, with a neutral tie-

breaking rule, every alternative is equally likely to be the winner. For non-empty

samples, by the assumption of statistical robustness for sampling without replace-

ment, for any k > 0, f(P ) is the most likely winner of a uniform random sample of

size k.
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Therefore, f(P ) is the most likely winner of a sample produced by binomial sam-

pling for any positive probability p.

4.4 Statistical Robustness of Various Voting Rules

In this section, we analyze whether various voting rules are statistically robust.

4.4.1 Unanimous Preferential Voting Rules

It turns out that for most preferential voting rules f , if f is 1-statistically robust for

sampling with or without replacement, then f must be the plurality voting rule (or

random ballot).

The following theorem was observed by the anonymous reviewers of AAAI-12.

Theorem 4.4.1. Suppose f is a preferential voting rule with the following prop-

erty, which we call single unanimity: if P consists of a single ballot (linear order)

Ai1 . . . Aim, then f(P ) = Ai1. Then if f is 1-statistically robust for sampling with or

without replacement, then for any profile P the set of most likely winners ML(f(P ))

is equal to the set of plurality winners ML(plur(P )), where plur denotes the plurality

voting rule.

Proof. If f is 1-statistically robust for sampling with or without replacement, then

for any profile P , ML(f(G(P, 1))) = ML(f(P )), where G is GWOR or GWR. For

any sample of P of size 1, the winner of that sample will be the alternative listed at

the top of that ballot. Therefore, the most likely winner of a sample of size 1 is the

alternative that is listed at the top of the ballot the most times, which is by definition

the plurality winner. In the case of a plurality tie, the set of most likely winners of a

sample of size 1 is equal to the set of most likely plurality winners (the alternatives

that are tied for the most first-choice votes). Thus, ML(f(G(P, 1)) = ML(plur(P )).

Therefore, ML(f(P )) = ML(plur(P )).

Note that the standard property of unanimity is sufficient (but not necessary) for

the single unanimity property used above. (A voting rule f is unanimous if, when P
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consists of ballots that are all the same linear order, f(P ) selects the alternative at

the top of that linear order as the winner.)

All of the preferential voting rules listed in Section 4.2, except veto (and any other

positional scoring rule for which α1 = α2), are unanimous. (Veto and other positional

scoring rules for which α1 = α2 are not unanimous because for a profile consisting

of a single ballot, there will be a tie between at least the first two alternatives listed

on that ballot, so the winner will not necessarily be the first alternative listed on the

ballot.)

Thus, we have the following corollary.

Corollary 1. The following voting rules are not 1-statistically robust: STV, plurality

with runoff, Copeland, Maximin, and Borda (and any positional scoring rule defined

by 〈α1, . . . , αm〉 for which α1 > α2).

Note that Theorem 4.4.1 says that the most likely winner of P under f is the

plurality winner of P . This is slightly different from saying that f is the same as

plurality. For example, f could be the random ballot rule; the most likely winner of a

profile P under the random ballot method is the same as the plurality winner of P . Or,

f could be even be some kind of “hybrid” that sometimes performs plurality and other

times performs random ballot. For practical purposes, we will interpret Theorem 4.4.1

to say that any (singly) unanimous preferential voting rule that is 1-statistically robust

for sampling with and without replacement must be either plurality or random ballot.

However, the theorem does not actually say whether plurality or random ballot

themselves are statistically robust. We will prove that plurality and random ballot are

in fact statistically robust. The theorem covers statistical robustness (for samples of

size 1) for sampling with and without replacement, but not binomial sampling. In the

following subsections we will give some non-robustness results for various unanimous

preferential voting rules under binomial sampling.
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4.4.2 Random Ballot

Theorem 4.4.2. The random ballot method is statistically robust for each of the

sampling methods GWR, GWOR, and GBIN .

Proof. When the random ballot method is applied to the entire profile or to a sample

obtained using any of the three sampling methods, each ballot is equally likely to be

chosen as the one to name the winner.

4.4.3 Score Voting

Theorem 4.4.3. Score voting is not statistically robust for any of the three sampling

methods GWR,GWOR, and GBIN .

Proof. By means of a counterexample. Consider the following profile:

(1) A1 : 100, A2 : 0

(99) A1 : 0, A2 : 1

There is one vote that gives scores of 100 for A1 and 0 for A2, and 99 votes that

gives scores of 0 for A1 and 1 for A2. A1 wins the complete profile, since it has a total

score of 100, while A2 has a total score of 99.

Under binomial sampling with probability p, A1 wins with probability about p

— that is, with about the probability A1’s vote is included in the sample. (The

probability is not exactly p because the binomial sampling may produce an empty

sample, in which case A1 and A2 will be equally likely to be selected as the winner.)

For p < 1/2, A2 wins more than half the time; thus score voting is not robust

under binomial sampling.

Similarly, for sampling with or without replacement for small sample sizes k, the

probability that the one ballot with a score of 100 for A1 will be included in the

sample will be small, so A2 will be more likely to win the sample. Thus, score voting

is not robust under sampling with or without replacement.
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4.4.4 Plurality

Throughout this section, we let ni denote the number of votes alternative Ai receives,

with
∑

i ni = n.

We prove that plurality voting is statistically robust for all three sampling meth-

ods.

Theorem 4.4.4. Plurality voting is statistically robust, with sampling without re-

placement.

Proof. Assume n1 > n2 ≥ . . . ≥ nm, so A1 is the unique winner of the complete

profile. (The proof below can easily be adapted to show that plurality is statistically

robust when the complete profile has a tie for the winner.)

Let K = (k1, k2, ..., km) denote the number of votes for the various alternatives

within the sample of size k.

Let
(
a
b

)
denote the binomial coefficient “a choose b”, equal to a!/(b!(a−b)!). There

are
(
n
k

)
ways to choose a sample of size k from the profile of size n.

The probability of a given configuration K is equal to

Pr(K) = (
m∏
i=1

(
ni
ki

)
)/

(
n

k

)
.

Let γ(i) denote the probability that Ai wins the election, and let γ(i, kmax) denote

the probability that Ai receives kmax votes and wins the election.

Then γ(i) =
∑

kmax
γ(i, kmax), and γ(i, kmax) =

∑
K∈K Pr(K)/Tied(K), where K

is the set of configurations K such that ki = kmax and kj ≤ kmax for all j 6= i, and

Tied(K) is the number of alternatives tied for the maximum score in K. Note that

Tied(K) is the total number of tied alternatives; typically, Tied(K) will be 1 (when

there is a unique winner and no tie). The above equation depends on the tie-breaking

rule being neutral.

For any kmax, consider now a particular configuration K used in computing

γ(1, kmax): K = (k1, k2, ..., km), where k1 = kmax and ki ≤ kmax for i > 1. Then

Pr(K) = (
∏m

i=1

(
ni

ki

)
)/
(
n
k

)
.
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Now consider the corresponding configuration K ′ used in computing γ(2, kmax),

where k1 and k2 are switched: K ′ = (k2, k1, k3, ..., km). Then

Pr(K ′) = (
(
n1

k2

)(
n2

k1

)∏m
i=3

(
ni

ki

)
)/
(
n
k

)
.

By Lemma 4.4.5 below, we have Pr(K) > Pr(K ′).

Each configuration K ′ used in computing γ(2, kmax) has such a corresponding

configuration K used in computing γ(1, kmax). Thus, γ(1, kmax) > γ(2, kmax).

Since γ(1, kmax) > γ(2, kmax) for any kmax, we have that γ(1) > γ(2); that is, A1

is more likely to be the winner of the sample than A2.

By a similar argument, for every i > 1, γ(1, kmax) ≥ γ(i, kmax) for any kmax, so

γ(1) > γ(i). Therefore, A1 is the most likely to win the sample.

Lemma 4.4.5. If n1 > n2, k1 > k2, n1 ≥ k1, and n2 ≥ k2, then
(
n1

k1

)(
n2

k2

)
>
(
n1

k2

)(
n2

k1

)
.

Proof. We wish to show that

(
n1

k1

)(
n2

k2

)
>

(
n1

k2

)(
n2

k1

)
. (4.1)

If n2 < k1, then
(
n1

k2

)(
n2

k1

)
= 0, so (4.1) is trivially true.

If n2 ≥ k1, then we can rewrite (4.1) as
(
n1

k1

)
/
(
n2

k1

)
>
(
n1

k2

)
/
(
n2

k2

)
. So it suffices to

show that for n1 > n2,
(
n1

k

)
/
(
n2

k

)
is increasing with k, which is easily verified.

Theorem 4.4.6. Plurality voting is statistically robust, under binomial sampling.

Proof. Follows from Theorems 4.4.4 and 4.3.4.

Theorem 4.4.7. Plurality is statistically robust, under sampling with replacement.

Proof. The proof follows the same structure as for sampling without replacement.

Again, assume n1 > n2 ≥ . . . ≥ nm.

For each configuration K used in computing γ(1, kmax) and the corresponding

configuration K ′ used in computing γ(2, kmax), we show that Pr(K) > Pr(K ′).

Under sampling with replacement, the probability of a

configuration K = (k1, . . . , km) is equal to

Pr(K) =

(
k

k1, . . . , km

) m∏
i=1

(ni
n

)ki
,
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where
(

k
k1,...,km

)
denotes the multinomial coefficient, equal to k!/(k1! . . . km!).

For any configuration K used in computing γ(1, kmax), consider the corresponding

configuration K ′, obtained by swapping k1 and k2, used in computing in γ(2, kmax):

K ′ = (k2, k1, k3, . . . , km). Then

Pr(K ′) =

(
k

k1, . . . , km

)(n2

n

)k1 (n1

n

)k2 m∏
i=3

(ni
n

)ki
.

So Pr(K) = (n1/n2)
(k1−k2) Pr(K ′). If n1 > n2 and k1 > k2, then Pr(K) > Pr(K ′).

If n1 > n2 and k1 = k2, then Pr(K) = Pr(K ′). Thus, γ(1, kmax) > γ(2, kmax) for every

kmax, and therefore, A1 is more likely than A2 to win a sample without replacement.

By a similar argument, for every i > 1, γ(1, kmax) ≥ γ(i, kmax) for any kmax, so

γ(1) > γ(i). Therefore, A1 is most likely to win the sample.

4.4.5 Veto

Theorem 4.4.8. Veto is statistically robust.

Proof. Each ballot can be thought of as a vote for the least-preferred alternative; the

winner is the alternative who receives the fewest votes.

For plurality, we showed that the alternative who receives the most votes in the

complete profile is the most likely to receive the most votes for a random sample. By

symmetry, the same arguments can be used to show that the alternative who receives

the fewest votes in the complete profile is the most likely to receive the fewest votes

in a random sample. Thus, the winner of a veto election is the most likely to win in

a random sample.

4.4.6 Approval Voting

We had conjectured that statistical robustness would hold for approval voting, thus

distinguishing it from voting rules with more complex behavior, such as STV. Some-

what surprisingly, approval voting is not statistically robust.
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Theorem 4.4.9. Approval voting is not k-statistically robust for any k, for any of

the three sampling methods GWR, GWOR, GBIN .

Proof. Proof by counterexample. Consider the following profile P :

(r) {A1}

(r) {A2, A3}
There are 3 alternatives A1, A2, A3. There are r ballots that approve of A1 only

and r ballots that approve of A2 and A3. Each alternative receives r votes, so each

wins the election with probability 1/3.

For a sample of any size k, we can express the sample as (k1, k2), where k1 is the

number of ballots for A1 and k2 is the number of ballots for {A2, A3}, and k1+k2 = k.

If k1 = k2, then all three alternatives A1, A2, and A3 are equally likely to win. If

k1 > k2, then A1 wins, and if k2 > k1, then A2 and A3 each win with probability

1/2. Since the profile P contains an equal number of ballots of the two types, the

probability that k1 > k2 is equal to the probability that k2 > k1. Therefore, A1 is

more likely than either A2 or A3 to win. Thus, approval voting is not k-statistically

robust for any k under sampling with or without replacement.

Similarly, for binomial sampling for any probability p, although the sample size k

is not fixed, we can again write any sample as (k1, k2), and using the same argument

as above, we have that A1 is more likely than either A2 or A3 to win. Thus, approval

voting is not robust under binomial sampling.

Intuitively, the non-robustness in the above example comes from the correlations

in the votes for the various alternatives. Whenever A2 gets a vote, A3 also gets a

vote, so A2 can only ever win in a tie with A3, while A1 can win outright.

Note that the example above also shows that for approval voting there does not

even exist a threshold τ such that for any sample of size k at least τ , approval voting

is k-statistically robust
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4.4.7 Plurality with Runoff

By Theorem 4.4.1, we know that plurality with runoff is not 1-statistically robust for

sampling with or without replacement. Here we will show that plurality with runoff

is not statistically robust for binomial sampling for any probability p.

Theorem 4.4.10. Plurality with runoff is not statistically robust for binomial sam-

pling for any probability p.

Proof. Proof by counterexample. Choose r to be a large integer, and consider the

following profile P :

(r) A1 A3 A2

(r) A2 A3 A1

(r − 1) A3 A1 A2

In this profile, A1 and A2 have the most first-choice votes, so the runoff is between

A1 and A2. In the pairwise election, A1 receives 2r − 1 votes, while A2 receives r

votes, so A1 wins.

Suppose we perform binomial sampling with probability p. Let ni be the number

of ballots in the sample that list Ai first. Each ni is a binomial random variable, with

mean rp for A1 and A2, and (r − 1)p for A3.

Note that n1 and n2 are identically distributed, and for any fixed p, as r gets large,

n3 becomes distributed nearly identically to n1 and n2.

For simplicity, assume that two of the alternatives strictly have the most first-

choice votes (i.e., there is no tie that needs to be broken to determine which two

alternatives go into the runoff). (Since the ni’s are nearly identically distributed for

large r, by symmetry the following arguments can be easily adapted to the case of

ties.)

If n1 is the minimum of the ni’s, then the runoff is between A2 and A3. A2 receives

n2 votes and A3 receives n3 +n1 votes, so A3 is likely to win. Let prunoff denote A3’s

probability of winning in the case of a runoff between A2 and A3.

If n2 is the minimum of the ni’s, then the runoff is between A1 and A3. A1 receives

n1 votes and A3 receives n3+n2 votes, so A3 is likely to win. (A3 wins with probability

prunoff .)
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If n3 is the minimum of the ni’s, then the runoff is between A1 and A2. A1 receives

n1 + n3 votes, and A2 receives n2 votes, so A1 is likely to win. When r is large so the

ni’s are distributed nearly identically, A1 wins with probability about prunoff .

For large r, since the three possible runoffs are almost equally likely, A3 is about

twice as likely as A1 to win when the sample is selected using binomial sampling with

any fixed probability p.

4.4.8 Single Transferable Vote (STV)

By Theorem 4.4.1, we know that STV is not 1-statistically robust for sampling with

or without replacement.

Here we show that STV is not statistically robust for binomial sampling.

Theorem 4.4.11. STV is not statistically robust for binomial sampling for any prob-

ability p.

Proof. Plurality with runoff and STV are identical when there are three (or fewer)

candidates, so the counterexample given in the proof of Theorem 4.4.10 is also a

counterexample for STV, showing that STV is not statistically robust for binomial

sampling for any probability p.

Here, we give another counterexample, for an arbitrary number of candidates m.

We construct a profile for which the winner is very unlikely to be the winner in

any smaller sample. Choose m (the number of alternatives) and r (a “replication

factor”) both as large integers.

The profile will consist of n = mr ballots:

(r + 1) A1 Am . . .

(r) A2 Am A1 . . .

(r) A3 Am A1 . . .

...

(r) Am−1 Am A1 . . .

(r − 1) Am A1 . . .

where the specified alternatives appear at the front of the ballots, and “. . .” indicates

that the order of the other lower-ranked alternatives is irrelevant.
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In this profile, Am is eliminated first, then A2, . . . , Am−1 in some order, until A1

wins.

Suppose now that binomial sampling is performed, with each ballot retained with

probability p. Let ni be the number of ballots retained that list Ai first. Each ni is

a binomial random variable with mean (r + 1)p (for A1), rp (for A2, . . . , Am−1), and

(r − 1)p (for Am).

Claim 1: The probability that nm = 0 goes to 0, for any fixed p, as r →∞.

Claim 2: The probability that there exists an i, 1 ≤ i < m, such that ni < nm,

goes to 1 as m, r →∞.

Note that as r gets large, then ni and nm are very nearly identically distributed,

so the probability that ni < nm goes to 1/2. As r and m get large, the probability

that some ni will be smaller than nm goes to 1.

Thus, in any sample GBIN(P, k), we expect to see some Ai other than Am elimi-

nated first. Since all of Ai’s votes then go to Am, Am will with high probability never

be eliminated and will be the winner.

4.4.9 Positional Scoring Rules

By Theorem 4.4.1, we know that any positional scoring rule defined by 〈α1, . . . , αm〉

where α1 > α2 is not 1-statistically robust. Here, we consider the case where α1 = α2

(so the rule is not unanimous), but the score vector consists of at least three distinct

values.

Theorem 4.4.12. Let ~α = 〈α1, . . . , αm〉 be any positional scoring rule with integer

αi’s such that α1 > αi > αm for some 1 < i < m. Then the positional scoring rule

defined by ~α is not 1-statistically robust.

Proof. We will show that a counterexample exists for any ~α for which α1 > αi > αm

for some i.

We construct a profile as follows. Start with r copies of each of the m! possible

ballots, for some large r. Clearly, for this profile, all m alternatives are tied, and each

alternative wins the election with equal probability, 1/m.
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We will show that this profile can be “tweaked” so that in the resulting profile,

all m alternatives are again tied and each win with equal probability. However, the

number of first-choice votes will no longer be equal for all alternatives, so for a sample

of size 1, the alternatives will not all win with equal probability.

The “tweak” is performed as follows. Take a single ballot type b (i.e., a permu-

tation of the alternatives) that has A1 in position 1 on the ballot, A2 in position i,

and A3 in position m. Consider the 6 ballot types obtained by permuting A1, A2, A3

within b (while keeping the other alternatives’ positions fixed). We will change the

number of ballots of each of these 6 types by δ1, . . . , δ6 (the δi’s may be positive,

negative, or zero).

That is, starting from a ballot type A1 . . . A2 . . . A3, we will change the counts of

the following 6 ballot types:

A1 . . . A2 . . . A3 by δ1

A1 . . . A3 . . . A2 by δ2

A2 . . . A1 . . . A3 by δ3

A2 . . . A3 . . . A1 by δ4

A3 . . . A1 . . . A2 by δ5

A3 . . . A2 . . . A1 by δ6

where the “. . .” parts are the same for all 6 ballot types.

In order to keep the scores of A4, . . . , Am unchanged, we require δ1 + . . .+ δ6 = 0.

Next, in order to keep the scores of A1, . . . , A3 unchanged, we write one equation

for each of the three alternatives:

(δ1 + δ2)α1 + (δ3 + δ5)αi + (δ4 + δ6)αm = 0,

(δ3 + δ4)α1 + (δ1 + δ6)αi + (δ2 + δ5)αm = 0,

(δ5 + δ6)α1 + (δ2 + δ4)αi + (δ1 + δ3)αm = 0.

Finally, to ensure that the number of first-choice votes changes (so that the prob-

ability of winning a sample of size 1 changes) for at least one of A1, A2, A3, we add
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an additional equation, δ1 + δ2 = 1, for example.

The 5 equations above in 6 variables will always be satisfiable with integer δi’s.

(The δi’s might be fractional values, but then we will be able to scale all the δi’s by

some multiplicative factor to get integer solutions.) We can choose the replication

factor r to be large enough so that the numbers of each ballot type are non-negative.

Thus, there always exists a counterexample to statistical robustness as long as α1 >

αi > αm.

4.5 Discussion and Open Questions

We have introduced and motivated a new property for voting rules, statistical robust-

ness, and provided some results on the statistical robustness of several well-known

voting rules.

Many interesting open problems and conjectures remain, some of which are given

below.

It may be surprising that plurality (and its complement, veto) and random ballot

are the only interesting voting rules that appear to be statistically robust. Being

statistically robust seems to be a somewhat fragile property, and a small amount of

nonlinearity appears to destroy it.

For example, even plurality with weighted ballots (which one might have in an ex-

pert system with different experts having different weights) is not statistically robust:

this is effectively the same as score voting.

Open Problem 1. Are some voting rules k-statistically robust for large enough

sample sizes k? Many of our non-robustness results are for k = 1. It would be of

interest to determine, for each voting rule and each kind of sampling, for which values

of k statistical robustness holds.

Note that we showed for approval voting that there does not exist a threshold k′ for

which k-statistical robustness holds for k > k′, for any of the three sampling methods.

Conjecture 1. Show that plurality and veto are the only statistically robust voting
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rules among those where each ballot “approves t” for some fixed t, for all three

sampling methods.

Conjecture 2. Show that a voting rule cannot be statistically robust if the num-

ber of distinct meaningfully-different ballot types is greater than m, the number of

alternatives, for all three sampling methods.

Conjecture 3. Show that a voting rule cannot be robust if there are two profiles P

and P ′ that have the same total score vectors, but which generate different distribu-

tions when sampled, for all three sampling methods.

Open Problem 2. Determine how best to use the information contained in a sample

of ballots to predict the overall election outcome (where the entire profile is unknown),

for each voting rule that is not statistically robust. (There may be something better

to do than merely applying the voting rule to the sample.) This type of prediction

may be useful for non-Bayesian post-election audit methods.

Open Problem 3. The lottery-based voting rules studied by Walsh and Xia [59]

of the form “LotThenX” seem plausible alternatives for statistically robust voting

rules, since their first step is to take a sample of the profile. Determine which, if any,

LotThenX voting rules are statistically robust.
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