Show simple item record

dc.contributor.authorSherwood, Richard I.
dc.contributor.authorEmons, Bart J.M.
dc.contributor.authorHashimoto, Tatsunori Benjamin
dc.contributor.authorKang, Daniel D.
dc.contributor.authorRajagopal, Nisha
dc.contributor.authorBarkal, Amira
dc.contributor.authorZeng, Haoyang
dc.contributor.authorSrinivasan, Sharanya
dc.contributor.authorJaakkola, Tommi S.
dc.contributor.authorGifford, David K.
dc.date.accessioned2017-02-23T21:26:44Z
dc.date.available2017-02-23T21:26:44Z
dc.date.issued206-08
dc.date.submitted2015-10
dc.identifier.issn1088-9051
dc.identifier.issn1549-5469
dc.identifier.urihttp://hdl.handle.net/1721.1/107146
dc.description.abstractEnhancers and promoters commonly occur in accessible chromatin characterized by depleted nucleosome contact; however, it is unclear how chromatin accessibility is governed. We show that log-additive cis-acting DNA sequence features can predict chromatin accessibility at high spatial resolution. We develop a new type of high-dimensional machine learning model, the Synergistic Chromatin Model (SCM), which when trained with DNase-seq data for a cell type is capable of predicting expected read counts of genome-wide chromatin accessibility at every base from DNA sequence alone, with the highest accuracy at hypersensitive sites shared across cell types. We confirm that a SCM accurately predicts chromatin accessibility for thousands of synthetic DNA sequences using a novel CRISPR-based method of highly efficient site-specific DNA library integration. SCMs are directly interpretable and reveal that a logic based on local, nonspecific synergistic effects, largely among pioneer TFs, is sufficient to predict a large fraction of cellular chromatin accessibility in a wide variety of cell types.en_US
dc.description.sponsorshipNational Institutes of Health (U.S.) (Grants 5UL1DE019581, RL1DE019021, 1K01DK101684-01, 1U01HG007037, and 5P01NS055923)en_US
dc.language.isoen_US
dc.publisherCold Spring Harbor Laboratory Pressen_US
dc.relation.isversionofhttp://dx.doi.org/10.1101/gr.199778.115en_US
dc.rightsCreative Commons Attribution-NonCommercial 4.0 Internationalen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/en_US
dc.sourceCold Spring Harbor Laboratory Pressen_US
dc.titleA synergistic DNA logic predicts genome-wide chromatin accessibilityen_US
dc.typeArticleen_US
dc.identifier.citationHashimoto, Tatsunori et al. “A Synergistic DNA Logic Predicts Genome-Wide Chromatin Accessibility.” Genome Research 26.10 (2016): 1430–1440.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratoryen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Scienceen_US
dc.contributor.mitauthorHashimoto, Tatsunori Benjamin
dc.contributor.mitauthorKang, Daniel D.
dc.contributor.mitauthorRajagopal, Nisha
dc.contributor.mitauthorBarkal, Amira
dc.contributor.mitauthorZeng, Haoyang
dc.contributor.mitauthorSrinivasan, Sharanya
dc.contributor.mitauthorJaakkola, Tommi S.
dc.contributor.mitauthorGifford, David K.
dc.relation.journalGenome Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsHashimoto, Tatsunori; Sherwood, Richard I.; Kang, Daniel D.; Rajagopal, Nisha; Barkal, Amira A.; Zeng, Haoyang; Emons, Bart J.M.; Srinivasan, Sharanya; Jaakkola, Tommi; Gifford, David K.en_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-0521-5855
dc.identifier.orcidhttps://orcid.org/0000-0001-5809-3041
dc.identifier.orcidhttps://orcid.org/0000-0003-1057-2865
dc.identifier.orcidhttps://orcid.org/0000-0002-2199-0379
dc.identifier.orcidhttps://orcid.org/0000-0003-1709-4034
dspace.mitauthor.errortrue
mit.licensePUBLISHER_CCen_US
mit.metadata.statusComplete


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record