Show simple item record

dc.contributor.authorYang, Luhan
dc.contributor.authorBriggs, Adrian W.
dc.contributor.authorChew, Wei Leong
dc.contributor.authorMali, Prashant
dc.contributor.authorGuell, Marc
dc.contributor.authorAach, John
dc.contributor.authorKan, Yinan
dc.contributor.authorLesha, Emal
dc.contributor.authorSoundararajan, Venkataramanan
dc.contributor.authorGoodman, Daniel Bryan
dc.contributor.authorCox, David
dc.contributor.authorChurch, George M
dc.contributor.authorZhang, Feng
dc.date.accessioned2017-03-28T17:44:33Z
dc.date.available2017-03-28T17:44:33Z
dc.date.issued2016-11
dc.date.submitted2016-05
dc.identifier.issn2041-1723
dc.identifier.urihttp://hdl.handle.net/1721.1/107758
dc.description.abstractPrecise editing is essential for biomedical research and gene therapy. Yet, homology-directed genome modification is limited by the requirements for genomic lesions, homology donors and the endogenous DNA repair machinery. Here we engineered programmable cytidine deaminases and test if we could introduce site-specific cytidine to thymidine transitions in the absence of targeted genomic lesions. Our programmable deaminases effectively convert specific cytidines to thymidines with 13% efficiency in Escherichia coli and 2.5% in human cells. However, off-target deaminations were detected more than 150 bp away from the target site. Moreover, whole genome sequencing revealed that edited bacterial cells did not harbour chromosomal abnormalities but demonstrated elevated global cytidine deamination at deaminase intrinsic binding sites. Therefore programmable deaminases represent a promising genome editing tool in prokaryotes and eukaryotes. Future engineering is required to overcome the processivity and the intrinsic DNA binding affinity of deaminases for safer therapeutic applications.en_US
dc.language.isoen_US
dc.publisherNature Publishing Groupen_US
dc.relation.isversionofhttp://dx.doi.org/10.1038/ncomms13330en_US
dc.rightsCreative Commons Attribution 4.0 International Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleEngineering and optimising deaminase fusions for genome editingen_US
dc.typeArticleen_US
dc.identifier.citationYang, Luhan et al. “Engineering and Optimising Deaminase Fusions for Genome Editing.” Nature Communications 7 (2016): 13330.en_US
dc.contributor.departmentHarvard University--MIT Division of Health Sciences and Technologyen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.contributor.departmentMcGovern Institute for Brain Research at MITen_US
dc.contributor.departmentProgram in Media Arts and Sciences (Massachusetts Institute of Technology)en_US
dc.contributor.mitauthorGoodman, Daniel Bryan
dc.contributor.mitauthorCox, David
dc.contributor.mitauthorChurch, George M
dc.contributor.mitauthorZhang, Feng
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.orderedauthorsYang, Luhan; Briggs, Adrian W.; Chew, Wei Leong; Mali, Prashant; Guell, Marc; Aach, John; Goodman, Daniel Bryan; Cox, David; Kan, Yinan; Lesha, Emal; Soundararajan, Venkataramanan; Zhang, Feng; Church, Georgeen_US
dspace.embargo.termsNen_US
dc.identifier.orcidhttps://orcid.org/0000-0003-3759-6883
dc.identifier.orcidhttps://orcid.org/0000-0003-2782-2509
mit.licensePUBLISHER_CCen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record