dc.contributor.author | Cermak, Nathan | |
dc.contributor.author | A Murakami, Mark | |
dc.contributor.author | Ogawa, Masaaki | |
dc.contributor.author | Agache, Vincent | |
dc.contributor.author | Baléras, François | |
dc.contributor.author | Weinstock, David M | |
dc.contributor.author | Olcum, Selim A. | |
dc.contributor.author | Delgado, Francisco Feijo | |
dc.contributor.author | Wasserman, Steven | |
dc.contributor.author | Knudsen, Scott | |
dc.contributor.author | Kimmerling, Robert John | |
dc.contributor.author | Stevens, Mark M. | |
dc.contributor.author | Kikuchi, Yuki | |
dc.contributor.author | Sandikci, Arzu | |
dc.contributor.author | Manalis, Scott R | |
dc.contributor.author | Payer, Kristofor Robert | |
dc.date.accessioned | 2018-09-10T19:54:39Z | |
dc.date.available | 2018-09-10T19:54:39Z | |
dc.date.issued | 2016-09 | |
dc.date.submitted | 2015-11 | |
dc.identifier.issn | 1087-0156 | |
dc.identifier.issn | 1546-1696 | |
dc.identifier.uri | http://hdl.handle.net/1721.1/117696 | |
dc.description.abstract | Methods to rapidly assess cell growth would be useful for many applications, including drug susceptibility testing, but current technologies have limited sensitivity or throughput. Here we present an approach to precisely and rapidly measure growth rates of many individual cells simultaneously. We flow cells in suspension through a microfluidic channel with 10-12 resonant mass sensors distributed along its length, weighing each cell repeatedly over the 4-20 min it spends in the channel. Because multiple cells traverse the channel at the same time, we obtain growth rates for >60 cells/h with a resolution of 0.2 pg/h for mammalian cells and 0.02 pg/h for bacteria. We measure the growth of single lymphocytic cells, mouse and human T cells, primary human leukemia cells, yeast, Escherichia coli and Enterococcus faecalis. Our system reveals subpopulations of cells with divergent growth kinetics and enables assessment of cellular responses to antibiotics and antimicrobial peptides within minutes. | en_US |
dc.description.sponsorship | United States. Army Research Office (Grant W911NF-09-D-0001) | en_US |
dc.description.sponsorship | National Science Foundation (U.S.) (Grant 1129359) | en_US |
dc.description.sponsorship | National Cancer Institute (U.S.) (Grant U54CA143874) | en_US |
dc.description.sponsorship | National Cancer Institute (U.S.) (Grant P30-CA14051) | en_US |
dc.description.sponsorship | National Cancer Institute (U.S.) (Grant R33-CA191143) | en_US |
dc.description.sponsorship | National Institutes of Health (U.S.) (Grant T32-GM008334) | en_US |
dc.description.sponsorship | National Institute of General Medical Sciences (U.S.) (Grant T32-GM008334) | en_US |
dc.publisher | Nature Publishing Group | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1038/NBT.3666 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | PMC | en_US |
dc.title | High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Cermak, Nathan et al. “High-Throughput Measurement of Single-Cell Growth Rates Using Serial Microfluidic Mass Sensor Arrays.” Nature Biotechnology 34, 10 (September 2016): 1052–1059 | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Biological Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Biology | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mechanical Engineering | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Microsystems Technology Laboratories | en_US |
dc.contributor.department | Koch Institute for Integrative Cancer Research at MIT | en_US |
dc.contributor.mitauthor | Olcum, Selim A. | |
dc.contributor.mitauthor | Delgado, Francisco Feijo | |
dc.contributor.mitauthor | Wasserman, Steven | |
dc.contributor.mitauthor | Payer, Kristofor | |
dc.contributor.mitauthor | Knudsen, Scott | |
dc.contributor.mitauthor | Kimmerling, Robert John | |
dc.contributor.mitauthor | Stevens, Mark M. | |
dc.contributor.mitauthor | Kikuchi, Yuki | |
dc.contributor.mitauthor | Sandikci, Arzu | |
dc.contributor.mitauthor | Manalis, Scott R | |
dc.relation.journal | Nature Biotechnology | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2018-09-10T15:43:58Z | |
dspace.orderedauthors | Cermak, Nathan; Olcum, Selim; Delgado, Francisco Feijó; Wasserman, Steven C; Payer, Kristofor R; A Murakami, Mark; Knudsen, Scott M; Kimmerling, Robert J; Stevens, Mark M; Kikuchi, Yuki; Sandikci, Arzu; Ogawa, Masaaki; Agache, Vincent; Baléras, François; Weinstock, David M; Manalis, Scott R | en_US |
dspace.embargo.terms | N | en_US |
dc.identifier.orcid | https://orcid.org/0000-0002-6417-1007 | |
dc.identifier.orcid | https://orcid.org/0000-0002-5866-4606 | |
dc.identifier.orcid | https://orcid.org/0000-0001-9939-764X | |
dc.identifier.orcid | https://orcid.org/0000-0002-5702-8667 | |
dc.identifier.orcid | https://orcid.org/0000-0002-7773-194X | |
dc.identifier.orcid | https://orcid.org/0000-0001-5223-9433 | |
mit.license | OPEN_ACCESS_POLICY | en_US |