Show simple item record

dc.contributor.authorBezrukavnikov, R.
dc.contributor.authorRovinsky, M.
dc.date.accessioned2021-09-20T17:17:12Z
dc.date.available2021-09-20T17:17:12Z
dc.date.issued2019-11-05
dc.identifier.urihttps://hdl.handle.net/1721.1/131470
dc.description.abstractAbstract Let F be an infinite division ring, V be a left F-vector space, $$r\ge 1$$r≥1 be an integer. We study the structure of the representation of the linear group $$\mathrm {GL}_F(V)$$GLF(V) in the vector space of formal finite linear combinations of r-dimensional vector subspaces of V with coefficients in a field. This gives a series of natural examples of irreducible infinite-dimensional representations of projective groups. These representations are non-smooth if F is locally compact and non-discrete.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s40598-019-00126-7en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer International Publishingen_US
dc.title0-Cycles on Grassmannians as Representations of Projective Groupsen_US
dc.typeArticleen_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2020-09-24T21:18:03Z
dc.language.rfc3066en
dc.rights.holderInstitute for Mathematical Sciences (IMS), Stony Brook University, NY
dspace.embargo.termsY
dspace.date.submission2020-09-24T21:18:03Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Needed


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record