dc.contributor.author | Bezrukavnikov, R. | |
dc.contributor.author | Rovinsky, M. | |
dc.date.accessioned | 2021-09-20T17:17:12Z | |
dc.date.available | 2021-09-20T17:17:12Z | |
dc.date.issued | 2019-11-05 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/131470 | |
dc.description.abstract | Abstract
Let F be an infinite division ring, V be a left F-vector space, $$r\ge 1$$r≥1 be an integer. We study the structure of the representation of the linear group $$\mathrm {GL}_F(V)$$GLF(V) in the vector space of formal finite linear combinations of r-dimensional vector subspaces of V with coefficients in a field. This gives a series of natural examples of irreducible infinite-dimensional representations of projective groups. These representations are non-smooth if F is locally compact and non-discrete. | en_US |
dc.publisher | Springer International Publishing | en_US |
dc.relation.isversionof | https://doi.org/10.1007/s40598-019-00126-7 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | Springer International Publishing | en_US |
dc.title | 0-Cycles on Grassmannians as Representations of Projective Groups | en_US |
dc.type | Article | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2020-09-24T21:18:03Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | Institute for Mathematical Sciences (IMS), Stony Brook University, NY | |
dspace.embargo.terms | Y | |
dspace.date.submission | 2020-09-24T21:18:03Z | |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | |